CC484 - Constraint Satisfaction Problem

by

Edgar Galván López

Exercises

Graduate Teaching Assitant University of Essex egalva@essex.ac.uk

Professor Edward Tsang University of Essex edward@essex.ac.uk

25 October 2006

x_1	<i>x</i> ₂	<i>x</i> 3			I					
-	h	-	x_1	<i>x</i> ₂	<i>x</i> ₃		<i>x</i> ₂	<i>x</i> ₃	x_4	
a	D	С	b	b	с		а	а	1	
b	b	С		1			1.		2	
с	b	с	С	D	С		D	С	2	
-	1		С	n	n		Ь	С	3	
С	b	S								
(a)			(b)				(c)			

Figure 1: Three relations: (a) relation R, (b) relation R' and (c) relation R".

Exercises

- 1. Let $A = \{1, 2, 3, 4, 6\}$ and $B = \{2, 1, 3, 5, 7\}$.
 - (a) Compute $A \cup B$
 - (b) Compute $A \cap B$
- 2. Let $D_1 = \{ black, green \}$ and $D_2 = \{ apple juice, coffee, tea \}$.
 - (a) Write the Cartesian product $D_1 \mathbf{x} D_2$.
 - (b) Given $R_1 = \{(x_1, x_2) | x_1 \in D_1, x_2 \in D_2, \text{ and } x_1 \text{ is before } x_2 \text{ in dictionary ordering} \}$. Write R_1 .
- 3. Let $R_1 = \{(a, b), (c, d), (d, e)\}$ and $R_2 = \{(b, c), (e, a), (b, d)\}.$
 - (a) Compute $R_2 \cup R_1$
 - (b) Compute $R_1 \cap R_2$
- 4. Let the relations R, R' and R'' be as shown in Figure 1.
 - (a) Compute $(\sigma_{x_3=c}(R'))$
 - (b) Compute $(\pi_{\{x_2,x_3\}}(R')).$
 - (c) Compute $R' \bowtie R''$.

						x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₂	<i>x</i> 3		b	b	С	2
b	b	с	b	с		b	b	с	3
с	b	с	n	n		с	b	с	2
						с	b	с	3
(a)			(b)			(c)			

Figure 2: Answer for (a) selection, (b) projection and (c) join.

Answers

- 1. Let $A = \{1, 2, 3, 4, 6\}$ and $B = \{2, 1, 3, 5, 7\}$.
 - (a) $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$
 - (b) $A \cap B = \{1, 2, 3\}$
- 2. Let $D_1 = \{ black, green \}$ and $D_2 = \{ apple juice, coffee, tea \}$.
 - (a) D₁xD₂ = {(black, apple juice), (black, coffee), (black, tea), (green, apple juice), (green, coffee), (green, tea)}
 (b) R₁ = {(black, coffee), (black, tea), (green, tea)}
- 3. (a) $R_2 \cup R_1 = \{(a, b), (c, d), (d, e), (b, c), (e, a), (b, d)\}$ (b) \emptyset
- 4. Refer to Figure 2.