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Abstract

Recently \exceptionally hard" prob-
lems have been found in the easy
region of problem spaces which can
be orders of magnitude harder to
solve than even the hardest prob-
lems in the phase transistion. How-
ever there is some uncertainty over
whether this phenomena of excep-
tionally hard problems occurs for all
algorithms, occurs only for complete
algorithms or is purely algorithm de-
pendent. The purpose of this pa-
per is to assess the performance of
a range of algorithms on problems
in the easy region in order to ad-
dress this issue. We present results
of an empirical investigation which
show that both soluble and insoluble
exceptionally hard problems can oc-
cur for even very sophisticated com-
plete search algorithms, although
the likelihood of such problems oc-
curing varies signi�cantly depending
on the algorithm being used to solve
them. genet, an incomplete, it-
erative repair-based search did not
encounter any soluble, exceptionally
hard problems in the easy region.

Introduction

Cheeseman et al [2] have shown that NP-
complete problems display a phase transis-
tion between regions of under-constrained,

mostly soluble problems and regions of over-
constrained, mostly insoluble problems as
some parameter is varied. The under-
constrained problems tend to be relatively
easy to solve and thus form an \easy" re-
gion of the problem space. Similiarly the
over-constrained problems tend to be rela-
tively easy to prove insoluble. However the
peak in median search cost is found in the
phase transistion, where we �nd both soluble
and insoluble problems. These problems have
been typically found to be hard to solve by all
algorithms and thus can be characterized as
being inherently hard.

Recently problems have been found in the
easy region of problem spaces which can be
orders of magnitude harder to solve than even
the hardest problems in the phase transistion
[4, 7, 11]. Williams and Hogg [7] have found
that the hardest problems are concentrated
below the phase transistion peak in median
search cost and identify these problems with
a second phase transistion, corresponding to
the transistion between polynomial and ex-
ponential scaling of the average search cost.
Gent and Walsh [4] observe that the greatest
variability in problem solving cost occurs in
this region and it occurs for both soluble and
insoluble problems.

There is some uncertainty over whether the
phenomena of exceptionally hard problems
occurs for all algorithms, only occurs for all
complete algorithms or is purely algorithm
dependent. Smith [11] concludes that some
exceptionally hard problems are \inherently



more di�cult than other similiar problems,
independently of the number of solutions they
have". Gent and Walsh [4] make the weaker
conjecture that the phenomena of exception-
ally hard problemsmay occur for all complete
algorithms. It is interesting to note that no-
body has yet reported any exceptionally hard,
soluble problems for incomplete, local search.
Williams and Hogg [7] have looked at the per-
formance of heuristic repair on graph colour-
ing problems while Gent and Walsh [5] have
examined the performance of gsat on easy 3-
sat problems, but neither found any excep-
tionally hard problems for these algorithms.
Does this mean that there are no exception-
ally hard problems for local search ? If this is
the case should we always prefer local search
to complete search when tackling problems in
the easy region, or can we avoid exceptionally
hard problems for complete search by using
more sophisticated algorithms ? As Prosser
[10] puts it, are exceptionally hard problems
merely existence proofs for exceptionally bad
algorithms ?

In this paper we try to go some way to-
wards tackling these issues. In the sections
which follow we present results of an em-
pirical study comparing a number of well-
known constraint satisfaction algorithms on
problems in the easy region.

Problem generation

We ran some preliminary experiments in or-
der to determine for which types of problems
exceptionally hard problems are most likely
to occur. Experiments on randomly gener-
ated binary constraint satisfaction problems
showed that exceptionally hard problems are
more likely to occur when there are many
variables with small domains, and the con-
straint graph of the problem is sparse. Hence
we decided to use graph 3-colourability prob-
lems.

A graph colouring problem consists of a

graph and a maximum number of colours,
where the goal is to assign one colour to each
node such that no two adjacent nodes in the
graph are assigned the same colour. We use
the connectivity of the graph as a parameter
to distinguish between easy and hard regions
of the space of graph colouring problems [2].

Empirical evaluation

For all experimentswe generated graphs vary-
ing in connectivity in steps of 0.1. For the
smaller sized graphs (50 and 100 nodes) we
varied graph connectivity from 2.0 to 5.0.
The critical point of the phase transistion is
expected to occur around a connectivity of 4.6
for graph 3-colourability. For larger graphs
(200 and 400 nodes) we were only able to
obtain results from the easy region, between
connectivities of 2.0 and 4.3, within the time
available to us.
At each connectivity we generated 1; 000

problems. For complete algorithms we re-
quire the algorithm to either �nd the �rst
3-colouring of the graph or show that there
is no 3-colouring. We only ran incomplete al-
gorithms on soluble problems, and required
them to �nd a single 3-colouring. We used
forward checking as our base complete search
algorithm, and experimented with variable
ordering and backjumping strategies1. We
also experimented with genet [3], an incom-
plete, local search algorithm based upon the
min-conicts heuristic [8] but with the ability
to escape local minima.
First we looked at graphs consisting of 50

nodes. Figures 1 and 2 presents the results for
forward checking with fail �rst variable order-
ing (fc-ff), showing the 100%, 99%, 90%,
75% and 50% percentiles for the number of
consistency checks required to solve all prob-
lems and to solve only the soluble problems.
Here the hardest problems for fc-ff, solu-
ble and insoluble, do not occur in the phase

1Forward-checking and other algorithms used in this
paper are described in [12]. See also [9]



transistion but in a region of relatively low
connectivity. In fact the peak in search cost
that we would expect in the phase transistion
is barely recognizable in this �gure. These re-
sults correspond to what has been reported in
the literature on exceptionally hard problems
[4, 7].
We ran forward-checking with conict-

directed backjumping and fail-�rst variable
ordering (fc-cbj-ff) [9] on the same prob-
lem set, and present results for this algorithm
in �gures 3 and 4. Here we see a signi�cant
improvement in performance. The hardest
problems are still in the easy region, however
these exceptionally hard problems are mostly
insoluble. Figure 4 shows that for soluble
problems the exceptionally hard instances oc-
cur at higher connectivities, closer to the peak
in median search cost, than for fc-ff.
Next we looked at using the Br�elaz heuris-

tic [1, 13] to order variables instead of the fail-
�rst principle. The Br�elaz variable ordering
can be regarded as an extension of fail-�rst|
it �rst selects the unlabelled variables with
the smallest domains. In tie situations it se-
lects the one connected to the largest number
of unlabelled variables, breaking further ties
randomly.
We ran forward-checking with Br�elaz on

the 50 node problems, and present the results
in �gures 5 and 6. Although there are ex-
ceptionally hard problems for fc-bz, the cost
of solving these exceptionally hard instances
when they do occur is less than for fc-cbj-
ff. This suggests that a good variable order-
ing appears to be more important than the
ability to backjump.
We present results for forward-checking

with conict-directed backjumping and
Br�elaz (fc-cbj-bz) in �gures 7 and 8. Here
the hardest soluble and insoluble problems
are tending to occur at higher connectivities
than for fc-bz. In fact, by adding conict-
directed backjumping we have eliminated
most of the soluble problems which were

exceptionally hard for fc-bz at the lower
connectivities.
Figure 9 shows results obtained for genet

on the soluble instances of these problems.
Here we �nd no problems which could be
called exceptionally hard for genet in the
easy region.
These results for 50 node problems are in-

teresting since they show that the occurence
of exceptionally hard problems is, at least to
some extent, dependent upon the algorithm
being used to solve them. This is in contrast
to problems in the phase transistion, which
appear to be hard for all algorithms. How-
ever, Gent and Walsh [4] have observed that
\the use of better heuristics appears to delay,
but not postpone inde�nitely, the appearance
of these di�cult (exceptionally hard) prob-
lems". To test this hypothesis we decided
to run the algorithms on larger graphs. Our
next problem set was graphs consisting of 100
nodes.
Figures 10 and 11 show results for fc-

cbj-ff on 100 node graphs. The peak in
search cost at connectivity of 2.7 was caused
by a single, soluble problem. The number
of consistency checks required by fc-cbj-ff

to solve this problem was more than was re-
quired to prove insoluble the two problems
which caused the peak at connectivity of 2.8.
We ran fc-cbj with a natural variable order-
ing on this graph and found a solution with-
out backtracking. Since we would expect, in
general, fc-cbj-ff to outperform fc-cbj, we
can deduce that the high cost of solving this
problem for fc-cbj-ff was caused by heuris-
tics, in this case fail-�rst, occasionally failing
spectacularly.
The results for fc-bz on this problem set

are given in �gures 12 and 13. The peak
at connectivity of 2.5 is caused by a solu-
ble problem taking 31; 992; 299 consistency
checks to solve. fc-cbj-ff took 341 consis-
tency checks to solve the same problem. fc-
bz has a smaller peak at connectivity 2.7 than



fc-cbj-ff for soluble problems, however this
peak was not caused by the same problem
which caused the peak for fc-cbj-ff at this
connectivity.

Next we looked at fc-cbj-bz on this prob-
lem set (�gures 14 and 15). fc-cbj-bz

encountered no exceptionally hard, soluble
problems, although the hardest problem was
an insoluble problem at connectivity of 3.6.
This was the problem which also caused the
peak at connectivity of 3.6 for fc-bz. How-
ever fc-cbj-ff found this particular problem
easy to prove insoluble, requiring just 2; 338
consistency checks, compared to 409; 203 for
fc-cbj-bz and 1; 172; 914 for fc-bz.

The results for genet are given in �gure
16 for the soluble instances. Once again we
did not �nd any exceptionally hard, soluble
problems for genet.

Figures 17 and 18 show the performance of
fc-cbj-bz on a sample of 200 node graphs.
We still did not �nd soluble problems which
could be called exceptionally hard for this al-
gorithm, although we did �nd some insoluble
ones. The results for genet are given in �g-
ure 19 for the soluble instances.

Our �nal problem sample was graphs of size
400 nodes (�gures 20 and 21). Here for fc-
cbj-bz we did �nd a soluble, exceptionally
hard problem at connectivity of 3.8. Figure
22 shows results for genet on the soluble 400
node problems. genet managed to �nd so-
lutions for all these problems, without �nd-
ing any exceptionally hard soluble problems
in the easy region. Furthermore the shape of
the 100% percentile for genet appears to be
becoming more stable as we increase the size
of the graph.

Discussion

Smith [11] identi�es a number of possible rea-
sons for the occurence of exceptionally hard
problems:

\The problem has no solutions when most

problems in the same region of the problem

space have many solutions."

We have found insoluble problems in the
easy region which can be exceptionally hard
to prove insoluble for certain algorithms, but
not for others. However we did �nd excep-
tionally hard insoluble problems for all the
complete search algorithms we looked at.
\The problem has very few solutions."

In this case we would expect these prob-
lems to be hard for all algorithms since they
must, on average, explore a larger portion of
the search space before �nding a solution. We
did not �nd any soluble problems in the easy
region which were hard for all algorithms.
In fact genet, the incomplete, stochastic
search algorithm, did not �nd any exception-
ally hard soluble problems in the easy region.
\The problem may have many solutions but

they are clustered together in a limited region

of the search space, and, because of the vari-

able and value ordering, the algorithm will not

reach any solutions until it has traversed most

of the search space."

Smith [11] cites this as the reason why some
problems are inherently more di�cult than
others, independently of the number of solu-
tions they have. The cause of the di�culty is
that the algorithm may select a wrong value
for a variable early in the search and will not
change this value until it has traversed the
entire search tree below this variable. Al-
though we did �nd soluble problems where
fc-ff, fc-cbj-ff and fc-bz explored almost
the whole search space before �nding a solu-
tion, we did not �nd any such problems for
fc-cbj-bz. However such problems may ap-
pear for fc-cbj-bz if we run it on larger prob-
lem samples. Stochastic search algorithms
such as genet do not have this problem since
they do not need to be systematic in this way.
Thus we would not expect these problems to
be hard for such algorithms.
\The search space induced by the algorithm



is exceptionally large, so that, whenever solu-

tions occur, it will take a long time to reach

the �rst one."

Smith backs up this argument with experi-
mental results showing that the search space
size can vary quite signi�cantly depending on
the constraint graph. However the algorithm
used in these experiments was a chronolog-
ical backtracking algorithm, fc-ff. When
backtracking occurs in fc-ff it may not back-
track immediately to the variable which is the
cause of the conict, thus the phenomena of
\thrashing" will occur. This is going to result
in a much larger search space, and explains
the di�erence in the number of exceptionally
hard problems found for fc-ff and fc-bz

which were not hard for fc-cbj-ff and fc-

cbj-bz. We believe that by using backjump-
ing rather than chronological backtracking we
can signi�cantly improve the performance of
an algorithm on these kinds of exceptionally
hard problems.
An interesting point to arise out of this is

that in practice it often appears better to use
simple chronological backtracking algorithms
such as fc-ff rather than fc-cbj-bz since,
for most easy problems, the median cpu time
to �nd a solution is lower. However, the pres-
ence of rare, exceptionally hard problems in
large samples of problems results in the mean

cpu time for fc-cbj-bz being lower than that
for fc-ff. Thus investing more time in vari-
able ordering and retaining backjumping in-
formation will pay o� in the long run.
The fact that genet managed to �nd solu-

tions to all the soluble problems very quickly
without �nding any exceptionally hard prob-
lems would indicate that, in practice, local
search may be preferable to complete search
for solving very large problems in the easy re-
gion. It should be possible to �nd complete
search algorithms which are better than fc-

cbj-bz in solving exceptionally hard prob-
lems, for instance dynamic backtracking [6] or
algorithms which use arc-consistency looka-

head. Similarly it may be possible to im-
prove on the Br�elaz variable ordering heuris-
tic, since at some point it still e�ectively
makes a random choice amongst variables.
However we found that genet already out-
performs fc-cbj-bz in terms of cpu time,
and improving on fc-cbj-bz would make this
comparison worse. In terms of sacri�cing
completeness, this becomes less of an issue
with large problems. We have found that in-
soluble problems in the easy region become
rarer as problems becomes larger, and when
these problems do occur they may take too
long to prove insoluble in practice.

Conclusions

We have presented results which indicate that
the phenomena of exceptionally hard prob-
lems in the easy region of problem spaces is
mainly an algorithm dependent one. This
is in contrast to the phase transistion peak
in median search cost, which is caused by
problems that appear to be hard for all al-
gorithms. We have also found for complete
search algorithms that by using backjumping
(in this case conict-directed backjumping)
and sophisticated variable selection heuristics
we can signi�cantly reduce the frequency of
exceptionally hard problems for an algorithm.

The best results for soluble problems were
obtained by the incomplete, stochastic search
algorithm genet. In fact we did not �nd any
exceptionally hard, soluble problems for this
algorithm. Although using stochastic search
would mean giving up completeness, for large
problems this may not be too much of a sac-
ri�ce, since a complete search may take too
long to perform in practice if a problem is
insoluble. Whether one should always use
stochastic search in the easy region is another
issue. Our results suggest that for smaller
problems the best of the complete algorithms
we looked at is quite acceptable, and only for
larger problems should one consider using in-



complete, stochastic search.
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Figure 3: fc-cbj-ff on 50-node graph 3-colorability problems
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Figure 4: fc-cbj-ff on soluble 50-node graph 3-colorability problems
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Figure 5:fc-bz on 50 node graph 3-colorability problems
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Figure 6:fc-bz on soluble 50 node graph 3-colorability problems
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Figure 7:fc-cbj-bz on 50 node graph 3-colorability problems
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Figure 8:fc-cbj-bz on soluble 50 node graph 3-colorability problems
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Figure 9: genet on 50-node graph 3-colourability problems
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Figure 10: fc-cbj-ff on 100-node graph 3-colorability problems
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Figure 11:fc-cbj-ff on soluble 100 node graph 3-colorability problems
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Figure 12: fc-bz on 100-node graph 3-colourability problems
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Figure 13: fc-bz on soluble 100-node graph 3-colourability problems

100%
99%
90%
75%
50%

2

2.5

3

3.5

4

4.5

5

5.5

6

2 2.5 3 3.5 4 4.5 5

lo
g 

C
on

si
st

en
cy

 C
he

ck
s

Graph Connectivity

Figure 14: fc-cbj-bz on 100-node graph 3-colourability problems
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Figure 15: fc-cbj-bz on soluble 100-node graph 3-colourability problems
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Figure 16: genet on 100-node graph 3-colourability problems
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Figure 17: fc-cbj-bz on 200-node graph 3-colorability problems
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Figure 18: fc-cbj-bz on soluble 200-node graph 3-colorability problems
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Figure 19: genet on 200-node graph 3-colorability problems
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Figure 20: fc-cbj-bz on 400-node graph 3-colorability problems
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Figure 21: fc-cbj-bz on soluble 400-node graph 3-colorability problems

100%
99%
90%
75%
50%

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

2 2.5 3 3.5 4

lo
g 

N
um

be
r 

of
 R

ep
ai

rs

Graph Connectivity

Figure 22: genet on 400-node graph 3-colorability problems
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