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Abstract: The choice of a particular algorithm for solving a given
class of constraint satisfaction problems is often confused by
exceptional behaviour of algorithms. One method of reducing the
impact of this exceptional behaviour is to adopt an adaptive
philosophy to constraint satisfaction problem solving.
In this report we describe one such adaptive algorithm, based on the
principle of chaining. It is designed to avoid the phenomenon of
exceptionally hard problems. Our algorithm shows how the speed of
more naïve algorithms can be utilised safe in the knowledge that the
exceptional behaviour can be bounded.
Our work clearly demonstrates the potential benefits of the adaptive
approach and opens a new front of research for the constraint
satisfaction community.

1. Motivation

The constraint satisfaction problem (CSP) can be defined in terms of the triple <Z, D, C>,
where Z is a set of variables, D is a mapping of the variables in Z to domains and C is a set
of constraints (Tsang 93). Given this definition of a CSP there are many ways in which
different types of CSPs can be classified, in terms of the elements of Z, D and C1. This
classification may then be used as a basis for the selection of a particular algorithm to
solve that class of problems.

There is, however, a significant complication with the definition of CSP classes.
Sometimes particular instances of problems in a class may exhibit exceptional qualities, in
terms of the solving abilities of the chosen algorithm. One clear example of this is the

1 in (Borrett&Tsang 95) the issue of classifying different formulations of the same problem is considered.
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phenomenon of exceptionally hard problems (Hogg&Williams 94), (Gent&Walsh 94),
(Smith 94b), or EHPs as they shall be referred to in this paper.

The example of EHPs is illustrative of the dilemma posed to the problem solver. There is a
clear choice of either using a naïve algorithm which is likely to solve most instances very
quickly, at the risk of catastrophic encounter with an EHP, or to choose a more complex
algorithm, which has a far lower probability of encountering EHPs2. However, as is often
the case, the use of more complex algorithms entails a higher overhead.

In this paper we consider a more flexible approach which we describe as adaptive
constraint satisfaction. It is designed to draw from the benefits of both approaches
outlined above. The notion of adaptive constraint satisfaction can be encapsulated in the
following description:

Adaptive Constraint Satisfaction is a general philosophy for solving
constraint satisfaction problems. It aims to make use of the many
algorithms and techniques available by relaxing the commitment to a
single algorithm when solving a particular CSP, allowing for the active
modification or  switching of algorithms during the search process.

We outline a particular instance of the adaptive approach where we make use of
Algorithmic Chaining. The result is REBA (for Reduced Exceptional Behaviour
Algorithm) which is designed to avoid the phenomenon of exceptionally hard problems in
the so called easy region for solvable CSPs.

In the following section we discuss further our adaptive strategy. In section 3 we describe
in detail the REBA algorithm. In section 4 the performance of the REBA algorithm is
assessed and our conclusions are presented in section 5. The data for charts presented in
this paper is given in Appendix A.

2. The Adaptive Strategy

As mentioned in section 1, adaptive constraint satisfaction is a general approach to solving
CSPs. Within that approach there are many possible strategies. We examine one particular
adaptive strategy, designed to reduce the significance of EHPs by utilising algorithmic
chaining. Algorithmic chaining uses a set of algorithms, arranged in a pre-determined
order, combined with a switching mechanism. The switching mechanism monitors the
search process of the current algorithm and, should certain conditions occur, stops the
current algorithm, trying again with the next algorithm in the chain. In this section we
discuss these two elements of the strategy.

2 In the context of complete algorithms, (Smith&Grant 95a), (Smith&Grant 95b) suggest it is likely that
investing in more complex algorithms, such as  forward checking with conflict-directed back-jumping
(Prosser 93), will decrease the frequency of encounters with EHPs.
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2.1 Chain Design

As noted in (Smith&Grant 95a), (Smith&Grant 95b) the phenomenon of EHPs appears to
affect different algorithms to different degrees. However, the trend tends to be for more
naïve algorithms, such as simple chronological backtracking algorithms, to be more
susceptible. This presents us with two potentially useful measures for ranking algorithms.
The first is the cost to solve ‘normal’ occurrences of CSPs (measured by the median cost),
and the second is the algorithms sensitivity to EHPs. An example of possible differences in
ranking is given in Table 1.

Rank Algorithm Complexity Median Cost Sensitivity to EHPs
1 X X Z
2 Y Y Y
3 Z Z X

Table 1 - Example showing how the ranking of algorithms can differ when based on
median cost of solving CSPs, and sensitivity to EHPs.

If we can determine similar rankings to those in Table 1, we would have enough
information to design a useful chain for solving CSPs in the easy region whilst increasing
the likelihood of avoiding the potentially catastrophic effects of encountering an EHP. The
chain can simply be set to an ordering based on the “Quickest First Principle” (QFP),
where quickest indicates the algorithm with the best median performance.

We wanted to design an algorithm for solving easy solvable problems. Using QFP means
that we always have the potential for solving the CSPs quickly. However, if we can detect
that the current algorithm is not working well, we could switch to the next quickest
algorithm, and so on3. As a result we can still benefit from the speed of the naïve
algorithms, while at the same time, having the capability to resort to more complex
algorithms in the event that a switch scenario is detected.

While there is some overhead involved in this approach, the benefits can be considerable.
For example, the ability to use a simple algorithm can result in an order of magnitude gain
in performance over its more complex counterparts. Another advantage is that in the event
of a bad initial choice of algorithm, we are not stuck with it. Mistakes of this nature will be
rectified when we switch away from the bad choice.

2.2 Switching Policy

The main requirements of the switching mechanism are that it can detect the phenomena
you wish to avoid, while adding only minimal overheads to the basic algorithm. For REBA

3 In (Frost&Dechter 95) a form of switching is suggested as a possible means of reducing the overhead
incurred by their more complex Look-ahead Value Ordering based algorithms, when solving very easy
problems.
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this means we need to predict the thrashing type behaviour associated with EHPs
encountered by naïve algorithms, using a simple and efficient prediction method.

There appear to be many types of thrashing in CSPs. (Smith&Grant 95a), (Smith&Grant
95b) note the basic thrashing scenario is often seen in chronological backtracking
algorithms such as forward checking (Haralick&Elliott 80). This is the worst type of
thrashing, where the algorithm visits all nodes in a sub-tree of the search space when it is
futile to do so. This type of thrashing is not experienced by more complex algorithms,
such as intelligent back-jumping algorithms. However the idea of a search sub-space being
repeatedly visited when it is futile to do so still occurs in these algorithms, the main
difference being the amount of the sub-space visited.

At the heart of the switching mechanism of REBA is the MSL thrashing predictor which is
described in detail in section 3.2. MSL attempts to predict when thrashing type behaviour
is likely to occur such that only a small portion of any futile sub search space is actually
explored by the algorithm in question. Using a sensitivity threshold supplied to it, the
predictor will suggest that a switch is necessary if the threshold is reached.

3. The Reduced Exceptional Behaviour Algorithm (REBA)

Having outlined the basic strategy for our Reduced Exceptional Behaviour Algorithm, we
give more details of its design. We also give a description of the prediction mechanism
used by REBA.

3.1 The REBA Algorithm Chain

The chain used by REBA is designed using the principles outlined in Section 2. This chain
uses a selection of algorithms with good median performance on easy soluble CSPs, and a
selection of algorithms with good worst case performance. Having carried out some
preliminary investigations, we chose to use the following algorithms;

BM+MWO back-marking (Gashnig 77) with the minimum width
ordering (Freuder 82)

BMCBJ+MWO back-marking with conflict-directed backjumping
(Prosser 93) with the minimum width ordering

BMCBJ+MDO back-marking with conflict-directed backjumping
(Prosser 93) with the maximum degree ordering4

FCCBJ+BZ forward checking with conflict-directed backjumping
(Prosser 93) with the Brélaz ordering (Turner 88),
(Brélaz 79)

MAC+MDO Maintain Arc Consistency (Sabin&Freuder 94) with the
maximum degree ordering

4 This is a static ordering based on arranging the variables in descending order of their degree.
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We propose to use these algorithms in the following chain to tackle problems in the easy,
soluble region:

BM+MWO ➙  BMCBJ+MWO ➙  BMCBJ+MDO ➙  FCCBJ+BZ ➙  MAC+MDO

The reasoning behind this chain is that BM+MWO is very fast for many easy soluble
problems, but very susceptible to EHPs. However, it might succeed in a very quick
solution, otherwise thrashing will be detected. In the event that BM+MWO fails, we try
adding intelligent backjumping to it. If this fails, we try changing the ordering, since a bad
ordering is often a contributing factor to EHPs (Smith 94b). If these simpler algorithms
fall victim to an EHP, we attempt to use a form of forward checking with conflict-directed
backjumping and a dynamic variable ordering. Finally, if this fails, we resort to another
algorithm which has relatively low susceptibility to EHPs, MAC+MDO.

3.2 The Monitor Search Level (MSL) Thrashing Predictor

In this section we describe the Monitor Search Level (MSL) thrashing predictor. We
describe the behaviour MSL watches for, and explain how it decides when this behaviour
is sufficiently clear for thrashing to be predicted.

As a basis for the design of MSL we defined the following functional specification;

Given a CSP, an algorithm, and a variable ordering, the predictor should
monitor the progress of the search and be able to predict if thrashing is
likely to occur during the search.

One indication of thrashing is when the search from a particular level i never proceeds
beyond a certain depth, d, and that a large proportion of the search space between level i
and level i+d is explored (i.e. little pruning takes place between these two levels). Such a
situation  can occur when the culprits of the failure at level i+d precede the level i. MSL is
a simple method which uses this observation to predict thrashing type behaviour.

Before discussing MSL in more detail, we must identify three distinct types of progress
which occur during search. These are presented in figure 1.

The types of progress are defined as;

1. A value is found for the current variable which is compatible with all
previous assignments, or future variables in the case of lookahead
algorithms. For example the second arrow in Figure 1, where a value is
found for the variable at level 2 which is compatible with the value
assigned to the variable at level 1.

2. Backtracking occurs after finding no values for the current variable
which are compatible with previous assignments, or future variables in
the case of lookahead algorithms. For example the third arrow in
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Figure 1, where no value can be found for the variable at level 3 which
is compatible with the current assignments of the variables at levels 1
and 2. This will be known as a No Assigned Value (NAV) backtrack.
The NAV backtrack occurs at the tail of the arrow, level 3. At the head
of the arrow, level 2 learns of an Unsuccessful Subspace Search (USS).

3. Backtracking occurs, but only after at least one value has been found
for the current variable which is compatible with the assignments of
previous variables, or future variables in the case of lookahead
algorithms (Meaning the search must have progressed at least one level
further down than the current one). For example the seventh arrow in
Figure 1, where a value for the variable at level 3 has been found which
is compatible with the assignments of the variables at levels 1 and 2, but
is later rejected because no value can be found for the variable at level
4. This will be known as a Successfully Assigned Values (SAV)
backtrack. The SAV backtrack occurs at the tail of the arrow, level 3.
At the head of the arrow, level 2 learns of a USS.

Figure 1 - the types of progress during search

During the search MSL keeps track of the last level at which a NAV backtrack occurred.
This is considered to be the deepest level of the current search sub-space. We will refer to
this level as DEEPEST.

In addition, for each level in the search, MSL keeps track of two values. Firstly a count
indicating the number of USS’s which returned to the level with the same value for
DEEPEST. Secondly a record of the value of DEEPEST when this count is started. We
will refer to these values as counti and DLi respectively, where i is the level they refer to.

In considering how the count is maintained, we must examine the seven possible cases.
These depend on whether a USS, a NAV backtrack or a SAV backtrack is occurring, and
what the value of DEEPEST is compared to the value of DLi for the level. Table 2
illustrates the different actions taken at a given level, i, depending on these circumstances.

1 2 3

Level 1

Level 3

Level 4

Level 2
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Some points should be noted here :

• DEEPEST and counti are initialised to 0 and DLi are initialised to i
• DEEPEST can only be changed by a NAV backtrack occurring, and

always changes when such a backtrack occurs.

(1)
DEEPEST < DLi

(2)
DEEPEST = DLi

(3)
DEEPEST > DLi

(a)
USS

No action Increase counti by 1;
Check count against
threshold

Set counti to 1;
Set DLi to DEEPEST

(b)
NAV

Backtrack

Set DEEPEST to i Set DEEPEST to i Not Possible

(c)
SAV

Backtrack

Reset counti to 0;
Set DLi to DEEPEST

No action Not Possible

Table 2 - Possible actions of MSL on counti and DLi for level i.

Figure 2 - Example search
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Figure 2 gives an example illustrating the possible situations encountered by MSL. Each
column in Figure 2 represents either an assignment, a NAV backtrack, or a SAV
backtrack together with a USS if applicable (except the first column). The numbers below
the arrow indicate the values of DL1,..,DL4, count1,...,count4 and DEEPEST after the
actions for that column have been carried out. The values of the actions indicate which
entries in Table 2 applies to the above arrow5. This includes actions at both the tail and the
head of the arrow. The first column simply shows the initial values before the search
begins.

As an example consider columns 14 to 16. Column 14 shows a simple assignment to the
variable at level 3, action A. No further actions take place.

Column 15 then shows a NAV backtrack from the variable at level 4. When the backtrack
occurs, DL4 = 4 and DEEPEST = 3, so DL4 > DEEPEST and entry b1 in Table 2 applies
to level 4. As a result DEEPEST is set to the value of i, i.e. DEEPEST =  4. At the head
of the arrow USS entry a3 applies (because DEEPEST = 4 and DL3 = 3) and count3 is set
to 1 with DL3 being set to DEEPEST.

Column 16 shows a SAV backtrack from the variable at level 3. When the backtrack
occurs, DL3 = 4 and DEEPEST = 4. Since DL3 = DEEPEST entry c2 in Table 2 applies
and no action is taken at level 3. At the head of the arrow USS entry a3 applies and count2

is set to 1 with DL2 being set to DEEPEST.

3.2.1 Effectiveness of Thrashing Prediction Mechanisms

Having defined the function of the prediction mechanism, we also define a set of criteria
for evaluating its effectiveness. These criteria consist of three main points;

i. It should predict as exceptionally hard those problems with high search
cost for the current algorithm.

ii. The computational cost of predicting a CSP to be exceptionally hard
should be low and preferably not exceed the median cost. It should also be
cheap in terms of space.

iii. It should not be so sensitive that too many problems are predicted to be
exceptionally hard. A high proportion of the problems with search costs of
median or lower should not be predicted to be exceptionally hard for the
current algorithm.

3.3 The REBA Switching Mechanism

The MSL predictor is used by REBA for its switching mechanism. This is done by REBA
supplying the predictor with a formula for calculating the threshold. If the threshold is
exceeded, then MSL suggests that a switch should take place. As a result, REBA will
switch to the next algorithm in the chain.

5 The entry A indicates a successful assignment, no action is taken.
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We have experimented with a threshold based on the domain size of the variables, and the
number of levels separating the current level i and DLi. The base threshold is a multiple of
the domain size. The number of separating levels is taken as DLi - i. The more separating
levels, the lower the threshold has to be for switching to occur. The formula used is;

Threshold base
n separation

n
= −



*

where base is the base threshold, which is a linear function of the domain size
n is the number of variables,
separation is the number of separating levels (DLi - i).

The threshold is adjusted according to separation to improve the sensitivity of detection
when the subspace is only searched sparsely, as might be the case with intelligent
backjumping algorithms.

Note that in subsequent experiments a suffix is given to the name of REBA. This suffix
indicates the multiples of the domain size used for the base threshold.

4. Experiments

In order to evaluate the overall performance of REBA and the effectiveness of its
switching mechanism we carried out an experiment on sets of easy soluble CSPs (which is
what REBA is designed to tackle). This section describes details of our experiment as well
as presenting our results.

4.1 Experimental Design

The main aim of our experiment was to compare the performance of REBA with two
types of algorithms - those exhibiting good median performance in the easy soluble region,
and those that have a good worst case performance on easy soluble region. The actual
CSPs we used were based on randomly generated binary CSPs classified by the tuple <n,
m, p1, p2>, where the elements of the tuple are defined as;

n number of variables
m uniform domain size
p1 density of constraints in the constraint graph
p2 tightness of individual constraints6 i.e. the percentage of

incompatible assignments between the two variables involved in
the constraint

6 The original definition, which we have used in our previous work, was given by (Haralick&Elliott 80)
and (Nudel 83) as being the constraint looseness, or percentage of compatible labels in the binary
constraint relation matrix. The more modern interpretation as used by (Prosser 94)(Smith 94a) interprets
p2 as being the percentage of incompatible labels in the binary constraint relation matrix. Due to the
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Specifically, we wanted to conduct our experiments on problems in the easy soluble region
where exceptionally hard problems were likely to occur. As a result, we chose the class
<50, 10 , 0.1, 0.35 - 0.5 >. This range of p2 gives us a spread of problems in the region of
interest and it also includes some of the sets of problems used in (Smith&Grant 95a) and
(Smith&Grant 95b), where EHPs were investigated.

The algorithms we chose for comparison, based on initial tests of problems in the class
description above, were as follows;

BMCBJ+MWO back-marking with conflict-directed backjumping with the static
minimum width ordering - this combination gives a low median
performance but has a sensitive worst case performance in the
region of interest.

FCCBJ+BZ forward checking with conflict-directed backjumping with the
dynamic Brélaz ordering - this combination gives a relatively
high median performance but a good worst case performance in
the region of interest.

MAC+MDO maintain arc-consistency with the static maximum degree
ordering - this combination also gives a relatively high median
performance but a good worst case performance in the region
of interest.

The CSPs for our experiments were generated at intervals of p2 of 0.01 and the sample
size for each data point was 1000. In order to limit the impact of EHPs on our
experimentation time, we limited the actual process CPU time for any given run to 30
minutes. Where this time is exceeded, the compatibility check count up to that time was
recorded7.

The effect of using such a limit is that for a few data points, for the BMCBJ+MWO
combination, the limit was reached. This does not detract from the essence of our results,
however, since the effect of any EHP is still clearly visible. The truncated values are many
orders of magnitude above the median search cost.

4.2 The Effectiveness of REBA

The results of our experiment in measuring the effectiveness of REBA are presented in
figures 3-68. The results clearly show that the use of algorithmic chaining in REBA has

popularity of the modern interpretation, and the volume of work based on it, we have decided to adopt that
definition, for the sake of uniformity in the field.
7 Note that the algorithms were implemented in C++ and run on DEC Alpha 3000 Model 600 AXP
workstations running at 175 MHz
8 We only present cpu time results for MAC since our implementation is the same as that of
(Sabin&Freuder 94) where the compatibility check count is not a true reflection of the work done by
MAC.
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produced a good worst case performance where the impact of EHPs has been significantly
reduced. This is evident in the worst case plots of figures 4 and 6. REBA even
outperforms FCCBJ+BZ in many cases. At the same time, the median performance of
REBA is much better than that of the more complex algorithms, in most cases. This is
particularly apparent when the CPU time is considered as in figures 5 and 6.

It should be noted that we have tested REBA on easy problems. This is because we
advocate that different types of problem would be tackled by different algorithms as noted
in (Tsang,Borrett&Kwan 95). REBA, by design, appears to be useful in tackling problems
in the easy region on the soluble side of the phase transition. It is the subject of further
work to investigate the applicability of the strategies used in REBA to tackling other
problem types such as those in the phase transition.
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Figure 6 - worst case performance on 50 variable problems in terms
 of cpu time

4.3 Evaluation of the MSL Predictor

To see how effective the switch detection mechanism in REBA is, we carried out a further
experiment. We ran a version of BM+MWO, which included the MSL predictor, and
monitored where a switch was predicted (if one was required). If a switch was predicted,
the number of compatibility checks was recorded and the algorithm was allowed to
continue running to completion to see what the actual outcome would have been10. We

                                                       
9 Note that where the plot for REBA and BMCBJ+MWO does not exist this means the median time was
less that one clock cycle and hence does not show in the logarithmic scale
10 For the purposes of this experiment we used a base threshold equal to the domain size of the variables.
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also repeated this experiment for an intelligent backjumping algorithm, BMCBJ+MWO,
allowing us to observe the effectiveness of MSL in these two types of algorithm.

For the BM+MWO combination, a problem set of 1000 CSPs were generated with the
specification <50, 10, 0.1, 0.4>. For the BMCBJ+MWO combination 1000 CSPs with the
specification <50, 10, 0.1, 0.5>. This difference in p2 is a reflection of the location where
REBA was observed to have switched from these algorithms in the experiment detailed in
section 4.2.

In section 3 we defined three criteria for a evaluating a thrashing prediction mechanism.
We present our results in three ways to address these criteria. In figures 9 and 10 we see
how effective MSL is at filtering out problems where the actual cost of search to
completion would have been high, including the possibility of EHPs. These histograms
show the actual cost to completion of all the instances where a switch would have taken
place11(of which there were 589 for BM+MWO and  693 for BMCBJ+MWO).
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Figure 10 - Ultimate search cost for BMCBJ+MWO had a
switch not been predicted (total of 693 instances)

                                                       
11 The results are presented as multiples of the median search cost when considering the cost to
completion for all CSPs in the sample of 1000.
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These two figures show how there are many high cost searches predicted by MSL to be
thrashing.

The second criterion was that the cost to detection should be low. Figures 11 and 12 show
the actual search cost up to detection for the instances where a switch was suggested.
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Figure 12 - Cost to predict a switch for BMCBJ+MWO
(total of 693 instances)

As can be seen from these figures the performance is good since the median cost for
predicting a switch in BM+MWO was always less than the median search cost when all
CSPs are considered. For BMCBJ+MWO a similar result can be seen, with the exception
of a few cases. However, even with these exceptions, there are no cases where the cost
exceeds five times the overall median.

Finally, the third criterion was that the prediction mechanism should not be too sensitive
and prevent completion of search for the many problems that would have only had median
cost to solve to completion. Figures 13 and 14 show the cost of search for all the
problems where no switch was predicted place (of which there were 411 for BM+MWO
and  307 for BMCBJ+MWO).
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Figure 13 - Search cost for problems where no switch was
predicted for BM+MWO (total of 411 instances)
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Figure 14 - Search cost for problems where no switch was
predicted for BMCBJ+MWO (total of 307 instances)

This clearly shows that no high cost problems are allowed through and that there were
many low cost problems let through. For BM+MWO, the maximum search cost for a CSP
in this set was less than the median for all problems. In the case of BMCBJ+MWO, the
maximum never exceeds five times the median.

From figures 9-14 it is clear that the MSL predictor used for this version of REBA, with a
base threshold of 1.0, has performed very effectively, and that the criteria laid out in
section 3.2 are largely fulfilled.

There is obviously a trade off when choosing the value for the threshold such that no
exceptionally hard problems are encountered, whilst at the same time allowing the
majority of the easier problems to be solved. The base threshold we have used was equal
to the domain size of the variables and was the same for all algorithms. However, it may
be possible to improve the effectiveness of algorithms such as REBA by using a different
threshold, or perhaps by using different thresholds for the different algorithms in the chain.

We have experimented with different thresholds and find that they also produce good
results when compared to the algorithms used in the above tests. We have also looked at
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how REBA performs with larger problem sizes. Again, REBA performs well. These
results are given in section A.2.

5. Discussion

In this paper we have demonstrated the potential of adaptive constraint satisfaction. We
have outlined a particular application of the adaptive approach using the technique known
as algorithmic chaining. This technique was incorporated in an algorithm that we have
named REBA, and has been shown to be effective in reducing susceptibility to
exceptionally hard problems.

The REBA algorithm makes use of a mechanism for predicting when thrashing type
behaviour is likely to occur. This notion of prediction is one of the keys to the adaptive
approach since it is prediction that allows algorithms to avoid problem search spaces
before they can impact significantly on the overall search. The MSL mechanism used here
is very cheap to implement and it has been shown to be reasonably accurate.

Experiments with the REBA algorithm, which is specifically designed to reduce the impact
of exceptionally hard problems, show that it is possible to take advantage of the speed of
basic constraint satisfaction algorithms when solving easy, soluble CSPs, while at the same
time allowing us to bound the exceptional behaviour of these algorithms when exceptional
problem instances are encountered. The principle of using the quickest algorithm first
means that the best case performance of the naïve algorithms always has a chance of being
achieved. It also gives the opportunity for fast solutions to be provided in the event that
“exceptionally easy” problems are encountered - this could be significant if a similar
method were to be used on, for example, hard classes of CSPs.

This piece of work has opened many new areas of future work. We intend to further
investigate the use of chains and similar methods of choosing appropriate algorithms to
switch to in types of problems other than soluble easy CSPs. We also intend to look at
other methods for detecting when it would be useful to switch between algorithms. This
would involve identifying useful information that can be gathered during search. The
actual process of switching could also be a source of improvement in efficiency with the
possibility of transferring information gathered to successive algorithms.
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Appendix A

A.1 Tables of results for figures 2-6

p2 bmcbj+mwo fccbj+bz REBA1.0
35 296 934 300
36 308 929 319
37 324.5 920 344
38 342 914 446
39 367 907.5 530
40 399.5 904 601
41 435.5 899 671
42 489.5 900 742.5
43 575 897 840
44 620 906 932
45 799 915 1216.5
46 1021.5 932 1691
47 1226 982 2037
48 2090 1064 2475.5
49 3624.5 1244 3002
50 5785 1628 3491.5

Table A1 - Data for Figure 3, median performance on
50 variable problems in terms of compatibility checks

p2 bmcbj+mwo fccbj+bz REBA1.0
35 815674 1005 3044
36 2639 1274 2342
37 8067955 1320 2886
38 50716 1828 3092
39 13907031 2103 4787
40 913249 1139 4601
41 2E+08 2737 3997
42 14676577 29868 37618
43 698687 3071 27071
44 1.43E+08 1242863 32790
45 1.57E+08 16877 30992
46 1.56E+08 66307 53962
47 9738619 1875137 48700
48 12706257 107156 52169
49 23113988 524932 50650
50 11733913 269627 100697

Table A2 - Data for Figure 4, worst case performance on
50 variable problems in terms of compatibility checks
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p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
35 0 49 250 0
36 0 33 249 0
37 0 49 233 0
38 0 33 233 0
39 0 49 233 0
40 0 49 233 0
41 0 49 233 0
42 0 49 233 0
43 16 49 233 0
44 16 49 216 16
45 16 49 216 16
46 16 49 216 16
47 16 49 216 16
48 16 50 216 33
49 33 66 216 49
50 50 66 216 65

Table A3 - Data for Figure 5, median performance on
50 variable problems in terms of cpu time

p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
35 8016 83 316 49
36 16 83 283 66
37 71233 83 283 66
38 416 82 266 82
39 157783 83 333 82
40 9283 83 266 99
41 1800000 116 850 82
42 138433 916 283 498
43 6916 132 300 283
44 1800000 50266 316 448
45 1800000 583 300 332
46 1800000 2582 950 1082
47 107600 55149 366 766
48 144550 3549 433 815
49 237282 17632 650 732
50 135583 8549 1983 2615

Table A4 - Data for Figure 6, worst case performance on
50 variable problems in terms of cpu time
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A.2 Results for 100 Variables
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 of compatibility checks
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 of cpu time
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A.3 Tables of results for Figures A1 - A4

p2 bmcbj+mwo fccbj+bz REBA1.0
15 865 3757 866
16 918 3682 928
17 971 3607 1010.5
18 1047 3533 1446.5
19 1177.5 3465 1830
20 1383.5 3396 2037.5
21 1598.5 3335 2275.5
22 1940.5 3271 2694
23 2756 3222.5 3606

Table A5 - Data for Figure A1, median performance on
100 variable problems in terms of compatibility checks

p2 bmcbj+mwo fccbj+bz REBA1.0
15 2353 3920 3261
16 3387 3834 4100
17 3527 3773 5996
18 90854 3706 10388
19 10129 3623 11008
20 30716 3584 16016
21 1527678 3804 16256
22 4266115 5348 29393
23 59600500 4400 41197

Table A6 - Data for Figure A2, worst case performance on 100
variable problems in terms of compatibility checks

p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
15 16 166 1232 0
16 16 166 1216 0
17 16 166 1200 16
18 16 166 1199 16
19 32 166 1183 16
20 32 166 1166 16
21 32 150 1166 16
22 32 166 1150 32
23 33 150 1133 33

Table A7 - Data for Figure A3, median performance on
100 variable problems in terms of cpu time
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p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
15 33 216 1266 49
16 49 216 1283 49
17 66 216 1266 132
18 832 200 1266 164
19 116 216 1333 215
20 532 200 1249 232
21 16800 200 1216 232
22 61533 283 1199 315
23 884032 216 1182 432

Table A8 - Data for Figure A4, worst case performance on
100 variable problems in terms of cpu time

A.4 REBA Results for Different Base Thresholds

p2 median checks median cpu time worst case checks worst case cpu time
REBA2.0 REBA1.5 REBA2.0 REBA1.5 REBA2.0 REBA1.5 REBA2.0 REBA1.5

35 299 299 0 0 2068 2057 33 33
36 314 314 0 0 4016 3111 98 49
37 339 339.5 0 0 3421 3143 48 49
38 375.5 380.5 0 0 6000 4709 66 49
39 489.5 520.5 0 0 6356 5837 99 50
40 608.5 602 0 0 6387 6387 82 98
41 716 698 0 0 6567 6028 83 98
42 782.5 762 0 0 8938 8437 98 82
43 895.5 865 0 0 14045 13285 198 116
44 969.5 944 16 0 24296 17351 298 183
45 1181.5 1158 16 16 27050 16279 316 199
46 1461 1408.5 16 16 49321 34802 832 750
47 1730 1744.5 16 16 101768 98090 2482 2533
48 2834 2766 32 32 56755 45932 1098 848
49 4407 4026.5 49 49 133510 146291 2799 3482
50 5962 5172.5 66 66 240225 221734 5682 5132

Table A8 - REBA results for base thresholds of 1.5 and 2.0
 for CSPs used in figures 3-6
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p2 median checks median cpu time worst case checks worst case cpu time
REBA2.0 REBA1.5 REBA2.0 REBA1.5 REBA2.0 REBA1.5 REBA2.0 REBA1.5

15 866 866 0 0 2841 2829 49 49
16 926.5 927 16 0 4197 4191 66 66
17 994.5 997 16 16 4082 4077 50 49
18 1420 1437.5 16 16 13668 10756 115 99
19 1861 1834.5 16 16 7783 7770 66 83
20 2103 2072 16 16 19634 14960 148 216
21 2345 2302.5 16 16 29137 24651 332 299
22 2703.5 2693 32 32 106636 39053 949 366
23 3457 3447 33 33 92259 80427 915 732

Table A9 - REBA results for base thresholds of 1.5 and 2.0
for CSPs used in figures A1-A4


