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Abstract

Field Workforce Scheduling (FWS) is a very important and practical prob-

lem in service industries. It concerns the scheduling of multi-skilled em-

ployees to geographically dispersed tasks. In FWS, employee efficiency is

highly important, and thus they have to be managed in an effective way.

Employee empowerment is a relatively new and flexible management con-

cept. It promises to benefit both organizations and employees by enhancing

employee morale, satisfaction and productivity. This motivates the incor-

poration of empowerment when designing FWS models, which has not been

thoroughly investigated.

This thesis describes the development of a new efficient empowerment schedul-

ing model, called EmS, for FWS. The key feature of EmS is that it is

strongly linked to the management literature on empowerment from which

the requirements are derived. EmS provides employees with a simple, yet

flexible and fair means of involvement in the scheduling decision, through

which they can suggest their own schedules. This is formulated using a

multi-objective optimization (MOO) approach where the task is to find a

balance between employee empowerment and the employer’s interest. To

evaluate EmS, a series of empirical experiments are conducted, presenting

the first extensive and in-depth study of the feasibility of empowerment in

the FWS context, as well as the efficiency of an empowerment scheduling

model.

To tackle the empowerment scheduling problem, a new method based on

Guided Local Search (GLS) is developed. GLS is a simple, yet effective

single-objective metaheuristic with few parameters to tune. As a pioneering

work, we propose an extension to GLS (called GPLS) as a general method



for tackling MOO problems. In addition, a number of GPLS-based frame-

works are proposed, which prove the potential of GPLS to be a central part

of more advanced frameworks. GPLS and its frameworks are extensively

tested on standard MOO benchmarks, and EmS. Computational results

suggest that GPLS is comparable to state-of-the-art MOO metaheuristics.
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Chapter 1

Introduction

1.1 Overview

Automating and optimizing service operations is becoming increasingly critical for

many organizations and industrial companies; this motivates the development of intel-

ligent planning and scheduling systems to manage and optimize the service operation

and its associated resources [126]. A key resource that needs to be efficiently managed

is people, who are the main asset in many organizations. A representative, yet very

important, scheduling problem is the Field Workforce Scheduling (FWS) problem that

appears in many organizations where the field workforce (e.g. technicians, engineers

and salespersons) is the main resource. FWS concerns the scheduling of a multi-skilled

workforce to geographically dispersed tasks in an efficient manner, whilst satisfying a

range of operational constraints. It is an interesting combination of task assignment

and routing problems. The importance of the FWS system as a decision support tool

motivates the creation of new and efficient models, as well as advanced solution tech-

niques. This describes the theme of this thesis, which aims to develop a new model for

FWS and couple it with an advanced solution method.

2



1.1 Overview

1.1.1 Empowerment in Field Workforce Management

Organizations are becoming increasingly aware of the importance of empowering em-

ployees and involving them in decision making, in order to create an employee-friendly

environment. In FWS, employee efficiency is highly critical to the effectiveness of the

schedules produced by workforce scheduling systems. Nevertheless, traditional work-

force scheduling models tend to apply traditional management techniques which are

based on the command-and-control [51] management strategy. These models isolate

employees, who have only to accept the scheduling decision, from the decision-making

process.

Employee empowerment is one of the most recent and most flexible management

concepts. It gives employees control over decisions related to their work, and enhances

their self-efficacy. It has been argued that empowerment has promising benefits for

both the organization and its employees, offering a win-win approach [51, 27, 29]. These

appealing benefits motivate organizations to enhance, rather than minimize, employees’

power and control, with the desire to increase productivity and quality, as well as to

enhance employees’ motivation and retention.

The incorporation of the principle of empowerment in designing workforce schedul-

ing systems is still limited and challenging, particularly in the context of FWS. There

have been attempts to implement empowerment in FWS (e.g. [116, 115, 102]), as well

as other types of workforce scheduling (e.g. [11, 6, 35]). However, several issues have

not been well-studied yet in the existing literature. Such issues include the following:

• Existing scheduling models which include empowerment vary significantly in their

formalizations of empowerment at the decision-making (i.e. scheduling) stage.

Such a variation reflects different conceptions of empowerment in the scheduling

context. A common feature of these various conceptions of empowerment is that

empowerment is treated mainly as a management practice that allows employees

3



1.1 Overview

to be involved (at various extent) in the allocation process. Focusing on the man-

agerial aspect of empowerment leads many models to overlook other aspects such

as enhancing employees’ feeling of power and ensuring employees’ trust in the

model as being fair and transparent. These psychological aspects are crucial to

the success of empowerment [130], and therefore it is not enough to claim empow-

erment by providing employees with a very limited power over their schedules, or

proposing models that lack fairness.

• FWS is basically an optimization problem, where the task is to find an optimal

schedule with respect to a special criterion (i.e. the organizational interest). For-

mulating this problem so as to empower the workforce and increase their involve-

ment in the scheduling decision would impact, in various ways, the organizational

goal. Studies that assess the impact of empowerment on the organizational objec-

tive and evaluate the various aspects (e.g. managerial and psychological aspects)

of empowerment, are absent in most of the existing research. Such studies are

very important in understanding the correlation between employee empowerment

and employer’s interest (i.e. examining the feasibility of empowerment), and

evaluating the efficiency of an empowerment practice in workforce scheduling.

• A critical feature of the traditional (i.e. inflexible) scheduling approach is that

the organization has full control over the optimization process, and thus the fi-

nal scheduling decision. This is due to the fact that the optimization algorithm

is steered by a criterion determined only by the organization, and therefore un-

desirable scheduling outcomes such as specific tasks being unscheduled can be

avoided in an easy manner. Although this control is highly important to organi-

zations, it disappears partially or completely from the existing flexible scheduling

models that increase employee control over the optimization process. Empower-

ing a workforce, while being in charge of the scheduling process as in traditional

4



1.1 Overview

scheduling, would motivate organizations to embark empowerment.

These issues suggest that incorporating empowerment effectively into a new FWS

model is still challenging and requires more research.

1.1.2 An Advanced Optimization Technique

In real applications, the field service operation involves millions of pounds [126], and

therefore a small improvement in FWS may result in large savings in real terms. This

motivates the development of advanced scheduling techniques.

From an optimization point of view, we are concerned with metaheuristics [48],

which are general-purpose optimization algorithms for solving search problems such

as the FWS problem. Metaheuristics represent an optimization scheme that is char-

acterized by its ease of implementation and its ability to obtain good performance in

comparatively less computational time than classical optimization methods (i.e. exact

methods).

Guided Local Search (GLS) is a relatively new metaheuristic method proposed by

Voudouris and Tsang in 1997 [124] to solve combinatorial optimization problems. A

main feature of GLS is that it is a flexible and rather simple to implement metaheuris-

tic technique, with few parameters to tune. Additionally, it is a successful method

showing a state-of-the-art performance on several applications to problems with vari-

ous structures and objectives from scheduling and routing to assignment problems and

constraint optimization.

Basically, GLS is a high-level strategy that applies an efficient penalty-based ap-

proach to interact with the underlying local improvement procedure. This interaction

creates a process capable of escaping from local optima - solutions which are better than

all the neighbours but not necessarily the best possible solution - which improves the ef-

ficiency and robustness of the underlying local search algorithms. Beyond that, several

research studies have confirmed the ability of GLS to sit on top of other heuristics and
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metaheuristics, and demonstrated the potential of GLS hybrids with other methods.

For example, Guided Genetic Algorithm [75] demonstrates the ability of GLS to help

the Genetic Algorithm (GA) to escape a local optimum population. In [84], an effective

hybrid of GLS and Evolution Strategies is proposed and applied to a range of routing

problems.

GLS was originally designed for solving single-objective optimization problems. It

lacks the capability to handle multiple conflicting objectives simultaneously (i.e. multi-

objective optimization), which is the nature of most real-world optimization problems.

Multi-objective optimization problems (MOOPs) are very complex and the complexity,

besides the combinatorial aspect, comes from the fact that there is no single optimum

solution for these problems, but rather a set of trade-offs called Pareto optimum solu-

tions. For instance, with relation to our research in this thesis, involving the workforce

in the scheduling decision of FWS is expected to conflict with the organizational ob-

jective (e.g. maximizing the overall allocated tasks). Thus, instead of searching for

the best schedule with respect to the organizational interest only, the search should

target a balance between organizational objective and empowerment (i.e. the amount

of employee decision power).

The application of GLS to MOOPs requires a careful adaptation of GLS’s basic

components. A potential direction is to focus on local search which is the basis of GLS.

Pareto Local Search (PLS) [3, 95] is a straightforward, yet powerful extension of single-

objective local search for solving MOOPs. As a local search method, PLS still suffers

from the problem of being trapped at (Pareto) local optima, and therefore GLS may

still be capable of sitting on top of PLS and guide it to escape Pareto local optima in

an intelligent manner. The challenge is how to adapt GLS basic components to contain

multiple objective scenarios and guide PLS.
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1.1.3 Aim and Objectives

This thesis can be divided into two parts. In its first part, the thesis aims to develop a

new modelling approach for FWS, which incorporates the empowerment concept. This

aim is comprised of the following objectives:

1. Studying the traditional FWS model. This includes formulating a representa-

tive FWS problem and developing a problem generator to support the required

empirical studies throughout the thesis.

2. Providing a rigorous formalization of empowerment (as a management principle),

in workforce scheduling (as an optimization problem), derived from the manage-

ment literature which is the source of empowerment. This formalization should

define the constitution of empowerment and identify its requirements in the work-

force scheduling context.

3. Developing a new empowerment scheduling model that carefully implements em-

powerment to satisfy its constitution and requirements. The model should then

be applied to the FWS problem.

4. The model that is to be developed must be thoroughly evaluated in order to en-

sure an effective implementation of empowerment. Thus, the final objective is

to conduct an extensive and in-depth series of empirical experiments to answer

questions related to: (a) the cost impact of empowerment on organizational inter-

ests (i.e. the feasibility of empowerment), (b) the benefits to both employees and

their employer, and (c) the efficiency and effectiveness of the proposed scheduling

model.

In order to supplement the modelling aspect of the first part by an advanced schedul-

ing technique, the second part of this thesis aims to extend the GLS metaheuristic to
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solve optimization problems with multiple objectives. It includes the following objec-

tives:

1. Investigating the adaptation of GLS to sit on top of PLS methods and guide them

to escape Pareto local optima. This pioneering work results in a new extension to

GLS, which is called Guided Pareto Local Search (GPLS), which allows for the

application of GLS to MOOPs.

2. Formulating the new empowerment scheduling model for FWS as a biobjective

optimization problem, and then solving it using GPLS. For evaluation purposes,

the performance of GPLS is to be compared with various representative tech-

niques applied to the new problem.

1.2 Thesis Structure

The structure of the thesis, which is depicted in Figure 1.1, is as follows. First, it

begins with a background and literature review of the key terms and research areas

used throughout the thesis. These are divided into two parts, the first one is provided in

chapter 2 which describes the FWS problem and reviews its related literature. A great

emphasis is devoted to the literature that proposes flexible management models for

workforce scheduling. This includes a brief review of the literature of the management

field on the employee empowerment concept.

The second part is given in chapter 3 which is dedicated to the literature related to

the proposed solution techniques. It describes GLS in detail, and briefly reviews its ap-

plications. Then, the multi-objective optimization approach is introduced, and its main

aspects are discussed. It also reviews the adaptations of heuristics and metaheuristics

for solving MOOPs.

The computational studies in this thesis require a formulated FWS problem, with

a problem generator, to develop large benchmark datasets. Due to the lack of a public
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Figure 1.1: Thesis Structure

problem generator for FWS, a step in this direction is made in chapter 4, which formu-

lates a traditional scheduling model of the FWS problem and then develops a problem

generator. It also reports on an empirical study conducted to compare, under various

characteristics, the performance of well-know assignment and routing heuristics applied

to the formulated FWS problem.

Chapter 5 describes the development of the new scheduling model for FWS. It be-

gins by establishing the term Empowerment Scheduling as a new conceptualization of

empowerment in workforce scheduling, and proposing a new empowerment scheduling

model, which we name EmS. Then, it describes the application of EmS to the FWS

problem whose formulation is extended accordingly. It also reports on the extensive
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computational study carried out to evaluate the model in comparison with the tradi-

tional model of FWS.

Chapter 6 proposes GPLS as an adaptation of GLS to tackle MOOPs. It outlines

the algorithm and details its components. Moreover, it describes several GPLS-based

frameworks. Then, it reports on the computational experiments conducted to examine

the performance of GPLS and its frameworks on standard multi-objective optimization

benchmarks, in comparison with various state-of-the-art techniques. These experiments

are concluded with some parametric analysis of GPLS and its frameworks.

Chapter 7 presents the meeting point of the two main contributions of this thesis,

namely EmS and GPLS. It describes the implementation of GPLS and its frameworks

for the problem that results from applying EmS to FWS. It also details the conducted

empirical experiments and discusses their results.

The thesis is concluded with chapter 8. It gives a summary of the thesis, lists its

main contributions, and discusses possible directions for further works.

1.3 Publications

Some of the original material used in this thesis has been published in the following

peer-reviewed papers:

1. A. Alsheddy and E. P. K. Tsang: Empowerment Scheduling for a Field Workforce.

Journal of Scheduling, Springer Netherlands, 2011.

2. A. Alsheddy and E. P. K. Tsang: Empowerment-based Workforce Scheduling

Problem. In MISTA 2009 Conference, Ireland, Dublin, 2009.

3. A. Alsheddy and E. P. K. Tsang: Guided Pareto Local Search and its Application

to the 0/1 Multi-objective Knapsack Problems. In The Metaheuristic Internatinal

Conference (MIC09), Germany, Hamburg, 2009.
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4. A. Alsheddy and E. P. K. Tsang: Guided Pareto Local Search based Frameworks

for Biobjective Optimization. In The Congress on Evolutionary Computation

(CEC2010), Spain, Barcelona, IEEE Press, 2010.

5. A. Alsheddy and E. P. K. Tsang: A Guided Local Search Based Algorithm for The

Multiobjective Empowerment-based Field Workforce Scheduling. In The UKCI

2010 Workshop, UK, Colchester, IEEE Press, 2010.

6. C. Voudouris, E. P. K. Tsang, and A. Alsheddy: Guided Local Search. Chapter

11, in M. Gendreau and JY. Potvin (ed.), Handbook of Metaheuristics, Springer

US, 2010.

7. C. Voudouris, E. P. K. Tsang, and A. Alsheddy: Guided Local Search. Wiley

Encyclopaedia of Operations Research and Management Science, 2010.

8. C. Voudouris, E. P. K. Tsang, and A. Alsheddy: Effective Application of Guided

Local Search. Wiley Encyclopaedia of Operations Research and Management

Science, 2010.
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Chapter 2

Field Workforce Scheduling and

Empowerment

This chapter reviews the literature related to Field Workforce Scheduling (FWS). The

first part (section 2.1) is dedicated to the FWS problem. It begins with a short overview

of workforce scheduling problems in general, and then the FWS problem is described

and its variants and applications are reviewed. The second part (section 2.2) focuses

on workforce scheduling models that attempt to apply flexible management techniques

(e.g. employee empowerment) with the aim to empower the workforce to express their

wishes and preferences about their schedules. The chapter concludes with section 2.3.

2.1 Field Workforce Scheduling

2.1.1 A General View

Workforce (or personnel) scheduling concerns the process of constructing work schedules

for employees in an efficient and optimized manner in order to meet a range of internal

and external requirements [41]. This process may involve several stages, each of which is

itself a complex and highly constrained optimization problem. However, there could be
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an overlap between these stages, which makes it difficult to define a unified classification

of these optimization sub-problems. Among the several classifications (e.g. [111, 19,

41]), a general taxonomy is proposed by Ernst et al. [41] who suggested six modules

associated with the process of workforce scheduling. Each module may have several

models needed for specific applications. For a particular application, some or all of

these modules may require consideration. These modules are defined as follows:

1. Demand Modelling. This is a planning problem that involves the determination

of the staffing requirements to cover the planning horizon. An application of such

a problem appears in organizations where the workforce demand varies during

the week as well as the day. An example of such organizations is the call centre

[46].

2. Days Off Scheduling. This is about determining which days of the week an em-

ployee should be assigned to be off. This is a practical problem for organizations

that operate seven days a week.

3. Shift Scheduling. It concerns the selection of which shift an employee should be

assigned each working day. There may be also a need to decide the size of the

workforce required for each shift to meet the target demand. This problem deals

with scenarios where multiple shifts are required per day.

4. Line of Work Construction. This is also known as tour scheduling (i.e. a combi-

nation of Days off and Shift scheduling), and it deals with the problem of deciding

the work line, or the schedule pattern, for each employee over the whole schedul-

ing horizon. This is a practical problem for organizations that operate seven days

a week and 24 hours a day. These organizations include hospitals and airlines.

5. Shift Assignment. This is the process of assigning employees to work lines.

6. Task Assignment. This involves the assignment of tasks to employees during each
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shift, whilst satisfying constraints such as skills and service time-windows.

According to this classification, the FWS problem, which is the concern of this the-

sis, fits into the task assignment module. It is a task assignment problem characterized

by a range of requirements such as a multi-skilled workforce, a service time-window and

tasks with different geographical locations. Therefore, we will focus on the task assign-

ment module from here onward. For other modules, there is a large body of research on

these problems in the literature of Artificial Intelligence and Operational Research. The

reader is referred to survey papers on workforce scheduling in general such as [41, 2],

and other reviews of particular applications such as that of nurse scheduling [23] and

call centres [46].

2.1.2 Problem Description

In the telecommunication domain, Lesaint et al. [76] describes field workforce schedul-

ing as “sending the right engineer to the right customer at the right place at the right

time with the right equipment at any time and in any operational environment.”

More generally, we define the field workforce scheduling problem as a combination of

task assignment and routing problems, where the task is to schedule a workforce to

geographically dispersed tasks in an efficient manner, whilst satisfying a wide range

of operational constraints. Such constraints are real-life requirements which normally

exist in the application domain, and they describe the scheduling context (or environ-

ment) of the considered FWS problem. These requirements can be categorized into the

following groups:

• Scheduling context related requirements:

– Planning horizon: This refers to the time period of how far into the future

the organization schedules its workforce. This can range from a single work

day to multiple days (e.g. weeks or months).
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• Resource related requirements:

– Workforce qualification: This indicates whether employees vary in the skills

they possess, and thus whether each task requires a particular skill.

– Shift: This describes the working hours of an employee, given that employees

may vary in their working hours per working day.

• Task related requirements:

– Service time-window: This indicates whether each task should be scheduled

within a predefined time-window.

– Dependencies: This describes the inter-task dependencies, if any. This in-

cludes for example precedence and parallel constraints.

– Priority: This corresponds to the importance of each task to the organiza-

tion, if they vary. This is a practical requirement, particularly when it is not

necessarily possible to schedule all tasks on the same scheduling unit (e.g.

day).

• Routing requirements:

– Depot: Employees may start their work from a defined depot, multiple de-

pots, their homes or mixture of homes and multiple depots.

Some or all of these requirements may require consideration in order to model a

particular application of FWS. Thus, the above classification of requirements helps to

describe the different variants of FWS. It also justifies the existence of different models,

solution quality measurements (i.e. objective functions) and solution techniques applied

to various FWS problems in the literature.

A central objective of the FWS problem is normally to find a schedule that max-

imizes the productivity (i.e. the service quality) expressed in terms of the number of
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allocated tasks with respect to their priorities. This is attributed to the existence of

many constraints, in which finding a feasible schedule of all tasks is almost impossible.

Another important objective of the FWS problem is to minimize the operational cost,

e.g. travelling cost and over-time cost.

The FWS problem is a practical problem for a wide range of organizations, particu-

larly service companies where the field service engineer is a key resource to be managed.

The domain of such companies include telecommunication, maintenance, utility, con-

struction and health care. To illustrate the importance of the FWS problem, British

Telecommunications plc (BT), for example, employs thousands of field engineers across

the UK to maintain networks, repair faults, and provide service to customers [76]. By

developing an intelligent solution to allocate the workforce efficiently, the company was

able to save about $150 Million a year on operational cost. This example illustrates

the importance of this problem.

2.1.3 Related Work: FWS models

A major feature that characterizes the FWS problem is its involvement to two interde-

pendent sub-problems: task assignment and routing. Therefore, the literature related

to FWS can be divided into three groups: literature that deals with the assignment

problem, literature that focuses on the routing problem, and those which deal simulta-

neously with problems that involve both aspects.

2.1.3.1 Variants of FWS

A number of FWS problems that consider both the assignment and routing aspects have

been defined and formulated in the literature. Most of this literature has considered

real-world problems. These are reviewed here with an emphasis on problem formulation.

Azarmi and Abdul-Hameed [7] presented the workforce management problem of

BT. The problem is to find optimized tours for the field engineers to serve a set of
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tasks, so as to serve as many tasks as possible and minimize the travel time. A data

set with 250 tasks and 118 engineers was considered in this work, which then was

used as a benchmark by other researchers who proposed various solution techniques,

including constraint logic programming [7, 78, 133], Simulated Annealing [9], Genetic

Algorithm [90] and Guided Local Search [114]. The BT problem is a typical FWS

problem as it involves most of the real requirements such as multi-skilled engineers with

multiple depot, tasks with different service time-windows and priorities. The dynamic

counterpart of the BT FWS problem has also been considered in [77, 16]. Similarly,

the Field Technician Scheduling Problem (FTSP) was introduced and formulated by

Xu and Chiu [131]. The FTSP considers maximizing both the allocated tasks as a

primary objective, and the remaining time for each technicians as a secondary objective.

Both terms were modelled in a single objective with weighting coefficients. In [131],

several heuristic procedures including GRASP-based heuristic were designed to solve

the FTSP. In addition, a relevant problem named as mobile workforce management,

that arises in a large service orientated telecommunication enterprise, was introduced

and formulated with multi-agents in [26]. In the same domain, Dutot et al. [39]

presented the Technician and Task Scheduling Problem (TTSP) in collaboration with

France Télécom. The problem was introduced as the subject of the 2007 challenge set

up by the French Operational Research Society (ROADEF)1. In [31], Cordeau et al.

described their entry in this competition.

Naveh et al. [91] modelled a relevant FWS problem as a constraint satisfaction

problem. The model concerns the scheduling of a highly-skilled workforce, and takes

into account more resource related considerations such as skill level, language and

retraining. The model was applied to workforce management in IBM Global Services.

Cowling et al. [33] formulated a FWS problem as a Resource Constrained Project

Scheduling Problem (RCPSP), which is justified since the considered problem involves

1http://challenge.roadef.org/2007/
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rich inter-task dependencies such as precedence and parallel constraints. The problem

is solved using a multi-objective optimization approach to optimize multiple objectives

simultaneously. These objectives are the maximization of the productivity (i.e. the

scheduled tasks with respect to their priorities) and the minimization of the operational

costs including the total travelling time. A Genetic Algorithm based multi-objective

approach is proposed as the solution technique.

Tang et al. [107] solved a FWS problem that appears in a manufacturer that

has to provide a maintenance service for their advanced equipments at customer sites.

The service region is clustered into small areas. Each area is assigned to a particular

technician. Then, each technician will perform the tasks in the assigned area over a

scheduling horizon which can span over multiple days. The aim is to find a multiple

routes for each technician (i.e. a route for each day) while maximizing the collected

rewards during the scheduling horizon. There is no qualification constraint in this

problem, and thus all technician can do any task. Moreover, the service time-window

can be considered as a soft constraint which can be violated at an incurred cost. Tang

et al. [107] modelled this problem as a multiple tour maximum collection problem with

time-dependent rewards, which is a variant belonging to the OP class. They focused

on the routing problem, assuming that tasks are already assigned to a technician and

the objective is to find an optimized tour for each day. Thus, optimizing the tours for

each technician can be solved independently. A tabu search based heuristic embedded

in an adaptive memory procedure was devised as a solution.

The Home-Health-Care (HHC) problem, i.e. nursing patients in their homes, [15]

is to find a feasible working roster for each nurse to complete a set of geographically

dispersed jobs, which has to respect a variety of hard and soft constraints and prefer-

ences. The HHC problem includes both routing and assignment constraints. However,

a distinguishing feature of this problem is the treatment of the allocation of all jobs as

a hard constraint that must be satisfied. It also defines for each routing and assign-
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ment aspect (e.g. nurse qualification, job’s time-window, and nurses’ working time)

hard and soft constraints; whereas in the general FWS problem, only the hard con-

straints on these aspects are defined. Normally, there is no priority defined for the

completion of jobs in the HHC problem, and thus its objective is to minimize both the

violated soft constraints and travel costs. In [15], Bertels and Fahle proposed an inte-

grated approach that interweaves two stages: assigning jobs to nurses, and finding an

optimized sequence for each nurse. A combination of linear programming, constraint

programming and metaheuristics (a Tabu Search and Simulated Annealing algorithms)

was proposed to tackle this problem. In relation to HHC, the development of a decision

support system applied to a real HHC problem is described in [43].

Summarizing, there has been a considerable amount of research on modelling and

solving various FWS problems which are treated as a combination of assignment and

routing. Most of these studies considered real problems (e.g. the FWS problems of BT

[7], IBM [91], Vidus Ltd. [33]. and United Technologies Corporation (UTC) [107]), and

thus they might be unable to expose real world data due to confidentiality issues. As

a result, these studies focused mainly on problem formulation and solution techniques,

leading to a lack of a theoretical research that studies the characteristics of problem

instances. The latter would help in identifying properties that describe hard instances

or at least the performance difference between solution approaches. Another advantage

of such a theoretical study is its help in developing a general benchmark for further

scientific research.

2.1.3.2 Task Assignment

In the assignment problem [72, 96], the task is to find a minimum cost assignment of a

set of jobs to a set of agents, such that each job is assigned to exactly one agent, subject

to agents’ available capacities. Each job-to-agent assignment may have individual cost

and resource requirements. If time is a coordinate in the assignment process, then the
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problem may be called scheduling or timetabling [99].

The FWS problem can be considered as an assignment problem, particularly the

Generalized Assignment Problem (GAP) which is the most basic variant of the assign-

ment problem that allows an agent to be assigned many jobs while respecting the agent

requirement constraint [96, 132]. Similarly, the FWS problem concerns the scheduling

of multiple jobs (i.e. tasks) with different costs (i.e tasks’ priorities) to the available

agents (i.e. employees/technicians) with capacity (i.e. time) constraints. The resource

requirement of each task includes the summation of task duration and the travelling

time a resource needs to get to the site of that task.

However, there are key differences that makes the FWS problem is more general than

the GAP, the first difference is the routing sub-problem involved in FWS which is itself

a non-trivial optimization problem. Second, the possibility of finding an assignment

for all tasks is normally difficult in the FWS scenario, due to the large number of tasks

compared to the available resources, as well as the many existing constraints. Thus, the

objective in the FWS problem is to maximize the number of allocated tasks with respect

to their importance (i.e. priority). This is not the case in the GAP where finding an

assignment for each task is a hard constraint that must be satisfied. Finally, the FWS

problem involves additional constraints which are not considered by the classical GAP.

These constraints include the service time-window for each task, and the multi-skilled

resources. An attempt to consider the GAP with multi-skilled agents is presented in

[24].

2.1.3.3 Vehicle Routing

The vehicle routing problem (VRP) [112] is a general, well-defined benchmark, which

can be described as follows: given a fleet of vehicles that is based at a depot, and a set

of geographically dispersed customers, the task is to construct a set of routes for the

vehicles that optimizes an objective function, whilst satisfying operational constraints
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such as capacity and route length. The objective function is mainly to minimize the

operational costs, represented usually by the number of vehicles and total travelling

distances. The vehicle routing problem with time windows (VRPTW) [30] is an exten-

sion of the VRP with latest, earliest and service times for customers. In the last few

decades, the VRP and its variants have received much attention due to their impor-

tance and practicality in many real applications such as transportation and network

domains. Recent surveys on the VRP can be found in [112, 30, 74].

The FWS problem can be thought of as a generalization of the VRPTW. Similar

to the VRPTW, the FWS problem considers the scheduling of multiple vehicles to cus-

tomers with time-window constraints. However, in FWS the fleet is not homogeneous:

resources have different numbers and types of skills, as well as different depots. In

addition, tasks vary in their skill requirements, and may have different priorities. The

actual duration of a task in FWS is considerably longer than it is in the case of the

VRPTW. Finally, while minimizing the operational cost (e.g. travel cost) is the major

objective of the VRPTW, it is still an important objective of FWS, besides the main

objective which is to maximize productivity (i.e minimize the unallocated tasks with

respect to their priorities). There have been attempts to generalize the VRPTW to deal

with such additional constraints. For instance, the multiple depot and heterogeneous

fleet variant of the VRP is considered in [38].

Another variant of the VRP which has attracted the attention of researchers recently

is the Orienteering Problem (OP) [44] which also known as the travelling salesperson

with profit. In the OP, each location is given a score/profit and the goal is to determine

a route (or multiple routes in the vehicle routing problem with profit) to visit a subset

of a given set of locations. The objective is to maximize the collected scores, given that

the travel cost does not exceed a pre-set maximum value. Similar to the FWS problem,

the OP involves both assignment and routing problems, and has a similar objective.

In contrast to the FWS problem, the OP does not deal with other requirements such
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as skill matching and service time-window constraints on the visits, non-neglected task

duration, and resources with multiple depots.

2.2 Flexible Workforce Management

In FWS (and many workforce scheduling problems), employee efficiency is highly criti-

cal to the effectiveness of the schedules produced by the workforce scheduling systems.

This is because time is a coordinate in the process. Unless employees are highly moti-

vated and efficient, they could easily introduce delays which would significantly impact

upon the schedule of subsequent tasks, as well as the overall schedule. In traditional

scheduling models, however, the involvement of employees in the scheduling process

is very limited. Such models tend to apply traditional (inflexible) management tech-

niques which are based on the command-and-control management strategy [51]. These

systems isolate employees from the decision-making process, and leave them powerless

in such a critical system.

Organizations are becoming increasingly aware of the importance of implementing a

flexible management technique which empowers employees to express their preferences

and influence the decision-making process. Employee empowerment is a relatively new,

comprehensive management approach that gives employees more freedom and control

over decisions related to their work. There have been attempts to develop scheduling

models that try to implement, at various extents, employee empowerment, with the

desire to increase productivity and quality, as well as to enhance employee motivation

and retention. These models vary significantly in their conceptions of empowerment in

workforce scheduling. This motivates us to study empowerment as a management con-

cept from its source (i.e. the management literature), and then formalize this concept in

the scheduling context. This approach would greatly help in understanding the essence

of empowerment and in evaluating the current empowerment practices implemented in

23



2.2 Flexible Workforce Management

scheduling models. For this purpose, this section introduces the empowerment concept

from a management perspective, and then scheduling models with flexible management

in the literature of workforce scheduling are reviewed.

2.2.1 Empowerment: A Management Perspective

2.2.1.1 What Does Empowerment Mean?

Empowerment as a management concept is an elastic term which has been loosely

defined and used [130] [51]. Essentially, employee empowerment is a management con-

cept which provides employees with a certain amount of freedom and flexibility to make

decisions related to their work.

Two concepts of empowerment are reflected in the literature [29] [51] [37] [1]. The

first approach conceptualizes empowerment as a managerial relation, and defines this

term as the process of enhancing employee authority and control over decisions related

to their tasks. From this perspective, empowerment is a broad concept which encom-

passes other management ideas such as delegation, job enrichment, decentralization of

decision making and participatory management. The second approach, however, em-

phasizes the psychological values of empowerment, and refers to empowerment as the

process of enhancing the motivational concept of self-efficacy. Other researchers tend

to combine the two approaches, viewing empowerment as enhancing both employee

decision power and self-efficacy.

2.2.1.2 Benefits of Empowerment

The empowerment literature delivers convincing arguments concerning the benefits

for employee empowerment [53]. Empowerment is seen to be beneficial for both the

organization and employees. As Greasley et al. [51] summarize, the benefits for an

organization are the remarkable improvements in cost control, flexibility, productivity

and quality; where the benefits of empowered employees are enhanced job satisfaction,
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motivation and organizational loyalty. These mutual benefits present a win-win scenario

which is considered as the main motive for making a move towards empowerment [27].

The literature is rich with success stories from organizations that have embarked

on this journey. Examples of such stories are reported in [103, 58, 1, 53].

An important aspect of empowerment that has been studied is the employee percep-

tion of empowerment (e.g. [51]). Wilkinson [130] stated that “It is taken for granted in

much of the prescriptive literature that employees will welcome and indeed be commit-

ted to the new approach. Indeed there is evidence that workers welcome the removal

of irritants (e.g. close supervision) and welcome the opportunity to address problems

at source as well as the ability to decide work allocation.” Yet, it has been argued

that employee’s perception and commitment varies according to several factors such as

education, experience, skilfulness, and personal characteristics [37, 58].

2.2.1.3 Practices and Implementation Issues

The management literature has reported numerous empowerment initiatives and prac-

tices. Wilkinson [130] classified empowerment initiatives into five categories: infor-

mation sharing in which the organizational goals are shared with employees who are

encouraged to express their views to the management; upward problem solving through

which the employees’ ability to make customer-related decisions is enhanced; task

autonomy through team-working or self-management teams; attitudinal changes in

which employees are educated to feel empowered even though there is no organiza-

tional change; and self-management. However, there could be an overlap between these

classes. Some writers emphasize changes in attitude and self-efficacy as being the core

of any form of empowerment.

Another important issue in implementing empowerment, and any new approach,

is the measurement process, which has been discussed in [51]. This process requires

three different measures for measuring three aspects of empowerment: implementation
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efficiency, organizational benefits, and employee benefits. It is easier to measure the

benefits for the organization than it is to measure that of the employee, though both are

difficult processes. The reason for this is that organizational benefits can be measured

by using objective “facts” such as cost and performance, whereas employee benefits are

much more subjective where certain facts can be applied such as absence rate [51].

2.2.1.4 Review of the Empowerment Literature

One major observation of our review of empowerment practices in the management lit-

erature is that most empowerment practices are principally human-centric, in which the

amount of redistributed power, alongside the exercises and effectiveness of the empow-

erment strategy, depends entirely on the people in the organization, i.e. managers and

employees. It is possible to say that the contribution of technology to this management

style is still modest. The main reason behind this is that the empowerment practices

suggested in the management literature focus on enhancing employee power and control

over task-related decisions, but have not, to any great extent, been extended to include

decisions made by supportive subsystems, particularly scheduling systems.

Efficient extensions to the scope of empowerment practices to include such decision-

support subsystems would, on one hand, create more opportunities for employees to

get involved. On the other hand, it could be beneficial for those supportive systems to

apply new decision-making strategies that could help improve the service quality.

2.2.2 Related Work: Flexible Scheduling Models

There have been attempts to implement the empowerment approach in workforce

scheduling in general, and task assignment in particular. Among these attempts, self-

scheduling and preference scheduling are the most common approaches which have

attracted researchers in the last few decades.

26



2.2 Flexible Workforce Management

2.2.2.1 Self-scheduling

Self-scheduling is an empowerment practice designed to enhance employee involvement

in decision making [87, 60]. This flexible scheduling model is designed mainly for dealing

with rostering problems. Various implementation practices of self-scheduling have been

proposed, most of which consider nurse rostering [109, 8]. The idea of self-scheduling is

basically to enable a group of staff nurses to make their own schedule and select their

shifts in accordance with the staffing requirements as determined by a manager.

To illustrate this employee empowerment tool, Hung [60] suggested a nurse self-

scheduling practice as follows:

“ The self-scheduling process is more or less as follows:

1. A large worksheet for the next schedule period, typically 4 to 6 weeks,

is posted weeks in advance, with guidelines or requirements (for ex-

ample, number of weekend shifts one must work, maximum number

of consecutive shifts, and a shift’s required staff coverage). The work-

sheet may be blank or partly filled (this happens, for example, when

some nurses have been working the same shift patterns for years and

they don’t want to change their shift patterns).

2. Nurses are given 1 to 2 weeks to fill in the blanks. When a nurse fills

the worksheet, she/he looks at what has already been filled and tries

to avoid violating guidelines or requirements by making a concession

or trading shifts with other nurses. Filling the worksheet can be done

on a first-come first-serve basis or seniority basis. Some divide nurses

into several groups with rotating priority (for example, the group that

had second priority last time will have first priority this time and least

priority next time, etc.) to achieve more fairness. The simple first-

come first-serve basis probably works well since peer pressure would
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prevent anyone from regularly signing all the good shifts. In addition,

on the first-come first-serve basis, those who really need certain days

off can increase their chance of getting them by signing up first.

3. When the sign-up period expires, the nurse manager or schedule facil-

itator looks at the filled worksheet to see if guidelines or requirements

are met. If not, the worksheet is posted again, with problems high-

lighted. Nurses negotiate and make changes.

4. If the resulting worksheet has no problems, the nurse manager or sched-

ule facilitator approves it. Otherwise, the manager makes necessary

adjustments, perhaps after consulting with those affected. The final

schedule is posted well before it is effective so that nurses can plan

their activities well in advance.

5. Subsequent schedule changes are possible as long as nurses and man-

agement agree.”

The scheduling process in self-scheduling is done manually, and requires sufficient

time to resolve conflicts between staff choices. These make self-scheduling an accept-

able empowerment practice for tractable problems (i.e. units with very few nurses).

However, there are difficulties in implementing self-scheduling for large staff groups

(i.e. more than 70) [8], as well as in short-term scheduling problems. In addition,

most self-scheduling models lack transparency and fairness, which impacts negatively

on employee trust in the system. Teahan [109] stated that a major negative outcome

of implementing the self-scheduling was employees’ complaints of favouritism by the

schedulers irrespective of their objectivity and fairness. Therefore, there is consider-

able room for further improvements and research to develop an automated, general

self-scheduling practice.

28



2.2 Flexible Workforce Management

2.2.2.2 Preference Scheduling

Preference Scheduling is an automated scheduling approach that attempts to accom-

modate individual preferences when creating schedules. Preferences are quantitatively

measured, and are then considered by the scheduling system as an objective to maxi-

mize. Several models of preference scheduling were proposed to solve scheduling prob-

lems such as employee tour scheduling [2, 82, 134], nurse scheduling [23, 11, 6, 35], and

field workforce scheduling [114, 115].

We classify these models into four main approaches. The first class enhances the

quality of the schedule by extending the objective function (as a performance indicator)

to include an employee satisfaction measure. The main feature of this approach is that

the new measure is defined by the organization without explicit employee involvement.

The definition of the employee’s satisfaction measure follows one of the following two

ways:

1. Incorporating information about the preferred working patterns for employees.

Common preferred working patterns are general information which can be cap-

tured easily with or without employee input. For example, in rostering problems,

a common preferred pattern is to have two consecutive off days. The preferred

patterns are normally modelled as soft constraints that incur penalties when vi-

olated. The violation costs are defined by the model (without employee involve-

ment) using a grouping approach that identifies different groups of violations

[22, 11]. Each group is then assigned a cost coefficient.

2. Enhancing the fairness of the model by defining a function that quantifies the

fairness of a schedule. An example of such a function is to maintain a load

balancing between employees [114]. This function, then, is added as a term in

the global objective function.

It is possible to say that these models claim empowerment by defining (based on the
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organizational perspective) an employee satisfaction measure without explicit employee

involvement.

The second approach allows employees to express their preferences by associating

weights to a particular property of the scheduling item (e.g. type of tasks/shifts). For

instance, in a FWS problem with multi-skilled engineers [114], each engineer is able

to rank the skills that (s)he prefers using on a numbering scale that ranges from one

to the total number of skills that the engineer has, such that the higher the number

the more preferred the skill. This enables engineers to suggest the types of tasks they

wish to do, as tasks are described by their skill requirements. This ranking mechanism

influences the scheduling process since the model adds, to the global objective, a term

that considers maximizing the collected preference scores specified by the engineers. An

alternative ranking mechanism applied to nurse scheduling models is via points [97]. In

this approach, all preferences are enumerated and an employee is asked to decide their

violation penalties by allocating 100 points among them.

Models in this class empower employees by providing a limited involvement practice

that enables employees to express their preferences about the scheduled item.

The third approach includes models that extend the scope of preferences in the

second approach. Alongside the employees’ general preferences that are to be considered

in every schedule, this approach enables each employee to make a request once every

schedule/roster [11, 42, 35]. This request gives employees the chance to express their

specific requirements for a particular day.

These models claim empowerment by providing employees with an enhanced, flexi-

ble empowerment practice which enables employees to suggest their specific schedules.

A critical issue that is underestimated by this approach is fairness, neglecting that

it could be the case where the preferences and requests of particular employees are

continually being violated, while others are always satisfied.

The fourth approach includes few models that enhance the fairness of the third
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approach. Eveborn and Rönnqvist [42] proposed a simple mechanism to maintain

fairness, by defining a maximum number of violations for each employee schedule.

Fairer alternatives have been proposed in nurse scheduling [11, 35]. These models

enhance the balance of employees’ individual satisfaction by automatically controlling

the cost coefficient of violating each preference via incorporating knowledge from the

satisfaction history of employees using the output of previous schedules. The idea is

that employees who were unsatisfied in previous schedules, would be satisfied in the

current one.

Bard and Purnomo [11] implemented this idea by defining the maximum number of

violations in a new schedule for each employee. This number is calculated as a function

of the mean and standard deviation of the number of violations in the previous schedule.

When the number of violations for an employee is above the mean plus the standard

deviation, the maximum number of violations for this employee in the next schedule is

limited to the mean minus the standard deviation. A central assumption for this model

is that a nurse can be partially satisfied when a subset of his/her set of preferences was

considered in the final roster. Thus, it cannot deal with situations where employee

preferences can be either satisfied or not in the final schedule. This model, moreover,

considers only the last schedule to derive the values for the new schedule. A fairer

model would need to increase the history of employee satisfaction.

Another implementation of this idea is via auction. De Grano et al. [35] suggested,

in their auction-based model for nurse scheduling, that nurses be given the chance to bid

on work shifts and rest days using ‘points’. These points can be controlled by allowing

nurses to roll over both the unused points and points associated to unsuccessful bids to

the next schedules. A major concern about this model, as an auction-based approach,

is its high susceptibility to game playing. This is due to the fact that employees vary

in their education, skilfulness and personal characteristics, which make those who are

talented enough to game the system have an advantage over the unwilling employees.
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2.2.2.3 Miscellaneous Models

It has been reported that an on-line voting system was used as an empowerment prac-

tice, through which employees were given a set of activities and allowed to vote on-line

for the activities they most wished to do [103]. Although voting systems are normally

designed to support industrial democracy, it can also be considered as a supportive

practice to involve workers in the decision-making process. Nevertheless, this technique

is suitable for teamwork, rather than individual, contexts where democracy could be

a very practical practice. Moreover, task assignment problems usually deal with very

short-term, partially dynamic jobs, in which there is no sufficient time to utilize this

technique.

In solving the FWS problem, the first explicit initiative that adopted empowerment

was introduced by Tsang et al. [116, 117]. Their approach was to model the problem’s

entities (e.g. manager, engineers and jobs) with intelligent agents, each of which has its

own interests which are in conflict with others. This approach formulates the problem

as a distributed scheduling problem, allowing each agent to look at its interests, while

the manager agent looks at the organizational interest. Giving engineers the chance

to pursue their interests is claimed to be the empowerment practice in this model.

However, employees’ powers to attain their interests are strongly controlled by the

manager agent who decides the amount of power given to each agent. A schedule is

generated as a response to the manager’s decision of the weights of engineers’ objectives.

Since generating the weights is modelled as an optimization problem, it is most likely

to have satisfaction imbalance between engineers.

For dynamic FWS problems, Shah et al. [102] propose a new allocation procedure

using the so-called pull strategy, in contrast to the traditional push strategy. In the

push approach, the employee has only to accept the allocation decision made by the

scheduler. Instead, a pull strategy is proposed as an empowerment practice through

which an employee requests from the scheduler a set of tasks that (s)he can do next, and
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then orders these tasks based on his/her preference. The main motivational assumption

of applying the pull strategy is the enhancement of employees’ performance, since

the commitment of undertaking a task is initiated by the employee rather than the

scheduler. Although the authors explicitly claim the implementation of empowerment,

we see this model to be within the preference scheduling class, however, with a new

way for employees to express their preferences about which tasks they wish to do. The

main concerns with preference scheduling still exist in this model, such as flexibility,

transparency and fairness. For instance, as described in [102], the criterion upon which

the scheduler decides which set of tasks to be sent to a technician merely reflects the

organizational interests (e.g. allocating tasks with high importance). This would limit

the employees’ control over the allocation decision, since the provided set does not

necessarily enable employees to describe their specific requests and preferences.

2.3 Conclusions

Field workforce scheduling (FWS) is a task assignment problem that involves routing as

a sub-problem, since tasks are geographically dispersed. FWS considers many real-life

operational requirements, including multi-skilled employees and tasks with different pri-

orities and time-windows. The FWS problem is a very practical problem that appears

in a wide range of service companies where the field service engineer is a key resource

to be managed. Different variants of the problem were extensively studied, focusing on

tackling real applications of FWS problems (e.g. BT and IBM). Due to confidentiality

issues, instances related to real world data could not be exposed and hence there is

no public benchmark dataset or problem generator for FWS. Thus, we have to make

efforts to formulate a FWS problem and define its characteristics, which would help

to generate relevant benchmarks, and to describe the performance differences between

various solution approaches. These efforts are presented in chapter 4.
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The importance of FWS motivates the continuous development of new and efficient

scheduling models. Traditional scheduling models tend to be inflexible in managing

employees who have no say in the scheduling process. Organizations are moving to-

wards applying flexible management approaches that empower employees to express

their preferences for the tasks they wish to do. Examples of such flexible scheduling

models are self-scheduling and preference scheduling, both of which try to incorporate,

to various extents, the empowerment concept. However, these models reveal that there

is no consensus in defining what constitutes empowerment in workforce scheduling.

Therefore, it is an important step to study empowerment as a management concept

from its source and then establish a formalization of empowerment in the scheduling

context. The first aspect has been given in this chapter, which provides an overview of

empowerment from the management literature. This helps understanding the essence

of empowerment, which is a combination of a managerial relation (i.e. enhancing em-

ployee power over decision making) and a psychological value (i.e. enhancing their

self-efficacy).

Formalizing the empowerment concept in the workforce scheduling context, and

designing an efficient flexible scheduling model accordingly, are challenges which are

addressed in chapter 5. Moreover, as to be shown later in the thesis, solving the

new scheduling problem (with the empowerment concept incorporated) is also rather

challenging.
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Chapter 3

Guided Local Search and

Multi-Objective Optimization

From an optimization perspective, our research is concerned with investigating the ap-

plication of Guided Local Search, which is a well-known single-objective metaheuristic,

to a multi-objective based model for the FWS problem. Thus, this chapter provides an

introduction to Guided Local Search and reviews its application to workforce schedul-

ing, section 3.1. In section 3.2, the multi-objective optimization is defined and its

related literature on the adaptation of metaheuristics to tackle multi-objective opti-

mization problems are reviewed. The chapter concludes with section 3.3.

3.1 Guided Local Search

Many optimization problems found in the real world are combinatorial explosion prob-

lems. Classical methods such as complete search often encounter great difficulty in

solving such problems within reasonable computational times. This motivates the de-

velopment of heuristic methods that sacrifice completeness. Some of the best known

heuristics are local search methods. Local search (LS) is the basis of most heuristic
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search methods. LS works by starting with an initial solution (randomly or heuris-

tically generated), and then iteratively moving to ‘neighbour’ solutions that improve

the objective function. A ‘neighbour’ solution is usually obtained by making local

(often small) changes to the current solution. LS terminates when it reaches a local

optimum (i.e. a state where the current solution is superior to all its neighbours) or

computational resources run out.

LS can obtain good quality solutions very quickly. However, a major issue that

negatively affects its efficiency is that it can be trapped in local optima which halt

the search, preventing the algorithm from reaching the global optimum. To overcome

this problem a class of techniques, which is referred to as metaheuristics [48], has

been introduced and grown in popularity over the years. Simulated Annealing (SA)

[70], Tabu Search (TS) [49] and Genetic Algorithm (GA) [50] are well-known and

representative techniques in this class.

Guided Local Search (GLS) [124, 128, 127] is another, relatively new, general meta-

heuristic algorithm. It is a higher level procedure that can sit on top of other heuristic

methods to guide them to escape locally optimum solutions. One key concept in GLS

is to replace the objective function used by LS with an augmented objective function

which includes penalties associated to features of the candidate solutions. When LS is

trapped in a local optimum, GLS is dynamically modifying the augmented objective

function by selectively increasing penalties for features present in this local optimum.

This causes LS to escape by forcing it to move towards neighbour solutions that exclude

these features.

Different metaheuristics apply different strategies to improve search and overcome

the problem of local optima as shown in Table 3.1. SA and GA employ a randomness

component in a probability-based and population-based schema respectively to modify

the movement strategy. TS exploits historical information in a memory-based approach

to modify the set of neighbour solutions (i.e. neighbourhood). Like TS, GLS employs
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Table 3.1: GLS versus other metaheuristics

Metaheuristic High-level Strategy Basic Component Tuning
Parameters

GLS Using a penalty-based
approach to dynami-
cally modify the cost
function

Features, Features’
cost

Lambda or
Lambda Coeffi-
cient [89]

TS Using a memory-based
approach to dynami-
cally change the neigh-
bourhood method

Solution Attributes,
Procedure for Tabu
list

Tabu list proce-
dure, Tabu list
size, [Aspiration
threshold]

SA Using a probabilistic-
based approach to al-
low none-improvement
moves

Annealing Schedule Initial Tempera-
ture, Cooling rate

GA Using a population-
based approach that
includes a mutation
operator to involve
(partially) random
solutions

Genetic opera-
tors: reproduction,
crossover and mu-
tation, Replacement
strategy

Population size,
Crossover rate,
Mutation rate

search history. In GLS, history is captured in penalties which dynamically modify the

objective function.

GLS has been successfully applied to a wide range of problems and has achieved

state-of-the-art results in a number of benchmarks. The problem domains of GLS

include routing [125, 123], task assignment [75, 89], resource scheduling [114], constraint

optimization [88]. A recent survey of GLS and its applications is presented in [128, 129].

3.1.1 Statement of Algorithm

GLS applies a penalty-based approach that can be superimposed on a LS algorithm

with the aim of guiding it to escape local optima. The objective function is augmented

with penalties which are increased when LS settles in a local optimum. Penalties are
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associated to solution features. A key component in GLS is the definition of solution

features. Solution features are defined to distinguish between solutions with different

characteristics. GLS aims to penalize poor characteristics that hopefully to be removed

by LS. Features are problem-dependant and can be derived directly from the objective

function which usually comprises of one or more features. An indicator is used to

determine whether a solution exhibits a feature. GLS associates a cost and a penalty

to each feature. The costs can often be defined by taking the terms and their coefficients

from the objective function. For example, in the Travelling Salesman Problem (TSP)

[52], the objective is to find a route that visits a set of cities in a short total travelling

distances. the defined feature can be “whether the candidate tour travels immediately

from city X to city Y ”. The set of features then includes all possible links between any

two cities. The cost of each feature is the distance of the associated link. The penalty

of a feature is initialized to 0 and will be incremented every time LS settles on a local

optimum and the feature is nominated to be penalized.

When features and costs are defined, GLS defines a function h that will be used by

LS (replacing g):

h(s) = g(s) + λ×
∑

i ∈ F (pi × Ii(s)) (3.1)

where s is a candidate solution, g an objective function that maps every candidate

solution s to a numerical value, λ is a parameter to the GLS algorithm, i ranges over

the features in F , pi is the penalty for feature i (all pi’s are initialized to 0) and Ii is

an indication of whether s exhibits feature i:

Ii(s) = 1 if s exhibits feature i; 0 otherwise. (3.2)

The basic procedure of GLS can be described as follows, (Figure 3.1): starting from

an initial solution, a local search algorithm is applied until it reaches a local optimum.

GLS augments the cost function by adding penalties to selected features. Then, the
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Figure 3.1: The Guided Local Search Procedure

local search restarts from the same local optimum using the updated objective function.

The novelty of GLS is mainly in the way that it selects which features to penalize.

The intention is to penalize unfavourable features or features that “matter most” when

a local search settles in a local optimum. The feature that has high cost affects the

overall cost more. Another factor that should be considered is the current penalty value

of that feature (i.e. the frequency of penalizing a feature). The utility of penalizing

feature i (utili) under a local optimum s∗, is defined as follows:

utili(s
∗) = Ii(s

∗)× ci
1 + pi

(3.3)

where ci is the cost and pi the current penalty value of feature i. In other words, if
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a feature is not exhibited in the local optimum (indicated by Ii), then the utility of

penalizing it is 0. The higher the cost of this feature (the greater ci), the greater the

utility of penalizing it. Besides, the more times that it has been penalized (the greater

pi), the lower the utility of penalizing it again. At a local optimum, the feature with

the greatest util value will be penalized. When a feature is penalized, its penalty value

is always increased by 1. The scaling of the penalty is adjusted by λ.

The lambda parameter (λ) is the only parameter to GLS. It has been observed

that, for several problems, lambda can be calculated as a function of a local optimum

and the average number of features present [125, 89]. In these problems, lambda is

dynamically computed after the first local optimum and before penalties are applied

to features for the first time. Providing an α parameter (called “Lambda Coefficient”),

which is relatively instance independent, lambda is calculated by the following formula:

λ = α ∗ g(s∗)/Fs∗ (3.4)

where g is the objective function of the problem, s∗ a local optimum and Fs∗ the number

of features present in s∗. Tuning alpha can result in lambda values, which work for

many instances of a problem class.

3.1.2 Applications of GLS to Field Workforce Scheduling

The most significant results of GLS are probably in the routing and scheduling domain.

In the routing domain, GLS achieves an outstanding performance in the well-known

TSP [125] and vehicle routing problems [69]. This motivates researchers to apply GLS

or a hybrid of GLS with other metaheuristics to other variants of routing problems, see

for example [137, 108, 85].

GLS has also been successfully applied to many assignment problems. In [75], the

Guided Genetic Algorithm (GGA) was proposed to solve the GAP, obtaining very
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competitive results to the state-of-the-art algorithm. GGA demonstrated the ability

of GLS to sit on top of GA. GLS and other GLS hybrids have been proposed to the

related quadratic assignment problem [89, 135, 54] and the multidimensional knapsack

problem [57].

In workforce scheduling, Tsang and Voudouris [114] applied GLS to the BT field

workforce scheduling problem. In their algorithm, GLS holds the best-published results

in a public benchmark problem [7] provided by BT’s laboratory.

3.2 Multi-objective Optimization

3.2.1 Concepts and Definitions

Most real-world optimization problems are multi-objective in nature. The multi-objective

optimization problem (MOOP) concerns the optimization of two or more objectives si-

multaneously. Instead of searching for a global optimum solution as in single-objective

optimization problems, the search in MOOPs targets a set of solutions representing the

optimum set of trade-offs between the objectives. This set is known interchangeably

as the Pareto optimum set or the efficient solutions, and the objective values of these

solutions are located at the Pareto front (PF). Efficient solutions are non-dominant

solutions in the sense that improving the value of any one of their objectives must be

at the expense of degrading the quality of one or more of the other objectives. Thus, all

efficient solutions are considered equivalent as long as there is no further information

regarding the relative importance of each of the objectives.

Before going further into this topic, the following terms and concepts need to be

defined:

Definition 1 (Pareto Dominance) In a multi-objective optimization, a solution x dom-

inates a solution y if and only if x is no worse than y in all objectives and x is strictly

better than y in at least one objective.
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Definition 2 (Efficient Solution) A solution that is non-dominated by any other solu-

tion in the search space is called an efficient solution.

Definition 3 (Pareto Front (PF)) This refers to the image of the set of all efficient

solutions in the objective space, forming the best trade-offs among the objectives.

Definition 4 (Pareto Local Optimum) A solution s is a Pareto local optimum when

it is non-dominated by another solution in its local neighbourhood.

Definition 5 (Pareto Local Optimum Set [95]) A Pareto local optimum set is a set of

non-dominant solutions, and each solution is a Pareto local optimum with respect to its

neighbourhood.

Definition 6 (Ideal point) The point zI in the objective space is called an ideal point

if it dominates all efficient solutions.

Definition 7 (Nadir point) The point zN in the objective space is called a nadir point

if it is dominated by all efficient solutions.

3.2.2 Performance Measures

Due to the nature of multi-objective optimization problems, the quality of an approx-

imation to the Pareto front is evaluated by measuring both the convergence towards

the true Pareto front and the even spread over the whole front [139]. Thus, multiple

performance indices should be used for comparing the performances of different algo-

rithms. Major performance indices which are widely used in literature to measure the

convergence and spread of an approximation are defined as follows:

Definition 8 (Set Coverage (C-metric)) Let X and Y be two approximations to the

PF of a MOOP, C(X,Y ) is defined as the percentage of the solutions in Y that are

dominated by at least one solution in X. When C(X,Y ) = 1, all solutions in Y are
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dominated by some solutions in X. On the other hand, C(X,Y ) = 0 means that all

solutions in Y are non-dominated by any solution in X. C(X,Y ) is not necessarily

equal to 1 − C(Y,X). This measure evaluates the convergence of an approximation

towards the PF, but not necessarily the even distribution over the PF.

Definition 9 (Distance from Representatives in the PF (D-metric) [121]) Let P ∗ be a

set of uniformly distributed points along the PF, or an upper approximation of the PF .

Let A be an approximation to the PF, the average distance from P ∗ to A is defined as

follow:

D(A,P ∗) =

∑
υ∈P ∗ d(υ,A)

|P ∗|
(3.5)

where d(υ,A) is the minimum Euclidean distance between υ and the points in A. The

lower the value of D(A,P ∗), the closer A to the PF will be. D-metric can be used to

evaluate both the convergence as well as the coverage of the whole front.

Definition 10 (The R measure [64]) This is a unary index that evaluates an approx-

imation to the PF by the mean of the best value of the weighted Tchebycheff utility

function over a set of normalized weight vectors. The R measure is normalized between

0 and 1, and the higher this value, the better the approximation will be. This measure

evaluates both the convergence and the even spread of an approximation. It assumes

the ideal (zI) and nadir (zN ) points for the objectives are known.

Definition 11 (The hypervolume H [138]) This is a unary index that approximates

the volume included under the curve formed by the non-dominant set in the objective

space. It measures both the convergence and the distribution of the approximation set.

The higher this value, the better the approximation will be. The H measure requires

only the nadir point (zN ) to be known in advance.
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3.2.3 Metaheuristics for Multi-objective Optimization

Metaheuristics [48] represent an optimization scheme that is characterized by its ease

of implementation and its ability to obtain good performance in comparatively less

computational time than classical optimization methods (i.e. exact methods). These

features encourage the application of metaheuristics to multi-objective combinatorial

optimization problems [118]. Vast amounts of research on the development of multi-

objective metaheuristics (MOMH) has been conducted during the last three decades.

The pioneers of such research include the work of Schaffer in 1984 [100] and 1992’s algo-

rithm of Serafini [101]. There are a number of surveys on this topic, e.g. [40, 94]. The

majority of the proposed MOMHs are population-based algorithms, in particular multi-

objective evolutionary algorithms (MOEAs) [67]. The popularity of MOEA techniques

is attributed to their population-based nature which enables the finding of multiple

optima simultaneously. Single-point-based (i.e. local search based) metaheuristics, on

the other hand, have also been proposed to tackle MOOPs, however, to a lesser extent.

The majority of such algorithms are based on local search, TS and SA. Here, we will

briefly review pioneering research in MOMHs, with a great emphasis on the local search

based MOMHs.

The task of MOMHs is to find a set of solutions that approximates the whole

PF. Thus, most MOMH algorithms maintain an ‘archive’ that stores the non-dominant

solutions discovered during the search. In order to enhance the performance in terms of

convergence to, and spread over, the PF, different algorithms employ different fitness

assignment approaches to compare different solutions in the objective space. There

are two common approaches, namely Pareto dominance and aggregation of objectives.

Discussions on these two approaches are given in [32, 59].

Aggregation-based MOMHs assign a single fitness value to each solution using a

single objective function; the latter is constructed by combining all objectives using a

weighted method. In this case, multiple objectives are mapped to a single objective,
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which allows applying single-objective metaheuristics to MOOPs in an easy manner.

This approach is based on the argument that a Pareto optimum solution to a MOOP,

under mild conditions, could be an optimal solution of a scalar (i.e. an aggregation of

all objectives using a weight vector) optimization problem. Therefore, in order to find

a well-distributed set of solutions that approximates the PF, some strategies should

be used to maintain a set of scalar functions that represents the whole PF. Several

aggregation methods can be found in the literature (e.g., [86]), the most popular ones

among which include the weighted-sum approach and Tchebycheff. The issue with

these methods is how to choose (a uniform set of) weights in advance.

On the other hand, Pareto-based algorithms rank solutions by comparing them

using the concept of Pareto dominance. However, domination does not define a com-

plete ordering among the solutions in the objective space. To maintain a diverse set

of non-dominant solutions that represents the whole PF, these algorithms employ an

additional strategy to estimate the density of non-dominant solutions. Several of such

strategies have been employed by Pareto-based MOMHs, the pioneers of which were in

the MOEAs literature such as [71, 140, 36]. Two examples of such strategies are crowd-

ing distance [36] and adaptive grid [71], both of which are widely used in the literature.

They are defined as follows:

Definition 12 (The Crowding Distance [36]) This estimates the density of solutions

surrounding the individual in the population by calculating the average distance of two

points on either side of the individual along each of the objectives. The crowding dis-

tance of a solution with the best value in any objective is set to infinity. The idea is that

when two solutions non-dominate each other, the one residing in less crowded region

(i.e. has large crowding distance value) is more favourable.

Definition 13 (The Adaptive Grid [71]) This is a crowding procedure that recursively

divides the objective space. Each solution is placed in a certain grid location based on
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the values of its objectives. The number of solutions that reside in each grid location

determines the density of this grid. Again, the idea is that when two solutions non-

dominate each other, the one that resides in less crowded region (i.e. located in a less

crowded grid location) is more favourable.

3.2.3.1 Local Search based MOMHs

A simple, intuitive adaptation of local search, to contain multiple objectives, can be de-

scribed as follows: for each weight vector from a given set of weights, a single-objective

local search algorithm starts from a randomly/heuristically generated solution, and it-

eratively improves this solution using the correspondence scalar function. Each local

search stops at a local optimum solution with respect to the maintained scalar func-

tion. The obtained local optima could be an approximation of the PF. This idea has

been developed further in [17, 93]. For example, the two-phase local search (TPLS)

[93] considers the weight vectors in a sequential manner. Therefore, the current scalar

objective is arguably the closest to the previous one (i.e. both have quiet similar weight

vector), and thus the local optimum obtained in the previous scalar problem is used as

a starting point for the next problem.

A simpler multi-objective local search algorithm is to apply the Pareto domination

as an acceptance criterion when comparing the current solution to the new one. An

archive of non-dominant solutions discovered during the search is maintained in order

to produce an approximation to the PF. The algorithm stops when the neighbourhood

of all solutions in the archive have been explored, i.e. the archive is a Pareto local

optimum set (Definition 5). Recently, this idea was termed Pareto Local Search (PLS)

and has been developed and extended by several researchers such as in [3, 95]. Due to

its high relevance to our research presented in this thesis, PLS is thoroughly discussed

and its related literature is reviewed later in this chapter (section 3.2.4).

Local search based MOMHs refer to the extensions of single-objective metaheuristics
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(SOMHs) that employ the local search as the core search engine to contain multiple

objectives. Since the local search is the basis of such metaheuristics, they are re-

ferred to sometimes as neighbourhood-based MOMHs [40]. Several local search based

MOMHs have been proposed in the literature [94], the majority of which employ TS

and SA. Algorithms vary in their searching strategies, particularly the applied high

level approach to help the underlying local search algorithm to overcome the problem

of getting trapped at Pareto local optima. An overview of the pioneering works in this

topic is provided as follows.

The first TS based method for MOO was introduced in 1997 by Gandibleux et al.

[45]. It is an aggregation-based approach where a series of tabu processes is performed,

each process approximates a part of the PF corresponds to the optimized scalar objec-

tive. The method guides the local search process to escape local optima with respect

to the current scalar objective by allowing moves to inferior solutions guided by a tabu

list on the decision space and another list in the objective space. Another TS based

MOMH was proposed by Hansen [55]. The method incorporates ideas form population-

based methods. It starts with a set of solutions which are optimized simultaneously.

Each solution represents a separate tabu process that maintains its own tabu list and

is guided in the objective space by a scalar objective. At each step, tabu processes

perform a single move in a sequential manner. A key feature of this method is the

way it continuously updates the weight vector of scalar objectives for tabu processes.

The method incorporates knowledge from the archive to calculate the new weights and

then steer the search of the current tabu process towards promising parts of the PF.

On this direction, other implementations of TS based MOMHs have been developed

afterwards, e.g. [68].

On the other hand, there have been a number of Pareto-based implementations of

TS for MOOPs, first of which were proposed by Baykasoglu et al. [13] and Ben Abde-

laziz et al. [14]. The latter is a single-point-based algorithm in which the neighbours of
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the current solution are enumerated and those non-dominated by the current solution

become candidates for addition to the maintained archive. A move from the current

solution is performed to any mutually non-dominant neighbour that is non-tabu. A

diversification strategy is implemented periodically to guide the search to explore other

areas of the search space. Other TS based algorithms that follow this approach have

been developed in [62, 4].

SA is another popular local search based metaheuristic that has been studied in

the context of multi-objective optimization [106]. The key component of SA is the

definition of the energy measure that is used as an acceptance criterion. SA based

methods that have been developed vary in the presentation of the energy function.

Similar to TS, the first generation of such SA based methods contains the multiple

objective by implementing a weighted-sum approach in the energy measure. Works in

this stream include methods developed in [101, 119, 34, 105, 79, 98], the pioneering

algorithm of which is introduced by Serafini [101]. The idea of this single-point-based

method is to optimize one weighted scalar function at each step. To find well-distributed

non-dominant solutions, the weight vector is modified slightly and randomly during

the search. The second generation of SA based MOMHs is characterized by deploying

the notion of the Pareto dominance into the definition of the energy measures. Such

algorithms include those proposed in [104, 106, 10]. In [104], for example, the energy

measure was formulated to consider the amount of domination between two solutions,

when comparing a new solution to the current one.

Attempts to extend other local search based metaheuristics are still modest. Adap-

tations of the Greedy Randomized Adaptive Search algorithm (GRASP) are proposed

in [5, 80]. An iterated local search based multi-objective algorithm can be found in

[47].
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3.2.3.2 Population-based MOMHs

Instead of managing a single solution, the searching behaviour of population-based

algorithms relies on maintaining a population of solutions. In order to find an opti-

mum approximation of the PF, such algorithms start from an initial population and

iteratively generate new offspring using principles such as independent evolution and

cooperation between individuals. Independent evolution principles include genetic op-

erators such as mutation and crossover. These are employed by MOEAs, which consti-

tute the greater part of the literature of MOMHs. The first population-based MOMHs

was introduced by Schaffer in 1984 [100], who proposed the Vector Evaluated Genetic

Algorithm (VEGA). Since then, extensive research on the development of MOEAs

has been done, a review of this research is provided in [28]. The fitness assignment

strategy has been the main issue of the research on MOEAs. While VEGA proposed

alternating objective-based fitness assignment, more effective alternatives have been

developed, including aggregation of objectives (such as Multi-objective Genetic Lo-

cal Search (MOGLS) [64, 61] and Multi-objective Evolutionary Algorithm Based on

Decomposition (MOEA/D) [136]) and Pareto-based ranking (such as Non-dominated

Sorting Genetic Algorithm II (NSGA2)[36] and Strengthen Pareto Evolutionary Algo-

rithm II(SPEA2)[138]).

MOEA/D [136] is a representative aggregation-based MOEA that employs GA. It

optimizes multiple scalar functions simultaneously, each of which is considered as a

sub-problem. Each sub-problem is associated with one solution which is the best-so-far

found solution with respect to the correspondence scalar function. The key feature of

MOEA/D is that these sub-problems cooperate with each other during the search. Each

sub-problem produces new offspring by using solutions from ‘neighbour’ sub-problems

with quite similar scalar functions.

On the other hand, NSGA2 [36] is a representative Pareto-based MOEA. The nov-

elty of NSGA2 is mainly in the procedure of ranking a population. It ranks its popula-
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tion based on two values: (1) a non-domination level of an individual in the population,

and (2) an individual’s crowding distance (Definition 12) value which estimates the

density of solutions surrounding the individual in the population. The idea is that non-

dominant solutions are preferred over dominated ones, and if two solutions have the

same non-domination rank, the one resides in less crowded region is more favourable.

3.2.4 Pareto Local Search

Quite recently, the Pareto Local Search (PLS) method has been proposed as a very

simple algorithm for solving MOOPs. Its simplicity stems from the fact that PLS is a

straightforward extension to local search algorithms for MOOPs, no parameter setting

is required, and it does not involve any aggregation of objectives. This is achieved

by incorporating the concept of archiving where a set of potentially efficient solutions

discovered during the search is maintained. The basic idea of PLS is to iteratively

improve this set by exploring the neighbourhood of its solutions. The acceptance

criterion depends on the notion of Pareto dominance. In addition, PLS has a natural

stopping condition that occurs when the neighbourhoods of all solutions in the archive

have been explored.

Pareto Local Search([g1, .., gk])

s0 ← InitialSolution();
archive← s0
while ∃s ∈ archive such that V isited(s) = false do

for all s
′ ∈ Neighbourhood(s) do

Evaluate(s
′
, [g1, .., gk])

if s
′

is non-dominated by any solution in archive then
UpdateArchive(s

′
)

end if
end for
V isited(s) = true

end while
return archive

Algorithm 3.1: Pseudo-code for Steepest Pareto Local Seach (SteepPLS)
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Such features have motivated researchers to study and develop this idea, and there-

fore several variants of PLS have been proposed in the last decade [94]. In [95], Paquete

and Stützle proposed a PLS method which works as follows (Algorithm 3.1): an archive

is initialized with an initial solution. Then, a solution from the archive is chosen ran-

domly and its neighbourhood is fully explored. The archive is updated with the new

neighbours. After that, the current solution is marked as ‘visited’ so as not to be se-

lected again. The PLS here has a natural stopping condition, that is when all solutions

in the archive are examined (i.e. marked as ‘visited’). A major characteristic of this

PLS is that it applies a steepest neighbourhood visiting approach in which the neigh-

bourhood of the current solution is fully explored; thus, we call this version here and

onward SteepPLS.

Angel et al. [3] proposed another variant of PLS which is closely related to Steep-

PLS. The only difference is in the selection scheme of the current solution. Instead of

using a single current solution as in SteepPLS, all non-explored solutions in the archive

forms the current population in Angel’s PLS. The neighbourhood of every member

of the current population is fully explored, and the archive is updated accordingly.

This means that the neighbourhood of every solution added to the archive is examined

even if it is found to be dominated by a neighbour of another solution in the current

population.

Another PLS variant is the Pareto Archived Evolution Strategy (PAES) which was

proposed by Knowles and Corne [71]. PAES employs an advanced, more complex ac-

ceptance criterion when comparing a new neighbour to the current solution. Beside the

Pareto domination, the fitness of a solution incorporates a density estimation measure,

that is the adaptive grid (Definition 13). Starting from a random solution, PAES itera-

tively mutates the current solution to generate a neighbour. A neighbour is accepted to

replace the current solution if it dominates the latter, or if it is non-dominated by the

current solution, but resides in a less crowded region in the current approximation to
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the PF. In this way, PAES differs than the aforementioned PLS variants in the following

components:

1. The selection scheme that chooses the current solutions from the archive to ex-

plore their neighbourhoods. PAES is a pure single-point-based algorithm and the

next explored solution can only be a neighbour to the current one. Thus, the use

of solutions in the archive is made only by the adaptive grid measure. The other

PLS variants, on the other hand, select the next examined solution(s) from the

archive independently after exploring the neighbourhood of the current examined

solution(s).

2. The neighbourhood exploration strategy. PAES applies a partial neighbourhood

visiting strategy by which only some (i.e. one in the case of PAES) neighbours

to the current solution are examined. The other PLS variants fully explore the

neighbourhood of the current solution.

3. The acceptance criterion when comparing different solutions. While PLS vari-

ants depend merely on the notion of Pareto dominance, PAES employs a density

estimation measure as a second factor.

4. The stopping condition. In the absence of a computational time limit, unlike the

other PLS variants, PAES has no explicit termination condition.

Enumerating and identifying these components would help in comparing and contrast-

ing different PLS variants. On this direction, Liefooghe et al. [81] defined a unified view

of PLS variants by identifying nine basic components that can be used to characterize

different PLS variants.

There are scenarios where PLS (and any multi-objective algorithm) has to maintain

a bounded archive. When the archive exceeds a size limit, a procedure is applied to

choose which solutions to remove. The task is to take out the solutions with the least
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effects on the quality of the approximation to the PF. Several procedures have been

developed to address this issue, the basic idea of most of which is to remove solutions

that reside in crowded areas in the approximation. Examples of such procedures include

the crowding distance (Definition 12), the adaptive grid (Definition 13), and clustering

algorithms [63] such as single linkage and average linkage. In order to minimize excessive

calls to such clustering procedures and enhance the quality of the archive, the idea of

soft and hard size limit can be applied [10]. The size of the archive is allowed to exceed

the hard limit up to a soft limit. Every time the soft limit is reached, the clustering

procedure is applied to reduce the size of the archive to the hard limit.

The applications of PLS have shown its ability to obtain a good approximation of the

PF as a standalone technique [95, 3]. However, a major drawback of the PLS is the slow

convergence that makes its computational time much higher than other state-of-the-art

techniques [95, 83]. Besides, one can anticipate that PLS, as a local search method, can

also be trapped in local optima points. This would become more serious when a simple

neighbourhood function is defined, or a partial neighbourhood visiting strategy is used.

To overcome such limitations, Lust and Teghem [83] have shown that the performance

of PLS can be improved when it is coupled with an efficient initial population generator.

They have proposed a two-phase algorithm, the first phase finds a good approximation

of the PF by solving weighted-sum single-objective optimization problems, and the

second phase applies a PLS that starts by adding the obtained solution to the archive.

Another multi-phase algorithm has been introduced by Jaszkiewicz and Zielniewicz

[66]. In their algorithm, the first phase employs an aggregation-based GA to find a

good approximation for the PLS (i.e. the second phase). Another approach towards

enhancing the performance of PLS is to combine it with another evolutionary algorithm

(i.e. a global optimizer) forming a hybrid algorithm. This has been shown in [12, 73]

where hybrids of PLS and GA are introduced.
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3.2.5 GLS for Solving Multi-objective Optimization

To our knowledge, there has been no attempt to adapt GLS for tackling combinatorial

optimization with multiple objectives. GLS is a simple, general algorithm with few

parameters to tune. It has been shown that GLS can sit on top of local search algorithms

as well as other metaheuristics. Similarly, GLS has the potential to sit on top of PLS

with the hope of guiding PLS to escape Pareto local optimum sets. The definition

of the penalization scheme, as well as features and their costs, can be extended to

contain multiple objectives, and thus PLS is guided towards more promising areas of

the solution space that would enhance the quality of the approximation of the PF. This

describes a research objective of this thesis, which is discussed in details in chapter 6.

3.3 Conclusions

GLS is a local search based metaheuristic that is characterized by its generality and

simplicity. It is a very successful algorithm with a wide range of application domains,

including routing and scheduling optimization problems. There is only one parameter

to tune, and luckily GLS is found in many cases not to be sensitive to this param-

eter. The GLS approach has been extended to be superimposed on other heuristics

and metaheuristics. Nevertheless, GLS has not been adapted to tackle multi-objective

optimization problems. The latter are of a complex nature in which the task is to find a

set of solutions that forms the best trade-offs (i.e. the PF) between different objectives.

The literature is rich with efficient heuristics and metaheuristics that are designed to

produce a good approximation of the PF. Among these algorithms, PLS is a simple ex-

tension to the single-objective local search that employs the notion of Pareto optimality

for solving MOOPs. It can be a standalone solution approach or a central component

in multi-phase or hybrid algorithms. Similar to single-objective local search algorithms,

PLS suffers from the problem of settling at (Pareto) local optima. Metaheuristics such
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as TS, SA and GLS can help the PLS to avoid or escape this situation. Guided Pareto

Local Search (to be introduced in chapter 6) proves this by confirming the ability of

GLS to sit on top of PLS and guide it to escape Pareto local optimum sets.
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Chapter 4

Field Workforce Scheduling: A

Computational Study

A central aim of our research is to develop a new flexible model for FWS. In order to

pave the road in this direction, the first research step is the study of a representative

case of FWS problems, which is a three-fold task. The first is to formulate a repre-

sentative, traditional (i.e. inflexible) FWS problem, which will be the case study of

this thesis. The second is to develop benchmarks using a problem (instance) generator,

for further scientific studies on FWS, in particular the required computational studied

in this thesis. The third task concerns the solution techniques for the FWS problem.

FWS can be treated as an assignment problem or as a routing problem, as it involves

characteristics from both classes of problem. Hence, an attempt is made here to sys-

tematically examine the performance difference between representative assignment and

routing heuristics, under various problem characteristics. The hope is that varying

problem characteristics will help to explain the performance differences between the

two solution approaches.

This chapter describes these objectives in detail. The FWS problem is formulated

in section 4.1, and then the details of the problem generator are given in section 4.2.
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Section 4.3 discusses the solution approaches that are to be examined. The design

of the computational experiments and their results are discussed in section 4.4. The

conclusions are given in section 4.5.

4.1 Problem Formulation

The problem formulation presented here is motivated by a real FWS problem, one that

appears in a leading telecommunication company [16, 120].

FWS is basically the problem of allocating a set of technicians (resources): R =

{r1, r2, ..., r|R|}, to a set of tasks: T = {t1, ..., t|T |}. A task t is described by a tuple:

< ct, durt, reqSkillt, [startt, endt], loct >

Where ct is a predefined priority which determines its importance to the company.

The higher the value of ct, the more important the task will be, and ct ∈ R+. durt

is the expected duration a technician requires to finish this task. Each task requires

a technician with a particular skill reqSkillt ∈ SkillSet, where SkillSet is the set of

all skills: SkillSet = {skill1, ..., skill|SkillSet|}. A task t must be serviced within a

predefined discrete time-window described by [startt, endt]. Tasks are geographically

distributed, and the location of a task is denoted by loct.

Each technician r ∈ R is described by a tuple:

< [startr, endr], skillsr, locr >

Each technician has limited shift hours where the beginning and end of the shift are

expressed by [startr, endr]. skillsr denotes the skill(s) a technician has, where skillsr ⊆

SkillSet. Each technician has a base location where (s)he starts the working day.

Technicians vary in their base location as they can start from home or a predefined
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depot. The base location of a technician is denoted by locr.

For simplicity, without loss of generality, the travelling time between any two loca-

tions (trvlloc1loc2) is calculated as the Euclidean distance divided by speed (υ).

There are two sets of decision variables in FWS: the allocation variables X =

{xrt|r ∈ R; t ∈ T ;xrt ∈ {0, 1}} and the service times ServT ime = {stt|t ∈ T}. A

variable xrt is set to 1 if technician r is allocated to task t, and 0 otherwise. A variable

stt denotes the start time of the service for task t.

Having decided these variables, a set of routes π = {πr|r ∈ R} are defined. A

route πr is a sequence of tasks (⊆ T ) that are to be visited by the technician r;

πr = (πr1, · · · , πr|πr|), 0 ≤ |πr| ≤ |T |.

FWS consists of various and often conflicting objectives. For the scope of this

thesis, we focus on perhaps the main objective, namely maximizing the productivity

rate which is expressed in terms of the number of allocated tasks with respect to their

priorities, i.e. minimizing the expected cost of unscheduled tasks. Therefore, the goal

is to find an assignment of resources to tasks that maximizes the importance of the

tasks scheduled, while satisfying all assignment and routing constraints.

Another objective, that can be considered as an important organizational interest in

FWS problems, is the minimization of the travelling cost [114, 33]. This objective is not

explicitly captured in our formulation. However, the travelling distance is still somehow

considered in the optimization process, given that minimizing the travelling time would

create more available time to serve other tasks, and then increase the productivity rate.

The FWS problem can, then, be mathematically modelled as follows:

max

∑
r∈R

∑
t∈T ctxrt∑

t∈T ct
(4.1)
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subject to

∑
r∈R

xrt 6 1 ∀t ∈ T (4.2)

reqSkillt ∈ skillsr ∀xrt = 1, t ∈ T, r ∈ R (4.3)

startt 6 stt ∀t ∈ T (4.4)

stt + durt 6 endt ∀t ∈ T (4.5)

startr 6 stπri ∀r ∈ R, i = {1..|πr|} (4.6)

stπri + durπri 6 endr ∀r ∈ R, i = {1..|πr|} (4.7)

startr + trvllocrlocπr1 6 stπr1∀r ∈ R (4.8)

stti + durti + trvllocti locti+1
6 stti+1 ∀ti ∈ πr, πr ∈ π (4.9)

The objective function is represented by Equation 4.1 which is the sum of the costs of

scheduled tasks, normalized by dividing it by the sum of the costs of all tasks. Equation

4.2 imposes that each task is visited once at most. The skill constraint is expressed in

Equation 4.3. The time-window constraints of all tasks are assured by Equation 4.4 and

Equation 4.5. Equation 4.6 and Equation 4.7 ensure that all tasks which are assigned

to a technician must be within the technician’s working time. Finally, Equation 4.8

and Equation 4.9 ensure route validity by considering the travelling time between a

technician’s base location and the first task, as well as between subsequent tasks in the

technician’s route.

4.2 Problem Generator

The nature of the computational experiments in this chapter, and throughout the

thesis, requires the generation of several sets of instances with various characteristics.

As pointed out in section 2.1.3.1, there is no public benchmark dataset for FWS yet,

at least to our knowledge. Thus, we developed a problem generator which is partially
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Figure 4.1: An example to illustrate the density of task and resource locations in a
generated problem instance

inspired by a real FWS problem [16, 77].

Instances are constructed as follows: the duration of a day is measured in the

number of minutes from midnight. A day typically starts at 480 (8:00 am) and ends at

1020 (5:00 pm).

The locations of tasks as well as the base locations of technicians are sampled uni-

formly at random from a sample of geographical coordinates. The geographical distri-

bution of these coordinates is based on a large sample of real geographical coordinates

(latitude and longitude) taken from a region in the UK. Each coordinate represents a

postcode. The sample represents, therefore, the densities of houses in this region, as

illustrated in Figure 4.1. Travel time (between any two coordinates) is measured as the

Euclidean distance divided by speed (υ). The default value of the speed is set to 15

km/h.

Each problem instance includes |R| technicians and |T | tasks per day. They are

described as follows:
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• Task:

– There are |T | tasks per instance. By default, each instance has 150 tasks.

– Each task is assigned an estimated duration dur. The default is to sample

the duration with a normal distribution with a mean of 120 minutes and a

standard deviation of 30 minutes.

– There are two main types of tasks: high priority (i.e. urgent) tasks, and

appointment tasks (e.g. tasks that require a technician to visit a customer).

– For high priority tasks, they represent 20% of the set of all tasks. They

are associated with a cost of 40 (i.e. c = 40). Their time-windows start

differently during the day, and must be served within 180 minutes.

– For appointment tasks, they represent the other 80% of the set of all tasks.

Appointment tasks are in turn divided into three types: (1) a whole day

task which can be served any time during the day, (2) a morning task which

should be finished by 13:00, and (3) an afternoon task which cannot be

started before 13:00. A whole day task is given the lowest priority (c =

10); a morning and afternoon tasks both have the same level of priorities

c ∈{20,30}.

– The percentage of appointment tasks (i.e. the 80% of tasks) are distributed

as follows: 20% are whole day tasks and their time-window are set to

[480, 1020], 30% are morning tasks and their time-window are set to [480, 780]

and the remaining 30% of tasks are afternoon tasks and the time-window is

[780, 1020].

– Each task requires a technician with a particular skill. There are 10 different

skills (|SkillSet| = 10). The required skill of each task is sampled uniformly

at random from skill1 · · · skill10.

• Technician:
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– There are |R| technicians per instance. The default value of |R| is 50.

– Each technician has a limited working hours (i.e. shift). By default, all

technicians have a full-day shift, i.e. [startr, endr] = [480, 1020].

– Each technician can have one or more skills. By default, the number of skills

that technicians in the workforce have follows a binomial-like distribution

(Table 4.1).

– The type of skills for each technician is sampled uniformly at random from

skill1 · · · skill10.

These describe the problem generator that is used in our research to generate bench-

marks for computational experiments. The default values of the defined parameters are

always applied unless it is explicitly stated.

Table 4.1: The probability distribution used to sample the number of skills (|skillsr|)
for each technician

|skillsr| 1 2 3 4 5 6 7 8 9 10

probability 2% 5% 8% 15% 20% 20% 15% 8% 5% 2%

4.3 Scheduling Algorithms

As reviewed in chapter 2, FWS can be seen as a combination of assignment and routing

problems. It generalizes the well known GAP and VRP (refer to section 2.1.3). These

two sub-problems are interdependent, which makes handling them separately as two

different problems impractical. The literature on routing problems and that on as-

signment problems are rich with efficient optimization techniques, including exact and

heuristic methods [20, 21, 96]. Since FWS involves characteristics from both classes of

problems, predicting the performance differences between an assignment method and

a routing method, both applied to FWS, is not trivial. In this study, the objective is
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to study these performance differences. The study will concern local search methods,

since local search is the basis of many state-of-the-art heuristics and metaheuristics

developed for routing or assignment problems [20, 96]. Thus, a representative local

search algorithm is chosen from the literature of assignment and that of routing prob-

lems. Both methods and their application to our formulation of the FWS problem are

introduced below.

4.3.1 Local Search - An Assignment Approach (LSa)

There have been many local search based algorithms developed for solving assignment

problems. They vary in solution representation and move (i.e. neighbourhood) opera-

tors designed in such local search methods [96]. One possible solution representation

is to represent a solution as a sequence (i.e. permutation) of jobs [114]. A sequence

can be a heuristic or a random order of jobs, that undergoes a deterministic, heuristic

scheduling procedure. To improve the solution quality, a move operator based on a

small change (e.g. single swap) to the order of jobs is performed. Another approach

is to associate a list of jobs to each agent. In this approach, move operators such as

λ-interchange (i.e. swapping two subsets of customers from two different routes, such

that the size of each set does not exceed λ) [92] and ejection chain approach [132] can

be applied to improve the solution quality. This approach has been considered as a

component to solve some routing problems, as well.

The former approach is chosen to be a representative of this class of heuristics in

this study. This is due to its deterministic scheduling procedure which produces only

feasible solutions, where the other move operators may produce infeasible solutions.

Another motivation to adopt this approach is its success in obtaining high quality

solutions in an example of a real FWS problem [114].

In order to apply this approach to the FWS problem, the basic components of the

local search (LSa) are defined as follows:
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• Solution Representation: each candidate solution, i.e. state, in the search space is

represented by a permutation of tasks. Such a permutation specifies the order of

tasks to be considered in the scheduling process. The first task in the permutation

is scheduled first, then the second one, and so on and so forth. Scheduling a

particular task follows a deterministic procedure which can be summarized as

“allocate this task to the nearest technician with respect to all constraints”. At

the beginning, a list of technicians is associated to each task, which involves those

who are qualified to perform the associated task. The list will be sorted before

the searching starts, and it remains static during the search. The sorting criterion

is the distance from a technician’s base location to the task’s location.

• Neighbourhood Function: the Neighbourhood function is defined as any new

permutation that may be obtained from the current permutation by performing

a single swap between any two tasks.

• Cost Function: the cost (i.e. objective) function is defined in Equation 4.1.

• The initial solution: the initial solution is generated heuristically based on three

rules:

1. High priority tasks are scheduled first. This rule is very practical since the

objective function takes into consideration the priorities of tasks (ct).

2. For two tasks ti, tj with the same priority (i.e. cti = ctj ), if the number of

available and qualified technicians for ti is less than that for tj , then ti is

scheduled first, otherwise tj (i.e. Smallest-domain-first heuristic).

3. For two tasks ti, tj with the same priority and domain size, the shorter in

terms of the estimated duration durt is scheduled first (i.e. greedy principle).
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4.3.2 Local Search - A Routing Approach (LSr)

Heuristic approaches developed for the VRP can be categorized into route construc-

tion, route improvement and methods that combine both route construction and route

improvement [20, 21]. In route improvement (e.g. local search), several move operators

have been proposed, including 2-Opt (deleting two arcs from a route, and replacing

them with the only two arcs that reform the route) and λ-interchange [110].

An attempt is made here to adapt a local search that employs these routing-based

move operators to be applied to the FWS problem. The issue is that these move

operators have been designed for routing problems where the objective is to reduce the

total travelling time, while the target objective of the FWS problem is to minimize

the cost of unallocated tasks (i.e. maximize service productivity). An answer to this

issue is that these two objectives are not completely in conflict with each other. This is

attributed to the fact that the number of technicians (i.e. vehicles) is fixed, and there is

no need to minimize this number. Indeed, reducing the travelling time by using special

heuristics such as the 2-Opt, would still be useful for creating more availability time

for a technician to serve more tasks. Therefore, minimizing the total travelling time is

applied as an objective that guides the moves in the 2-Opt. Moreover, this objective is

employed as a secondary helper objective to guide other move operators. That is when

a neighbour solution is equal to the current solution with respect to the main objective

(Equation 4.1), but it minimizes the total travelling time, the move to this neighbour

is accepted.

The local search LSr is defined as follows:

• Solution Representation: a solution is represented by a set of lists of customer

visits, each list corresponds to a particular technician and describes his/her route.

A virtual route (i.e. technician) is introduced, to which all unallocated tasks are

assigned. The constraints such as skill matching and time related constraints are
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not imposed on this virtual route.

• Neighbourhood Function: two types of improvement heuristics are applied here:

(1) the 2-Opt that operates within a route, and (2) λ-interchange that operates

between routes. The value of λ is set to one; thus, three move operators are

performed: relocate ((1, 0), (0, 1)) and swap (1, 1). The order of these move oper-

ators are (0, 1), (1, 0), and then (1, 1). Every time a route is changed, the 2-Opt

is applied to improve that route.

• Cost Function: the cost (i.e. objective) function is defined in Equation 4.1. In

the 2-Opt, the total travelling time for the examined route is used as the objective

function, since changing the order of tasks in a route has no implication on the

FWS’s main objective. The total travelling time is also used as a helper objective

in the λ-interchange operator.

• The initial solution: an initial solution can be simply generated by assigning all

tasks to the virtual tour. However, in this study LSr uses the same initial solution

generated by the LSa, as describe earlier. This allows us to have a fair comparison

between the two types of improvement heuristics.

4.4 Computational Experiments

4.4.1 Problem Characteristics

Problem characterization refers to the process of identifying the properties of problem

instances that are likely to distinguish between disparate sets of instances. Once the

properties of a problem are properly understood, it is possible to explain the perfor-

mance difference between different solution approaches applied to FWS.

To date, two main characteristics of problems were studied in relation to problem

hardness, namely the size of the problem and the different level of constraints. Compu-
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tational complexity, for example, studies how difficult it is to solve (in the worst case) a

problem as a function of the instance’s size. On the other hand, Cheeseman et al. [25]

showed that for many NP-hard problems the level of constraints imposed by various

parameters is correlated with problem hardness. In light of these studies, we identify

three main characteristics which are likely to influence differently the performance of

any applied solution approach. The characteristics are defined as follows:

1. Problem size. The size of the solutions space depends on the solution represen-

tation which depends, in the FWS context, on the number of tasks or technicians,

or both of them. The problem size of FWS can be expressed as a function of the

number of technicians in the workforce (|R|) and the amount of jobs received per

day (|T |). It can also be expressed in terms of the technician-to-task ratio (σ),

that is how many tasks on average for each technician per day.

2. Tightness of skill constraints (τ). A task must be allocated to a qualified

technician who possesses the required skill (Equation 4.3). This defines a major

constraint in FWS. Recall that each technician can have one or more skills. The

more skills a technician has, the more tasks, in principle, (s)he can perform, and

consequently the less constrained the problem instance will be. Assuming that τi

is the number of technicians who have the required skill to do task ti, we measure

the tightness of skill constraints (τ) as follows:

τ =

∑
i∈T

τi

|T |
(4.10)

3. Resource utility (γ). Another constraint relationship is that a technician can-

not perform two different tasks at the same time (Equation 4.8). The impact of

this constraint on the nature (or difficulty) of problem instances can be described

in terms of resource utility. For FWS, the utility of a resource is defined as the
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total time required by all tasks divided by the total available times of resources.

When the resource utility increases (i.e. longer tasks’ durations and travelling

times), the number of tasks a technician can carry out in a day shift reduces,

and thus the tightness of the constraint grows. The resource utility can then be

measured as follows:

γ =

∑
i∈T

(duri + avgTrvl)∑
j∈R

shiftr
(4.11)

Where avgTrvl is the average travel time a resource spends on travelling to a

task location, and shift the technician’s shift length, i.e. 520 minutes as defined

by the problem generator.

4.4.2 Experimental Design

The following experiments examine the performance of the two local search algorithms

under different conditions. The hope is that the identified problem characteristics

would distinguish between dissimilar sets of instances for the FWS problem, in which

the efficiency of an algorithm might vary, and thus explain the performance difference

between the solution techniques.

In general, it could be anticipated that the LSa approach outperforms LSr in in-

stances that have similar characteristics to assignment problems such as tight skill

matching constraints. As such characteristics change and instances involve more char-

acteristics from the routing problem, the significance of the out-performance of the LSa

approach decreases.

Our primary evaluation criterion in these experiments is ∆, the ratio of the best

cost found by the LSr approach (δr) to that of the LSa approach (δa):

∆ = δr/δa (4.12)
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This ratio ∆ will be equal to 1 if both approaches obtain the same solution quality.

As ∆ diminishes, the LSa significantly outperforms the LSr. In contrast, when ∆

exceeds 1, LSa is outperformed by the LSr.

There is no resource limitation imposed upon both techniques, that is each local

search stops when it reaches a local optimum.

In order to investigate the influence of the defined problem characteristics on both

solution approaches, we use the problem generator described in section 4.2 while varying

the following parameters:

• The problem size is controlled by a combination of two parameters, the workforce

size (|R|) and the technician-to-task ratio σ. The values of these parameters are:

|R| ∈ {30, 50, 70}, and σ ∈ {3, 4, 5}. For instance, when |R| = 30 and σ = 3, the

number of tasks will be 90.

• The tightness of skill constraints, which is represented by the percentage of tech-

nicians who are qualified to do a particular task, is controlled by varying the

parameter τ within the following domain: τ ∈ {0.2, 0.4, 0.6, 0.8}. The tightest

condition is represented by τ = 0.2 where each task can be served by only 20%

of the workforce (i.e. each technician has, on average, 2 out of 10 skills); whereas

the loosest condition occurs when τ = 0.8, in which 80% of the workforce have

the required skill of a task.

• The resource utility describes the amount of resources (expressed in terms of task

durations plus travelling distances) required by all tasks. This is defined by the

parameter γ, such that γ ∈ {0.8, 1.0, 1.2, 1.3}. For instance, when γ = 0.8, the

total amount of time required by all tasks is equal to 80% of the total available

time for technicians, and thus serving each task consumes about (0.8 ∗ shift/σ)

minutes.

Based on these characteristics, a set of instances is generated that contains each
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possible combination of |R|, σ, τ , and γ. First, an instance is generated for each

combination of |R| and σ. These two parameters determine the number of technicians

and tasks per instance. From this instance, four instances are derived with different skill

constraint levels (τ). Finally, from each derived instance, four instances are obtained by

varying the resource utility level (γ). These 144 instances represent a set of instances

with different characteristics. In total, 10 sets are generated. For each instance, the LSr

and LSa approaches are executed five times, and the mean of these runs are reported.

4.4.3 Experimental Results

4.4.3.1 Problem size

Figure 4.2 presents the performance difference ∆ with respect to the workforce size

(|R|) and the technician-to-task ratio (σ). Overall, the figure shows that ∆ grows as

|R| and σ increase, which indicates the impact of increasing the problem size on the

performance of LSa, though it performs better than LSr (i.e. ∆ < 1) on all cases.

As shown in Figure 4.2(a), LSa can produce 2.7% better results than LSr when |R|

is 30 (i.e. ∆ = 0.973). The difference diminishes to 1.4 % (∆ = 0.986) as the |R|

grows to 70. On the other hand, Figure 4.2(b) shows that when σ equals 3 (i.e. the

technician-to-task ratio is 1:3), the value of ∆ is 0.965 (i.e. LSa is 3.5% better than

LSr). When σ grows to 5, the difference becomes less significant (i.e. ∆ = 0.995).

A reason for these results is that the solution space in LSa is defined as a function

of |T | which is expressed by σ. Increasing the number of tasks while maintaining a

simple neighbourhood operator (i.e. single swap) is expected to have a negative impact

on the performance of such a heuristic. On the other hand, LSr maintains multiple

efficient neighbourhood operators that consider all resources (i.e. tours). Therefore,

the influence of these operators becomes more significant as the the number of resources

(|R|) grows.
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(a) (b)

Figure 4.2: The relative performance difference (∆) between the two approaches with
respect to: (a) |R| and (b) σ.

4.4.3.2 Constraint tightness

The impact of the skill constraint on the relative performance of both techniques is given

in Figure 4.3. It depicts the sensitivity of ∆ to the level of the skill constraint expressed

in terms of τ . The performance of the LSr approach declines (i.e. ∆ decreases) as the

percentage of technicians who are qualified to do a particular task shrinks. For instance,

under relatively under-constrained conditions (i.e. τ = 0.8), the performance difference

between the two approaches is only 0.9% (i.e. ∆ = 0.991). As the constraint level

increases (i.e. τ decreases), LSa becomes more effective. When τ reaches 0.2, LSa

obtains results better by 3.5% (i.e. ∆ = 0.965).

This is attributed to the constraint-handling technique applied by both algorithms.

While LSr rejects any infeasible solution, LSa applies a deterministic scheduling pro-

cedure that transforms any permutation of tasks into a feasible solution using a set of

rules. The usefulness of this procedure increases on tightly constrained problems.
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Figure 4.3: The relative performance difference (∆) as a function of τ

4.4.3.3 Resource utility

The influence of resource utilization (γ) on the relative performance difference ∆ is

shown in Figure 4.4. The figure shows that the performance of LSa is positively corre-

lated (i.e. ∆ is negatively correlated) with γ. Recall that as γ increases, the utilization

of technicians and, therefore, the constraint level of resource utility grows. This con-

firms the outstanding performance of the LSa on highly constrained instances of the

FWS problem. When γ is equal to 1.3, LSa can produce 2.5% better results than

LSr. The difference decreases down to about 1% on under-constrained instances (i.e.

γ = 0.8).

4.4.4 Discussion

The experimental results suggest several remarks. They confirm that varying problem

characteristics influences the performance of the applied scheduling techniques whose

efficiency cannot be retained on all problems of all characteristics. In particular, the

results suggest that the defined problem characteristics (i.e. |R|, σ, τ , and γ) provide

possible explanations of the performance difference between the assignment solution
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Figure 4.4: The relative performance difference (∆) as a function of γ

approach (LSa) and the routing approach (LSr).

Overall, the results indicate the sensitivity of the routing approach to the constraint

level of the problem. On relatively over-constrained problems (in terms of skill con-

straint and resource utilization), the assignment approach significantly outperforms the

routing approach. On the other hand, the routing approach shows very competitive

performance to the assignment approach on large size problems.

The performance difference between the two approaches can be attributed to two

factors. First, the level of effectiveness of the neighbourhood (i.e. move) operator

employed by these methods. The assignment approach applies a simple neighbourhood

function, that is the single-swap operator between any two tasks; whereas the routing

approach maintains multiple efficient neighbourhood operators within each rout and

between different routes. This factor enhances the performance of the routing approach

(compared to the assignment one) on problems of large size.

The second factor concerns the constraint-handling technique used by each algo-

rithm to contain infeasible solutions. In this study, a deterministic rule-based procedure

is used by the assignment approach to ensure it generates only feasible solutions. On

the other hand, any infeasible solution obtained by local changes to the current solution
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is rejected by the routing approach defined in this study. This factor contributes to the

outstanding performance of the assignment approach (compared to the routing one) on

problems with tight constraints. It is worth pointing out that the results encourage the

investigation of the application of routing approaches with more advanced constraint-

handling techniques. This direction is not considered in the present study, due to the

scope of the research.

With relation to our research, the development of a flexible model for FWS requires

the consideration of employees’ requests and preferences (i.e. their constraints on the

tasks assigned to them). This implies the increase in the constraint level of the FWS

problem. Since the present study suggests the effectiveness of the assignment approach

on highly constrained FWS problems, we will opt for the assignment approach when

solving the new scheduling model that is to be elaborated later.

Although the results of the characterization process carried out here are revealing,

it offers a study that can be further extended, and thus the results be more generalized.

For example, the correlations of the defined characteristics with hardness are still to

be studied. The hardness of a problem instance for a particular solution procedure

can typically be described by the CPU-time an exact solution procedure needs to solve

a particular problem instance to optimality. Furthermore, there are other possible

problem characteristics such as time-related constraints, and alternative models for the

defined characteristics (e.g. see the characterization of nurse scheduling in [122]).

4.5 Conclusions

The FWS problem is a complex combinatorial optimization problem. The process of

developing an efficient algorithm to tackle such an optimization problem requires a

proper understanding of the problem’s properties. Problem formulation and character-

ization are very important steps which are often underestimated in this process. An
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attempt in this direction is made in this chapter which gives a formal mathematical

definition of the problem, and describes a problem instance generator. It also identi-

fies problem’s key characteristics, namely the problem size and the level of constraint,

which are found to impact the performance of scheduling techniques.

Problem characterization helps in relating the performance of different algorithms to

the properties of the problem. This was demonstrated empirically by analysing, under

various characteristics, the performance of a representative local search algorithm from

the literature of routing problems, and another one from that of assignment problems.

The experimental results confirm that varying problem characteristics influences the

performance of the applied scheduling techniques whose efficiency cannot be retained

on all problems of all characteristics.

Overall, the results reveal the outstanding performance of the assignment approach

over the routing approach on over-constrained problems, both in terms of skill-matching

and resource utility, as well as in relatively small instances. As the constraint level

reduces, and the problem size grows, the performance of the routing approach enhances.

Based on the results of this study, we will use the assignment approach throughout

the rest of our research, which concerns incorporating empowerment into FWS. This is

due to the tight constraints imposed by involving employees in the scheduling process,

as well as the effectiveness of the assignment approach on highly constrained FWS

problems.
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Chapter 5

Empowerment Scheduling of

Field Workforce

This chapter proposes a new field workforce scheduling model that implements em-

powerment as an alternative, flexible management approach, with the hope of im-

proving employee morale, and productivity. We begin by formalizing empowerment in

workforce scheduling and establishing the term “Empowerment Scheduling”, section

5.1. Sections 5.2 and 5.3 propose and discuss a new Empowerment Scheduling model

(EmS) for designing workforce scheduling systems. Several computational experiments

are conducted to examine various aspects of EmS applied to the FWS problem. These

experiments and their results are explained in section 5.4. Finally, we conclude with

section 5.6.

5.1 Empowerment Scheduling

Empowerment Scheduling is a term we introduce to formalize the employee empower-

ment in workforce scheduling, and therefore it describes scheduling models that incor-

porate the empowerment concept. In section 2.2, empowerment was discussed from a
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management perspective. Based on that discussion, an attempt is made here to an-

swer vital questions about empowerment scheduling models. Such questions include:

What constitutes empowerment in workforce scheduling? What are the features of

an empowerment scheduling model? How should the efficiency and effectiveness of an

empowerment scheduling model be measured? Addressing these issues will help to de-

velop an effective empowerment scheduling model and to evaluate the existing flexible

scheduling models.

5.1.1 Constitution of Empowerment in FWS

A key issue that needs to be established is the definition of what constitutes empow-

erment in workforce scheduling systems. Recall that there are different conceptions of

empowerment reflected in the management literature [51, 29, 37, 1]. The most gen-

eral conception defines empowerment as a combination of a management relationship

(i.e. enhancing employee power over decision making) and a psychological value (i.e.

enhancing their self-efficacy). This describes the concept of empowerment that we con-

sider here, which views empowerment as a combination of enhancing both employee

decision power and self-efficacy. Therefore, an empowerment scheduling model should

first recognize an individual’s self-interest by providing employees with an empower-

ment practice through which they have control over the allocation decision. At the

same time, employees need to be convinced that they have at least some control over

the decision-making task; thus, the model should reflect employees’ power in the final

allocation decision.

5.1.2 The Essential Features

Several features should exist in any efficient empowerment scheduling model, which

describe the requirements of an empowerment scheduling model. Deterioration in any

one of these features would impact the feasibility of implementing this management
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style. These are described as follows:

1. Simplicity. The model should be simple enough to facilitate the utilization of

the potential of empowerment for all employees, whatever their capability levels

are. This feature is motivated by the argument that employee perception and

commitment varies according to factors like education, experience, and skilfulness

[37, 58].

2. Flexibility. The model should be flexible to increase employee power and con-

trol over the scheduling decision. This is due to the crucial importance of an

employee’s feeling of power to the success of empowerment [29].

3. Fairness. Employees should trust the system and feel it is fair and transparent.

This is arguably the most critical feature that should be considered carefully. The

absence of fairness would dramatically weaken employee trust in the system, and

thus the potential benefit of empowerment would be lost.

4. Providing a win-win approach. The model should provide a convincing ben-

eficial solution for both the employees and the organization, presenting an all-win

scenario. The feasibility of the model in terms of the impact of empowerment

on the organizational interests, and the retaining of the organizational control

over the scheduling process (as in traditional scheduling models), would motivate

organizations to apply an empowerment scheduling model.

5.1.3 The Measurement Process

Another key issue that needs to be addressed is the measurement process of any em-

powerment scheduling model. For empowerment management practices in general, this

process requires three different measures for evaluating three aspects of empowerment:

model efficiency, organization benefits, and employee benefits. In the empowerment
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scheduling context, model efficiency can be evaluated according to the first three prop-

erties of the aforementioned features of an efficient empowerment scheduling model,

namely simplicity, flexibility and transparency/fairness. On the other hand, measuring

the benefits for organizations and employees is a difficult process. An ideal empower-

ment scheduling model would be able to provide employees with full control over work

allocation without impact on the optimality of the organizational objective. If this

cannot be achieved, the model should otherwise enhance employee power in decision

making and employee contribution to the organization, while minimizing the impact

on the organizational objective.

5.1.4 Current Implementations of Empowerment Scheduling

This section compares and contrasts empowerment scheduling with other modelling

approaches, namely self-scheduling and preference scheduling. A summary of these

comparisons is depicted in Figure 5.1.

5.1.4.1 Empowerment Scheduling vs. Self-scheduling

Self-scheduling (section 2.2.2.1), which is about enabling employees to construct their

own schedule whilst respecting some requirements determined by a manager, is a flex-

ible empowerment scheduling model. It satisfies the constitution of empowerment (as

defined in section 5.1.1) since it identifies employees’ individual interests which are

reflected in the final schedule. From the essential features of an empowerment schedul-

ing model as listed in section 5.1.2, self-scheduling incorporates flexibility and all-win

approach, but lacks simplicity and fairness. The model is not simple enough: it is a

manual scheduling model, it is only applicable to some scenarios where the scheduling

problem is known well in advance, and it requires a conflict resolution policy. Trans-

parency and fairness are also critical issues which are normally underestimated in this

model. The absence of these features would greatly impact employees’ self-efficacy.
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Figure 5.1: Feature Comparison: flexible scheduling models

5.1.4.2 Empowerment Scheduling vs. Preference Scheduling

Preference scheduling (section 2.2.2.2) is another well-known flexible management schedul-

ing model, which attempts to accommodate individual preferences when creating sched-

ules. As reviewed in section 2.2.2.2, we distinguished between four preference scheduling

approaches. In the first approach, the employer defines an employees’ satisfaction mea-

sure without the employee’s explicit involvement. The employees’ individual interests

are not recognized in this approach, and thus employees have no explicit authority over

the allocation decision. As a result, this approach does not satisfy the constitution of

empowerment scheduling as defined in section 5.1.1.

The second approach empowers employees by providing a simple, limited involve-

ment practice that enables employees to express their preferences about the scheduling

item. The simplicity of this model impacts its flexibility, as the scope of employee

involvement is very limited and employees cannot suggest their specific requirements.

Furthermore, fairness is not considered in this approach, and thus the psychological
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aspect of empowerment is underestimated. Therefore, this approach does not attain

the essence of empowerment scheduling since the essential features, namely flexibility,

fairness, and consequently all-win, are not incorporated into such scheduling models.

The third preference scheduling approach enhances the flexibility of the second

approach by allowing employees to express their individual requests. Although models

in this approach incorporate flexibility as a feature, fairness and transparency are still

absent, which would seriously impact employees’ trust of the system, and thus the

benefit of empowerment is not guaranteed.

The fourth approach includes models that improve the fairness of the third ap-

proach, presenting models that satisfy, to various extents, the constitution of empow-

erment scheduling, and maintain its critical features. These methods include those of

Eveborn and Rönnqvist [42], Bard and Purnomo [11] and De Grano et al. [35]. The lat-

ter is an auction-based model, which is more complex when compared to the two former

models. As we mentioned earlier, the concern with this auction-based approach is its

high susceptibility to game playing, which means the system is not equally utilized by

all employees whatever their education, skilfulness and personal characteristics. In such

a situation, it is likely to depress some employees and thus weaken their self-efficacy.

On the other hand, the fairness mechanisms implemented in the model of Eveborn

and Rönnqvist’s, and in that of Bard and Purnomo [11], assume that each employee

has a set of preferences and requests, and thus they can be fully or partially satisfied.

Therefore, such mechanisms are impractical in short-term task assignment problems,

such as the FWS problem. In such problems, the scheduling horizon is very short, and

employees’ requests would vary from day to day. Hence, each employee may have one

request per schedule.

82



5.2 EmS: An Empowerment Scheduling Model

5.2 EmS: An Empowerment Scheduling Model

Our aim is to develop a general empowerment scheduling model, and demonstrate its

application to the FWS problem. We focus on formulating the problem in such a way

that it provides employees with a simple, flexible, yet explicit control over decision mak-

ing. Transparency, fairness, and providing a win-win approach are the main concerns

of our model. This section introduces this model in relation to the FWS problem (as

defined in chapter 4) and extends the formulation of the FWS problem accordingly.

5.2.1 Work Plan: The Empowerment Vehicle

In order to deploy the empowerment management concept in the workforce scheduling

problem, employees should be involved in the scheduling process and given some power

to influence their own schedule. This can be attained by enabling them to express their

preferences and submit (daily) requests for consideration in the allocation process.

A key element in any empowerment scheduling model is the representation of em-

ployee involvement. In workforce scheduling, employees would like to be given a decision

power that would allow them to influence the allocation process. In FWS, for instance,

an employee would like to be able to plan for a particular day, e.g. “I want to finish

my shift at a particular area/location”, or “today I want to do only jobs that are of a

particular skill(s)”.

This suggests that the representation of employee involvement in the decision-

making process can be expressed using constraint language [113]. An employee can

instantiate a work plan which is a constraint relationship that can express most possible

scenarios, including requests and preferences. The work plan is the vehicle of empower-

ment in our model, by which employees can express their own specific requests. These

constraints will then be considered during the scheduling process.

Workforce scheduling problems are very complex, and thus the promise of satisfying

83



5.2 EmS: An Empowerment Scheduling Model

all plans cannot be guaranteed. One direct way to handle employees’ work plans is to

treat them as soft constraints such that each plan is assigned a violation cost (i.e.

penalty). In this case the task is to find a schedule that satisfies the majority of

constraints, rather than all constraints. More precisely, the scheduling system will try

to minimize the sum of penalties associated with the violated constraints.

5.2.2 The Updating Mechanism

The extreme difficulties in satisfying all plans initiates the need to define an efficient

strategy that determines the incurred cost of violating each plan. The higher the

violation cost of a plan, the higher the incentive for the scheduling system to satisfy

this plan. A näıve strategy is to assign an equal cost (i.e. power) to all plans. However,

this strategy lacks transparency and fairness. When all plans are equal, there is always

a chance that plans of a particular employee are satisfied more often than those of

another employee. To overcome this problem, we propose another strategy based on

the argument that employees should vary in the power they have in decision making,

reflecting the employees’ history of their plan satisfaction. In our proposed strategy,

every employee has an employee power (EP ) that describes the amount of power (s)he

has. The more power (i.e. the higher EP value) an employee has, the more chance

that his/her plan could influence the decision-making process.

The values of EP s are continually managed by EmS via an updating mechanism.

The aim of this mechanism is to ensure the effectiveness and fairness of the empow-

erment model by compensating employees whose plans were not satisfied. The basic

idea is that each time an employee is satisfied, his/her EP value is reduced. Thus,

employee power can be seen as an internal currency. An employee whose proposed plan

is accepted will pay with a certain amount of EP .

On day d (assuming that the scheduling system works on a daily basis), the EP

value of an employee r with a total number of satisfied plans in previous days (satr),
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is calculated as follows:

EP dr = (d− satr)/d (5.1)

On the first day, the value of each EP is initialized by one, i.e. all employees have

equal opportunities. Afterwards, the values of EP s are updated based on the output

of the previous schedule(s).

From an implementation point of view, this equation requires keeping track of two

variables per employee: EP and sat. This can be reduced to only EP by deriving the

value of sat as a function of EP and the current day d (i.e. satr = d− d ∗EP dr ). Thus,

the new EP for employee r can be calculated as follows:

EP d+1
r =

1 + EP dr ∗ d− yr
d+ 1

(5.2)

Where yr is a satisfaction indicator for the current plan of day d, such that yr ∈ {0, 1}.

5.2.3 A Multi-objective Optimization Approach

From an optimization perspective, employees’ plans add more soft constraints to the

problem, and thus impact on the optimality of the productivity objective. Therefore,

the organization may need to pay for satisfying employees’ plans out of the produc-

tivity rate. The amount of optimality the organization will give up defines the cost of

empowerment. This cost is hoped to be offset by the improvements in service quality

and productivity which result from the higher employee morale and motivation as a

consequence of employee empowerment. These improvements describe the profit of em-

powerment. If the profit of empowerment (in terms of improvement in the productivity

rate) is measured and its relationship to the cost (in terms of decline in the productiv-

ity rate) is defined, then the empowerment objective and the productivity rate can be

modelled in a single objective. However, the benefits of empowerment depend on em-

ployees (i.e. human) who are complex and difficult to be modelled, and consequently it
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Figure 5.2: The framework of the proposed empowerment scheduling model (EmS)

is difficult to formalize the relationship between the empowerment cost and profit. As

a result, the organizational objective and empowerment objective can be considered as

conflicting objectives, at least at the optimization stage. This implies that the problem

can be formulated as a multi-objective optimization problem, where the target is to

find a set of solutions that represents the optimal set of trade-offs between the two

objectives.

5.2.4 EmS-FWS: The Implementation of EmS for FWS

Figure 5.2 summarizes the application of EmS to FWS (referred to as EmS-FWS). The

model can be divided into two stages. In the first stage (Figure 5.3(a)), the technicians’

and tasks’ details are fed into the scheduling engine to construct an optimal complete

schedule. The quality of a schedule (i.e. the optimization criterion) is determined by

both the organizational objective and plans satisfaction. The latter is measured by the

cost of violated employees’ work plans. On the first run, the violation costs (determined

by the EP value of each employee) of all work plans are set to one.
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(a) EmS: the first stage - generating a schedule (b) EmS: the second stage - the updating proce-
dure

Figure 5.3: The two stages of EmS

The second stage (Figure 5.3(b)) starts once the scheduler produces the final sched-

ule. The purpose of this stage is to ensure the fairness of the model by updating the

violation cost for each employee’s work plan in the next schedule. This is maintained

by the updating mechanism which recalculates the EP value of each employee as a

function of his/her satisfaction history (Equation 5.1).

The formulation of the FWS problem needs to be extended as follows, in order

to include the new elements introduced by EmS. Every technician r ∈ R is given an

opportunity to provide a work plan (wpr) everyday. A plan is basically a constraint (ρ)

by which a technician can describe the jobs (s)he wants to undertake. For instance, a

technician r might want to be allocated to jobs that require a particular set of skills,

or jobs in a particular region. Each plan is associated with a weight, in our case this is

equal to the EP value of r. An indicator yr (∀r ∈ R) is defined, which is equal to 1 if

the plan ρr is satisfied and 0 otherwise.

The empowerment practice introduced by EmS changes the nature of FWS. The

underlying optimization problem is reformulated to not only maximize productivity in
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terms of the number of served jobs, but also to satisfy the maximum number of work

plans. Similar to the productivity objective, the plan satisfaction objective will be

normalized by dividing by the sum of all weights associated to plans.

The work plans augment the FWS problem (section 4.1) with the following addi-

tional objective:

wpr = < ρr, EPr > ∀r ∈ R, 0 6 EPr 6 1 (5.3)

max

∑
r∈R yr ∗ EPr∑
r∈REPr

(5.4)

At this stage (i.e. in this chapter), the EmS-FWS problem is dealt with as a single-

objective optimization problem by combining the two optimization functions defined

in Equation 4.1 and Equation 5.4 using the weighted-sum approach:

f(s) = w1 ∗
∑

r∈R
∑

t∈T ctxrt∑
t∈T ct

+ w2 ∗
∑

r∈R yr ∗ EPr∑
r∈REPr

(5.5)

In this function, w1 and w2 are predefined constants that determine the importance

given by the organization to each objective, such that w1 + w2 = 1.

The reason for aggregating the objectives is that controlling the weight setting

given to the two objectives would help in understanding the correlation between both

objectives, and in evaluating various aspects of EmS under different weight settings.
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5.3 Discussion

There are three factors that contribute to the effectiveness and practicality of EmS as

a flexible scheduling model. These factors are discussed here, and linked to the essen-

tial features of an empowerment scheduling model (section 5.1.2), namely simplicity,

flexibility, fairness, and providing an all-win scenario.

The first factor is the employment of constraints as the communication means be-

tween employees and the system. Simplicity and flexibility as essential features are

incorporated in EmS by using constraint, which provides a simple, yet flexible ap-

proach to describe most scenarios. Using constraints also enables the benefit from the

field of Constraint Satisfaction Problem (CSP) [113] which is well-established research.

From the literature of CSP, EmS applies the concept of soft constraint which allows

the system to violate a constraint at an incurred penalty.

The second factor of EmS is the incorporation of an updating mechanism. It pro-

vides an automatic strategy to control the violation cost of each employee’s work plan,

i.e. EP . This considerably enhances the simplicity, transparency and fairness of the

model. Employees’ involvement is limited to the actual planning only. They do not

have to think or reason about determining the weights associated to their work plans.

This improves the usability of the model for all employees whatever their skilfulness

and capability levels are. Moreover, using a deterministic procedure to update the

EP makes the model transparent, addressing the important challenge of enhancing

employees’ trust of the system. The proposed updating procedure calculates the new

EP value of each employee as a function of his/her satisfaction history. This helps the

model to maintain fairness, which is a critical challenge.

It is important to highlight that the updating procedure can be considered as an

input to EmS. Therefore, the proposed updating mechanism above can be adapted or

replaced if the scheduling context changes or the scope of EP is extended. We actually
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believe on the potential of the EP parameter to be more than a reflection of employee’s

satisfaction history. Its scope can be extended to reflect the amount of an employee’s

contribution to organizational success e.g. productivity rate, failure rate, or customer

satisfaction. This ensures the delivery of a new rewarding system, which supports other

systems that rely on bonus-based rewarding mechanisms.

The equation used to model the proposed updating strategy (Equation 5.1) suggests

two main indications that need to be highlighted. First, the updating mechanism

considers only the current day and the satisfaction history of an employee to calculate

the new EP value. This implies that there will be no difference in the EP value of

an employee whether (s)he has not proposed a plan for a day or his/her plan for that

day was unsatisfied. The motive for such an equal treatment is to prevent gaming by

employees. To illustrate this, assume that an employee whose plan was unsatisfied will

be compensated by an increase in his/her EP value. A savvy employee may instantiate

plans which are impossible (or hard) to satisfy, in order to increase his/her EP value

the next day. Such a case is captured by this updating strategy.

The second indication is that an employee’s plan is considered to be either satisfied

or unsatisfied, regardless of how hard/easy the satisfaction of that constraint is. This

is justified by the principle that an employee should pay for ‘securing’ a situation (s)he

wants, even if that situation is very probable to happen anyhow. On the other hand,

employees will neither pay for submitting hard or impossible non-granted plans, nor

will they be recompensed. However, such scenarios can sometimes be easy to detect,

which stimulates the addition of a preprocessing component outside the system, which

tries to catch impossible or hard plans and allows for replanning. The practicality and

feasibility of such extensions are issues that need to be investigated after developing

the basic system, which is the concern of the research in this thesis.

The third factor of EmS is the multi-objective formulation of the underlying opti-

mization problem. This is considered as a feature for two reasons. First, multi-objective
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optimization is a well-studied topic and its literature is rich with useful concepts and

efficient techniques that can be adopted for solving the present problem effectively. For

example, multi-objective optimization algorithms return an optimal set of trade-offs

between objectives. In our case this set helps the organization to assess the impact

of empowerment on the organizational interests. The second reason is that using the

multi-objective approach ensures that the organization is still in charge of the schedul-

ing process as in traditional scheduling. Thus, the organization can avoid undesirable

outcomes by controlling the amount of optimality they are willing to give up in or-

der to consider employees’ work plans. For example, tasks undesirable to any of the

employees will still be done by controlling their importance (compared to other tasks)

to the organizational objective and/or the importance of the organizational objective

compared to the plan satisfaction objective.

5.4 Computational Experiments

EmS applied to the FWS problem, as outlined above, is implemented. In order to

examine the effectiveness of the model, particularly the feasibility of the empowerment

concept and the model’s fairness, four sets of experiments were conducted on bench-

marks produced by the problem generator (section 4.2) with its default values. Below,

we detail the problem instances, the applied algorithm and the experimental results.

5.4.1 Work Plan Generator

A major element in our experimental design is to model employees’ plans. Recall

that a plan is a constraint that limits the possible values a variable can take, and

employees want to be able to describe jobs that they want to do. There are three main

properties that can be used to describe a job in FWS, namely the job’s id, type (i.e.

required skill) or location.
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Plans Generator(R, T, SkillSet, Areas, σ)

for each r ∈ |R| do
P ← Random(“id”, “skill”, “location”)
if P = “id” then
size← Random(σ · · · 2 ∗ σ)
Dr ← Random(d|d ⊆ T, |d| = size)

else if P = “skill” then
size← Random(1 · · ·min(|skillsr|, |SkillSet|/2))
Dr ← Random(d|d ⊆ skillsr, |d| = size)

else if P = “location” then
size← Random(1 · · · |Areas|/2)
Dr ← Random(d|d ⊆ Areas, |d| = size)

end if
end for

Algorithm 5.1: The outline of the generator of employees’ work plans

Our model is based on these properties, such that each plan uses a property to

describe the tasks that the corresponding employee wants to do. When an employee

wants to do particular tasks or tasks that require particular skill(s), (s)he just needs

to determine that tasks’ id or their skill codes, respectively. In order to facilitate the

use of task location as a descriptor, the whole service region of the FWS problem is

clustered into several areas which can be used by employees to limit the jobs that will

be assigned to them to particular area(s).

Given the sets of technicians (R), tasks (T ), skills (SkillSet) and areas (Areas),

and the number of tasks, on average, that a technician can perform on a daily shift (σ),

the plan generator is outlined in Algorithm 5.1. The plan of an employee is generated

randomly. First, a property will be chosen randomly, which can take three possible

values: id, skill or location, which makes the plan describe tasks by their identifier,

skill requirement or location, respectively. Accordingly, the size of the domain value

is drawn randomly within a specific range. This range is calculated as a function of

the number of tasks, on average, a technician can perform on a daily shift for the id

property; the size of the employee’s set of skills for skill ; or the number of areas that
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construct the whole service region for location. Finally, a subset of the relevant set to

the chosen property is randomly selected as the domain value.

Table 5.1 shows three examples of work plans which illustrate how the constraints

are generated and interpreted. These plans are taken from an instance of the benchmark

generated for a study in this thesis. In the first example, the work plan of the employee

with Id 25 restricts the type of jobs that can be assigned to the employee to those that

require either skill 2 or 5, eliminating other skills the employee possesses (i.e. skills 3,

7, 8 and 9). Thus, during the optimization process, a soft constraint is instantiated to

check whether all assigned jobs to this particular employee are of skills 2 or 5.

Table 5.1: Examples of an employee’s work plan
Employee ID Work Plan Constraint Variable Domain Val-

ues

25 “I want to take
jobs only of type
2 and 5”

Skill 2,5

40 “I want to be as-
signed to jobs in
areas 1 and 2”

Location 1,2

51 “I want to do
only jobs from
this particular
set: 7, 15, 18, 55,
79, 82, 118, 128,
143 ”

Job ID 7, 15, 18, 55,
79, 82, 118,
128, 143

5.4.2 Algorithm: Guided Local Search

As reviewed in section 2.1, various approaches have been applied to FWS problems.

Among these approaches, GLS obtained the best results on a relevant real benchmark

problem [114]. The proposed GLS in [114] employs an assignment-based local search

that is defined in section 4.3.1. The performance of this local search method was

examined in comparisons with a representative routing-based local search, as detailed
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in chapter 4. The computational results suggested the superiority of this local search

over the routing-based one, particularly on problems of high constraint levels. In EmS,

employees’ work plans are basically constraints that increase the constraint level of the

problem. This suggests the potential of the assignment-based local search for solving

EmS.

The outstanding performance of GLS on FWS problems, and the potential of the

underlying local search to be an effective method for EmS, motivates the study of

the application of GLS to the EmS-FWS problem. The implementation of the basic

components of GLS to the EmS-FWS problem is described below.

5.4.2.1 The Local Search

The local search defined in section 4.3.1 is applied to the EmS-FWS problem here. This

requires the adaptation of only the following two basic components:

• Solution Representation: A candidate solution is represented by a permutation

of tasks, determining the order of tasks to be considered by a defined scheduling

procedure. The applied scheduling procedure can be summarized as “allocate

this task to the nearest technician with respect to all constraints and technicians’

plans”. At the beginning, a list of technicians is associated to each task, which

involves those who are qualified to perform the associated task. The list will be

sorted before the searching starts, and it remains static during the search. The

sorting criteria are: (1) the technician’s plan, those who prefer (in accordance

with their work plans) the associated task come first and (2) travelling cost, the

nearest technicians come first.

• Cost Function: For the EmS-FWS problem, the cost function (f(s)) will be the

weighted-sum function defined in Equation 5.5.
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5.4.2.2 Solution Features and their Costs

In EmS-FWS, f(s) is an aggregation of two functions with different weights, and thus

two sets of features will be defined. Since minimizing the total unallocated tasks is a

key objective, each feature in F1 represents failure in serving a job (i.e. the exhibition

indicator I1i equals 1 if task i is unallocated, 0 otherwise). Thus, F1 has |T | features,

where |T | is the total number of tasks. The second objective concerns minimizing

unsatisfied employees’ plans, and therefore each feature in F2 represents the failure in

satisfying an employee’s plan (i.e. the exhibition indicator I2j equals 1 if technician j is

not satisfied, 0 otherwise). There are at maximum |R| features in F2, where |R| is the

total number of technicians.

Each feature is associated with a cost to help GLS in choosing features that have

more influence on the cost function in order to penalize them. We consider the task

priority as the cost of features in F1, in order to give higher priority to tasks of higher

importance, whereas the weights associated with work plans (EP ) are the cost of the

features in F2.

As a result, the augmented objective function h(s) is expressed as follows:

h(s) = f(s) + w1 ∗ λ1
∑
i∈F1

pi ∗ I1i + w2 ∗ λ2
∑
j∈F2

pj ∗ I2j (5.6)

The weighted-sum method, which is applied to transfer the two objective functions

into a single function, is also propagated to the corresponding set of features. Moreover,

we defined two parameters of GLS λ1 and λ2; however, empirical results suggest that

EmS-FWS was relatively insensitive to those parameters.

5.4.3 Experiment 1: Feasibility - Trade-off Analysis

The aim of the first experiment is to assess the immediate impact of adopting employee

empowerment on the main organizational objective, i.e. the feasibility of empowerment.
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This is attained by examining the underlying optimization problem of the new model,

in comparison to the traditional model. Although the results are dependent on the

applied algorithm (i.e. GLS) the concluding remarks will still be significant, given that

the proposed local search and GLS are well-known and representative methods for such

optimization problems.

For the purpose of this experiment, only the optimization problem of one day (i.e.

without the updating mechanism) is considered, and therefore we assume that all em-

ployees are of an equal power (i.e. all plans are of the same weight). We intend to

examine the tightest scenario, where every employee has a plan to be considered.

We ran the GLS algorithm on 20 problem instances. For each problem, different

sets of weights (w1, w2) were tested, such that (w1, w2) ∈ { (1,0), (0.9,0.1), (0.7,0.3),

(0.5,0.5), (0.3,0.7), (0.1,0.9), (0,1)}. In one extreme, when w1 = 1, the plan satisfaction

objective (Equation 5.4) is ignored in the optimization process, representing the tradi-

tional model for FWS. As w1 decreases, the influence of the plan satisfaction objective

on the optimization process should increase.

Since the plans generator is based on a stochastic model, five different instances of

employees’ plans were tested for each weight setting.

In this experiment (and the following experiments), we always present the actual

cost of each objective rather than the aggregation of both objectives. For each weight

setting, the mean of five runs with different employee plans is calculated for each

instance, and then the mean of 20 instances is measured.

The results are given in Table 5.2 which describes the mean cost of each objective

for each weight setting. For simplicity, the “Productivity Loss” is included, which

refers to the reduction in the productivity rate as a result of satisfying a subset of

employees’ work plans, e.g. the Productivity Loss for the weight setting (0.5, 0.5) =

100− (87.8/94.1). The correlation between the productivity loss and the empowerment

cost is plotted in Figure 5.4, which shows the cost of satisfying employees’ plans on the
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Table 5.2: The mean cost of each objective for each weight setting

Weight Setting Productivity (%) Productivity Satisfaction (%)
(w1, w2) Loss (%)

(1,0) 94.1 0 14.7
(0.9,0.1) 92.2 2 42
(0.7,0.3) 89 5.5 55.1
(0.5,0.5) 87.8 6.7 57.5
(0.3,0.7) 87.6 7 57.4
(0.1,0.9) 87.4 7.1 58.4

(0,1) 80 14.6 56.1

organizational main objective.

Interestingly, the results suggest that the plans of 58.4% of employees can be satis-

fied at the expense of losing 7.1% of the productivity objective. This is achieved when

the weight given to the plan satisfaction objective is high (i.e. w2 = 0.9). The results

encouragingly show that even if the plan satisfaction objective is ignored (i.e. the tradi-

tional FWS), about 15% of all plans can be satisfied. The inability to satisfy all plans

is expected and this is due to either the existence of conflict between multiple plans,

in which only some of which can be satisfied, or to the inability of the optimization

algorithm to obtain the global optimum solution.

5.4.4 Experiment 2: Feasibility - Organizational Benefit

One of the potential benefits of empowerment is improved productivity. The aim of

this experiment is to contrast the benefit of productivity gain against the costs. This

can be achieved by assuming a best-case scenario where the employee’s productivity

rate is improved. This improvement is modelled by a reduction in the task duration

by 5%. For example, when the duration of a task is estimated to take 60 minutes, an

empowered technician will finish it within 57 minutes. Measuring the organizational

benefit from this improvement helps examine the potential of empowerment and the
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Figure 5.4: The correlation between the plan satisfaction objective and the productivity
objective

feasibility of the model in providing an all-win scenario.

To obtain this measurement, Experiment 1 is repeated while reducing the duration

of each task by 5%. The results, then, are compared to those obtained in Experiment

1 (i.e. with the original tasks durations). The idea is to analyse the contribution of a

5% improvement in task durations to the organizational objective.

The results are presented in Table 5.3 which shows, for each weight setting, the

change in the productivity objective when task durations are reduced by 5%. Assuming

that this reduction comes as a benefit of empowerment, the results reveal that this

model will eventually improve the productivity (i.e. the organizational interest) by

2.7%-3.8% depending on the applied weight setting. Similarly, the plans satisfaction is

enhanced by 20%-33%.

The promise of empowerment includes improvements in morale, job satisfaction,

retention and productivity. This experiment shows that an improvement in the pro-

ductivity will lead to a significant benefit to the organization. Therefore, the concept
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Table 5.3: The mean cost of each objective for each weight setting when task durations
are reduced by 5%

(w1, w2)
Productivity Satisfaction

before after ±% before after ±%

(1,0) 94.1 97.7 +3.7 14.7 19.6 +33.4
(0.9,0.1) 92.2 95.7 +3.8 42 51.1 +21.7
(0.7,0.3) 89 92.1 +3.6 55.1 65.8 +19.4
(0.5,0.5) 87.8 90.8 +3.4 57.5 68.6 +19.2
(0.3,0.7) 87.6 90.4 +3.3 57.4 69.2 +20.5
(0.1,0.9) 87.4 90.4 +3.5 58.4 69.5 +19.1

(0,1) 80 82.5 +2.7 56.1 67.7 +20.7

and the model are capable of providing a convincing win-win approach, and eventually

a feasible empowerment scheduling model.

5.4.5 Experiment 3: Fairness Analysis

An essential feature of an empowerment scheduling model is fairness. This feature

is handled in EmS by the proposed updating mechanism (section 5.2.2). The aim of

this experiment is to check whether fairness is achieved by the updating mechanism.

The success of EmS in providing a transparent and fair scheduling process via this

novel updating mechanism is achieved when the variance between employees, in their

satisfaction levels, is significantly reduced. Attaining fairness may have a negative

impact on the overall average of employees’ satisfaction. However, a successful updating

mechanism should not negatively impact the organizational interests.

The effectiveness and usefulness of the updating mechanism is evaluated by running

GLS on a month-scenario, i.e. a sample of technicians and 20 samples of tasks are

generated, each sample of tasks represents a day (excluding weekends) in that month.

For each day: (1) a work plan is generated for each technician, (2) five different sets

of weights, (w1, w2) ∈ { (0.9,0.1), (0.7,0.3), (0.5,0.5), (0.3,0.7), (0.1,0.9)}, are applied,

and then (3) for each weight setting, the GLS algorithm is run twice: once with the
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updating mechanism that continually updates the EP values, and the other without

updating, i.e. the cost of violating any plan is equal to one.

By the end of each month-scenario, for each weight setting and each updating

approach, the following measures are calculated:

1. Productivity rate, which is represented by the task completion rate as defined in

Equation 4.1. Here, the mean of the productivity rates of the 20 days is calculated,

in order to measures the quality of the schedules from the organizational angle.

2. Employees’ satisfaction rate (SatRate), which is the mean of employees’ individ-

ual satisfaction level (satLvl). The satisfaction level (satLvl) of an employee r is

calculated in this experiment as follows:

satLvlr = satr/period ∀r ∈ R (5.7)

where satr is the total number of satisfied plans in the examined time horizon

and period is the total number of produced schedules (i.e. time horizon), which

is equal to 20 in our case. The satisfaction rate is used here instead of the plan

satisfaction objective (Equation 5.4) in order to measure the quality of the sched-

ules from each employee’s individual perspective. Equation 5.4 considers a single

schedule/day and involves the weights associated to plans for that schedule/day,

and thus it does not necessarily reflect employees’ perception and satisfaction.

3. Variance (var), which measures the variability of the satisfaction level of an em-

ployee from the average satisfaction levels (SatRate). The most common mea-

sures are the Variance and the Standard Deviation; the Variance measure is used

here. The closer this value is to 0, the less variable the employees’ satisfaction

rates and the fairer the schedule.

The process is repeated 20 times with a new sample of technicians generated every
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time. Finally, the mean of each of the three measures over the 20 month-scenarios is

calculated.

Table 5.4: The productivity rate, satisfaction rate, and variance of the model with and
without the updating mechanism, at different weight settings, (w1, w2)

Updating Weight Setting Productivity SatRate Variance

No

(0.1,0.9) 0.866 0.568 0.452
(0.3,0.7) 0.867 0.565 0.429
(0.5,0.5) 0.869 0.564 0.429
(0.7,0.3) 0.883 0.538 0.435
(0.9,0.1) 0.916 0.386 0.366

Yes

(0.1,0.9) 0.868 0.555 0.296
(0.3,0.7) 0.876 0.542 0.282
(0.5,0.5) 0.889 0.514 0.246
(0.7,0.3) 0.908 0.456 0.197
(0.9,0.1) 0.925 0.341 0.178

The results of this set of experiments are given in Table 5.4. The third and

fourth columns represent the productivity rate and the employees’ satisfaction rate,

respectively. The fifth column indicates the variance of an employee’s satisfaction level

(satLvl) from the mean (SatRate). These values give the following indications:

• The updating mechanism enhances fairness by significantly decreasing the vari-

ance value under all weights, Figure 5.5(a). The updating mechanism reduces the

variance by about 34% at high values of weight for the plan satisfaction objective

(w2), and as the weight decreases the difference increases. At low values of weight

given to the plan satisfaction objective, the difference in variances can reach up

to about 54%.

• Using the updating mechanism to change the penalty of violating each plan has

no negative impact on the productivity objective, as plotted in Figure 5.5(b).

Interestingly, the productivity objective attained better results with the updating

mechanism.
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(a) The variance as a function of the weight setting (b) Effects of both approaches on the productivity
rate

(c) Effects of both approaches on the employees’
satisfaction rate

(d) The trade-off between the two objectives for
each approach

Figure 5.5: Comparing EmS with and without the updating mechanism.

• To obtain fairness, the employees’ satisfaction rate (SatRate) is sacrificed, Figure

5.5(c). The lower the weight given to the plan satisfaction objective (i.e. the

higher the setting of w1), the greater the difference in the satisfaction rate between

the two approaches will be. At high values of weight for the plan satisfaction

objective (w2), the difference is between 2%-4%, which can reach up to 15% at

very low values of w2.

• Since the updating mechanism improves the productivity rate at the expense of
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decreasing the overall satisfaction rate, this trade-off is plotted in Figure 5.5(d),

and compared to that of the traditional approach (i.e. without updating mech-

anism). It shows that most of the solutions obtained by using the updating

mechanism are non-dominated by those generated without updating. Thus, in

addition to improving fairness, the updating mechanism produces competitive

results to those obtained without updating.

These indications suggest, as a conclusion, the effectiveness of the updating mecha-

nism in EmS, which provides a simple, yet efficient mechanism to improve the fairness

and usefulness of the model. Whatever the weights given to the two objectives, the

mechanism is able to significantly diminish the variance of an employee’s satisfaction

level from the mean satisfaction rate (SatRate). This is achieved without harming the

productivity rate which, in contrast, is improved with this mechanism. This indication

suggests that the conflict between the productivity objective and the plan satisfaction

objective is slightly reduced by using the updating mechanism. Alternative interpreta-

tions would need further investigation in such a complex system.

On the other hand, minimizing the variance at the expense of the overall satisfaction

rate was expected. The reason for this is that the freedom given to the greedy approach

(i.e. without updating) to maximize the number of satisfied plans is heuristically con-

trolled by the updating mechanism, which varies the cost coefficient associated with

violating each work plan. Two main reasons make such a loss acceptable: (1) the aim

of any empowerment scheduling model is to enhance employees’ individual perception

and feeling of power, and (2) without providing a transparent, fair model, the whole

empowerment practice could fail to attain its benefits, as discussed earlier. Thus, the

employees’ satisfaction rate, which considers the employees as a group, is not more

important than an employee’s individual perception and trust in the system.

In addition, the results show a negative correlation between the weight given to the

plan satisfaction objective (w2), and the differences between the two approaches in the
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variance, as well as the overall satisfaction rate. At one extreme, when the importance

weight of satisfying plans is very low, the chance of violating many plans per day is

very high. Consequently, the influence of the updating mechanism on deciding which

plans are to be satisfied, with the aim to minimize the variance, grows. On the other

extreme, when the importance weight is very high, this influence decreases due to the

high importance of satisfying each plan to the aggregated objective function (Equation

5.5), even though a plan may have a low cost coefficient.

5.4.6 Experiment 4: Various Plan Demand Levels

The previous experiments considered the tightest scenario where every employee has

a plan every day. By assuming that employees are rational beings, and given that an

employee has to pay from his/her power (EP ) when his/her plan is satisfied, employees

would like to reserve their power in order to have influential plans (i.e. plans associated

with high weights) for particular important days. Therefore, the number of employees

who would plan for a particular day would fluctuate in real-life scenarios.

The goal of this set of experiments is to examine the performance of this model under

various plan demand levels from employees. Theoretically, two main expectations may

be anticipated: (1) there is a negative correlation between the plan demand level (as

a measure of how many plans, on average, per day) and the optimality of both the

productivity and plan satisfaction, and (2) there is a positive correlation between the

plan demand level and the difference in the variance (as a measure of fairness) between

the model with and without the proposed updating mechanism.

Testing these hypotheses is attained by repeating Experiment 3, while varying the

number of work plans that are to be considered on each day. Three different values of the

number of work plans per day are considered: 30%, 50%, and 70% of the number of em-

ployees, representing various plan demand levels (stress), where stress ∈ {0.3, 0.5, 0.7}

respectively. This means that when stress = 0.3, for instance, 30% of employees will
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have a plan per day, and those employees are uniformly sampled per day. In terms of

measurements, the only change to those used in Experiment 3 is the definition of the

satisfaction level of each employee (satLvl), Equation 5.7. The definition of satLvl is

generalized as follows:

satLvlr = satr/(stress ∗ period) ∀r ∈ R (5.8)

This expression also covers the situation in Experiment 3, where stress = 1. Thus,

the results of Experiment 3 can be used to represent the case when stress=1.

The results are given in Table 5.5, which shows for each value of stress and each

weight setting, the results of the productivity rate, the employees’ satisfaction rate,

and the variance of an employee’s satisfaction level from the mean. As a summary, the

mean of the five different weight settings grouped by the stress column is shown in

Table 5.6. Major indications of these results are as follows:

• The effectiveness and usefulness of the model significantly increases as the plan

demand level decreases, whether the updating mechanism is used or not. This is

demonstrated in Figure 5.6(a), which gives the trade-off between the productivity

rate and the employees’ satisfaction rate at each demand level. It shows that the

dominance level of the set of solutions obtained at each value of stress, grows as

the plan demand level shrinks. As given in Table 5.6, with updating mechanism,

the employees’ satisfaction rate is 0.537 and the productivity rate is about 0.902

when stress = 0.7. These rates increase up to 0.682 and 0.918 for the satisfaction

and productivity rates respectively, when stress = 0.3.

• Figure 5.6(a) also suggests that the correlations between using the updating mech-

anism and both the productivity objective and the satisfaction rate are not sen-

sitive to changes in the stress value. Whatever the value of stress, obtaining

fairness by using the updating mechanism has no negative impact on the produc-
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Table 5.5: The productivity rate, satisfaction rate and variance of the model with and
without updating mechanism, at different plan demand levels (stress)

stress Updating Weight Productivity SatRate Variance

0.3

No

(0.1,0.9) 0.911 0.742 0.602
(0.3,0.7) 0.911 0.753 0.615
(0.5,0.5) 0.912 0.744 0.604
(0.7,0.3) 0.917 0.717 0.592
(0.9,0.1) 0.931 0.544 0.491

Yes

(0.1,0.9) 0.911 0.731 0.569
(0.3,0.7) 0.911 0.748 0.569
(0.5,0.5) 0.914 0.729 0.557
(0.7,0.3) 0.92 0.683 0.496
(0.9,0.1) 0.933 0.52 0.38

0.5

No

(0.1,0.9) 0.898 0.660 0.489
(0.3,0.7) 0.897 0.67 0.48
(0.5,0.5) 0.897 0.673 0.488
(0.7,0.3) 0.905 0.639 0.498
(0.9,0.1) 0.926 0.48 0.408

Yes

(0.1,0.9) 0.898 0.638 0.394
(0.3,0.7) 0.898 0.662 0.396
(0.5,0.5) 0.903 0.642 0.4
(0.7,0.3) 0.913 0.588 0.344
(0.9,0.1) 0.93 0.439 0.285

0.7

No

(0.1,0.9) 0.885 0.611 0.460
(0.3,0.7) 0.884 0.618 0.453
(0.5,0.5) 0.886 0.611 0.454
(0.7,0.3) 0.896 0.586 0.438
(0.9,0.1) 0.922 0.432 0.377

Yes

(0.1,0.9) 0.887 0.593 0.324
(0.3,0.7) 0.888 0.6 0.342
(0.5,0.5) 0.896 0.575 0.324
(0.7,0.3) 0.91 0.52 0.261
(0.9,0.1) 0.927 0.397 0.229
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Table 5.6: A summary of Table 5.5, showing the mean of the five different weight
settings, grouped by the stress column

Updating stress Productivity SatRate Variance

No
0.3 0.916 0.7 0.581
0.5 0.905 0.624 0.473
0.7 0.895 0.571 0.436
1.0 0.88 0.524 0.422

Yes
0.3 0.918 0.682 0.514
0.5 0.908 0.594 0.364
0.7 0.902 0.537 0.296
1.0 0.893 0.482 0.240

tivity objective, and the overall satisfaction rate is sacrificed.

• The updating mechanism is able to significantly reduce the variance in employ-

ees’ satisfaction levels whatever the value of stress is, Figure 5.6(b). However,

the difference in the variance between the model with and without the updating

mechanism increases as the plan demand level grows. The updating mechanism

reduces the variance of the model by 11% when stress=0.3. When stress=0.7,

the minimization becomes 32%.

• The ratio of the variance of the model with updating to that of without updating is

calculated. Figure 5.6(c) shows for each plan demand level (including stress = 1),

the variance ratio as a function of the weight given to the productivity objective

(w1). It suggests that the difference between the ratios exists under different

weight settings. It also confirms that the difference in variance decreases (i.e. the

ratio approaches 1) as the plan demand level shrinks.

As a conclusion, the results reveal the sensitivity of the model to the plan demand

level (stress) variable. There is a negative correlation between the plan demand level

and the optimality of both the productivity and employees’ satisfaction (SatRate)

rates. The reason for this is that the decrease in the plan demand level would, on
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(a) The trade-off between the two objectives for each updating
approach and stress level

(b) The variance as a function of the stress (c) The variance ratio for each stress level, as
a function of the weight setting

Figure 5.6: Comparing EmS with and without the updating mechanism, under different
plan demand levels.

one hand, increase the chance of satisfying more employees and, consequently, the

employees’ satisfaction rate. On the other hand, the smaller the number of plans, the

lower the pressure on optimizing the productivity objective will be, and thus the lower

the impact of satisfying employees on the productivity objective. As shown in Figure

5.6(a), reducing the stress would generate a better (in terms of dominance) trade-off

between the productivity and the employees’ satisfaction rates. This is an appealing

feature, since in real scenarios, relatively low values of stress are expected more often.
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In addition, the results prove the effectiveness of the updating mechanism which

significantly improves fairness by minimizing the variance between employees’ satisfac-

tion levels, under any plan demand level. The significance of this improvement grows as

the plan demand level increases. This is because the larger the plan demand level, the

stronger the competition between employees’ plans will be, and then the more influence

the updating mechanism will have over the scheduling decision. These findings remain

for the examined weight settings, revealing the low sensitivity of the difference in the

variance between the model with and without the updating mechanism to the weights

given to the productivity and plan satisfaction objectives.

5.5 An Evaluation Summary of EmS

Evaluating an empowerment scheduling model is a three-stage process. The first stage

is to ensure that the model satisfies the constitution of empowerment in workforce

scheduling (section 5.1.1). Then, the second stage assesses the feasibility of empower-

ment in terms of its cost impact on the organizational interests. After that, the final

stage examines the incorporation of the model to the essential features of an empow-

erment scheduling model (section 5.1.2). According to this process, the evaluation of

EmS is as follows:

1. EmS provides employees with a convincing empowerment practice. From a man-

agerial perspective, it gives each individual the power to express his/her own

specific preference on the scheduling decision. From a psychological perspective,

employees can feel the power they have since EmS will either explicitly satisfy

an employee’s preference or acknowledge failure using a transparent compensa-

tion policy. Since EmS maintains the managerial and psychological aspects of

empowerment, it satisfies the constitution of empowerment scheduling.

2. As stated in section 5.1.3, a feasible empowerment scheduling model should en-
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hance employee power while minimizing the impact on the organizational objec-

tive. To examine the feasibility of EmS Experiment 1 has been conducted, which

assesses the cost of the empowerment practice provided by EmS on the organiza-

tional objective. The results show that, in the worst case, the organization will

sacrifice a small percentage (about 7%) of its interest to satisfy a significant num-

ber of their employees (i.e. about 58% of plans instantiated by all employees).

This remark suggests the potential of EmS as a feasible empowerment scheduling

model.

3. As an empowerment scheduling model, EmS should incorporate the following four

essential features:

• Simplicity. In EmS employees express their plans using constraints, which

is a simple language. Furthermore, the weights associated to work plans

are controlled by the updating mechanism in an automatic manner, without

interference and reasoning from employees. Consequently, EmS presents a

simple model that can be utilized by all employees whatever their capabilities

or limitations.

• Flexibility. This feature is maintained by EmS via using the language of

constraints, which is flexible enough to capture most possible work plans.

Examples of such plans are given in Table 5.1.

• Fairness. EmS employs an automatic updating mechanism that controls the

weights associated to work plans. These weights describe the penalties of

violating each plan, and thus the priorities of these plans. The effectiveness

of this mechanism has been examined in Experiment 3 and Experiment 4,

which evaluate the variance between employees in their satisfaction levels.

The results reveal the success of this mechanism in reducing the variance

between employees’ satisfaction levels without impacting the optimality of
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the organizational objective. This reduction is significant whatever the plan

demand pattern (i.e. the number of employees who have a plan).

• Providing an all-win scenario. In order to evaluate whether enhancing em-

ployees’ control over the scheduling decision could benefit the organizational

objective, Experiment 2 has been conducted to examine one major orga-

nizational benefit of empowerment, that being improved productivity. The

results show that an improved productivity by 5% reduction in task duration

results in an up to 3.8% improvement in the organizational main objective.

This appealing outcome represents only one of the several benefits promised

by empowerment. Therefore, EmS has the potential to provide an effective

win-win model.

As a conclusion of this evaluation process, EmS is an efficient and effective empow-

erment scheduling model for field workforce scheduling.

5.6 Conclusions

Empowerment Scheduling is a term that we introduce to represent our formalization of

empowerment in workforce scheduling. It defines an empowerment scheduling model

as the one that recognizes employees’ individual interests and enhances their feeling of

power by reflecting their interests in the final schedule. An efficient model should have

four essential features, namely simplicity, flexibility, fairness, and applying a win-win

approach.

Following this formalization, we propose an empowerment scheduling model and

apply it to FWS. The model enables employees to express their own schedule via

constraints as a simple and flexible language. The model reformulates the FWS problem

as a biobjective optimization problem, in which the task is not only to look at the

organizational objective, but also at employees’ interests. An important feature of this
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model is how each employee’s power over the scheduling decision is defined and managed

to maintain fairness within the model. A special updating mechanism is adopted for

this purpose.

Several experiments were conducted to evaluate the new model using an adapted

GLS algorithm. The results suggest that EmS is a simple, flexible, fair and transparent

empowerment scheduling model. They also confirm the feasibility and practicality of

the model, providing an all-win scenario for both the employees and the organization.

In this chapter, the underlying multi-objective optimization problem was reduced to

a single-objective optimization problem by using a weighted-sum approach, and solved

using a single-objective metaheuristic (i.e. GLS). The alternative is to apply a multi-

objective optimization approach to this problem, in order to present the trade-offs

between the two objectives in a single run. This is pursued in the next chapters in the

thesis. In the next chapter, we start by extending GLS to solve problems with multiple

objectives. Then, the application of the new algorithm to the EmS-FWS problem is

described and examined in chapter 7.
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Chapter 6

Guided Pareto Local Search

This chapter proposes Guided Pareto Local Search (GPLS), which is an adaptation of

GLS for solving multiple objective problems. The motivation of GPLS is to extend the

capabilities of GLS to handle senarios with multiple conflicting objectives. In addition,

simple GPLS-based frameworks are proposed, which confirm the potential of GPLS to

be a central part of advanced multi-phase frameworks.

The organisation of this chapter is as follows. GPLS is described in section 6.1

and its complexity is analysed in section 6.2. Section 6.3 discusses the design of the

computational experiments. The experimental results for GPLS are given in section

6.4. Then, GPLS-based frameworks are described in section 6.5, and their experimental

results are given in section 6.6. Several parametric analysis studies are reported in

section 6.7. Finally, we conclude with section 6.8.

6.1 Guided Pareto Local Search

As elaborated in section 3.1, GLS employs a penalty-based approach that guides other

single-objective heuristics (including local search algorithms) to escape locally optimum

solutions. When local search settles in a local optimum, GLS penalizes some selected
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features of the candidate solution, and then restarts the local search method from this

solution using an augmented objective function. GLS is comprised of three basic com-

ponents, namely the guided heuristic, solution features and the penalization scheme.

These components should be considered in order to adapt GLS to tackle multi-objective

optimization scenarios.

GPLS, that we propose here, extends the guidance approach in GLS to guide PLS

to escape Pareto local optimum sets. GPLS modifies the basic components of GLS

as follows. First, it applies PLS as the guided multi-objective heuristic. Second, the

definition of features has to be derived from all objectives. Thus, it is possible in GPLS

to have one feature set if it represents all objectives, or a multiple set of features, each

of which is derived from one or more objectives. In GPLS, all Pareto local optima in

the maintained archive share the same feature set. This leads to a slight modification

in the penalization scheme applied by GPLS. Beside the two factors (feature’s cost and

penalty) that determine the utility of penalizing a particular feature, a third factor is

incorporated which employs knowledge extracted from the Pareto local optimum set

(i.e. the archive). The idea is that the more solutions, in the obtained Pareto local

optimum set, that exhibit a particular feature, the greater the utility of penalizing this

feature. The details of adapting these components are given in this section.

6.1.1 Pareto Local Search (PLS)

GPLS requires a PLS that returns a Pareto local optimum set. As reviewed in

section 3.2.4, there have been several variants of PLS in the literature, a representative

of which is SteepPLS that is proposed in [95]. As outlined in Algorithm 3.1, a main

characteristic of SteepPLS is the applied neighbourhood exploration strategy. It fully

explores the neighbourhood of each candidate solution. However, the application of

SteepPLS to the biobjective TSP [95, 83] reveals that a major weakness of SteepPLS is

its excessive demand for computational time, particularly when the search starts from a
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Pareto Local Search([g1, .., gk],archive)

if archive = ∅ then
s0 ← InitialSolution()
archive← s0

end if
fails← 0
while ∃s ∈ archive such that V isited(s) = false do

for each s
′ ∈ Neighbourhood(s) do

Evaluate(s
′
, [g1, .., gk])

if s
′

dominates s then
s← s

′

fails← 0
else if s does not dominate s

′
then

if s
′

is non-dominated by any solution in archive then
UpdateArchive(s

′
)

end if
else
fails← fails+ 1
if fails > maxFails then

return archive
end if

end if
end for
V isited(s) = true

end while
return archive

Algorithm 6.1: Pseudo-code for Greedy Pareto Local Search (GreedyPLS)

random solution, and/or the underlying neighbourhood operator generates large neigh-

bourhoods, such as the 3-Opt [95] for TSP. One reason for this is the full exploration

of the neighbourhood of a solution, which is much more timely compared to other vis-

iting strategies. Thus, in cases where the time budget is limited, other greedy visiting

strategies would be very competitive, particularly for many-objective (i.e. more than

two) optimization problems.

Alternatively, a variant of PLS is introduced here, referred to as GreedyPLS, that

applies a first improvement strategy and partial neighbourhood exploration. Greedy-

PLS is depicted in Algorithm 6.1. It works, from a high level perspective, as follows:
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1. It starts with a randomly or heuristically generated solution that is added to the

archive.

2. A candidate solution is randomly chosen from the archive, and its neighbourhood

is explored while applying a first-improvement strategy (i.e. any better solution

found is accepted immediately).

3. The archive is updated with any non-dominant neighbour.

4. The exploration of the neighbourhood of a candidate solution stops when the

whole neighbours are visited, or the maximum number of fails maxFails is ex-

ceeded. The number of fails (fails) is incremented every time a neighbour is

dominated by the current solution, and it is reset to zero every time a move oc-

curs. When the exploration stops, the current solution is considered as a Pareto

local optimum.

5. The current solution is marked as being visited.

6. The procedure continues at step 2, while there is a solution in the archive that

is not visited.

GreedyPLS is similar to SteepPLS with two differences: (1) GreedyPLS applies a

greedy visiting strategy, in which it accepts and moves to the first better neighbour,

and (2) a solution in GreedyPLS becomes a Pareto local optimum either when all its

neighbours are considered and none of which dominates it, or the maximum number

of fails maxFails is exceeded. Without using this parameter, GreedyPLS might be

unable to reach a Pareto local optimum set while being given a limited amount of time,

and maintaining a large or unbounded size of archive. Therefore, such a parameter

defines an earlier stopping criterion, and then a virtual Pareto local optimum set. In

this case, GPLS can be utilized even within a limited amount of computational time.
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The only change that GPLS makes to the underlying PLS is the replacement of each

objective function gi with an augmented objective function hi during the evaluation of

neighbour solutions. The augmented functions are not used in the updating procedure

of the archive, which always depends only on the original objective functions.

6.1.2 Features and their Cost

GPLS defines a set (or multiple sets) of features, which will be shared by all solutions. In

multi-objective optimization problems, one should take into consideration two different

scenarios:

1. All objectives have the same structure (e.g. putting an item in all knapsacks

in the Knapsack problem, or an edge in the multi-objective TSP), and therefore

they share one defined feature set. However, the cost of a feature varies according

to a particular objective. In order to define the cost of a feature in this case, the

influence of the feature on each objective has to be considered and modelled into

a single cost function. Such models include, for example, (weighted) aggregating

approaches and other general functions such as min, max or mean. Modelling

feature’s cost is problem-dependant, and thus it is hard to develop a general

model. Algorithm 6.2 considers this scenario since the benchmarks used in this

chapter are of this class.

2. A distinct feature set needs to be defined for each objective, and a cost is associ-

ated with each feature to describe its influence on the corresponding objective. In

this case, features from all feature sets should be considered at the penalization

phase to pick one or more features to penalize. An example of a problem in this

category is the EmS-FWS problem, which is elaborated in chapter 7.
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6.1.3 Penalization Scheme

The guidance strategy that GLS employs relies on penalizing some features exhibited

by the recent local optimum. As described in section 3.1, the novelty of GLS is mainly

in the way it selects features to penalize. The target is to penalize “bad features” when

the local search settles in a local optimum. Two factors affect the utility of a feature,

namely its cost and the frequency of penalizing this feature in previous penalizations.

GPLS deals with a Pareto local optimum set instead of a local optimum. A straight-

forward penalization strategy is to evaluate the utility of all features exhibited by

any non-dominant solution in the archive, and penalize features with maximum utility

(Equation 3.3). However, this simple strategy does not incorporate any information

from the archive (i.e. the Pareto local optimum set). An example of important infor-

mation that can be extracted from the archive is the number of non-dominant solutions

that exhibit a particular feature. This is another factor that can be incorporated into

the utility function, such that the more Pareto local optima that exhibit a feature, the

greater its utility of penalization. Recall that when a feature is penalized, only those

Pareto local optima that exhibit the penalized feature will have the chance to escape.

Therefore, increasing the utility of penalizing a feature that occurs in many Pareto local

optima would enhance the chance of escaping a Pareto local optimum set by restarting

from more solutions. It would also help to prevent the search from directing all its ef-

forts towards any particular region of the PF, which therefore leads to a better spread

over the PF. Bad features, in terms of their cost, are hoped to be removed either during

the next calls of PLS or by future penalization.

The utility function, as stated in Equation 3.3, is redefined to incorporate the

number of solutions in the Pareto local optimum set that exhibit this feature (γi):

utili(archive) = Ii(archive)×
ci × (γi/|archive|)

1 + pi
(6.1)
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where archive is a Pareto local optimum set, Ii(archive) indicates whether “at least”

one solution in the archive exhibits feature i, ci the feature’s cost, pi the penalty and

|archive| the size of the Pareto local optimum set. The feature with the greatest

util value will be penalized. When a feature is penalized, its penalty value is always

incremented by 1.

This utility function redefines the term “bad feature”. If a feature is not exhibited

in the Pareto local optimum set (indicated by Ii), then the utility of penalizing it is 0.

The higher the cost of this feature (the greater ci) and the more non-dominant solutions

exhibiting it (the greater γi), the greater the utility of penalizing it. Furthermore, the

more times that it has been penalized (the greater pi), the lower the utility of penalizing

it again.

Having penalized a feature, all solutions in the archive that exhibit this feature

need to be marked as ‘non-visited’, so as to be considered by the PLS method in the

next iteration.

6.1.4 λ-parameter

The lambda parameter λ is the only parameter to GLS which determines the scaling

of the penalty. In multi-objective scenarios each objective ideally has its own lambda,

which is calculated as a function of a local optimum with respect to the correspondent

objective. Thus, GPLS requires a set of lambda parameters: [λ1, · · · , λk], where λi is a

parameter for the objective hi. Recall that lambda can be dynamically computed after

the first local optimum and before penalties are applied to features for the first time

(Equation 3.4).

6.1.5 Algorithm Overview

Having discussed its basic components, the GPLS algorithm works as follows (Algo-

rithm 6.2). As inputs, GPLS requires a set of objective functions, a set of λ-parameters,
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a set of features’ exhibition indicators and features’ costs. In the initialization phase,

the penalty of each feature is set to 0, and an augmented objective function hj is defined

for each objective function gj . After that, the underlying PLS algorithm is applied,

which uses hj instead of gj in the function Evaluate(s, [g1, .., gk]) as given in Algorithm

6.1, while the archive is being updated with respect to the value of gj . Every time

PLS settles at Pareto local optimum set, the penalization phase calculates the utility

of penalizing each feature. The feature with the maximum utility is penalized by incre-

menting its associated penalty value p. Since all solutions in the archive are marked as

being visited by PLS, those solutions that exhibit the most recent penalized feature are

unmarked, so that PLS can restart from those solutions. GPLS repeatedly penalizes

and then apply PLS, until a stopping criterion is met. The output of GPLS is a set of

non-dominant solutions, maintained by the archive.

Input: Objective function set: [g1, .., gM ], lambda parameter set: λ, Feature’s
indicator set: [I1, . . . , IK ] and Features’ cost: [c1, . . . , cK ]

Output: An approximation of the PF: archive
archive = ∅;
foreach i ∈ [1 · · ·K] do

pi = 0;
end
foreach j ∈ [1 · · ·M ] do

hj = gj + λj ∗
∑

i∈F pi ∗ Ii;
end
repeat

PLS([h1, .., hM ], archive);
foreach i ∈ [1 · · ·K] do

utili = Ii(archive) ∗ (ci ∗ (γi/|archive|))/(1 + pi);
end
foreach i such that utili is maximum do

pi = pi + 1;
foreach s ∈ archive such that Ii(s) = 1 do

V isited(s) = false;
end

end

until StoppingCriterion;
return archive;

Algorithm 6.2: Pseudo-code for Guided Pareto Local Search
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6.2 Complexity Analysis

The computational complexity of GPLS is analysed here in comparison with PLS,

which is a very simple algorithm compared to other state-of-the-art multi-objective

optimization methods, in particular MOEAs. We assume here that PLS is the same

as the one employed by GPLS, and thus PLS encompasses GreedyPLS and SteepPLS.

We focus on the extra computational complexity added to PLS by GPLS.

GPLS can be divided into two phases: the local search phase and the penalization

phase. The local search phase comprises the following three basic operations:

1. The initialization phase. The archive is initialized in both PLS and GPLS by

adding a solution (O(1)). GPLS requires an additional initialisation for the fea-

tures’ penalties where the size of the feature set(s) is K (O(K)).

2. Solution acceptance/rejection. PLS requires 1∗M comparisons to decide whether

to accept or reject the neighbour solution, where M is the number of objectives

(O(M)). GPLS needs 2∗M comparisons (O(2∗M)), one uses h(x) and the other

uses g(x). A comparison of the h(x) value is applied in the movement decision (i.e.

whether to accept, and then move to a neighbour solution), while a comparison of

the g(x) value is applied in the archive updating decision (i.e. whether to update

the archive with the new neighbour).

3. Updating the archive. GPLS applies the same procedure as PLS for updating the

archive. This is because GPLS uses only g(x) to compare the new solution with

those in the archive (O(M ∗ |archive|)).

The second phase of GPLS, which PLS does not have, chooses and penalizes selected

features from the solutions in the archive. This phase includes two basic operations:

1. Calculating features’ utilities. GPLS needs to evaluate the utility of penalizing

each feature. In the worst case, K evaluations are required (O(K)).
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2. Marking exhibiting solutions as ‘non-visited’. Having penalized a particular fea-

ture, each solution in the archive that exhibits this feature is unmarked, so as to

be considered in the next local search phase. In the worst case, we would have to

unmark all solutions in the archive (O(|archive|)).

In the worst case, a total complexity of GPLS per iteration becomes O(2 ∗K + 2 +

2 ∗M +M ∗ |archive|) or O(M ∗ |archive|), where that of PLS is O(M ∗ |archive|).

6.3 Experimental Design

In this study, two multi-objective optimization problems are used as benchmarks for

examining and analysing the performance of GPLS. The first problem is the 0/1 multi-

objective knapsack problem, which is a typical benchmark for a wide range of multi-

objective optimization algorithms including MOEAs. The second benchmark is the

biobjective TSP, which is a typical benchmark for PLS and its frameworks and hybrids.

The programming language used to implement the proposed algorithms is Java. The

experiments have been performed on a PC with 3.0 GHz, 3.0 GB Intel Core 2 Duo

processor.

6.3.1 The Multi-objective 0/1 Knapsack Problem (MOKP)

A multi-objective 0/1 knapsack problem can be described by a set of n items and a set

of m knapsacks. Given the capacity of knapsack j (ζj), the profit from including item

i in knapsack j (ρij), and the weight of item i according to knapsack j (ωij), the task

in the MOKP is to find a vector x = (x1, ..., xn) ∈ {0, 1}n, where xi describes whether

item i is put in all the knapsacks, that aims to:

maximize fj(x) =
∑

i=1,..,n

ρijxi, ∀j = 1, ...,m (6.2)

subject to
∑

i=1,..,n

ωijxi ≤ ζj , ∀j = 1, ...,m (6.3)
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This problem was first formulated and solved by Zitzler & Thiele [138]. Since then,

the problem has become a standard benchmark for testing multi-objective metaheuris-

tics. They produced nine problem instances with 250, 500, and 750 items, each of which

had various numbers of objectives (2, 3 and 4 objectives). These are available (at the

time of writing) from an Internet web-site1.

6.3.2 The Biobjective Travelling Salesperson Problem (biTSP)

Given a set of N cities: υ1, υ2, .., υN , and two different cost factors c1 and c2 (which

correspond to distance, travel time, cost .. etc.) defined for each pair of cities, the

biTSP concerns finding a tour (i.e. an order of the cities) π of a minimum costs:

minimize fj(π) =
∑

i=1,..,N−1
cjπiπi+1

+ cjπNπ1 , ∀j ∈ 1, 2 (6.4)

We use the same set of eight instances of TSP as in [95, 83, 66]. They are constructed

from two different single-objective TSP instances having the same number of cities.

These instances are obtained from the public single-objective instances available from

the TSPLib2, namely KroA100-KroD100, KroA150-KroB150, and KroA200-KroB200

with 100, 150, and 200 cities.

6.3.3 The Implementation of GPLS for the MOKP

The only attempt to apply GLS to knapsack problems, to our knowledge, is reported in

[57], where GLS has been applied to a single-objective variant of the multidimensional

knapsack problem. In order to apply GPLS to the MOKP, we have defined the following

components.

1http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/
2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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6.3.3.1 Repair Method

The MOKP involves constraints that are to be handled. This can be achieved by

defining a heuristic for repairing infeasible solutions. Several repair approaches have

been proposed for this purpose [138, 65]. In [138], a straightforward extension to a

repair method applied to single-objective knapsack problems was proposed. The repair

procedure removes items from the solution step by step until all capacity constraints

are fulfilled. Items are ordered increasingly using the maximum profit-to-weight ratio

over all objectives per item as the sorting criterion; This describes the order in which

the items are deleted.

However, this heuristic favours items with a maximum ratio on a single objective,

despite its impact on other objectives. An alternative, fairer heuristic that considers

the profit-to-weight ratios with respect to all objectives is proposed here. Instead of

using the maximum profit-to-weight ratio per item, we use the summation of the profits

divided by the summation of weights for each item over all knapsacks:

∑
j=1,..,m ρij∑
j=1,..,m ωij

(6.5)

This repair method works very well with PLS, and yields a slightly better perfor-

mance over the former one.

6.3.3.2 PLS

Three main components need to be defined in order to apply PLS to the MOKP, the

first of which is solution representation. We represent each solution in the search space

by a vector x = (x1, ..., xn) ∈ {0, 1}n, where xi describes whether item i is put in all

the knapsacks.

The second component is the neighbourhood function that maps a solution to a set

of candidates. We use a simple neighbourhood function, by which a new neighbour is
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obtained by performing a single flip of any value in the current vector. Since flipping

an item from 1 to 0 (i.e. the item is removed) will not yield a better solution, a random

non-included item is included (i.e. flipping from 0 to 1) when an item is removed.

The last component of PLS is the initial solution, which can be generated randomly

or heuristically. In this study, we use a heuristic initialization by including all items

(xi = 1), and then applying the proposed repair method (Equation 6.5).

6.3.3.3 Features and their Costs

A solution to the MOKP decides which items to be put in the knapsacks. Thus, a

possible feature to consider for this problem is whether an item i is included. The im-

portance of putting item i in the knapsacks varies between knapsacks (i.e. objectives).

In order to define a single value that determines the cost of a feature (i.e. picking

an item) on all objectives, the average of the profit-to-weight ratio of an item over all

objectives is applied. Therefore, a “bad feature” can be defined as including an item

with a overall low profit-to-weight ratio (i.e. high weight-to-profit ratio), and then the

cost of feature i is defined as follows:

ci =

∑
j=1,..,m (ωij/ρij)

m
(6.6)

The lower the average of the profit-to-weight ratio for the m objectives of feature i, the

higher the cost of this feature, and thus the more chance this feature is to be penalized.

6.3.4 The Implementation of GPLS for the biTSP

The implementation of GLS for the single-objective TSP was extensively investigated

by Voudouris and Tsang [125]. We follow the same approach to implement GPLS for

the biTSP, as described in the following components:
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6.3.4.1 PLS

A solution is represented by a permutation (i.e. vector) which contains the order of the

cities in the tour. The solution space of the problem is made of all the possible per-

mutations of the cities. The well-known 2-Opt improvement heuristic is applied. The

2-Opt employs the 2-exchange neighbourhood operator, where a neighbour is obtained

from the current tour by deleting two edges and reconnecting the two resulting paths

with the only possible way that yields a new tour. Starting from a randomly generated

permutation, PLS iteratively searches the neighbourhood of the current solution in a

randomly chosen order, and moves to the first better (in terms of Pareto optimality)

2-exchange neighbour.

6.3.4.2 Features and their Costs

A tour in the biTSP includes a number of edges, each edge is associated with two cost

factors. Therefore, the set of all edges defines the set of features for the biTSP. Each

tour either includes (i.e. exhibits) an edge (i.e. feature) or not. In the biTSP, the cost

of each feature is modelled by using the average of the cost of the correspondent edge

over all objectives. Therefore, the cost of the feature associated with edge eij is defined

as follows:

cij =
c1ij + c2ij

2
(6.7)

The higher the average of the cost of the m objectives for a feature, the higher the cost

of this feature, and thus the more chance this feature has to be penalized.

6.3.4.3 Fast Local Search

As a speed up technique, GLS is always coupled with Fast Local Search (FLS) [128]

instead of local search. FLS is a general method used to improve the efficiency of the
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local search by guiding the search to consider only those neighbours who are likely to

lead to fruitful moves. In order to apply FLS, one should define a way of dividing a

neighbourhood set into sub-groups, each of which is associated with an activation bit.

Only those sub-groups which are active are examined during the search process. In

our case, all 2-exchange operations that involve an index (city) in the permutation,

defines a subgroup. Thus, an activation bit is associated with every city. This bit

has two possible values: {0, 1}. FLS works first by initializing all bits to 1 to activate

all sub-groups. Then, if all permutations obtained from an index j do not provide a

better solution, the activation bit of j is flipped to 0 (i.e. deactivated). This bit can be

changed back to 1 (i.e. reactivated) only if j has been involved in an accepted move. At

a (Pareto) local optimum, all activation bits in FLS are inactive. In order for PLS to

restart the search from a Pareto local optimum after penalizing one of its features, the

associated sub-neighbourhoods to the two ends of the penalized edge are reactivated.

6.4 Experimental Results for GPLS

6.4.1 Comparisons with PLS and Pareto-based MOEAs on the MOKP

The aim of this experiment is three-fold. The first is to compare the performance

of GreedyPLS and SteepPLS. The second is to examine the performance of GPLS in

comparison with PLS variants. The third is to evaluate the performance of GPLS

in comparison with representative Pareto-based MOEAs, namely SPEA, SPEA2 and

NSGA2. SPEA was tested on all nine MOKP instances in [138], whereas SPEA2 (which

dominates its predecessor) and NSGA2 were tested on the three instances of 750 items

in [140]. Their results are available from the same website that the problem instances

are obtained from.

Similar to [138, 140], the running lengths allowed for those algorithms are expressed

in terms of the total number of evaluations (maxEval), and the size of the archive is
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Table 6.1: Parameter settings for the examined algorithms on the MOKP

Instance
maxEval |archive| maxFails λ

n m

250
2 75000 150

15 203 100000 200
4 125000 250

500
2 100000 200

15 303 125000 250
4 150000 300

750
2 125000 250

20 403 150000 300
4 175000 350

limited. These are given in Table 6.1. Accordingly, we have adjusted the stopping

condition of both PLS and GPLS to be equal to that of other algorithms. For PLS, the

algorithm stops when the number of evaluations exceeds maxEval. Initial experiments

showed that PLS does not settle at a real Pareto local optimum set within the allowed

time. Therefore, in order to test GPLS, a virtual Pareto local optimum set is applied

by using the maxFails parameter. This works well only for MOKP instances with

two objectives, but not those with three and four. This is due to the very restricted

time limit. To resolve this, another stopping parameter is defined for the underlying

PLS method in GPLS, that is maxRestarts which limits the number of solutions in

the archive that can be considered and have their neighbourhood explored. In order

to maintain an archive with a limited size, the crowding distance (Definition 12) is

employed by the proposed algorithms as a clustering procedure. To avoid excessive

calls of the clustering procedure, the clustering is applied only when the archive size

reaches a soft limit that is set to 130% of the archive size. For the MOKP test instances,

we found empirically that all augmented objectives in GPLS can have a similar λ

parameter. The settings of maxFails and λ parameters are given in Table 6.1. The

maxRestarts is set to 30% of the archive size of each instance. Finally, 30 runs are
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performed independently for each algorithm on each test instance.

Due to the nature of MOOPs, multiple performance indices should be used for com-

paring the performances of different algorithms [67]. The following performance indices,

which we use here, are commonly used to compare metaheuristics on the MOKP: Set

Coverage (C-metric; Definition 8) and Distance from Representatives in the PF (D-

metric; Definition 9). The latter requires a set of uniformly distributed points along

the PF, or an upper-approximation of the PF. In this study, the upper-approximation

to each MOKP test instance that was proposed in [65] is used here. By using such

an upper-approximation, the D-metric could measure both the convergence and the

diversity of the algorithm, such that obtaining a lower value requires an approximation

that covers the whole PF.

Table 6.2 presents the means of the C-metric values of the final approximations

obtained by both variants of PLS (SteepPLS and GreedyPLS) and GPLS, compared to

SPEA on instances of size 250 and 500. The means of the C-metric values for the PLS

variants and GPLS, compared to SPEA2 and NSGA2 on instances of size 750 are given

in Table 6.3. Table 6.4 gives the means and standard deviations of the D-metric values

for SteepPLS, GreedyPLS and GPLS. The average CPU time used by each algorithm

is given in Table 6.5. From these tables, the following remarks can be made:

Table 6.2: Means of the C-metric values between the proposed algorithms (PLS variants
and GPLS) (A) and SPEA (S)

Instance SteepPLS GreedyPLS GPLS

n m C(A,S) C(S,A) C(A,S) C(S,A) C(A,S) C(S,A)

250
2 0.87 0.0 0.88 0.0 0.92 0.0
3 0.77 0.0 0.76 0.0 0.96 0.0
4 0.84 0.0 0.85 0.0 0.82 0.0

500
2 0.98 0.0 0.98 0.0 1.0 0.0
3 0.85 0.0 0.85 0.0 0.98 0.0
4 0.98 0.0 0.98 0.0 1.0 0.0
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Table 6.3: Means of the C-metric values between the proposed algorithms (PLS variants
and GPLS) (A) and SPEA2 (S) and NSGA2 (N)

Instance SteepPLS GreedyPLS GPLS

n m C(A,S) C(S,A) C(A,S) C(S,A) C(A,S) C(S,A)

750
2 0.49 0.0 0.49 0.0 0.78 0.0
3 0.73 0.0 0.73 0.0 0.93 0.0
4 0.79 0.0 0.80 0.0 0.96 0.0

n m C(A,N) C(N,A) C(A,N) C(N,A) C(A,N) C(N,A)

750
2 0.69 0.0 0.69 0.0 0.94 0.0
3 0.72 0.0 0.71 0.0 0.92 0.0
4 0.76 0.0 0.77 0.0 0.93 0.0

• Both variants of PLS are superior to the other MOEA algorithms in terms of

the C-metric values. They were capable of producing an approximation of the

PF with a very good quality. Table 6.2 and Table 6.3 show that the final sets of

solutions produced by SteepPLS or GreedyPLS are better in all instances than

those of other MOEA algorithms in terms of the C-metric. Actually, none of the

MOEA algorithms were able to generate a solution that dominates any solution

obtained by PLS variants. The difference between SteepPLS and GreedyPLS is

very low, as shown in their D-metric values (Table 6.4). Thus, the statistical

significance of the difference of the D-metric values is tested with the t-test at

0.05 level of confidence. This analysis reveals that the differences are insignificant

in all instances except instances of four objectives, where SteepPLS is statistically

better than GreedyPLS.

• Within a limited amount of time, using the concept of a virtual Pareto local

optimum set, and then applying GPLS, significantly enhances the performance

of PLS in terms of solution quality and diversity. This is revealed in Table 6.2,

Table 6.3 and Table 6.4 which show that, with the guidance approach of GPLS,

PLS produces final sets of solutions that dominate most of the solutions obtained
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Table 6.4: Means (standard deviations) of the D-metric values of SteepPLS, GreedyPLS
and GPLS

Instance
SteepPLS GreedyPLS GPLS

n m

250
2 233.6(28.5) 229.31(24.7) 185.19(23.9)
3 836.69(26.0) 833.96(27.5) 618.57(31.2)
4 1072.04(20.1) 1094.59(23.4) 793.34(20.1)

500
2 621.25(39.4) 611(48) 435.26(52.3)
3 2050(28.2) 2063.24(34.9) 1664.02(46.6)
4 2655.49(22.1) 2670.17(24.9) 2156.5(34.4)

750
2 1282.2(81.5) 1286.44(63) 917.2(65.6)
3 3036.07(28.5) 3032.31(35) 2607.02(43.1)
4 4297.86(31.4) 4318.03(23.7) 3740.1(43.2)

Table 6.5: Means of the CPU times (in seconds) used by PLS variants and GPLS

Instance
SteepPLS GreedyPLS GPLS

n m

250
2 3.71 3.69 4.25
3 5.92 5.88 7.14
4 10.00 9.74 11.67

500
2 9.98 9.96 11.51
3 15.35 15.24 18.79
4 23.39 22.83 29.53

750
2 19.84 19.33 22.22
3 27.91 27.65 34.19
4 43.11 39.46 55.39
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Figure 6.1: Plots of a non-dominant solution set of PLS variants, GPLS and an MOEA
algorithm for all the 2-objective MOKP test instances.

by the MOEA algorithms on all instances in terms of the C-metric. Excluding

instances 250-4 and 750-2, the solutions of GPLS dominate about 92%-100%

of those produced by the MOEA algorithms. Such an obvious domination of

GPLS is enough to claim the superiority of GPLS to the MOEA algorithms,

without the need to look at other (distance-based) metrics such as the D-metric.

Furthermore, GPLS shows its capability of improving the D-metric values of PLS

on all instances. The amount of improvement made by GPLS is between 18%

and 30%. The significance of such improvements are confirmed using the t-test

at 0.05 probability level. The difference between the approximations obtained by

GreedyPLS, GPLS and an MOEA algorithm on instances 250-2, 500-2 and 750-2
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can be visually detected from Figure 6.1.

• The computational time required by GPLS is about 19% higher than that of PLS

variants, given the same number of evaluations. As explained in section 6.2, this

is due to the evaluation of the augmented objective functions and the penalization

process that GPLS employs. However, the evolution of the D-metric value with

the number of evaluations for the MOKP instance 750-2 (as shown in Figure

6.2) importantly indicates that GPLS needs a lower number of evaluations than

PLS variants for minimizing the D-metric value. This appealing feature of GPLS

clearly suggests that GPLS is more efficient and effective than PLS.

Overall, these remarks suggest that PLS is a very good technique even within a

time limit constraint and on many objectives. It is better than well-known MOEA

algorithms such as SPEA2 and NSGA2 on the MOKP. We can also claim that GPLS

is better overall than PLS in terms of convergence speed and solution quality in this

set of test instances.

6.4.2 Comparisons with PLS on the biTSP

The aim of this experiment is to evaluate the performance difference between PLS and

GPLS on a major benchmark of PLS where it obtains (probably) the most signifi-

cant results. Paquete et al. [95] studied the application of SteepPLS with different

improvement heuristics on the biTSP. They showed that SteepPLS with 3-Opt (i.e.

an extending version of 2-Opt where three edges deleted instead of two) can achieve

very competitive results in comparison with a representative MOEA, that is the multi-

objective genetic local search. Since GPLS employs 2-Opt, a comparison is made only

with SteepPLS with 2-Opt (PLS-2Opt). The speed-up technique (i.e. FLS) applied

by GPLS allows the (Pareto) 2-Opt to reach a Pareto local optimum set very quickly.

Thus, there is no need to define an earlier stopping condition (i.e. maxFails) for the
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Figure 6.2: An example of the evolution of the D-metric for PLS variants and GPLS
on the MOKP

underlying PLS method. The λ parameter of GPLS is automatically set as a function

of the cost of the first (Pareto) local optimum and a tuning parameter α (Equation

3.4). α is set to 0.3 for all instances.

Similar to [95], we use the same set of seven biobjective instances of TSP. They

are KroA100-KroD100 and KroA150-KroB150 with 100 and 150 cities, respectively. In

[95], the R values (Definition 10) of PLS-2Opt in these instances are given, and the non-

dominant solution sets for PLS-2Opt in all instances except KroAB150 are available

on the author’s website1. These sets are used here to calculate other performance

indices, namely the set-coverage (C-metric) and the Hypervolume (H; Definition 11).

For KroAB150, only the R values are used in the comparisons. As stated in [95], PLS-

2Opt requires approximately 60 seconds to find a Pareto local optimum set in instances

of 100 cities and 200 seconds in those of 150 cities. Similarly, the computational time

of GPLS is limited to these figures by controlling the total number of penalizations.

1http://eden.dei.uc.pt/ paquete/tsp/
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The results are the mean of 20 executions.

Table 6.6: Means of the values of C-metric (C), R, H and CPU time (in seconds) values
for GPLS and PLS-2Opt; the C value of PLS-2Opt stands for C(PLS-2Opt,GPLS), and
vice versa for that of GPLS

Instance
PLS-2Opt GPLS

C R H(×108) time C R H(×108) time

KroAB100 0.29 0.9339 224.5 60 0.70 0.9345 224.8 54.2
KroAC100 0.25 0.9312 224.3 60 0.72 0.9317 225.1 56.9
KroAD100 0.23 0.9334 225.9 60 0.75 0.9339 226.5 53.7
KroBC100 0.29 0.9351 225.9 60 0.69 0.9356 226.4 58.7
KroBD100 0.23 0.9335 224.5 60 0.74 0.9340 224.8 54.3
KroCD100 0.26 0.9378 229.2 60 0.73 0.9384 229.8 49.3
KroAB150 - 0.9407 - 200 - 0.9411 - 96.4

The results of GPLS compared to those of PLS-2Opt are presented in Table 6.6. The

results suggest the superiority of GPLS, demonstrated by the significant improvements

in the quality of the obtained Pareto local optimum sets measured by all three metrics

in all instances. Solutions obtained by GPLS dominate between 69% and 75% of

those obtained by PLS-2Opt, and between 23% and 29% vice versa. In the KroAB100

instance, for example, the R(H) value of the approximation obtained by GPLS is

0.9345(224.8 × 108), whereas that of PLS-2Opt is 0.9339(224.5 × 108). An interesting

feature of GPLS is its ability to obtain a better result compared to PLS-2Opt in the

larger instance (KroAB150) within considerably less computational time. The R value

of GPLS is 0.9411 within 96.4 seconds, whereas that of PLS-2Opt is 0.9407 within 200

seconds. The t-test (at 0.05 level of significance) confirms that differences in the results

of all measures are statistically significant.

In order to evaluate the contribution of GPLS’s guidance approach to these results,

the evolution of the R value for GPLS is plotted in Figure 6.3(a). The R values are

given as a function of the number of penalizations performed by GPLS (i.e. PLS calls).

The first R value represents the quality of the first Pareto local optimum set (i.e. the

approximation obtained by the standard PLS without penalization). The evolution of
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(a) (b)

Figure 6.3: An example of the evolution of the R metric for GPLS as a function of: (a)
the PLS calls and (b) the number of evaluations

the R metric, as a function of the computational time expressed in terms of the total

number of objectives evaluations (i.e. visited solutions), is shown in Figure 6.3(b). Both

figures clearly show the important role of the penalization phase that GPLS applies

to guide PLS to escape Pareto local optimum sets in an effective way. This guidance

procedure improves the performance of PLS in terms of convergence to the PF and

diversity in the objective space.

6.5 GPLS-based Frameworks

The computational results of applying GPLS to the MOKP proves its effectiveness to

converge quite quickly, however, to the middle (i.e. the compromise) area of the PF

(for illustration, see Figure 6.1). This feature has a negative impact on the quality of

the obtained approximation in terms of diversity over the objective space. On the other

hand, several studies suggest the potential of PLS as a central component of a two-

phase framework [83, 66] or a hybrid algorithm [12, 73]. Given that GPLS improves the

performance of PLS (as shown in the previous section) and that it is a general algorithm
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with few parameters to tune, GPLS can also have the potential to be a central part of

other frameworks. Such frameworks would further enhance the performance of GPLS,

particularly the spread of solutions over the PF.

We aim here to present simple GPLS-based frameworks with two purposes: (1) to

improve the performance of GPLS in terms of solution diversity to cover the whole PF,

and (2) to confirm the potential of GPLS to be an effective Pareto search technique

which can be a basic component in a multi-phase framework. Simple GPLS-based

frameworks are proposed here, all of which rely on GPLS as a central searching tech-

nique, and none of which requires the modification of GPLS. The idea is to enhance

the diversity in the archive by heuristically generating an initial diverse set of solutions

that approximates the whole PF. This set of solutions is utilized by GPLS in two ways.

First, the initial solutions are added to the archive, and then GPLS starts normally.

Second, multiple runs of GPLS are performed independently, each of which starts from

a different solution(s) in this initial set. Thus, these frameworks depend on the gener-

ator of the initial solution set. The following describes such a generator, as well as the

proposed frameworks.

6.5.1 Solution Set Generator (InitialSetGenerator())

One way to obtain a diverse set of initial solutions is to decompose the PF into a number

of scalar objective optimization sub-fronts. Then, a local improvement or a heuristic

solution generator is applied for each scalar objective. A simple method to perform

such a decomposition is to use the weighted-sum approach. In order to cover the PF,

uniformly distributed normalized weight vectors are generated (following the approach

proposed in [56]) by using all weight vectors in which each individual weight takes one

value from: {l/k : l ∈ {0, .., k}}, where k is a parameter that defines the number of

weight levels. For example, when k = 3 in a biobjective problem, the set of weights will

be: {(0/3), (1/3), (2/3), (3/3)}. Thus, the sub-fronts are represented by the following
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6.5 GPLS-based Frameworks

weight settings for the two objectives: {(0, 1), (1/3, 2/3), (2/3, 1/3), (1, 0)}.

6.5.2 GPLS with an Initial Diverse Solution Set (iGPLS)

In this framework (Figure 6.4(b)), the archive of GPLS is first filled with the initial

solution set generated by InitialSetGenerator(). Then, GPLS as given in Algorithm

6.2 starts with this filled archive. Thus, the difference between GPLS and iGPLS is

whether the algorithm starts with an empty or (partially) full archive, respectively.

Adding such diverse solutions to the archive would influence the search in iGPLS

in two ways. First, these initial solutions are marked as non-visited, and thus they are

candidates for local improvements to approximate the correspondent sub-fronts. Sec-

ond, since the penalization scheme incorporates knowledge from the archive (Equation

6.1), such a diverse set of solutions will have an influence on the utility of penalizing

a particular feature. This is attributed to the argument that solutions from different

sub-fronts are likely to vary in their features.

The only parameter that this framework adds to GPLS is the size of the initial solu-

tion set, controlled by k. This depends on the size of the archive and the computational

time required to generate the initial solution set.

The framework of iGPLS, then, can be simply described as follows:

1. Generate the initial solution set: InitialSetGenerator(), mark each generated

solution as non-visited, and then add them to the archive.

2. Apply the GPLS procedure (Algorithm 6.2) using this filled archive.

6.5.3 Multiple, Parallel GPLS (mGPLS)

Another use of the initial solution set is to perform multiple independent GPLS runs,

each GPLS takes a different solution from the initial set as a starting point (Figure

6.4(c)). This is motivated by the speedy convergence of GPLS, as shown earlier (Figure
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Figure 6.4: Illustrations of the differences between GPLS and its frameworks

6.2). Since the GPLS runs are independent, mGPLS is seen as a parallel version of

GPLS. Every GPLS maintains its local archive. These local archives are merged into

one global archive that is to be returned as the final set.

Similar to iGPLS, mGPLS requires one additional parameter to be defined, which

is the number of independent runs (i.e. the size of the initial set). This depends on the

computational time budget, and requires estimating the time GPLS needs to converge

to the PF.

The framework of mGPLS can be described as follows:

1. Generate the initial solution set: InitialSetGenerator(), mark each generated
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6.5 GPLS-based Frameworks

solution as non-visited, and then add them to the archive.

2. For each solution in the archive: apply an independent run of GPLS (Algorithm

6.2) while initializing its local archive with this solution.

3. The returned set of Pareto local optima from each GPLS run is added to the

global archive.

6.5.4 miGPLS: A Combination of iGPLS and mGPLS

In mGPLS, each GPLS run starts from a single point that represents a sub-front. Due to

its parallel nature, the number of independent runs is expected to be limited. Another

(intuitive) approach is to generate multiple solutions that approximate the whole sub-

front, and then apply iGPLS instead of GPLS. This approach is called miGPLS (Figure

6.4(d)) which is similar to mGPLS with the only difference being that miGPLS replaces

GPLS with iGPLS. Each independent iGPLS starts from a sub-set of the initial solution

set, approximating a sub-front of the PF. In this case, miGPLS requires two parameters

to be set, namely the size of the initial solution set (controlled by k) and the number

of independent agents (|agents|). Thus, the size of the initial sub-set for each iGPLS

run will be equal to |archive|/|agents|.

The framework of miGPLS can be described as follows:

1. Generate an initial solution set: InitialSetGenerator(), mark each generated

solution as non-visited, and then add them to the archive.

2. Divide the archive into |agents| sub-sets.

3. For each sub-set: apply an independent run of iGPLS while initializing its local

archive with this sub-set.

4. The returned set of Pareto local optima from each iGPLS run is added to the

global archive.
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6.6 Experimental Results for GPLS-based Frameworks

The effectiveness of the proposed frameworks is examined here by comparing their

performance to that of GPLS on the MOKP and biTSP. Comparisons to state-of-

the-art algorithms on both benchmarks are also made. The following describes the

conducted experiments and reports on their results.

6.6.1 Comparisons on the MOKP

Using the same MOKP instances and performance indicators as in section 6.4.1, this

experiment evaluates the performance of GPLS-based frameworks, and compares them

to that of GPLS and a state-of-the-art algorithm on the MOKP, namely MOEA/D1

[136] which is an aggregation-based MOEA. In order to facilitate the comparison with

MOEA/D, the experimental settings follow those in [136]. The running lengths allowed

for those algorithms to be expressed in terms of the number of calls to the repair method

(maxRepair), and the size of the archive is limited. Table 6.7 gives the setting of

these two parameters, together with those related to GPLS as used in the proposed

frameworks. It also gives the settings of k for iGPLS and miGPLS which both are

similar to that of the decomposition approach employed by MOEA/D. For miGPLS,

the number of independent iGPLS runs is set to 10 on all instances. Thus, the initial

archive is divided into 10 sub-sets, each iGPLS run starts from a different sub-set. For

mGPLS, k is set to lower values (k equals 9, 3 and 3 for instances of 2, 3 and 4 objectives

respectively) due to the limited amount of time, and hence to the few number of GPLS

runs that should be defined. The number of independent GPLS runs in mGPLS is 10

for instances of 2 and 3 objectives, and 20 for that of 4 objectives. The allowed time

budget is divided equally among the GPLS runs in mGPLS, and among the 10 iGPLS

runs in miGPLS. All reported results are the average of 30 executions.

Table 6.8 presents the means of the C-metric values of the final approximations

1MOEA/D’s results are available at: http://dces.essex.ac.uk/staff/qzhang/mypublication.htm
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Table 6.7: Parameter settings for GPLS and its frameworks on the MOKP

Instance
maxRepair k(|archive|) maxFails λ

n m

250
2 75000 149 (150)

15 203 100000 25 (351)
4 125000 12 (455)

500
2 100000 199 (200)

15 303 125000 25 (351)
4 150000 12 (455)

750
2 125000 249 (250)

20 403 150000 25 (351)
4 175000 12 (455)

obtained by GPLS, mGPLS, iGPLS and miGPLS, compared to that of MOEA/D in

all instances. Table 6.9 compares the means and standard deviations of the D-metric

values for all examined algorithms (the D-metric results for GPLS are provided in Table

6.4). The average CPU time used by each framework for each instance is given in Table

6.10. It also shows the CPU time used by MOEA/D as provided in [136]. Although

MOEA/D was implemented using a different programming language and tested on a

PC with different specifications to that of the proposed algorithms, we find this (unfair)

comparison still helpful to give an idea of the order of magnitude1 of the computational

times of these algorithms.

The results confirm the following remarks:

• GPLS-based frameworks significantly enhance the performance of GPLS, in terms

of solution quality and diversity. For all instances, mGPLS, iGPLS and miGPLS

produce approximations of the PF which have much better values of both the

C-metric and D-metric than that of GPLS. Taking the D-metric value for the

MOKP instance 750-2 as an example, GPLS obtained on average 917.2, while

1The order of magnitude of a number can be defined as the smallest power of ten required to
represent that number. It is commonly used to make approximate comparisons between different
values.

142



6.6 Experimental Results for GPLS-based Frameworks

Table 6.8: Means of the C-metric values of the proposed GPLS-based frameworks,
compared to MOEA/D

Instance
Algorithm (A) C(A,MOEA/D) C(MOEA/D,A)

m n

2

250
GPLS 0.22 0.39

mGPLS 0.37 0.51
iGPLS 0.58 0.32

miGPLS 0.52 0.36

500
GPLS 0.25 0.19

mGPLS 0.54 0.31
iGPLS 0.78 0.11

miGPLS 0.74 0.16

750
GPLS 0.24 0.06

mGPLS 0.62 0.29
iGPLS 0.75 0.17

miGPLS 0.70 0.22

3

250
GPLS 0.03 0.49

mGPLS 0.01 0.87
iGPLS 0.02 0.8

miGPLS 0.03 0.68

500
GPLS 0.06 0.08

mGPLS 0.03 0.75
iGPLS 0.03 0.68

miGPLS 0.07 0.53

750
GPLS 0.07 0.00

mGPLS 0.06 0.51
iGPLS 0.24 0.25

miGPLS 0.36 0.18

4

250
GPLS 0.0 0.56

mGPLS 0.0 0.84
iGPLS 0.0 0.85

miGPLS 0.01 0.72

500
GPLS 0.02 0.03

mGPLS 0.01 0.60
iGPLS 0.03 0.48

miGPLS 0.04 0.40

750
GPLS 0.04 0.00

mGPLS 0.01 0.34
iGPLS 0.10 0.22

miGPLS 0.12 0.17

143



6.6 Experimental Results for GPLS-based Frameworks

Table 6.9: Means (standard deviations) of the D-metric values of GPLS-based frame-
works and MOEA/D

Instance
mGPLS iGPLS miGPLS MOEA/D

n m

250
2 40.57 (2.8) 31.4 (1.9) 33.4 (1.8) 37.17 (3)
3 261.48 (14) 210.64 (7.7) 193.98 (12.8) 97.75 (7.2)
4 404.33 (8.6) 372.2 (9.4) 341.92 (10) 176.52 (7.3)

500
2 65.7 (4.8) 44.47 (2.2) 46.69 (2) 79.07 (5.4)
3 585.53 (22.4) 433.31 (20.7) 376.69 (14.1) 270.31 (11.9)
4 872.24 (15.5) 650.63 (18.7) 607.28 (24.8) 431.94 (12)

750
2 134.27 (7.2) 100.96 (5.7) 109.5 (5.1) 166.04 (13.6)
3 862.05 (20.4) 466.43 (15.8) 407.01 (17.3) 446.12 (19.1)
4 1360.93 (15.7) 931.66 (25.3) 887.58 (24.7) 761.57 (17.3)

mGPLS, iGPLS and miGPLS obtained 134.3, 100.9 and 109.5 respectively.

• These simple GPLS-based frameworks are very competitive to other state-of-the-

art techniques on the MOKP. The results suggest classifying problem instances

in two groups:

1. Biobjective instances. As shown in Table 6.4 and Table 6.9, MOEA/D

clearly outperforms GPLS in terms of the D-metric on instances of two ob-

jectives, whereas GPLS is globally better in terms of the C-metric as given

in Table 6.8. These results reveal that GPLS is better than MOEA/D in

terms of convergence, however, only to a part of the PF, while MOEA/D

is superior in approximating the whole PF. This remark is illustrated in

Figure 6.5(a). In comparison with GPLS-based frameworks, MOEA/D is

inferior to iGPLS and miGPLS in terms of both metrics, for all biobjective

instances. Moreover, apart from instance 250-2, mGPLS also obtains better

results than that of MOEA/D in both metrics. For example, 75%(70%) of

solutions obtained by MOEA/D on the 750-2 problem instance are covered

by those generated by iGPLS(miGPLS), while only 17%(22%) vice versa.
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For the same problem instance, the D-metric value obtained by MOEA/D is

166.04, while mGPLS, iGPLS and miGPLS obtain on average 134.3, 100.9

and 109.5, respectively. These differences are statistically significant as con-

firmed by the t-test at 0.05 probability level. The differences between the

approximations obtained by these algorithms on instance 750-2 can be vi-

sually detected from Figure 6.5, which plots the middle part of the final

sets. Last but not least, both the mean and standard deviation values of the

GPLS-based frameworks (particularly iGPLS), as given in Table 6.9, prove

the efficiency and stableness of these frameworks on the biobjective instances

of MOKP.

2. Many-objective instances. The outstanding performance of GPLS-based

frameworks degrades on instances of 3 or 4 objectives, in comparison with

that of MOEA/D. MOEA/D was able to produce (statistically) higher qual-

ity approximations in these instances, as given in Table 6.8 and 6.9. For

example, the D-metric value obtained by MOEA/D in instance 250-3 is

97.8, while that of mGPLS, iGPLS and miGPLS are 261.5, 210 and 193.9,

respectively. Interestingly, the performance differences between MOEA/D

and GPLS-based frameworks shrinks as the problem size grows. On instance

750-3, miGPLS produced a better approximation (D-metric = 407 and C-

metric = 0.36) than that of MOEA/D (D-metric = 446.1 and C-metric =

0.18).

• As given in Table 6.10, the computational times required by miGPLS and iG-

PLS are almost the same, and both are slightly greater than that of mGPLS.

This is attributed to the large size of the initial solution set generated by the

InitialSetGenerator() in iGPLS and miGPLS. Since solutions are generated us-

ing a repair heuristic which is computationally inexpensive, the differences in

the computational demand between iGPLS/miGPLS and mGPLS, and between
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mGPLS and GPLS are less significant. Given that the different GPLS(iGPLS)

runs in mGPLS(miGPLS) are implemented here sequentially, and these runs are

independent from each other, the computational times provided in Table 6.10

for mGPLS and miGPLS can be divided by the number of runs (i.e. agents) to

have their estimated times when they are implemented in a parallel fashion and

executed on a parallel computer. In comparison with MOEA/D, the amount of

computational time required by GPLS-based frameworks is close (in terms of the

order of magnitude) to that required by MOEA/D even though GPLS is compu-

tationally simpler than MOEA/D. This is probably attributed to the complexity

of the clustering procedure employed by GPLS and its frameworks in order to

maintain a limited archive.

Table 6.10: Means of the CPU time (in seconds) used by GPLS-based frameworks,
compared to MOEA/D (as in [136])

Instance
mGPLS iGPLS miGPLS MOEA/D

m n

2
250 4.37 4.37 4.43 3.70
500 12.10 12.08 12.20 9.40
750 23.71 23.01 23.65 17.87

3
250 7.79 7.53 7.95 6.53
500 21.60 19.46 21.36 15.30
750 41.46 35.46 40.51 26.73

4
250 12.38 11.47 12.81 19.60
500 34.23 29.49 34.17 45.17
750 65.93 53.27 63.83 70.93

Overall, these remarks confirm the potential of GPLS to be an effective Pareto

search algorithm in multi-phase frameworks. They also suggest the effectiveness of the

proposed GPLS-based frameworks, with which GPLS is capable to produce competitive

approximations to state-of-the-art algorithms on the biobjective instances of MOKP.

Such performance can be attained with relatively low CPU times when mGPLS and
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(a) GPLS vs. MOEA/D (b) iGPLS vs. MOEA/D

(c) mGPLS vs. MOEA/D (d) miGPLS vs. MOEA/D

Figure 6.5: Plots of a non-dominant solution set obtained by each of GPLS and its
frameworks, compared to MOEA/D on the MOKP instance 750-2

miGPLS frameworks are implemented on parallel computers. Furthermore, the re-

sults reveal that the outstanding performance of GPLS-based frameworks decreases on

MOKP instances with many-objective.

6.6.2 Comparisons on the biTSP

The aim of this experiment is to examine the performance of GPLS-based frameworks

on the biTSP, in comparison with GPLS. They are also evaluated by making compar-

isons with two state-of-the-art algorithms proposed for solving the biTSP. The first al-
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gorithm is the Two-Phase Pareto Local Search (2PPLS) proposed by Lust and Teghem

in [83]. In the first phase of 2PPLS, a good approximation of the PF is generated us-

ing one of the best heuristics for the single-objective TSP: the Lin-Kernighan heuristic

(LK). Then, the second phase employs a PLS algorithm that starts from the initial

approximation generated in the first phase. As shown in [83], 2PPLS produced bet-

ter results than other state-of-the-art methods and competitive results to the Pareto

Memetic Algorithm (PMA) which is proposed by Jaszkiewicz and Zielniewicz in [66].

PMA is a complex hybrid of a memetic algorithm (the first phase) and PLS (the second

phase). The complexity of PMA is attributed to its first phase, which employs several

techniques such as the LK, path relinking and tabu search. In this study, these two

methods are considered and comparisons to them are made. The t-test at 0.05 level

of confidence is applied to analyse the significance of the differences between different

algorithms. This requires the detailed results of 2PPLS and PMA. These are publicly

available only for 2PPLS1 which are used in the statistical analysis.

The parameter settings of GPLS are similar to that used in section 6.4.2. For GPLS-

based frameworks, each scalar function in the InitialSetGenerator() is optimized using

an improvement heuristic, that is the GLS algorithm that was proposed in [125] for

solving the single-objective TSP. The settings of GLS are given in Table 6.11. In

this experiment, there is no explicit time limit defined for the proposed GPLS-based

methods. Rather, an absolute stopping condition is defined as a function of a pre-

set maximum number of dominants maxDoms. The number of dominants (count) is

incremented every time a neighbour is dominated by a solution in the archive, and

it is reset to zero every time a new solution is added to the archive. The settings of

maxDoms together with GPLS-based frameworks’ parameters are given in Table 6.12.

Similar to [83, 66], we use the same eight biobjective instances of TSP. They are

KroA100-KroD100, KroA150-KroB150, and KroA200-KroB200 with 100, 150, and 200

1http://sites.google.com/site/thibautlust/research/multiobjective-tsp
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Table 6.11: Parameter settings for GLS on the biTSP

Parameter Value

λ cost of first local optimum × α ÷ number
of features

α 0.3 for all instances

stopping condi-
tion

number of penalizations equals 10000,
15000 and 35000 for instances of size 100,
150 and 200 respectively

Table 6.12: Parameter settings for GPLS and its frameworks on the biTSP

Parameter Value

λ 70 for all instances

maxDoms 5M, 10M and 15M for instances of size
100, 150 and 200 respectively

k 9 for mGPLS and 49 for iGPLS and
miGPLS

|agents| 10 independent runs for mGPLS and
miGPLS

cities, respectively. Two unary performance indices are used in this study: the R

measure and hypervolume H. While the values of both indicators obtained by 2PPLS

are reported in [83], only the R values are available for PMA [66]. All results are the

mean of 20 independent runs.

Table 6.13 presents the means of the R values of the final approximations obtained

by GPLS, mGPLS, iGPLS and miGPLS, compared to that of 2PPLS and PMA in

all instances. Similarly, Table 6.14 presents the means of the H values obtained by

these methods, except PMA, in all instances. The average CPU time used by the

proposed algorithms to obtain such approximations are reported in Table 6.15. The

results indicate the following:

• GPLS produces good quality results, which are significantly improved by mGPLS,

iGPLS and miGPLS. For all instances, GPLS-based frameworks were capable of
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Table 6.13: R values of GPLS and its frameworks, compared to 2PPLS and PMA

Instance GPLS mGPLS iGPLS miGPLS 2PPLS PMA

KroAB100 0.934613 0.935189 0.935263 0.935280 0.935259 0.935280
KroAC100 0.931891 0.932452 0.932508 0.932526 0.932513 0.932521
KroAD100 0.934057 0.934539 0.93463 0.934641 0.934623 0.934617
KroBC100 0.935738 0.936179 0.93622 0.936229 0.936215 0.936221
KroBD100 0.934129 0.934750 0.934808 0.934811 0.9348 0.934809
KroCD100 0.938511 0.939104 0.939155 0.939174 0.939158 0.939166
KroAB150 0.941439 0.941938 0.942108 0.942108 0.942127 0.942081
KroAB200 0.944363 0.944738 0.945046 0.94504 0.945067 0.943312

Table 6.14: H values (×108) of GPLS and its frameworks, compared to 2PPLS

Instance GPLS mGPLS iGPLS miGPLS 2PPLS

KroAB100 225.16 225.98 226.1 226.11 226.11
KroAC100 225.48 226.23 226.31 226.32 226.32
KroAD100 226.8 227.35 227.41 227.42 227.41
KroBC100 226.66 227.32 227.37 227.38 227.38
KroBD100 225.17 226.07 226.12 226.13 226.12
KroCD100 230.03 230.83 230.88 230.89 230.89
KroAB150 589.99 591.88 592.47 592.46 592.51
KroAB200 1071.42 1073.74 1075.99 1075.97 1076.08

improving the performance of GPLS in both performance metrics. In instance

KroAB100, for example, the R value of approximations obtained by GPLS is

on average 0.934613, where that of mGPLS, iGPLS and miGPLS are 0.935189,

0.935263 and 0.935280 respectively.

• Among GPLS-based frameworks, miGPLS stands out as the best performing al-

gorithm for all instances on both measures. iGPLS is the second best performing

framework, producing competitive results to that of miGPLS. Both frameworks

are better than mGPLS, which emphasizes the contribution of the size of the

initial set of solutions to the performance of the GPLS-based frameworks in the

biTSP. The t-test confirms that the differences in the results between these algo-
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rithms are statistically significant, except the difference in the R values between

iGPLS and miGPLS on KroBD100, where the differences are statistically insignif-

icant.

• The comparison with 2PPLS reveals that miGPLS statistically outperforms 2PPLS

in instances of size 100. miGPLS obtains better results in terms of the R mea-

sure in all the six instances, and not worse (if not better) on the H measure. In

the same instances, iGPLS is statistically inferior to 2PPLS with respect to the

H measure, and competitive (i.e. better in 4 instances: KroAB100, KroAD100,

KroBC100 and KroBD100, and worse in 2 instances: KroAC100 and KroCD100;

the differences in KroAB100 and KroCD100 are statistically insignificant) in

terms of the R measure. In the larger instances (i.e. 150 and 200), 2PPLS pro-

duces statistically better results in both metrics than both iGPLS and miGPLS.

• When compared with PMA using the R measure, miGPLS shows its superiority

to PMA in all instances apart from the KroAB100 where both are equal. iGPLS,

on the other hand, was capable of competing with PMA by obtaining competitive

results on 3 (i.e. KroAD100, KroBC100 and KroBD100) out of 6 instances, and

better values on instances of size 150 and 200. Interestingly, GPLS and mGPLS

are both able to outperform PMA in KroAB200.

• In this study, no time restriction has been imposed on GPLS and its frameworks.

Table 6.15 shows that iGPLS used the least amount of computational time among

the proposed methods in instances of size 100 and 150, and mGPLS for that of

200. Running times of GPLS are higher than those of GPLS-based frameworks.

Again, recall that mGPLS and miGPLS are not implemented in a parallel way,

and thus their demands for running time are probably 10% of the reported figures

when they are executed on parallel computers, as both consist of 10 independent

agents. In comparison with other state-of-the-art methods, the computational
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times of GPLS and its frameworks are much higher than those of 2PPLS and

PMA. This is attributed to the effectiveness of the first phase of both 2PPLS and

PMA, which is capable of producing an initial approximation with good quality

at less computational time, compared to the multiple runs of single-objective GLS

used by InitialSetGenerator() in GPLS-based frameworks.

Table 6.15: Means of the CPU times (in seconds) that are required by GPLS and
its frameworks, compared to that of 2PPLS and PMA as reported in [83] and [66],
respectively

Instance GPLS mGPLS iGPLS miGPLS 2PPLS PMA

KroAB100 1294 688 330 916 36 67
KroAC100 1004 676 324 885 30 67
KroAD100 869 606 294 802 26 69
KroBC100 948 649 326 896 36 73
KroBD100 1223 654 319 890 37 74
KroCD100 767 587 302 778 28 73
KroAB150 2344 839 694 1296 91 223
KroAB200 2980 1299 1451 2353 212 567

Overall, these remarks confirm the effectiveness of GPLS-based frameworks. This is

demonstrated by their ability to enhance the performance of GPLS and compete with

state-of-the-art methods on the biTSP. Although a GPLS-based framework requires

a high computational time to obtain such outstanding performance, this issue can be

resolved by employing more efficient techniques tailored to the TSP in the first phase

of these frameworks in order to minimize the times spent finding an initial high quality

approximation.

6.7 Parametric Analysis

As shown in sections 6.4 and 6.6, experimental results for GPLS and its frameworks,

on two standard benchmarks for multi-objective optimization, confirm the ability of
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GPLS to be an effective optimization engine which can replace PLS. In order to have

more insight into GPLS and its frameworks, further analysis of their components and

parameters are required.

6.7.1 GPLS

6.7.1.1 Sensitivity to modelling feature cost

As described in section 6.1, a basic component of GLS, that is adapted by GPLS for

solving MOOPs, is the definition of feature cost. The costs of a feature on different

objectives are expected to vary, and thus a model is required to define a single cost

value that considers these different costs. This was modelled as the average of costs

over all objectives in both the the MOKP and biTSP. To study the sensitivity of GPLS

to this model, an alternative model is defined and compared to the current employed

model. The MOKP is considered here as the benchmark. Instead of the average, a new

model is defined that chooses the maximum value (i.e. the worst weight-to-profit ratio)

among all costs instead of their average. The implementation of GPLS for the MOKP

(section 6.3.3) is changed accordingly and tested on instance 750-2. The parameter

settings are the same as in section 6.4.1, and the performance is measured using the

D-metric. The results show that the D-metric value for the average model is 917.2,

and that of the max model is 905.1. However, the t-test with 95% confidence level

reveals that this difference is statistically insignificant. This suggests that GPLS is

not sensitive to which model is used to define feature cost, particularly if this model

somehow considers the different costs.

6.7.1.2 Contribution of the new penalization scheme

The second major component that is adapted by GPLS is the definition of the utility

function of penalizing a feature. The utility function used by GLS is modified in order

to consider a Pareto local optimum set instead of a single local optimum, Equation
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6.1. To study the influence of this modification to the performance of GPLS, we have

tested a GPLS variant that applies the standard utility function of GLS (Equation 3.3)

on the MOKP instance 750-2, and compared it to the proposed GPLS that applies

the new utility function. The results show that the D-metric value obtained by our

proposed utility function is 917.2, which is better than that of the GLS’s utility function

which obtains on average 949.6. The t-test at 0.05 probability level confirms that

the average difference is statistically significant. Thus, the new proposed penalization

scheme improves the performance of GPLS.

6.7.2 GPLS-based Frameworks

6.7.2.1 Contribution of GPLS to the proposed frameworks

In order to confirm that GPLS is key to the success of the proposed frameworks, the

contributions of GPLS to mGPLS, iGPLS and miGPLS are analysed by applying the

frameworks to PLS, instead of GPLS. The new frameworks, then, are referred to as

mPLS, iPLS and miPLS. The PLS method described in Algorithm 6.1 is used here,

however, without the maxFails parameter. The means of the D-metric values on the

MOKP instances 250-2, 500-2 and 750-2 for PLS-based frameworks are given in Table

6.16. Comparing these results to that of GPLS-based frameworks (Table 6.9) suggests

that GPLS significantly improves the performance of both iGPLS and miGPLS on

all instances over that of iPLS and miPLS. For mGPLS, the contribution of GPLS

becomes significant in larger instances, i.e. 500-2 and 750-2. For instance, the D-metric

values obtained by iGPLS, mGPLS and miGPLS in the 750-2 instance (they are 101,

134 and 109 respectively) are about 30% better than those obtained by iPLS, mPLS

and miPLS (they obtained 144, 217 and 156 respectively). These differences between

PLS-based frameworks and GPLS-based frameworks are statistically significant, except

those between mGPLS and mPLS on 250-2, and miGPLS and miPLS on 250-2.
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Table 6.16: Means (standard deviations) of the D-metric values of the PLS-based frame-
works

Instance iPLS mPLS miPLS

250-2 34.32(2.27) 39.74(2.44) 34.25(2.04)
500-2 54.76(4.75) 78.85(5.92 57.02(3.83))
750-2 144.45(11.83) 217.34(12.27) 156.07(13.89)

Figure 6.6: The D-metric values as a function of the number of independent agents
(|agents|) for mGPLS

6.7.2.2 Sensitivity of GPLS-based frameworks to k and the number of

agents (|agents|)

The major parameter of GPLS-based frameworks is k, which reflects the size of the

initial approximation of the PF generated by InitialSetGenerator() as described in

section 6.5.1. For mGPLS and miGPLS, the number of agents (|agents|) is another

parameter to be defined. This always equals the size of the initial set of solutions in

the case of mGPLS. In this study, the sensitivities of iGPLS and mGPLS to k and

miGPLS to |agents| on the MOKP instance 750-2 are tested while varying the values
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of these parameters. The results are as follows:

• mGPLS: The D-metric values for mGPLS as a function of k (and consequently

|agents| which is equal to k + 1 on biobjective instances) is plotted in Figure

6.6. The considered values of k are: k ∈ {1, 2, 4, 6, 9}. The time budget is fixed

for all cases, and it is divided equally among the different agents. The figure

clearly shows the sensitivity of the performance of mGPLS to the parameter k,

particularly at low values (i.e. k ≤ 4). This confirms that, similar to PLS, it

is important for GPLS to start with an initial high quality approximation. The

better the initial approximation in terms of diversity in the objective space, the

better the performance of GPLS. Moreover, the result encouragingly supports

the idea of decomposing the PF into multiple sub-fronts. Each sub-front can

be considered as a sub-problem and solved independently from the others, with

or without cooperation between sub-problems. This is demonstrated by the D-

metric value obtained by mGPLS with 10 independent agents, which is 73% better

and about five times faster (if it is implemented in a parallel environment) than

that of mGPLS with 2 agents.

• iGPLS: The D-metric values for iGPLS as a function of k is plotted in Figure

6.7, where k ∈ {1, 5, 10, 20, 50, 100, 249}. It shows that iGPLS is sensitive to k

only at very low values of k, such that k ≤ 10. At higher values of k, the com-

putational overhead of generating more initial solutions is much more than its

benefit in terms of the quality of the final approximation obtained by iGPLS. For

example, increasing the k by 149% (i.e. from 100 to 249) improves the perfor-

mance of iGPLS by 5% only. This amount of improvement might be justifiable

in the MOKP, where generating initial solutions heuristically is computationally

inexpensive. However, in other problems such as the biTSP, generating such huge

number of initial solutions heuristically is impractical.
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Figure 6.7: The D-metric values as a function of k for iGPLS

Figure 6.8: The D-metric values as a function of the number of independent agents
(|agents|) for miGPLS
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• miGPLS: The means of the D-metric values for miGPLS as a function of |agents|

are plotted in Figure 6.8, where |agents| ∈ {2, 3, 5, 7, 10}. The value of k was set

to 249. The figure shows that increasing the number of iGPLS runs does not

necessarily result in a significant impact on the performance of miGPLS. This

confirms the potential of decomposing the PF into sub-fronts (i.e. sub-problems).

Dividing the initial set of iGPLS into multiple sets, and then applying an indepen-

dent iGPLS from each sub-set, has no significant impact on the performance of

iGPLS. In fact, this would greatly reduce the computational time when miGPLS

implemented in a parallel fashion.

6.8 Conclusions

A Guided Local Search based multi-objective metaheuristic (GPLS) is proposed here.

GPLS confirms the ability of GLS to guide PLS to escape Pareto local optima. GPLS

adapts three aspects of the single-objective GLS: (1) the underlying local search which

is replaced by PLS that searches for Pareto local optima, (2) the definition of features

and their costs in order to consider the influence of features on different objectives,

and (3) the penalization scheme which is modified to incorporate knowledge from the

archive. Computational experiments show that GPLS is capable of producing better

approximations than PLS and representative Pareto-based MOEAs.

As mentioned in section 3.2.4, there has been studies suggesting the potential of PLS

to be a major component in a multi-phase framework or in a hybrid algorithm. This

has also been proven for GPLS, which is the central method for the three frameworks

proposed here, namely iGPLS, mGPLS and miGPLS. iGPLS is a two-phase method

which combines GPLS (the second phase) with an initial approximation generator (the

first phase). mGPLS is a parallel version of GPLS, where multiple independent GPLS

runs are performed, with each run approximating a different sub-front. miGPLS is a
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combination of the aforementioned methods. It performs multiple independent iGPLS

runs to approximate multiple sub-fronts. Computational results on standard bench-

marks demonstrate the effectiveness of these GPLS-based frameworks (particularly iG-

PLS and miGPLS) in obtaining high quality approximations that yield state-of-the-art

results on the MOKP and biTSP.

Several parametric analysis studies for GPLS and its frameworks have been con-

ducted. The major conclusions revealed by these studies are as follows:

1. The new proposed penalization scheme significantly improves the performance of

GPLS over the standard one employed by GLS.

2. GPLS is a key element that improves the performance of the proposed frameworks

over other state-of-the-art methods.

3. The performance of GPLS-based frameworks are sensitive to the size of the initial

approximation (i.e. how well this set represents the whole PF). Interestingly, the

significance of this sensitivity appears only at low sizes of the approximation. At

higher sizes, generating more initial solutions is not critical to the performance

of GPLS-based frameworks.

4. For mGPLS, the more GPLS runs (i.e. the more sub-fronts), the better the quality

of the final approximation. For miGPLS, increasing the number of iGPLS runs

has no significant impact on the performance of miGPLS. These are appealing

features of GPLS-based frameworks when they are implemented in a parallel way

and executed on parallel processors. The computational time then will diminish

dramatically.

The outstanding performances of GPLS and its frameworks are mainly on biob-

jective problems. Their performances on many-objective problems are less significant,

particularly when compared to other state-of-the-art methods. In addition, the two
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standard benchmarks used to test GPLS and its frameworks exhibit a similar feature,

that is the convex shape of their PFs. Fortunately, our target multi-objective optimiza-

tion problem in this thesis, that is the EmS-FWS problem, is a biobjective optimization

problem and initial experiments show that the problem instances tend to have a con-

vex PF. These features encourage the application of GPLS to the EmS-FWS problem,

which is presented in the following chapter.
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Chapter 7

The Application of GPLS to EmS

The empowerment scheduling model (EmS), that is proposed in chapter 5 and applied

to the FWS problem, was treated as a single-objective optimization problem by ag-

gregating the productivity rate (i.e. organizational objective) and employees’ plans

satisfaction (i.e. empowerment objective) into one objective function using a weighted-

sum approach. In this chapter, the EmS-FWS problem is treated as a multi-objective

optimization problem, and solved using GPLS (chapter 6) as a solution technique.

This chapter is organized as follows. Section 7.1 describes the multi-objective nature

of EmS. Then, the applications of GPLS and its frameworks to the EmS-FWS problem

are discussed in section 7.2. Section 7.3 explains the experimental settings, and section

7.4 discusses the experimental results. The conclusions are given in section 7.5.

7.1 EmS-FWS: A Multi-objective Optimization Problem

As described in chapter 5, EmS is a flexible management model for workforce scheduling

that involves employees in the allocation decision. It enables employees to plan their

own schedules. Employee involvement in EmS is modelled by adding, to the organiza-

tional objective, an additional objective that represents employee empowerment. The
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latter is measured by the summation of the score given to the satisfied plans. Therefore,

the optimization problem of FWS is reformulated to consider the following objectives:

1. Maximizing the productivity rate. For the FWS problem, this is expressed in

terms of the number of served jobs multiplied by their costs (Equation 4.1).

2. Maximizing plans satisfaction objective. This is defined by the number of satisfied

work plans multiplied by their weights (Equation 5.4).

As discussed in section 5.2.3, the organizational objective and empowerment objec-

tive are conflicting objectives, at least at the optimization stage. This implies that the

optimization process should target a set of solutions that represent the optimal set of

trade-offs between the two objectives.

Treating empowerment scheduling as a multi-objective optimization problem, and

hence producing the trade-off between the two objectives, is a key feature of the model.

It enables organizations to retain their full control over the scheduling decision, as in

traditional scheduling. In fact, it helps organizations assessing the immediate impact

of empowerment on the overall schedule, and thus avoiding undesirable outcomes ef-

fectively. An example of such an outcome would be when an important task is not

favoured by employees. This outcome can be resolved by increasing the task’s priority.

With this increase the impact of unallocating this task on the productivity rate grows,

and thus the chance of allocating this task enhances, particularly in sub-fronts (on

the trade-off curve) where the productivity rate has more importance than the plans

satisfaction objective.

7.2 GPLS: A Scheduling Algorithm

This study investigates the application of GPLS, as a multi-objective optimization

algorithm, to the empowerment scheduling model for FWS (EmS-FWS). The EmS-

FWS problem is formulated in section 5.2.4. The motives of applying GPLS are: (1)
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the outstanding performance of GPLS and its frameworks on biobjective optimization

problems, and (2) the potential of GLS to be an efficient technique for this scheduling

problem, since it holds state-of-the-art results on relevant scheduling problems. The

following describes the implementation of the proposed GPLS and its frameworks for

the EmS-FWS problem.

7.2.1 The Implementation of GPLS for the EmS-FWS problem

In section 5.4.2, the single-objective local search and GLS for the EmS-FWS problem

are defined. A similar approach is followed to apply GPLS to the EmS-FWS problem,

as follows.

7.2.1.1 PLS

The basic components of PLS are defined similar to that of the single-objective local

search as discussed in section 5.4.2. This includes the solution representation, which is

an order of tasks; the deterministic scheduling procedure that transforms an order to

a complete schedule; and the neighbourhood operator which is a single-swap between

any two tasks. The only difference is in the cost function. Instead of aggregating the

two objectives into a single cost function, they are considered separately. A solution is

evaluated using the notion of Pareto optimality based on the two objective functions:

productivity rate (Equation 4.1) and plans satisfaction (Equation 5.4), both of which

are to be maximized.

7.2.1.2 Features and their Costs

In the EmS-FWS problem, there are two objectives of different natures, and thus

two sets of features need to be defined. As maximizing the total allocated tasks is an

objective, each feature in the first set represents the failure in serving a job. The second

objective concerns maximizing the total satisfied employees’ plans, and therefore each
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feature in the second feature set represents the failure of satisfying a work plan. The

task priority is considered as the cost of the first feature set (task allocation), whereas

the weight associated with a working plan (i.e. EP ) is considered the cost of the second

feature set (plan satisfaction). At the penalization phase of GPLS, a feature from each

set with the maximum utility is picked for penalization.

7.2.1.3 GPLS-based Frameworks

In order to apply iGPLS, mGPLS and miGPLS to the EmS-FWS problem, the only

component that needs to be defined is the procedure of generating a diverse initial so-

lution set (InitialSetGenerator). In section 5.4.2, GLS was proposed to solve a scalar

objective function which combines both objectives. The local search only (without

penalization) is used here again as the improvement heuristic for each scalar func-

tion in the InitialSetGenerator(). The reason for this is that running multiple GLS

is computationally expensive, while the computational time is limited in the present

experiments.

An additional question that we intend to examine here is that since the PF is

decomposed into sub-fronts using a representative weight setting for each sub-front,

how efficient is to propagate this weight setting to the employed heuristics, if any? For

example, in the EmS-FWS problem, a deterministic scheduling procedure is applied to

transform each solution (i.e. an order of tasks) into a complete schedule. The basic idea

is to assign each task to the first available technician in its associated list of technicians.

The list is ordered heuristically using two criteria: the travelling time (as a heuristic

to improve the productivity rate) and the technician’s preference with accordance to

his/her plan. The current implementation gives the second criteria more importance

than the first one. Instead, the weight setting applied to each sub-front can be used

to combine the two criteria into a single value, and tasks’ associated lists are ordered

accordingly. The feasibility of such a weight propagation mechanism is examined in
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the conducted computational experiments here.

7.3 Experimental Design

7.3.1 Problem Instances

Since the focus here is on the underlying multi-objective optimization problem, we

consider only a one-day scenario which includes a set of tasks, a set of technicians and

their plans for that day. The problem generator developed in section 4.2 is used here to

generate 50 problem instances using the default values of problem characteristics. For

each problem instance, five different instances of work plans are generated as described

in section 5.4.1. The only addition is that each plan is associated with a weight value

which is uniformly sampled at random, instead of giving all plans the same cost. The

tightest scenario is applied here where every technician has a plan in the considered

day.

7.3.2 Performance Measures

Three performance indices are used in this experiment to measure the quality of an

approximation in terms of convergence towards the PF and diversity on the objective

space. They are (1) the C-metric (Definition 8), (2) the R measure (Definition 10) that

is to be maximized, and (3) the H measure (Definition 11) that is to be maximized

as well. The R and H measures are employed for the EmS-FWS problem since the

ideal (Definition 6) and nadir (Definition 7) points in the objective space can be easily

defined. The ideal point is set to (1,1) (i.e. all tasks are allocated and all plans are

satisfied), whereas the nadir point is set to (0,0) (i.e. none of the tasks are allocated

and none of the plans are satisfied).
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7.3.3 Benchmarks and Experimental Settings

In order to evaluate the performance of GPLS and its frameworks on the EmS-FWS

problem, comparisons are made with four algorithms that act as points of reference.

These methods are the following:

1. The standard PLS (SteepPLS) as proposed in [95], in which a solution is picked

randomly from the archive, and then its neighbourhood is fully explored while

updating the archive with new non-dominant solutions.

2. The underlying PLS used by GPLS (GreedyPLS) which applies a first improve-

ment, partial neighbourhood exploration strategies.

3. A single-objective local search (SO-LS) using weighted-sum aggregation. In this

algorithm, the PF is decomposed into N scalar objective optimization sub-fronts,

by generating N uniformly distributed normalized weight vectors. Then, the local

search method as defined in section 5.4.2 is applied to each scalar objective, and

the obtained local optimum is added to the archive. The value of N is set to 100,

and the non-dominant solutions among all the 100 solutions generated in the 100

runs form the trade-off curve.

4. A random method (RAND) that randomly generates a certain number of solutions

(similar to that of other algorithms) and add them to the maintained set of non-

dominant solutions (i.e. the archive).

The running lengths allowed for those algorithms are expressed in terms of a maxi-

mum number of evaluations (maxEval) which is set to 200,000 evaluations. The size of

the archive is unlimited. The only parameter to GPLS is λ which is set empirically to

0.01. In GPLS-based frameworks, the time is divided equally between the two phases

(i.e. the generation of the initial approximation and GPLS). Approximating the PF

in the first phase of iGPLS and mGPLS is achieved by decomposing the PF into five
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scalar objectives (i.e. k = 4), for each of which a local optimum solution is obtained

using the defined single-objective local search method. While iGPLS starts a single

run of GPLS after filling the archive with these local optima, mGPLS executes five

independent runs of GPLS, each of which starts from a local optimum. For miGPLS,

there will be five independent runs of iGPLS, each of which starts from a sub-set of

four local optima (i.e. k = 19 and |agents| = 5). As mentioned earlier, there will be

50 problem instances, for each of which five different samples of technicians’ plans are

generated. For each combination, 5 executions are performed, and thus the reported

results for each method will be the average of 1250 executions in total.

7.4 Experimental Results and Discussion

Table 7.1 presents the means of the C-metric values of the final approximations obtained

by GPLS, compared to PLS variants, SO-LS and RAND. Table 7.2 gives the means and

standard deviations of the values of R and H measures for these algorithms. It also

gives the CPU time required by each algorithm. The experiments have been performed

on a PC with 3.0 GHz, 3.0 GB Intel Core 2 Duo processor. The significance of the

results are analysed statistically using the t-test with 95% confidence level.

Table 7.1: Means of the C-metric values of GPLS, PLS variants, RAND and SO-LS

B
C(A,B) RAND SO-LS SteepPLS GreedyPLS GPLS

A

RAND - 0 0 0 0
SO-LS 0.93 - 0.1 0 0
SteepPLS 0.91 0.7 - 0 0
GreedyPLS 0.97 0.96 0.92 - 0.27
GPLS 0.99 0.99 0.98 0.56 -

The results clearly reveal the superiority of GPLS over both PLS variants which in

turn outperform SO-LS and RAND. In terms of all metrics, GPLS obtains better results
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Table 7.2: Means (avg) and standard deviations (stdev) of the R and H values of GPLS,
PLS variants, RAND and SO-LS, as well as the CPU time in seconds each algorithm
requires

Algorithm
R H Time (sec)

avg stdev avg stdev avg stdev

RAND 0.787 0.02 0.517 0.03 109 6
SO-LS 0.814 0.02 0.577 0.04 132 16
SteepPLS 0.814 0.02 0.577 0.04 133 11
GreedyPLS 0.831 0.02 0.615 0.04 58 19
GPLS 0.838 0.02 0.629 0.04 125 10

than the other methods. As shown in Table 7.1, the approximation of the PF obtained

by SteepPLS and SO-LS are mostly (about 92%-99%) dominated by that of GreedyPLS

and GPLS. In comparison with GreedyPLS, GPLS produces better approximations

than that of GreedyPLS in terms of the C-metric. On average, the approximations

obtained by GPLS dominates 56% of that obtained by GreedyPLS, and 27% vice versa.

The outstanding performance of GPLS is also demonstrated by its ability to obtain

better values of the R and H measures than that of the other algorithms, as given in

Table 7.2. For instance, the R value of GPLS is 0.838, while GreedyPLS, SteepPLS,

SO-LS and RAND obtain 0.831, 0.814, 0.814 and 0.787, respectively. The difference

between these algorithms can be visually detected from Figure 7.1. All these differences

are statistically significant, except the difference between SteepPLS and SO-LS in their

R and H values. In terms of computational time, GreedyPLS reaches a Pareto local

optimum set quite quickly, requiring about half the time of other algorithms. GPLS,

on the other hand, consumes slightly less computational time than that of SteepPLS

and SO-LS.

The results of GPLS, then, are compared to that of GPLS-based frameworks (mG-

PLS, iGPLS and miGPLS). The means of the C-metric values are given in Table 7.3,

where that of R and H measures, together with the required CPU time, are presented
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Figure 7.1: An example of the approximations obtained by RAND, SO-LS, PLS variant
and GPLS

in Table 7.4.

The results suggest the performance of GPLS is (statistically) significantly enhanced

by iGPLS and mGPLS, demonstrated by significant improvements in the values of both

R and H measures without considerable demand for additional computational time

(Table 7.4). The H values of iGPLS and mGPLS are 0.848 and 0.847 respectively,

compared to 0.838 for that of GPLS. In terms of the C-metric, Table 7.3 shows that

GPLS is statistically better than mGPLS and iGPLS. A justification of this result

is that GPLS invests the total available time to approximate the middle sub-fronts,

which allows it to obtain a better convergence towards these sub-fronts at the expense

of missing other sub-fronts, i.e. worse diversity in the objective space. To illustrate

this, Figure 7.2 plots an example of the approximations obtained by GPLS and its

frameworks.

The results also reveal that, statistically, miGPLS is inferior to GPLS in terms of

all performance metrics. This suggests the contribution of the quality of the initial

approximation (i.e. the first phase) to the overall performance of a GPLS-based frame-
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Table 7.3: Means of the C-metric values of GPLS and its frameworks

A
C(A,B) GPLS iGPLS mGPLS miGPLS

B

GPLS - 0.45 0.54 0.72
iGPLS 0.25 - 0.46 0.55
mGPLS 0.19 0.33 - 0.53
miGPLS 0.13 0.21 0.28 -

Table 7.4: Means (avg) and standard deviations (stdev) of the R and H values of GPLS
and its frameworks, as well as the CPU time in seconds each algorithm requires

Algorithm
R H Time (sec)

avg stdev avg stdev avg stdev

GPLS 0.838 0.02 0.629 0.04 125 10
iGPLS 0.848 0.02 0.649 0.04 127 10
mGPLS 0.847 0.02 0.646 0.04 129 10
miGPLS 0.835 0.02 0.623 0.04 128 10

work. In this experiment, a limited amount of time is given to iGPLS and mGPLS to

approximate five sub-problems, while the same amount of time is given to miGPLS to

approximate 20 sub-problems, which degrades the quality of the initial approximation

for miGPLS. Thus, this indicates that increasing the size of the initial approximation

at the expense of the convergence property is not always beneficial.

Summarizing, PLS variants (particularly GreedyPLS) demonstrate a very good per-

formance on the EmS-FWS problem, which are significantly improved by GPLS. iGPLS

and mGPLS confirm the potential of GPLS-based frameworks to enhance the perfor-

mance of GPLS, specially in terms of diversity on the objective space. The performance

of mGPLS encourages a next step to the parallel implementation of mGPLS whose inde-

pendent GPLS runs are currently executed sequentially. Such a parallel implementation

is expected to dynamically diminish the required computational times.

Finally, as suggested in section 7.2.1.3, the weight setting of each sub-front in
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Figure 7.2: An example of the approximations obtained by GPLS and GPLS-based
frameworks

GPLS-based frameworks can be propagated to the ordering heuristic applied to the

list of technicians associated to each task. This ordering heuristic is employed by the

scheduling procedure. In order to examine this propagation, the scheduling procedure

in GPLS-based frameworks are adapted accordingly and the algorithms are executed on

the same set of instances. The means of the R and H values obtained by the adapted

GPLS-based frameworks are given in Table 7.5.

The results clearly reveal the statistical significant contribution of such a propaga-

tion to the performance of GPLS-based frameworks, demonstrated by the outstanding

performance of these frameworks compared to their performance without propagation.

Interestingly, this propagation mechanism dramatically increases the performance of

miGPLS, which becomes very competitive to iGPLS and mGPLS. Taking the R mea-

sure as an example, mGPLS, iGPLS and miGPLS obtain 0.908, 0.907 and 0.902 respec-

tively, where these frameworks without propagation obtained 0.847, 0.848 and 0.835

respectively. The approximations obtained by the enhanced GPLS-based frameworks

on a problem instance are plotted in Figure 7.3.
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Table 7.5: Means (avg) and standard deviations (stdev) of the R and H values of GPLS
base frameworks with weights propagation

Algorithm
R H

avg stdev avg stdev

iGPLS+ 0.907 0.01 0.777 0.03
mGPLS+ 0.908 0.01 0.781 0.03
miGPLS+ 0.902 0.01 0.763 0.03

0.5

0.6

0.7

0.8

0.9

1

E
m

p
lo

y
e

e
s'

 S
a

ti
sf

a
ct

io
n

iGPLS+

mGPLS

mGPLS+

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.75 0.8 0.85 0.9 0.95

E
m

p
lo

y
e

e
s'

 S
a

ti
sf

a
ct

io
n

Productivity

iGPLS+

mGPLS

mGPLS+

miGPLS+

Figure 7.3: An example of the approximations obtained by the enhanced GPLS-based
frameworks on the same problem instance used in Figure 7.2; for reference, mGPLS
which obtains the best approximation in Figure 7.2, is plotted here

7.5 Conclusions

The proposed empowerment scheduling model (EmS) is dealt with as a multi-objective

optimization problem. Instead of searching for a single optimum solution, the task is

to find the best trade-offs between the empowerment objective and the organizational

objective. A major benefit of this approach is the ability of the organization to anal-

yse the cost of empowerment on the organizational interest, and thus any undesirable

outcome can be easily detected and avoided since the organization still has a control
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over the scheduling process.

As multi-objective optimization techniques, GPLS and its frameworks are applied

to the EmS-FWS problem. Computational experiments confirm the effectiveness of

GPLS as a stand-alone technique, whose performance is significantly enhanced by its

frameworks. In addition, a new idea that is proposed and tested in this chapter is

to propagate the weight setting to any employed heuristic that considers the differ-

ent objectives while optimizing a sub-front (i.e. a scalar function) in GPLS-based

frameworks. Interestingly, this approach dramatically improves the performance of

GPLS-based frameworks.

On the other hand, unlike the MOKP and biTSP, this problem illustrates the imple-

mentation of GPLS on a problem with two objectives of different nature. GPLS defines

a feature set for each objective. At the penalization phase of GPLS, a feature from

each set with the maximum utility is penalized. This problem supports the potential

of GPLS to be a general effective Pareto optimization algorithm.
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Concluding Remarks
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Chapter 8

Conclusions

This chapter provides a summary of this thesis (section 8.1), identifies its contributions

(section 8.2), and sheds the light on some rooms for further research (section 8.3).

8.1 Summary

The theme of the thesis can be summarized as developing an empowerment-based model

for (field) workforce scheduling using multi-objective optimization as a modelling ap-

proach and Guided Local Search (GLS) as a solution technique. This implies that

several topics need to be described and their relevant literature reviewed. In chapter

2, the Field Workforce Scheduling (FWS) problem is defined and its related literature

is reviewed. It also discusses empowerment from a management perspective in order

to understand the essence of empowerment as studied in the management literature.

Finally, flexible management models proposed in the literature of workforce scheduling

are reviewed. Chapter 3, on the other hand, is dedicated to review solution approaches.

This includes describing and reviewing the literature of GLS and multi-objective opti-

mization.

Before proposing a new model for the field workforce scheduling problem, the tradi-
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tional model has to be defined and properly understood. Therefore, the first research

step focuses on investigating the FWS problem, chapter 4. This includes formulating

the problem and developing a problem instance generator accordingly. Since the FWS

problem is a combination of assignment and routing problems, the performance of a

representative local search algorithm from the literature of assignment problems and

another one from that of routing problems are applied to the FWS problem. Several

problem characteristics are identified for FWS, including problem size and constraint

levels, in order to understand the problem properties and explain the performance dif-

ference between the two different solution approaches. A set of problem instances with

various characteristics are generated to test the performance of the two local search

methods. Computational results confirm the superiority of the assignment approach,

which is positively correlated with the constraint level of the problem instance. On

the other hand, the potential of the routing approach is positively correlated with the

problem size.

Most flexible management models proposed for workforce scheduling claimed the

implementation of empowerment. However, they vary significantly in their concep-

tions of empowerment in workforce scheduling. In chapter 5, the term empowerment

scheduling is introduced, which formalizes an empowerment scheduling model as one

that recognizes employees’ individual interests that will be explicitly reflected in the

final allocation decision. Simplicity, flexibility, fairness and providing a win-win ap-

proach are critical features to the effectiveness of an empowerment scheduling model.

Based on this definition, a new empowerment scheduling model (EmS) is proposed and

applied to the FWS problem. Extensive empirical experiments are conducted to exam-

ine and study various aspects of the model, including model’s feasibility and fairness.

The computational results suggest the effectiveness of EmS, providing a simple empow-

erment scheduling practice while addressing challenges such as maintaining fairness and

transparency, and retaining the employer’s control over the scheduling decision.
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In chapter 6, an adaptation of GLS, which is a single-objective metaheuristic, to

contain multiple objective scenarios is proposed. The new algorithm (GPLS) demon-

strates the ability of GLS to sit on top of Pareto local search methods. The perfor-

mance of GPLS is examined on two standard benchmarks for multi-objective opti-

mization, namely the 0/1 multi-objective knapsack problem and the biobjective TSP.

Several comparisons to representative multi-objective metaheuristics are made, includ-

ing NSGA2, MOEA/D and 2PPLS. The experimental results reveal the effectiveness

of GPLS to enhance the performance of the underlying Pareto local search, particu-

larly in terms of the convergence towards the Pareto Front. The speedy convergence

of GPLS motivates the incorporation of GPLS in a multi-phase framework to help

GPLS approximate the whole PF. Several GPLS-based frameworks are proposed and

their performances are evaluated. With these frameworks, the performance of GPLS is

significantly improved, demonstrated by obtaining state-of-the-art results on the two

standard benchmarks.

The outstanding performance of GPLS and its frameworks encourages their appli-

cation to EmS which is transformed in chapter 5 to a single-objective optimization

problem. In chapter 7, the implementations of the basic components of GPLS and its

frameworks to EmS are detailed. Computational experiments confirm the effectiveness

of GPLS and the outstanding performance of GPLS-based frameworks in comparison

with other techniques, including Pareto local search. The performance of GPLS-based

frameworks is significantly enhanced by propagating each applied scalar objective to

any employed heuristics that consider both objectives, such as scheduling heuristics in

FWS.

8.2 Contributions

The major contributions we have made in this thesis are as follows:
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1. We have proposed an efficient implementation of empowerment for FWS, resulting

in a new scheduling model (EmS). To our knowledge, the thesis presents the first

conscientious study that examines the feasibility of empowerment in FWS and

thoroughly evaluates the efficiency and effectiveness of the proposed model.

2. We have proposed Guided Pareto Local Search (GPLS) which is a new GLS-

based multi-objective optimization algorithm. The key feature of GPLS is that

it is a simple method with few parameters to tune. This feature enhances the

potential of integrating GPLS into advanced multi-phase frameworks. Indeed, we

have developed simple GPLS-based frameworks. With these frameworks, GPLS

shows state-of-the-art performances on standard benchmarks for multi-objective

optimization.

3. We have applied GPLS and its frameworks to the EmS-FWS problem (i.e. EmS

applied to the FWS problem) which is formulated as a biobjective optimization

problem. The outstanding performances of the proposed methods are empirically

confirmed in comparisons with various representative techniques such as PLS.

These major contributions are supported by the following minor contributions:

1. We have carried out a computational study of the traditional (inflexible) model

of FWS. This includes examining the performance difference between well-known

local search algorithms developed for assignment problems and those for routing

problems, on various instances of the FWS problem that share characteristics

from both types of problems. This study is a foundational step towards achieving

the major contributions of the thesis. It provides a formulated FWS problem,

a generator for benchmark datasets, and useful insights on the performance of

several solution techniques.

2. We have established a new formalization of empowerment in workforce schedul-

ing. This results in a new term, Empowerment Scheduling, which defines the
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constitution of empowerment and its requirements in workforce scheduling. This

definition is strongly linked to aspects from the management literature which is

the source of empowerment, making Empowerment Scheduling one of the most

rigorous formalization of empowerment in the scheduling context.

8.3 Future Work

This thesis presents a new empowerment scheduling model which is applied to FWS.

The model still requires future research to further enhance the model and adapt it

to other workforce scheduling problems. A critical element of the proposed model is

employee power (EP ), which describes the amount of power an employee has over the

scheduling decision. More precisely, it determines the penalty of violating an employee’s

plan. The scope of this element can be extended to reflect employees’ individual com-

mitment and contribution to the organizational interests. In this case, employee power

provides an alternative rewarding scheme that can support others such as bonus pro-

grams. However, this extension should be done carefully because it could impact the

overall transparency and fairness of the model. Another interesting research direction

is to introduce new components to the model, with the aim of improving the model’s

efficiency. An example of such new elements is a planner that helps employees at the

planning phase to construct compatible (and potentially highly probable) work plans.

The planner will establish an interactive procedure with an employee by sharing re-

lated information (e.g. knowledge from the current problem instance and from other

employees’ work plans) and suggesting alternative plans. Advanced techniques such as

preference elicitation [18] might be beneficial in this direction.

Whilst we have chosen to examine the model in relation to a particular workforce

scheduling problem (i.e. the FWS problem), the model has the potential to be gen-

eralized for use with other workforce scheduling problems, particularly nurse rostering
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where developing effective flexible scheduling models is still a major concern. Such

problems include different scenarios than that of FWS, which require careful adapta-

tion of the various aspects of the proposed model. In nurse scheduling, for example,

employees may have multiple plans, and thus an employee can be fully satisfied, par-

tially satisfied, or unsatisfied. In the current model, however, an employee can be either

satisfied or unsatisfied, which is captured by an indicator y with two possible values: 1

and 0 respectively.

On the other hand, this thesis offers a first study of GPLS. The method is still in its

infancy and further research is required. Although the present study demonstrates the

effectiveness of GPLS on several benchmarks with different structures and objectives,

further studies are required to examine the sensitivity of GPLS to the complexity of the

shape of the Pareto front which may be, unlike the considered benchmarks, non-convex

or discontinuous. In addition, the study confirms the potential of GPLS to be a central

element in a multi-phase framework, though the proposed GPLS-based frameworks

are very simple. One potentially interesting research direction is to integrate GPLS

into more sophisticated frameworks to enhance its performance further. There are

several effective frameworks in the literature of multi-objective metaheuristics which

can be coupled with GPLS. A recent framework that has attracted the attentions of

researchers is MOEA/D [136]. Instead of performing multiple independent GPLS in

mGPLS, a similar approach to that of MOEA/D can be applied such that each GPLS

(as an agent) can employ some knowledge obtained from its neighbours (i.e. the closest

GPLS agents).
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