CC484 - Constraint Satisfaction Problem

by

Edgar Galván López

Exercises

Graduate Teaching Assitant University of Essex egalva@essex.ac.uk

Professor Edward Tsang University of Essex edward@essex.ac.uk

November 8th, 2006

Figure 1: (a) Graph G, and three orderings of the graph: (b) $d_1 = (F, E, D, C, B, A)$, (c) $d_2 = (A, B, C, D, E, F)$, and (d) $d_3 = (F, D, C, B, A, E)$. Broken lines indicate edges added in the induced graph of each ordering.

Exercises

- 1. Given Figure 1, define the following:
 - (a) Parents of A along d_1
 - (b) Width of A along d_1
 - (c) Width of C along d_1
 - (d) $w(d_1), w(d_2), w(d_3)$
- 2. Assume that the constraints and the domains of the problem in Figure 2 are specified as follows: $D_1 = \{red, white, black\}, D_2 = \{green, white, black\}, D_3 = \{red, white, blue\}, D_4 = \{white, blue, black\}, R_{12} : x_1 = x_2, R_{13} : x_1 = x_3, R_{34} : x_3 = x_4\}.$ Using the ordering $d = (x_1, x_2, x_3, x_4)$, Compute:
 - (a) D_1
 - (b) D_2
 - (c) D_3
 - (d) D_4

Figure 2: An ordered constraint graph.

Answers

- 1. (a) $\{B, C, E\}$
 - (b) 3
 - (c) 1
 - (d) 2
 - (e) $w(d_1) = 3, w(d_2) = 2, w(d_3) = 2$
- 2. (a) $D_1 = \{white\}$
 - (b) $D_2 = \{green, white, black\}$
 - (c) $D_3 = \{white, blue\}$
 - (d) $D_4 = \{white, blue, black\}$