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Adaptive Constraint Satisfaction: The Quickest
First Principle

James E. Borrett and Edward P.K. Tsang

Abstract. The choice of a particular algorithm for solving a given class of constraint
satisfaction problems is often confused by exceptional behaviour of algorithms. One
method of reducing the impact of this exceptional behaviour is to adopt an adaptive
philosophy to constraint satisfaction problem solving. In this report we describe one
such adaptive algorithm, based on the principle of chaining. It is designed to avoid
the phenomenon of exceptionally hard problem instances. Our algorithm shows how
the speed of more naive algorithms can be utilised safe in the knowledge that the
exceptional behaviour can be bounded. Our work clearly demonstrates the potential
benefits of the adaptive approach and opens a new front of research for the constraint
satisfaction community.

1 Introduction

Constraint Satisfaction Problems occur in many areas of everyday life. These range
from problems such as timetabling and transport planning to configuration prob-
lems and document layout design. In all cases, the notion of a Constraint Satisfac-
tion Problem (CSP) is characterised by the need to assign values to elements of the
problem instances, these values coming from a finite set of possibilities and subject
to a set of rules or constraints [23].

Once a CSP has been identified there are whole host of problem solving tech-
niques which have been developed for solving them [23]]. The most basic of these is
the simple backtracking algorithm but more sophisticated algorithms such as look-
ahead approaches have been shown to be highly effective [13] and are commonly
used in commercial software libraries such as ILOG Solver [22]. Heuristic search
has been applied to CSP with success, e.g. see [14] [32], and have also been
embedded in industrial packages such as iOpt [33].
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More formally, the constraint satisfaction problem (CSP) can be defined in terms
of the triple <Z, D, C>, where Z is a set of variables, D is a mapping of the variables
in Z to domains and C is a set of constraints [31]]. Given this definition of a CSP,
there are many ways in which different types of problem can be classified, in terms
of the elements of Z, D and . This classification may then be used as a basis for
the selection of a particular algorithm to solve that class of problems.

There is, however, a significant complication with the definition of CSP classes.
Sometimes particular instances of problems in a class may exhibit exceptional qual-
ities, in terms of the solving abilities of the chosen algorithm. One clear example
of this is the phenomenon of exceptionally hard problem instances [28]], or EHPs as
they shall be referred to in this paper.

The example of EHPs is illustrative of the dilemma posed to the problem solver.
There is a clear choice of either using a naive algorithm which is likely to solve
most instances very quickly, at the risk of catastrophic encounter with an EHP, or to
choose a more complex algorithm, which has a far lower probability of encountering
EHP{. However, as is often the case, the use of more complex algorithms entails
an overhead [J

One approach which can overcome this dilemma is to use a more flexible ap-
proach which we describe as adaptive constraint satisfaction. The notion of adaptive
constraint satisfaction can be encapsulated in the following description:

Adaptive Constraint Satisfaction is a general philosophy for solving constraint satis-
faction problems. It aims to make use of the many algorithms and techniques available
by relaxing the commitment to a single algorithm when solving a particular CSP, al-
lowing for the active modification or switching of algorithms and models during the
search process.

Built upon the Adaptive Constraint Satisfaction context was a set of research
projects. Adaptive constraint satisfaction is based on the belief that there is no “best
algorithm” in constraint satisfaction — different algorithms work for different prob-
lem instances — an idea that was later articulated as the “No Free Lunch Theorem”
[33] I’.Elﬁ Based on this belief, Kwan et al [30] developed a machine learn-
ing framework for learned mappings from CSPs to algorithms and heuristics. Given

I'In [3] the issue of classifying different formulations of the same problem is considered.

2 In the context of complete algorithms, [23]], [26]] suggest it is likely that investing in more
complex algorithms, such as forward checking with conflict-directed backjumping [20],
will decrease the frequency of encounters with EHPs.

3 Given that EHPs are algorithm dependent, as explained above, another approach is to
restart the search with, say a random algorithm. The difficulty in this approach is deciding
when to restart. Abandoning the search prematurely means a waste of search effort; if one
is not careful, one could end up restarting indefinitely. That motivated us to develop a
mechanism to recognize thrashing.

4 See Adaptive Constraint Satisfaction Project (1992-98) http://csp.bracil.net/acs.html

> According to this theorem “there is no free lunch when the probability distribution on
problem instances is such that all problem solvers have identically distributed results”. See
Wikipedia http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization (ac-
cessed 18 August 2008)
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a CSP, the algorithm picked may not work efficiently. This is because such map-
pings were generated statistically, which may not apply to every problem instance.
The problem instance on hand may be “exceptionally hard” to the chosen algo-
rithm and heuristic. Therefore, part of the Adaptive Constraint Satisfaction project
was to develop measures for monitoring algorithms when they search. Every algo-
rithm is designed to exploit certain characteristics of the problem instance. If an
algorithm/heuristic does not do what it is supposed to do, it should be stopped, and
a different algorithm/heuristic should be used. For example, lookahead algorithms
are designed to propagate constraints in order to prune the search space and
detect dead-ends. If, during the search, it is found that not much of the search space
is pruned, and a large amount of constraint propagation effort has resulted in few
dead-ends being detected, the lookahead algorithm that is currently used should be
replaced.

In this paper, we outline a particular instance of the adaptive approach where we
make use of Algorithmic Chaining. The result is REBA (for Reduced Exceptional
Behaviour Algorithm) which is designed to avoid the phenomenon of exceptionally
hard problems in the so called easy region for solvable CSPs. REBA operates on
complete search methods — methods that explore the search space systematically
and entirely if necessary.

2 The Adaptive Strategy

We have defined adaptive constraint satisfaction as a general approach to solving
CSPs. Within that approach there are many possible strategies. We examine one
particular adaptive strategy, designed to reduce the significance of EHPs by utilis-
ing algorithmic chaining. Algorithmic chaining uses a set of algorithms, arranged
in a pre-determined order, combined with a switching mechanism. The switching
mechanism monitors the search process of the current algorithm and, should certain
conditions occur, stops the current algorithm, trying again with the next algorithm
in the chain. In this section we discuss these two elements of the strategy.

2.1 Chain Design

As noted in [23]], the phenomenon of EHPs appears to affect different
algorithms to different degrees. However, the trend tends to be for more naive algo-
rithms, such as simple chronological backtracking algorithms, to be more suscepti-
ble. This presents us with two potentially useful measures for ranking algorithms.
The first is the cost to solve ‘normal’ occurrences of CSPs (measured by the median
cost), and the second is the algorithms sensitivity to EHPs. An example of possible
differences in ranking is given in Table[]l

If we can determine similar rankings to those in Table [II we would have
enough information to design a useful chain for solving CSPs in the easy region
whilst increasing the likelihood of avoiding the potentially catastrophic effects of
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Table 1 Example showing how the ranking of algorithms can differ when based on median
cost of solving CSPs, and sensitivity to EHPs

Rank Algorithm Complexity |Median Cost|Sensitivity to EHPs
1 X X Z
2 Y Y Y
3 zZ Z X

encountering an EHP. The chain can simply be set to an ordering based on the
“Quickest First Principle” (QFP), where quickest indicates the algorithm with the
best median performance.

We wanted to design an algorithm for solving easy solvable problems without
failing in EHPs. Using QFP means that we always have the potential for solving the
CSPs quickly. However, if we can detect that the current algorithm is not working
well, we could switch to the next quickest algorithm, and so on. As a result we can
still benefit from the speed of the naive algorithms while at the same time having the
capability to resort to more complex algorithms in the event that a switch scenario
is detected.

While there is some overhead involved in this approach, the benefits can be con-
siderable. For example, the ability to use a simple algorithm can result in an order of
magnitude gain in performance over its more complex counterparts. Another advan-
tage is that in the event of a bad initial choice of algorithm, we are not stuck with it.
Mistakes of this nature will be rectified when we switch away from the bad choice.

2.2 Switching Policy

The main requirements of the switching mechanism are that it can detect the phe-
nomena you wish to avoid, while adding only minimal overheads to the basic al-
gorithm. For REBA this means we need to predict the thrashing type behaviour
associated with EHPs encountered by naive algorithms, using a simple and efficient
prediction method.

There appear to be many types of thrashing in CSPs. [23]], [26] note the basic
thrashing scenario is often seen in chronological backtracking algorithms such as
forward checking [13]]. This is the worst type of thrashing, where the algorithm vis-
its all nodes in a sub-tree of the search space when it is futile to do so. It is not
experienced by more complex algorithms, such as intelligent backjumping algo-
rithms. However the idea of a search sub-space being repeatedly visited when it is
futile to do so still occurs in these algorithms, the main difference being the amount
of the sub-space visited.

At the heart of the switching mechanism of REBA is the Monitor Search Level
(MSL) thrashing predictor which is described in detail in Section MSL rep-
resents one possible mechanism which attempts to predict when thrashing type
behaviour is likely to occur such that only a small portion of any futile sub
search space is actually explored by the algorithm in question. Using a sensitivity
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threshold supplied to it, the predictor will suggest that a switch is necessary if the
threshold is reached.

3 The Reduced Exceptional Behaviour Algorithm (REBA)

Having outlined the basic strategy for our Reduced Exceptional Behaviour Algo-
rithm, we give more details of its design. We also give a description of the prediction
mechanism used by REBA.

3.1 The REBA Algorithm Chain

The chain used by REBA is designed using the principles outlined in Section2l This
chain uses a selection of algorithms with good median performance on easy soluble
CSPs, and a selection of algorithms with good worst case performance. These cover
a range of complete search techniques including features such as forward checking,
backjumping and heuristics which cover both static and dynamic variable orderings.
No stochastic algorithms are considered for REBA, but this should not rule out the
possibility of using them in alternative adaptive approaches. Space would not allow
us to go into details of these algorithms. Relevant pointers are provided here.
explains most of these algorithms. In a way, it is not essential to understand details
of these algorithms. For this paper, the relevant point is that they cover a wide range
of algorithms and heuristics with diversified strength.

Having carried out some preliminary investigations, we chose to use the follow-
ing algorithms;

BM+MWO back-marking [9] with the minimum width ordering
heuristic [6]

BMCBJ+MWO back-marking with conflict-directed backjumping [20]
with the minimum width ordering heuristic

BMCBJ+MDO back-marking with conflict-directed backjumping [20]
with the maximum degree ordering heuristi

FCCBJ+BZ forward checking with conflict-directed backjumping
[20] with the Brélaz ordering heuristic [29],
MAC+MDO Maintain Arc Consistency with the maximum de-

gree ordering heuristic

We propose to use these algorithms in the following chain to tackle problem
instances in the easy, soluble region:

BM+MWO — BMCBJ+MWO — BMCBJ+MDO — FCCBJ+BZ —
MAC+MDO

The reasoning behind this chain is that BM+MWO is very fast for many easy sol-
uble problem instances, but very susceptible to EHPs. However, it might succeed
in a very quick solution, otherwise thrashing will be detected. In the event that
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thrashing

Search level i+d
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Fig. 1 An example of a sub search space
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Fig. 2 The types of progress during search (see text for explanations)

BM+MWO fails, we try adding intelligent backjumping to it. If this fails, we try
changing the ordering, since a bad ordering is often a contributing factor to EHPs
. If these simpler algorithms fall victim to an EHP, we attempt to use a form
of forward checking with conflict-directed backjumping and a dynamic variable or-
dering. Finally, if this fails, we resort to another algorithm which has relatively low
susceptibility to EHPs, MAC+MDO.

3.2 The Monitor Search Level (MSL) Thrashing Predictor

In this section we describe the Monitor Search Level (MSL) thrashing predictor.
We describe the behaviour MSL watches for, and explain how it decides when this
behaviour is sufficiently clear for thrashing to be predicted.
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As a basis for the design of MSL we defined the following functional specifica-
tion;

Given a CSP, an algorithm, and a variable ordering, the predictor should monitor the
progress of the search and be able to predict if thrashing is likely to occur during the
search.

One indication of thrashing is when the search from a particular level i never pro-
ceeds beyond a certain depth, d, and that a large proportion of the search space
between level i and level i 4-d is explored (i.e. little pruning takes place between
these two levels, see Figure[I). Such a situation can occur when the culprits of the
failure at level i + d precede the level i. MSL is a simple method which uses this
observation to predict thrashing type behaviour.

Before discussing MSL in more detail, we must identify three distinct types of
progress which occur during search. These are presented in figure P2l The types of
progress are defined as;

1. A value is found for the current variable which is compatible with all previous
assignments, or future variables in the case of lookahead algorithms. For example
the second arrow in Figure 2] where a value is found for the variable at level 2
which is compatible with the value assigned to the variable at level 1.

2. Backtracking occurs after finding no values for the current variable which are
compatible with previous assignments, or future variables in the case of looka-
head algorithms. For example the third arrow in Figure 2l where no value can
be found for the variable at level 3 which is compatible with the current assign-
ments of the variables at levels 1 and 2. This will be known as a No Assigned
Value (NAV) backtrack. The NAV backtrack occurs at the tail of the arrow, level
3. At the head of the arrow, level 2 learns of an Unsuccessful Subspace Search
(USS).

3. Backtracking occurs, but only after at least one value has been found for the
current variable which is compatible with the assignments of previous variables,
or future variables in the case of lookahead algorithms (Meaning the search must
have progressed at least one level further down than the current one). For example
the seventh arrow in Figure 2] where a value for the variable at level 3 has been
found which is compatible with the assignments of the variables at levels 1 and
2, but is later rejected because no value can be found for the variable at level
4. This will be known as a Successfully Assigned Values (SAV) backtrack. The
SAV backtrack occurs at the tail of the arrow, level 3. At the head of the arrow,
level 2 learns of a USS.

During the search MSL keeps track of the last level at which a NAV backtrack
occurred. This is considered to be the deepest level of the current search sub-space.
We will refer to this level as DEEPEST.

In addition, for each level in the search, MSL keeps track of two values. Firstly
a count indicating the number of USS’s which returned to the level with the same
value for DEEPEST. Secondly a record of the value of DEEPEST when this count
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Table 2 Possible actions of MSL on count; and DL; for level i

(1) (2) (3)
DEEPEST < DL; |[DEEPEST=DL; |DEEPEST > DL;
(a) No action Increase count; by|Set count; to I;
USS 1; Set DL; to DEEP-
Check count against|EST
threshold
(b) Set DEEPEST toi |Set DEEPEST toi [Not Possible
NAV
Back-
track
() Reset count; to 0; |No action Not Possible
SAV Set DL; to DEEP-
Back- |EST
track

is started. We will refer to these values as count; and DL; respectively, where i is the
level they refer to.

In considering how the count is maintained, we must examine the seven possible
cases. These depend on whether a USS, a NAV backtrack or a SAV backtrack is
occurring, and what the value of DEEPEST is compared to the value of DL; for the
level. Table Plillustrates the different actions taken at a given level, i, depending on
these circumstances.

Some points should be noted here:

e DEEPEST and count; are initialised to 0 and DL; are initialised to i
o DEEPEST can only be changed by a NAV backtrack occurring, and always
changes when such a backtrack occurs.

Figure [3] gives an example illustrating the possible situations encountered by
MSL. Each column in Figure Blrepresents either an assignment, a NAV backtrack,
or a SAV backtrack together with a USS if applicable (with the exception of the
first column). The numbers below the arrow indicate the values of DLi,..,DLy4,
county,...,count, and DEEPEST after the actions for that column have been car-
ried out. The values of the actions indicate which entries in Table [2] apply to the
above arrowﬂ. This includes actions at both the tail and the head of the arrow. The
first column simply shows the initial values before the search begins.

As an example consider columns 14 to 16. Column 14 shows a simple assignment
to the variable at level 3, action A. No further actions take place. Column 15 then
shows a NAV backtrack from the variable at level 4. When the backtrack occurs,
DL4 =4 and DEEPEST = 3,s0 DLy > DEEPEST and entry b1 in Table D applies
to level 4. As a result DEEPEST is set to the value of i, i.e. DEEPEST = 4. At the

7 The entry A indicates a successful assignment, no action is taken.
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Fig. 3 Example search

head of the arrow USS entry a3 applies (because DEEPEST = 4 and DL3 = 3) and
counts is set to 1 with DL3 being set to DEEPEST.

Column 16 shows a SAV backtrack from the variable at level 3. When the back-
track occurs, DL3 =4 and DEEPEST = 4. Since DL3 = DEEPEST entry ¢2 in Table
applies and no action is taken at level 3. At the head of the arrow USS entry a3
applies and count; is set to 1 with DL; being set to DEEPEST.

3.2.1 Effectiveness of Thrashing Prediction Mechanisms

Having defined the function of our prediction mechanism, we also define a set of
criteria for evaluating its effectiveness. These criteria are based on three main func-
tions;

i It should predict as exceptionally hard those problem instances with high search
cost for the current algorithm.

ii The computational cost of predicting a CSP to be exceptionally hard should be
low and preferably not exceed the median cost. It should also be cheap in terms
of space.

iii It should not be so sensitive that too many problem instances are predicted to
be exceptionally hard. A high proportion of the problem instances with search
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costs of median or lower should not be predicted to be exceptionally hard for the
current algorithm.

3.3 The REBA Switching Mechanism

The MSL predictor is used by REBA for its switching mechanism. This is done
by REBA supplying the predictor with a formula for calculating the threshold. If
the threshold is exceeded, then MSL suggests that a switch should take place. As a
result, REBA will switch to the next algorithm in the chain.

We have experimented with a threshold based on the domain size of the variables,
and the number of levels separating the current level i and DL;. The base threshold
is a multiple of the domain size. The number of separating levels is taken as DL, - i.
The more separating levels, the lower the threshold has to be for switching to occur.
The formula used is;

T hreshold = base * (M)
where: - base is the base threshold, which is a linear function of the domain size

- n is the number of variables,

- separation is the number of separating levels (DL;- 1).
The threshold is adjusted according to separation to improve the sensitivity of de-
tection when the subspace is only searched sparsely, as might be the case with intel-
ligent backjumping algorithms.

Note that in subsequent experiments a suffix is given to the name of REBA. This
suffix indicates the multiples of the domain size used for the base threshold.

4 Experiments

In order to evaluate the overall performance of REBA and the effectiveness of its
switching mechanism we carried out an experiment on different classes of easy
soluble CSPs (which is what REBA is designed to tackle). This section describes
details of our experiment as well as presenting our results.

4.1 Experimental Design

The main aim of our experiment was to compare the performance of REBA with two
types of algorithms - those exhibiting good median performance in the easy soluble
region, and those that have a good worst case performance on easy soluble region.
Randomly generated CSPs are used to evaluate REBA. They allow us to control the
tightness of problem classes, and therefore select appropriate problem classes for
experimentation.
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The actual CSPs we used were based on randomly generated binary CSPs clas-
sified by the tuple <n, m, pl, p2>, where the elements of the tuple are defined
as;

n number of variables

m uniform domain size

pl density of constraints in the constraint graph

p2 tightness of individual constraints i.e. the percentage of incompatible

assignments between the two variables involved in the constraint

Specifically, we wanted to conduct our experiments on problems in the so-called
easy soluble region where exceptionally hard problem instances were likely to oc-
cur. As a result, we chose the class <50, 10, 0.1, 0.35 - 0.5 >. This range of p2
gives us a spread of problem instances in the region of interest and it also includes
some of the sets of problems used in [23]] and [26], where EHPs were investigated.

The algorithms we chose for comparison, based on initial tests of problem
instances in the class description above, were as follows;

BMCBJ+MWO back-marking with conflict-directed backjumping with
the static minimum width ordering - this combination
gives a low median performance but has a sensitive
worst case performance in the region of interest.

FCCBJ+BZ forward checking with conflict-directed backjumping
with the dynamic Brélaz ordering - this combination
gives a relatively high median performance but a good
worst case performance in the region of interest.

MAC+MDO maintain arc-consistency with the static maximum de-
gree ordering - this combination also gives a relatively
high median performance but a good worst case perfor-
mance in the region of interest.

The CSPs for our experiments were generated at intervals of p2 of 0.01 and the
sample size for each data point was 1000. In order to limit the impact of EHPs on
our experimentation time, we limited the actual process CPU time for any given run
to 30 minutes. Where this time is exceeded, the compatibility check count up to that
time was recorded].

The effect of using such a limit is that for a few data points, for the BM-
CBJ+MWO combination, the limit was reached. This does not detract from the
essence of our results, however, since the effect of any EHP is still clearly visi-
ble. The truncated values are many orders of magnitude above the median search
cost.

9 Note that the algorithms were implemented in C++ and run on DEC Alpha 3000 Model
600 AXP workstations running at 175 MHz.
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4.2 The Effectiveness of REBA

The results of our experiment in measuring the effectiveness of REBA are presented
in Figures @AY, The results clearly show that the use of algorithmic chaining in
REBA has produced a good worst case performance where the impact of EHPs has
been significantly reduced. This is evident in the worst case plots of Figures[3land[7l
REBA even outperforms FCCBJ+BZ in many cases. At the same time, the median
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10We only present cpu time results for MAC since our implementation is the same as that
of where the compatibility check count is not a true reflection of the work done by
MAC.
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performance of REBA is much better than that of the more complex algorithms,
in most cases. This is particularly apparent when the CPU time is considered as in
Figures[6and[7]

It should be noted that we have tested REBA on problems in the easy region.
This is because we advocate that different types of problem would be tackled by
different algorithms as noted in [30]. REBA, by design, appears to be useful in
tackling problems in the easy region on the soluble side of the phase transition. It is
the subject of further work to investigate the applicability of the strategies used in
REBA to tackling other problem types such as those in the phase transition.
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4.3 Evaluation of the MSL Predictor

To see how effective the switch detection mechanism in REBA is, we carried out
a further experiment. This time, we did not run the chain of algorithms. Instead,
we ran a version of BM+MWO, which included the MSL predictor, and monitored
where a switch was predicted (if one was required). If a switch was predicted, the
number of compatibility checks was recorded and the algorithm was allowed to
continue running to completion to see what the actual outcome would have beerl .
We also repeated this experiment for an intelligent backjumping algorithm, BM-
CBJ+MWO, allowing us to observe the effectiveness of MSL in these two types of
algorithm.

For the BM+MWO combination, a problem set of 1000 CSPs were generated
with the specification <50, 10, 0.1, 0.4>. For the BMCBJ+MWO combination 1000
CSPs with the specification <50, 10, 0.1, 0.5>. This difference in p2 is a reflection
of the location where REBA was observed to have switched from these algorithms
in the experiment detailed in Sectiond.2]

In Section 3] we defined three criteria for a evaluating a thrashing prediction
mechanism. We present our results in three ways to address these criteria. In Figures
and[Ql we see how effective MSL is at filtering out problems where the actual cost
of search to completion would have been high, including the possibility of EHPs.
These histograms show the actual cost to completion of all the instances where a
switch would have taken plac(of which there were 589 for BM+MWO and 693
for BMCBJ+MWO).

These two figures show how there are many high cost searches predicted by MSL
to be thrashing.
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Fig. 8 Ultimate search cost for BM+MWO had a switch not been predicted (total of 589
instances)

1 For the purposes of this experiment we used a base threshold equal to the domain size of
the variables.

12 The results are presented as multiples of the median search cost when considering the cost
to completion for all CSPs in the sample of 1000.
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Fig. 9 Ultimate search cost for BMCBJ+MWO had a switch not been predicted (total of 693
instances)

The second criterion was that the cost to detection should be low. Figures[IQland
[Tl show the actual search cost up to detection for the instances where a switch was
suggested.

As can be seen from these figures the performance is good, since the median
cost for predicting a switch in BM+MWO was always less than the median search
cost when all CSPs are considered. For BMCBJ+MWO a similar result can be seen,
with the exception of a few cases. However, even with these exceptions, there are
no cases where the cost exceeds five times the overall median.

Finally, the third criterion was that the prediction mechanism should not be too
sensitive and prevent completion of search for the many problem instances that
would have only had median cost to solve to completion. Figures [12] and [13| show
the cost of search for all the problem instances where no switch was predicted place
(of which there were 411 for BM+MWO and 307 for BMCBJ+MWO).
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Fig. 10 Cost to predict a switch for BM+MWO (total of 589 instances)
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Fig. 11 Cost to predict a switch for BMCBJ+MWO (total of 693 instances)
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Fig. 12 Search cost for problems where no switch was predicted for BM+MWO (total of 411
instances)

This clearly shows that no high cost problem instances are allowed through and
that there were many low cost problems let through. For BM+MWO, the maximum
search cost for a CSP in this set was less than the median for all problems. In the
case of BMCBJ+MWO, the maximum never exceeds five times the median.

From Figures OHI4! it is clear that the MSL predictor used for this version of
REBA, with a base threshold of 1.0, has performed very effectively, and that the
criteria laid out in Section[3.2] are largely fulfilled.

There is obviously a trade off when choosing the value for the threshold such that
no exceptionally hard problems are encountered, whilst at the same time allowing
the majority of the easier problems to be solved. The base threshold we have used
was equal to the domain size of the variables and was the same for all algorithms.
However, it may be possible to improve the effectiveness of algorithms such as
REBA by using a different threshold, or perhaps by using different thresholds for
the different algorithms in the chain.
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Fig. 13 Search cost for problems where no switch was predicted for BMCBJ+MWO (total
of 307 instances)

We have experimented with different thresholds and find that they also produce
good results when compared to the algorithms used in the above tests. We have also
looked at how REBA performs with larger problem sizes. Again, REBA performs
well. These results are given in Section A2.

5 Discussion

In this chapter we have demonstrated the potential of adaptive constraint satisfac-
tion. We have outlined a particular application of the adaptive approach using the
technique known as algorithmic chaining. This technique was incorporated in an al-
gorithm that we have named REBA, and has been shown to be effective in reducing
susceptibility to exceptionally hard problem instances.

The REBA algorithm makes use of a mechanism for predicting when thrashing
type behaviour is likely to occur. This notion of prediction is one of the keys to the
adaptive approach since it is prediction that allows algorithms to avoid search spaces
before they can impact significantly on the overall search. The MSL mechanism
used here is computationally very cheap and it has been shown to be reasonably
accurate.

Experiments with the REBA algorithm, which is specifically designed to reduce
the impact of exceptionally hard problem instances, show that it is possible to take
advantage of the speed of basic constraint satisfaction algorithms when solving easy,
soluble problem instances, while at the same time allowing us to bound the excep-
tional behaviour of these algorithms when exceptional problem instances are en-
countered. The principle of using the quickest algorithm first means that the best
case performance of the naive algorithms always has a chance of being achieved.
It also gives the opportunity for fast solutions to be provided in the event that “ex-
ceptionally easy” problem instances are encountered - this could be significant if a
similar method were to be used on, for example, hard classes of CSPs.
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REBA represents a novel approach which demonstrates the potential of collab-
oration between algorithms. Exceptionally hard problem instances are so punitive
in terms of cost that effective detection of potential traps for naive algorithms us-
ing a low cost detection mechanism such as MSL that it is possible to make use of
more sophisticated algorithms when they are needed, without incurring their general
overhead.

REBA demonstrates a number of key ideas of adaptive constraint satisfaction.
First, it recognizes that no algorithm is best for every CSP, as the No Free Lunch
Theorem does. It also demonstrates that search performance could be monitored
to see whether the algorithm is achieving what it is designed to achieve. (In fact,
there is no reason why algorithms should not be monitored beyond the constraint
satisfaction context.) REBA also demonstrates that efficiency can be gained by a
rigid chain of algorithms.

Gomes et al [12]] studied when expensive search happens in a given algorithm,
which is highly related to thrashing detection in REBA. Dynamic restart was also
investigated by a number of other works. Kautz et al [38] defined a set of policies
for restarting the search. Gagliolo and Schmidhuber [8, [7]] proposed to model the
runtime distribution — if training is possible — and use the estimated runtime distri-
bution to decide when to restart. In the Solution-Guided Search algorithm, Beck [2]
set, before the search starts, limits on the number of fails that the search is allowed
to encounter. One could imagine using REBA’s thrashing predictor to dynamically
set this limit.

Using a portfolio of algorithms for constraint satisfaction has gained momen-
tum in the last decade, see, for example, [13], [11] and [39]. Once a portfolio of
algorithms is involved, selecting the right algorithm for the job becomes part of the
research agenda in [10] and [39].

Many attempts have been made to learn from the problem solving experience.
The idea of selecting the right heuristic algorithm during run time was developed
by Allen and Minton [1]]. Epstein et. al. [5] sought to learn search order heuristics
during problem solving. Related to these ideas, Minton demonstrated the pos-
sibility of synthesizing heuristics. Kern (2005) used population-based incremental
learning to select algorithms and parameters. Kern’s work is embedded in iOpt [33],
which is used in many real-life dynamic problems, such as service scheduling [34]].

This piece of work has opened many new areas of future work. One could fur-
ther investigate the use of chains and similar methods of choosing appropriate algo-
rithms to switch to in types of problems other than soluble easy CSPs. One could
also look at other methods for detecting when it would be useful to switch between
algorithms. This would involve identifying useful information that can be gathered
during search. The actual process of switching could also be a source of improve-
ment in efficiency. Ideally, information collected during the search could be used
for selecting the new algorithm or heuristic. When switches take place, information
gathered so far could be transferred to successive algorithms.
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Appendix

A.1 Tables of results for Figures d-7]

Table 3 Data for Figure[d] median performance on 50 variable problems in terms of compat-
ibility checks

p2 bmcbj+mwo|fcebj+bz| REBAL.0
35 296 934 300
36 308 929 319
37 3245 920 344
38 342 914 446
39 367 907.5 {530
40 399.5 904 601
41 435.5 899 671
42 489.5 900 742.5
43 575 897 840
44 620 906 932
45 799 915 1216.5
46 1021.5 932 1691
47 1226 982 2037
48 2090 1064 2475.5
49 3624.5 1244 3002
50 5785 1628 3491.5
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Table 4 Data for Figure [3l worst case performance on 50 variable problems in terms of
compatibility checks

p2 bmcbj+mwo|fcebj+bz| REBAL.0
35 815674 1005 3044
36 2639 1274 2342
37 8067955 1320 2886
38 50716 1828 3092
39 13907031 (2103 4787
40 913249 1139 4601
41 2E+08 2737 3997
42 14676577 (29868 |37618
43 698687 3071 27071
44 1.43E+08  [1242863(32790
45 1.57E+08 [16877 30992
46 1.56E+08 66307 |53962
47 9738619 187513748700
48 12706257 107156 |52169
49 23113988 (524932 |50650
50 11733913 (269627 |100697

Table 5 Data for Figure[6l median performance on 50 variable problems in terms of cpu time

p2 bmcbj+mwo|fcebj+bz|mac+mdo|REBA1.0
35 0 49 250 0
36 0 33 249 0
37 0 49 233 0
38 0 33 233 0
39 0 49 233 0
40 0 49 233 0
41 0 49 233 0
42 0 49 233 0
43 16 49 233 0
44 16 49 216 16
45 16 49 216 16
46 16 49 216 16
47 16 49 216 16
48 16 50 216 33
49 33 66 216 49
50 50 66 216 65
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Table 6 Data for Figure[7] worst case performance on 50 variable problems in terms of cpu
time

p2 bmcbj+mwo|fcebj+bz|mac+mdo|REBA1.0
35 8016 83 316 49
36 16 83 283 66
37 71233 83 283 66
38 416 82 266 82
39 157783 83 333 82
40 9283 83 266 99
41 1800000 116 850 82
42 138433 916 283 498
43 6916 132 300 283
44 1800000 50266 |316 448
45 1800000 583 300 332
46 1800000 2582 950 1082
47 107600 55149 {366 766
48 144550 3549 433 815
49 237282 17632 650 732
50 135583 8549 1983 2615

A.2 Results for 100 Variables
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Fig. 14 Median performance on 100 variable problems in terms of compatibility checks
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Fig. 16 Median performance on 100 variable problems in terms of cpu time
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Fig. 17 Worst case performance on 100 variable problems in terms of cpu time

A.3 Tables of results for Figures [I4- 17

225

Table 7 Data for Figure[T4l median performance on 100 variable problems in terms of com-

patibility checks
p2 bmcbj+mwo|fccbj+bz| REBA1.0
15 865 3757 866
16 918 3682 928
17 971 3607 1010.5
18 1047 3533 1446.5
19 1177.5 3465 1830
20 1383.5 3396 2037.5
21 1598.5 3335 2275.5
22 1940.5 3271 2694
23 2756 3222.5 |3606
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Table 8 Data for Figure worst case performance on 100 variable problems in terms of
compatibility checks

p2 bmcbj+mwo|fccbj+bz| REBAL.0
15 2353 3920 3261

16 3387 3834 4100

17 3527 3773 5996

18 90854 3706 10388

19 10129 3623 11008

20 30716 3584 16016

21 1527678 3804 16256

22 4266115 5348 29393

23 59600500 4400 41197

Table 9 Data for Figure median performance on 100 variable problems in terms of cpu
time

p2 bmcbj+mwo|fccbj+bz|mac+mdo|REBA1.0
15 16 166 1232 0

16 16 166 1216 0

17 16 166 1200 16

18 16 166 1199 16

19 32 166 1183 16

20 32 166 1166 16

21 32 150 1166 16

22 32 166 1150 32

23 33 150 1133 33

Table 10 Data for Figure[T7] worst case performance on 100 variable problems in terms of
cpu time

p2 bmcbj+mwo|fccbj+bz|mac+mdo|REBA1.0
15 33 216 1266 49

16 49 216 1283 49

17 66 216 1266 132

18 832 200 1266 164

19 116 216 1333 215

20 532 200 1249 232

21 16800 200 1216 232

22 61533 283 1199 315

23 884032 216 1182 432
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