
GENET: A Connectionist Architecture for Solving Constraint
Satisfaction Problems by Iterative Improvement�

Andrew Davenport, Edward Tsang, Chang J. Wang and Kangmin Zhu

Department of Computer Science, University of Essex,
Wivenhoe Park, Colchester,

Essex CO4 3SQ, United Kingdom.
fdaveat,edward,cwang,kangming@essex.ac.uk

Abstract

New approaches to solving constraint satisfaction
problems using iterative improvement techniques have
been found to be successful on certain, very large prob-
lems such as the million queens. However, on highly
constrained problems it is possible for these meth-
ods to get caught in local minima. In this paper we
present genet, a connectionist architecture for solv-
ing binary and general constraint satisfaction prob-
lems by iterative improvement. genet incorporates
a learning strategy to escape from local minima. Al-
though genet has been designed to be implemented
on vlsi hardware, we present empirical evidence to
show that even when simulated on a single processor
genet can outperform existing iterative improvement
techniques on hard instances of certain constraint sat-
isfaction problems.

Introduction

Recently, new approaches to solving constraint satis-
faction problems (csps) have been developed based
upon iterative improvement (Minton et al. 1992;
Selman & Kautz 1993; Sosic & Gu 1991). This
technique involves �rst generating an initial, possi-
bly \awed" assignment of values to variables, then
hill-climbing in the space of possible modi�cations to
these assignments to minimize the number of con-
straint violations. Iterative improvement techniques
have been found to be very successful on certain kinds
of problems, for instance the min-conicts hill-climbing
(Minton et al. 1992) search can solve the million
queens problem in seconds, while gsat can solve hard,
propositional satis�ability problems much larger than
those which can be solved by more conventional search
methods.
These methods do have a number of drawbacks.

Firstly, many of them are not complete. However,
the size of problems we are able to solve using itera-
tive improvement techniques can so large that to do a

�Andrew Davenport is supported by a Science and Engi-
neering Research Council Ph.D Studentship. This research
has also been supported by a grant (GR/H75275) from the
Science and Engineering Research Council.

complete search would, in many cases, not be possible
anyway. A more serious drawback to iterative improve-
ment techniques is that they can easily get caught in
local minima. This is most likely to occur when trying
to solve highly constrained problems where the number
of solutions is relatively small.
In this paper we present genet, a neural-network

architecture for solving �nite constraint satisfaction
problems. genet solves csps by iterative improve-
ment and incorporates a learning strategy to escape lo-
cal minima. The design of genet was inspired by the
heuristic repair method (Minton et al. 1992), which
was itself based on a connectionist architecture for
solving csps|the Guarded Discrete Stochastic (gds)
network (Adorf & Johnston 1990). Since genet is a
connectionist architecture it is capable of being fully
parallelized. Indeed, genet has been designed specif-
ically for a vlsi implementation.
After introducing some terminology we describe a

genet model which has been shown to be e�ective for
solving binary csps (Wang & Tsang 1991). We intro-
duce extensions to this genet model to enable it to
solve problems with general constraints. We present
experimental results comparing genet with existing
iterative improvement techniques on hard graph color-
ing problems, on randomly generated general csps and
on the Car Sequencing Problem (Dincbas, Simonis, &
Van Hentenryck 1988). Finally, we briey explain what
we expect to gain by using vlsi technology.

Terminology
We de�ne a constraint satisfaction problem as a triple
(Z;D;C) (Tsang 1993), where:

� Z is a �nite set of variables,

� D is a function which maps every variable in Z to
a set of objects of arbitrary type. We denote by Dx

the set of objects mapped byD from x, where x 2 Z.
We call the set Dx the domain of x and the members
of Dx possible values of x.

� C is a set of constraints. Each constraint in C re-
stricts the values that can be assigned to the vari-
ables in Z simultaneously. A constraint is a nogood



if it forbids certain values being assigned to variables
simultaneously.

An n-ary constraint applies to n variables. A binary
csp is one with unary and binary constraints only. A
general csp may have constraints on any number of
variables.
We de�ne a label, denoted by hx; vi, as a variable-

value pair which represents the assignment of value
v to variable x. A compound label is the simul-
taneous assignment of values to variables. We use
(hx1; v1i; : : : ; hxn; vni) to denote the compound label
of assigning v1; : : : ; vn to x1; : : : ; xn respectively. A
k-compound label assigns k values to k variables si-
multaneously. A solution tuple of a csp is a compound
label for all the variables in the csp which satis�es all
the constraints.

Binary GENET

Network Architecture

The genet neural network architecture is similiar to
that of the gds network. In the genet network each
variable i in Z is represented by a cluster of label nodes,
one for each value j in its domain. Each label node may
be in one of two states \on" or \o�". The state Shi;ji
of a label node representing the label hi; ji indicates
whether the assignment of the value j to variable i is
true in the current network state. The output of a
label node Vhi;ji is 1 if Shi;ji is \on" and 0 otherwise.
All binary constraints in genetmust be represented

by nogood ground terms. Binary constraints are imple-
mented as inhibitory (negatively weighted) connections
between label nodes which may be modi�ed as a result
of learning. Initially all weights are set to �1.
The input to each label node Ihi;ji is the weighted

sum of the output of all the connected label nodes:

Ihi;ji =
X

k2Z;l2Dk

Whi;jihk;liVhk;li (1)

where Whi;jihk;li is the connection weight between the
label nodes representing the labels hi; ji and hk; li1.
Since there are only connections between incompat-

ible label nodes the input to a label node gives an in-
dication of how much constraint violation would occur
should the label node be in an on state. If no violation
would occur the input would be a maximumof zero. A
csp is solved when the input to all the on label nodes
is zero|such a state is called a global minima.
Each cluster of label nodes is governed by a mod-

ulator which e�ectively implements a variation of the
min-conicts heuristic (Minton et al. 1992). The pur-
pose of the modulator is to determine which label node
in the cluster is to be on. Only one label node in a clus-
ter may be on at any one time. The modulator selects
the label node with the highest input to be on, with ties

1If there is no constraint between two label nodes rep-
resenting hi; ji and hk; li then Whi;jihk;li = 0.

being broken randomly. When the modulator changes
the label node which is on in a cluster we say it has
made a repair.

GENET Convergence Procedure

A state of a genet network represents a complete
assignment of values to variables i.e. exactly one la-
bel node in each cluster is on. The initial state of
the genet network is determined randomly|one la-
bel node per cluster is selected arbitrarily to be on.
genet iterates over convergence cycles until it �nds a
global minima. We de�ne a convergence cycle as:

1. foreach cluster in parallel do2 update states of all
label nodes in cluster,

2. if none of the label nodes have changed state in step
1 then

(a) if the input to all on nodes is zero then solution
found|terminate,

(b) else activate learning,

3. goto step 1.

Learning

Like most hill-climbing searches, genet can reach lo-
cal optimal points in the search space where no more
improvements can be made to the current state|in
this case we say the network is in a minima. A local
minima is a minima in which constraints are violated.
genet can sometimes escape such minima by mak-
ing sideways moves to other states of the same \cost".
However in some minima this is not possible, in which
case we say the network is in a single-state minima. To
escape local minima we adjust the weights on the con-
nections between label nodes which violate a constraint
according to the following rule:3

W t+1
hi;jihk;li = W t

hi;jihk;li � Vhi;jiVhk;li (2)

where W t
hi;jihk;li is the connection weight between label

nodes representing hi; ji and hk; li at time t.
By using weights we associate with each constraint a

cost of violating that constraint. We can also associate
with each genet network state a cost which is the sum
of the magnitudes of the weights of all the constraints
violated in that state.
Learning has the e�ect of \�lling in" local minima by

increasing the cost of violating the constraints which
are violated in the minima. After learning, constraints
which were violated in the minima are less likely to
be violated again. This can be particularly useful in

2We do not want clusters to update their states at ex-
actly the same time since this may cause the network to
oscillate between a small number of states inde�nitely. In
a vlsi implementation we would expect the clusters to up-
date at slightly di�erent times.

3Morris (Morris 1993) has recently reported a similiar
mechanism for escaping minima.



structured csps where some constraints are more crit-
ical than others (Selman & Kautz 1993).
Learning is activated when the genet network state

remains unchanged after a convergence cycle. Thus
learning may occur when genet, given the choice of
a number of possible sideways moves to states of the
same cost, makes a sideways move back to its cur-
rent state. We consider this a useful feature of genet
since it allows the network to escape more complicated
multi-state minima composed of a \plateau" of states
of the same cost.
A consequence of learning is that we can show

genet is not complete. This is because learning a�ects
many other possible network states as well as those
that compose the local minima. As a result of learn-
ing new local minima may be created. A discussion of
the problems this may cause can be found in (Morris
1993).

General Constraints
Many real-life csps have general constraints e.g.
scheduling, car sequencing (Dincbas, Simonis, &
Van Hentenryck 1988). In this section we describe how
can we represent two types of general constraint, the il-
legal constraint and the atmost constraint, in a genet
network. One of our motivations for devising these par-
ticular constraints has been the Car Sequencing Prob-
lem, a real-life general csp once considered intractable
(Parrello & Kabat 1986) and which has been success-
fully tackled using csp solving techniques (Dincbas,
Simonis, & Van Hentenryck 1988).
Since we cannot represent general constraints by bi-

nary connections alone, we introduce a new class of
nodes called constraint nodes. A constraint node is
connected to one or more label nodes.
Let c be a constraint node and L be the set of label

nodes which are connected to c. Then the input Ic
to the constraint node c is the unweighted sum of the
outputs of these connected label nodes:

Ic =
X

hi;ji2L

Vhi;ji (3)

We can consider the connection weights between
constraint nodes and label nodes to be assymetric.
The weight on all connections from label nodes to con-
straint nodes is 1 and is not changed by learning. Con-
nection weights from constraint nodes to label nodes
are, like for binary constraints, initialised to �1 and
can change as a result of learning. The input to label
nodes in networks with general constraints C is now
given by:

Ihi;ji =
X

k2Z;l2Dk

Whi;jihk;liVhk;li +
X
c2C

Wc;hi;jiVc;hi;ji

(4)
where Vc;hi;ji is the output of the constraint node c to
the label node hi; ji.

The learning mechanism for connection weights
W t

c;hi;ji between constraint nodes c and label nodes

hi; ji is given by:

W t+1
c;hi;ji =

�
W t

c;hi;ji � 1 if Sc > 0

W t
c;hi;ji otherwise

(5)

where Sc is the state of the constraint node.

The Illegal Constraint
The illegal(hx1 ; v1 i; : : : ; hxk ; vki) constraint speci�es
that the k-compound label L = (hx1; v1i; : : : ; hxk; vki)
is a nogood. An illegal constraint is represented in a
genet network by an illegal constraint node, which is
connected to the k label nodes which represent the k
labels in L.

Sill = Iill � (k � 1) (6)

The state Sill of the illegal constraint node is nega-
tive if less than k� 1 of connected label nodes are on.
In this case there is no possibility that the constraint
will become violated should another node become on.
A constraint node in this state outputs 0 to all the
connected label nodes.
If k� 1 of the connected label nodes are on then we

want to discourage the remaining o� label node from
becoming on, since this will cause the constraint to
be violated. However, we do not wish to penalize the
label nodes which are already on, since the constraint
remain satis�ed even if they do change state. In this
case we want to output 1 to the label node which is o�
and 0 to the remaining label nodes.
Finally, if all the connected label nodes are on then

the constraint is violated. We want to penalize all these
nodes for violating the constraint, so we give them all
an output of 1 to encourage them to change state.
We summarize the output Vill;hi;ji from an illegal

constraint node ill to a label node representing the
label hi; ji by:

Vill;hi;ji =

�
0 if Sill < 0

1 + Sill � Vhi;ji otherwise (7)

The Atmost Constraint
We can easily extend the illegal constraint node ar-
chitecture to represent more complex constraints. For
instance, given a set of variables Var and values Val the
atmost(N, Var, Val) constraint speci�es that no more
than N variables from Var may take values from Val.
The atmost constraint node is connected to all nodes
of the set L which represent the labels fhi; jiji 2 Var,
j 2 Val, j 2 Dig. This constraint is a modi�cation
of the atmost constraint found in the chip constraint
logic programming language.
The state Satm of an atmost constraint node is de-

termined as follows:

Satm = Iatm � N (8)



The output from an atmost constraint node is simi-
lar to that for the illegal constraint node, although we
have the added complication that a single variable may
have more than one value in the constraint. We do not
want label nodes in the same cluster to receive di�erent
inputs from a particular constraint node since, in situ-
ations where the network would normally be in a single
state local minima, we would �nd the network oscillat-
ing about the states of these label nodes. Instead, we
give the output of an atmost constraint node atm to a
label node representing the label hi; ji as follows:

Vatm;hi;j i =

(
0 if Satm < 0

1�MaxfVhi;kijk 2 Valg if Satm = 0
1 otherwise

(9)

Experimental Results

Graph Coloring

In (Selman & Kautz 1993) it is reported that the per-
formance of gsat on graph coloring problems is com-
parable with the performance of some of the best spe-
cialised graph-coloring algorithms. This surprised us
since a graph coloring problem with N vertices to be
colored with k colors would require, in a conjunctive
normal form (cnf) representation, N � k variables.
Since each of these variables has a domain size of 2 the
size of the search space is 2Nk. To represent such a
problem as a csp would require N variables of domain
size k, giving a search space of size kN . For exam-
ple, the 250 variable 29 coloring problem in Table 1
has a search space size in genet of 4� 10365 possible
states. This is far smaller than the corresponding size
of 3� 102183 states possible in gsat.
Another di�erence between gsat and genet is the

way in which they make repairs. gsat picks the best
\global" repair which reduces the number of conicts
amongst all the variables, whereas genet makes \lo-
cal" repairs which minimizes the number of conicts
for each variable. Thus we would expect repairs made
by gsat to be of \higher quality" than those of genet,
although they are made at the extra expense of con-
sidering more possibilities for each repair.
We compared gsat4 and genet5 on a set of hard

graph coloring problems described in (Johnson et al.
1991), running each method ten times on each prob-
lem. We present the results of our experiments in Ta-
bles 1 and 2. Both gsat and genet managed to solve
all the problems, although gsat makes many more re-
pairs to solve each problem. These results seem to
con�rm our conjecture that for csps such as graph col-
oring genet is more e�ective than gsat because of the
way it represents such problems.

4We ran gsat with max-flips set to 10� the number of
variables, and with averaging in reset after every 25 tries.

5All experiments were carried out using a genet simu-
lator written in C++ on a Sun Microsystems Sparc Classic.

graph median median number
nodes colors time of repairs
125 17 8.0 hours 65; 197; 415
125 18 30 secs 65; 969
250 15 5.0 secs 2; 839
250 29 1.8 hours 7; 429; 308

Table 1: gsat on hard graph coloring problems.

graph median median number
nodes colors time of repairs
125 17 2.6 hours 1; 626; 861
125 18 23 secs 7; 011
250 15 4.2 secs 580
250 29 1.1 hours 571; 748

Table 2: genet on hard graph coloring problems.

Random General Constraint Satisfaction
Problems

There are two important di�erences between a sequen-
tial implementation of genet and min-conicts hill-
climbing (mchc). The �rst is our learning strategy
for escaping local minima. The second di�erence is in
choosing which variables to update. mchc selects ran-
domly a variable to update from the set of variables
which are currently in conict with other variables. In
genet we randomly select variables to update from the
set of all variables, regardless of whether they conict
with any other variables.
Our aim in this experiment was to try to determine

empirically what e�ect these individual modi�cations
to mchc was making to the e�ectiveness of its search.
We compared genet with a basic min-conicts hill-

climbing search, a modi�edmchc (mchc2) and a mod-
i�ed version of genet (genet2). mchc2 randomly se-
lects variables to update from the set of all variables,
not just those which are in conict. mchc2 can also
be regarded as a sequential version of genet without
learning. In genet2 variables are only updated if they
are in conict with other variables.
We produced a set of general csps with varying

numbers of the atmost(N,Var,Val) constraint, where
N = 3, jV arj = 5 and jV alj = 5. The problems
were not guaranteed to be solvable. Each problem had
�fty variables and a domain of ten values. The set of
variables and values in each constraint were generated
randomly. At each data-point we generated ten prob-
lems. We ran each problem ten times with genet,
genet2, mchc and mchc2. We set a limit of �ve hun-
dred thousand repairs for each run, after which failure
was reported if no solution had been found.
Figure 1 shows that mchc2 solves more problems

than mchc. This is to be expected since, because
mchc2 can modify the values of variables which are



0

20

40

60

80

100

400 420 440 460 480 500

%
Succ.
Runs

Number of atmost constraints

genet r

r r r r r r r r r r r r r r
r r

r

r

r

r

r

genet2 r

r r r r r r r r r r r

r r
r

r r
r

r

r

r
r

mchc r

r r

r

r
r

r r

r
r

r r r r r r r r r r r r

mchc2 r

r
r r

r

r r

r

r

r

r

r
r

r

r r

r r
r

r r r

Figure 1: Comparison of percentage of successful
runs for genet and min-conicts hill-climbing searches
on randomly generated general constraint satisfaction
problems.

not in conict, it is less likely to become trapped in
local minima. The performance of genet2 shows that
learning is an even more e�ective way of escaping local
minima. However Figure 1 shows that combining these
two approaches in genet is the most e�ective way of
escaping minima for this particular problem set.

The Car Sequencing Problem
We have been using the car-sequencing problem as
a benchmark problem during the development of a
genet model which would solve general csps. The
car-sequencing problem is a real-life general csp which
is considered particularly di�cult due to the presence
of global atmost constraints. For a full description of
the car sequencing problem see (Dincbas, Simonis, &
Van Hentenryck 1988).
We compared genet with mchc, mchc2 and chip.

chip is a constraint logic programming language which
uses a complete search based on forward-checking and
the fail-�rst principle to solve csps. In our experiments
we used randomly generated problems of size 200 cars
and utilisation percentages in the range 60% to 80%.
At each utilisation percentage we generated ten prob-
lems. The problems all had 200 variables with domains
varying from 17 to 28 values and approximately 1000
atmost constraints of varying arity. All the problems
were guaranteed to be solvable. We ran the genet,
mchc and mchc2 ten times on each problem, with
a limit of one million repairs for each run, after which
failure was reported. This limit corresponded to a run-
ning time of approximately 220 seconds at 60% utilisa-
tion up to 270 seconds at 80% utilisation. We used the
method described in (Dincbas, Simonis, & Van Hen-
tenryck 1988) to program the problems in chip, which

mchc mchc2
utilisa- % succ. median % succ. median
tion % runs repairs runs repairs
60 78 737 85 549
65 81 586 82 524
70 82 670 85 508
75 76 1282 82 811
80 29 10235 51 4449

Table 3: A comparison of mchc and mchc2 on 200 car
sequencing problems.

genet genet3
utilisa- % succ. median % succ. median
tion % runs repairs runs repairs
60 84 463 100 452
65 87 426 100 439
70 83 456 100 426
75 85 730 100 686
80 50 4529 100 1886

Table 4: A comparison of genet and genet3 on 200
car sequencing problems.

included adding redundant constraints to speed up the
search. With a time limit of one hour to solve each
problem chip managed to solve two problems at 60%
utilisation, one problem at 65% utilisation, two prob-
lems at 70% utilisation and one problem at 75% utili-
sation. The results for min-conicts hill-climbing and
genet on 200 car sequencing problems are given in
Tables 3 and 4.

From Table 3 it can be seen that mchc2 is more ef-
fective than mchc at solving the car-sequencing prob-
lem. However the results for mchc2 and genet are
very similiar, indicating that learning is having very
little or no e�ect in genet. This can be attributed to
the presence of very large plateaus of states of the same
cost in the search space. Learning is activated only
when genet stays in the same state for more than
one cycle, thus learning is less likely to occur when
these plateaus are large. To remedy this problem we
made a modi�cation to genet to force learning to oc-
cur more often. We de�ne the parameter psw as the
probability that, in a given convergence cycle, genet
maymake sideways moves. Thus, for each convergence
cycle, genet may make sideways moves with proba-
bility psw, and may only make moves which decrease
the cost with probability 1 � psw. Thus, if genet is
in a state where only sideways moves may be made
then learning will occur with a probability of at least
1� psw. The results for genet3 in Table 4, where psw
is set to 0.75, shows that this modi�cation signi�cantly
improves the performance of genet.



VLSI Implementation

Although the results presented so far have been ob-
tained using a genet simulator on a single proces-
sor machine, it is the aim of our project to implement
genet on vlsi chips. A full discussion of a vlsi im-
plementation for genet would be beyond the scope
of this paper6 so in this section we describe what we
expect to gain by using vlsi technology.
A disadvantage of the min-conicts heuristic, as

noted by Minton (Minton et al. 1992), is that the
time taken to accomplish a repair grows with the size
of the problem. For a single-processor implementation
of genet the cost of determining for a single variable
the best value to take is proportional to the number of
values in the domain of the variable and the number
constraints involving that value. To determine for each
variable the best value to take can potentially be per-
formed at constant time in a vlsi implementation of
genet no matter how large the domain or how highly
constrained the problem. This would mean that the
time taken for genet to perform a single convergence
cycle would be constant, no matter what the problem
characteristics7 . Since we estimate the time taken to
perform one convergence cycle using current vlsi tech-
nology to be of the order of tens of nanoseconds, this
would allow all the csps mentioned in this paper to be
solved in seconds rather than minutes or hours.

Conclusion

We have presented genet, a connectionist architecture
for solving constraint satisfaction problems by iterative
improvement. genet has been designed to be imple-
mented on vlsi hardware. However we have presented
empirical evidence to show that even when simulated
on a single processor genet can outperform existing
iterative improvement techiques on hard binary and
general csps,
We have developed strategies for escaping local min-

ima which we believe signi�cantly extend the scope
of hill-climbing searches based on the min-conicts
heuristic. We have presented empirical evidence to
show that genet can e�ectively escape local minima
when solving a range of highly constrained, real-life
and randomly generated problems.

Acknowledgements

We would also like to thank Alvin Kwan for his use-
ful comments on earlier drafts of this paper. We are
grateful to Bart Selman and Henry Kautz for making
their implementation of gsat available to us.

6A vlsi design for genet is described in (Wang & Tsang
1992)

7The size of problem would be limited by current vlsi
technology

References
Adorf, H., and Johnston, M. 1990. A discrete stochas-
tic neural network algorithm for constraint satisfac-
tion problems. In Proceedings of the International
Joint Conference on Neural Networks.

Dincbas, M.; Simonis, H.; and Van Hentenryck, P.
1988. Solving the car-sequencing problem in logic pro-
gramming. In Proceedings of ECAI-88.

Johnson, D.; Aragon, C.; McGeoch, L.; and Schevon,
C. 1991. Optimization by simulated annealing: an
experimental evaluation; part II, graph coloring and
number partitioning. Operations Research 39(3):378{
406.

Minton, S.; Johnston, M.; Philips, A.; and Laird, P.
1992. Minimizing conicts: a heuristic repair method
for constraint satisfaction and scheduling problems.
Arti�cial Intelligence 58:161{205.

Morris, P. 1993. The breakout method for escap-
ing from local minima. In Proceedings of the Twelth
National Conference on Arti�cial Intelligence. AAAI
Press/The MIT Press.

Parrello, B., and Kabat, W. C. 1986. Job-shop
scheduling using automated reasoning: A case study
of the car-sequencing problem. JOURNAL of Auto-
mated Reasoning 2:1{42.

Selman, B., and Kautz, H. 1993. Domain independent
extensions to GSAT: Solving large structured satis�-
ability problems. In Proceedings of the 13th Interna-
tional Joint Conference on Arti�cial Intelligence.

Sosic, R., and Gu, J. 1991. 3,000,000 queens in less
than one minute. SIGART Bulletin 2(2):22{24.

Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. Academic Press.

Wang, C., and Tsang, E. 1991. Solving constraint
satisfaction problems using neural-networks. In Pro-
ceedings IEE Second International Conference on Ar-
ti�cial Neural Networks.

Wang, C., and Tsang, E. 1992. A cascadable VLSI
design for GENET. In International Workshop on
VLSI for Neural Networks and Arti�cial Intelligence.


