
Solving constraint satisfaction sequencing
problems by iterative repair

Andrew J. Davenport1, Edward P. K. Tsang2

1Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario, CANADA

2Department of Computer Science, University of Essex,
Colcehster, Essex, UNITED KINGDOM

andrewd@ie.utoronto.ca, edward@essex.ac.uk

Abstract

Many constraint satisfaction problems involve sequencing constraints,
where the aim is to �nd a sequence for a domain of values such that all
the constraints on the sequence are satis�ed. Specialised techniques have
been developed to tackle this problem within the constraint programming
framework using constructive, backtracking search. In this paper we in-
vestigate local search techniques to tackle this problem. By taking ad-
vantage of the structure of the sequencing problem we show that within
a local search framework we can reduce the size of the search space and
the number of constraints which are required to be satis�ed. We present
SwapGenet, an iterative repair-based algorithm designed speci�cally for
solving the constraint satisfaction sequencing problem. We present results
of an empirical evaluation demonstrating the superiority of SwapGenet
over Genet on the car sequencing problem.

Introduction

Many constraint satisfaction problems are in fact constraint satisfaction se-
quencing problems, where the aim is to �nd a sequence for a domain of
values such that all the constraints on the sequence are satis�ed. Exam-
ples of constraint satisfaction sequencing problems include rostering and
the car-sequencing problem. In recent years specialised propagation and
search techniques have been developed to deal with such problems within
the constraint programming framework (Dincbas, Simonis, & Van Henten-
ryck, 1988; Smith, 1996; Re�gin & Puget, 1997). These techniques all use
constructive search, powerful propagation techniques and backtracking. In
this paper we examine an alternative approach: local search techniques to
tackle the constraint satisfaction sequencing problem.

The advantages of developing local search techniques speci�cally for se-
quencing problems are twofold. Firstly, by considering a \sequencing neigh-
bourhood", we can reduce the number of possible complete assignments of

1

values to variables. Intuitively it follows that this would result in a smaller
search space, since the number of possible complete assignments of values
to variables provides an upper bound on the size of the search space. In
this paper we prove that the number of possible complete assignments of
values to variables in a sequencing formulation of a constraint satisfaction
sequencing problem is smaller than in the generic constraint satisfaction
problem formulation. Secondly, we show that we can also reduce the num-
ber of constraints to be satis�ed, since the constraints which were needed to
specify that a problem was a sequencing problem in the generic constraint
satisfaction representation are now implicitly satis�ed in the sequencing rep-
resentation of the problem.

In this paper we present SwapGenet, an iterative repair-based algo-
rithm designed speci�cally for solving constraint satisfaction sequencing
problems. SwapGenet is derived fromGenet, a min-conicts repair-based
algorithm for solving csps which has been shown to be very e�ective at solv-
ing hard, binary and general constraint satisfaction problems (Davenport,
Tsang, Wang, & Zhu, 1994). We present results of an empirical evalua-
tion demonstrating the superiority of SwapGenet over Genet on hard
car-sequencing problems.

Problem de�nition and analysis

De�nition 1 (The constraint satisfaction problem; (Tsang, 1993))
A \generic" constraint satisfaction problem is a triple (Z;D;C) where:

� Z is a �nite set of variables,

� D is a function which maps every variable in Z to a set of objects of
arbitrary type. We denote by Dx the set of objects mapped by D from
x, where x 2 Z. We call the set Dx the domain of x and the members
of Dx possible values of x.

� C is a set of constraints. Each constraint in C restricts the values that
can be assigned to the variables in Z simultaneously.

In this paper we are concerned with �nite constraint satisfaction prob-
lems, where the variables have a �nite domain of values. A label, denoted
by hx; vi, is a variable-value pair which represents the assignment of value
v to variable x. A compound label is the simultaneous assignment of values
to variables. We use (hx1; v1i; : : : ; hxn; vni) to denote the compound label
of assigning v1; : : : ; vn to x1; : : : ; xn respectively. A solution tuple of a csp

2

is a compound label for all the variables in the csp which satis�es all the
constraints in C.

De�nition 2 (The constraint satisfaction sequencing problem)
A constraint satisfaction sequencing problem is an extension of the con-
straint satisfaction problem in the following way. All the variables in Z are
partitioned into one or more disjoint subsets Zi, for each of which there is
a sequence constraint of the form sequence(Zi,Di). This speci�es that the
values assigned to the variables in Zi must be a sequence of the values in
the bag Di

1. Thus each subset of variables Zi is mapped by the function D
to a single bag of objects Di, where jZij = jDij. Each object in Di is to be
assigned to exactly one variable in Zi such that every variable is assigned a
value and all the constraints in C are satis�ed.

Domain of {A,B,C,D} = {1,2,3,4}

even(A + D)

even(B + C)

A > B D > Calldifferent({A,B,C,D})

A

B C

D

Figure 1: csp with alldi�erent constraint.

Example 1 Consider the csp given in �gure 1. We can represent this csp
using the generic csp formulation, in which case we have four variables
Z = fA;B;C;Dg, each with a domain Di = f1; 2; 3; 4g. This would give us
44 = 256 possible complete assigments of values to variables. The alldi�erent
constraint in this csp signi�es that no two variables may take the same value.
This constraint can be represented using binary or general constraints.

However the alldi�erent constraint also allows us to regard this csp as
a sequencing problem, since there are four variables, four values for each
variable and each variable must take on a di�erent value. In this case we

1We use the Z formulation of Jx1; : : : ; xnK to denote a bag, or multi-set, of objects
x1; : : : ; xn(Diller, 1990).

3

have a single subset of variables Z1 = fA;B;C;Dg for which we want to
assign a sequence of the values D1 = J1; 2; 3; 4K, which we represent by
the constraint sequence(fA;B;C;Dg; J1; 2; 3; 4K). Note that this sequence
constraint replaces the alldi�erent constraint. The number of possible ways
of sequencing the values in D1 is 4P4 = 4! = 24. The alldi�erent constraint
will be satis�ed in every one of these sequences.

Theorem 1 Given a constraint satisfaction sequencing problem one may
represent it using either the generic constraint satisfaction problem formula-
tion or speci�cally as a sequencing problem. The sequencing representation
will always have a smaller number of assignments of values to variables2.

Proof 1 Consider a problem with n variables in Z where we have se-
quence(Z, D). There are three cases to consider:

Case 1 All the values in D are distinct (e.g., the csp in �gure 1).
In this case the representation of this problem using a generic csp
formulation would require n variables of domain size n (since there
must be n values in D). Thus we would have nn possible complete
assignments of values to variables. The number of possible sequences
would be nPn = n! which is always less than or equal to nn.

Case 2 The values in D are not all distinct.
In this case some of the permutations of the values inD are not distinct
e.g.,sequence(fA;B;Cg; J1; 1; 2K). If there are d distinct values in D
then the generic csp formulation of the problem will have dn possible
complete assignments of values to variables3. If each value in d occurs
di times then the number of possible sequences S in the sequencing
formulation is:

S =
nPnQ

d

i=1
diPdi

=
n!Q

d

i=1
(di!)

(1)

S will be largest when dd = dd�1 = � � � = d1 = n=d. Thus to show
that the sequencing search space is always smaller than the generic
csp search space we need to show that:

dn >
n!

[(n=d)!]d
(2)

2As long as it contains more than one variable.
3A sequencing problem formulated as a generic csp will always have a uniform domain

for all its variables.

4

We can rewrite this as:

dn [(n=d)!]d > n! (3)

If we write m = n=d this becomes:

dmd (m!)d > n!

(dm �m!)d > n!

(n� (n� d)� (n� 2d)� � � � � 2d� d)d > n!

nd � (n� d)d � (n� 2d)d � � � � � (2d)d � dd > n!

To show that this is the case consider:

nd = n� n� � � � � n

> n� (n� 1)� (n� 2) � � � � (n� d+ 1)

(n� d)d = (n� d)� (n� d)� � � � � (n� d)

> (n� d)� (n� d� 1)� � � � � (n� 2d+ 1)
...

dd = d� d� � � � � d

> d� (d� 1)� (d� 2)� � � � � 1

Case 3 More than one set of variables to sequence e.g.,sequence(fA;Bg,
J1; 2K) and sequence(fC;Dg; J1; 2K). In this case the number of possible
sequences is always less than if we were �nding a single sequence for
all the variables and values e.g.,sequence(fA;B;C;Dg; J1; 2K). Hence
this must always be less than the number of possible assignments of
values to variables in the generic csp formulation. 2

Overview of Genet

Before presenting SwapGenet we �rst briey describe Genet. Genet is
a min-conicts repair-based algorithm (Minton, Johnston, Philips, & Laird,
1992) for solving constraint satisfaction problems (Davenport et al., 1994).
The Genet procedure can be implemented in a connectionist architecture,
and thus is capable of being fully parallelised, although even on a sequential
processor Genet has been shown to be very e�ective at solving di�cult
binary and general csps.

Genet solves csps by hill-climbing, using a variation of the min-conicts
heuristic. The main di�erence betweenGenet and min-conicts hill-climbing

5

(Mchc) is that Genet has the ability to escape local minima. This it does
by using a constraint weighting scheme similiar to that proposed in (Morris,
1993). Each constraint in the csp has an associated weight which represents
the cost of violating that constraint. All constraint weights are positive, and
initially these are all set to 14. The cost of a constraint ck in a Genet net-
work state S is de�ned as:

ck(S) =

(
wk; if ck is violated in S

0; otherwise
(4)

where wk is the weight associated with constraint ck and the state of a
Genet network is simply a complete assignment of values to variables, rep-
resented by a compound label. Thus if the constraint ck is violated then
a cost of wk is incurred, otherwise no cost is incurred. The cost function
which Genet minimizes by hill-climbing is given as:

g(S) =
X
ck2C

ck(S) (5)

The value of g(S) will be zero in state S where no constraints are violated,
and positive otherwise.

Constraints in Genet may be represented either intensionally or exten-
sionally. This gives Genet the exibility to represent constraints such as
atmost or atleast (Davenport et al., 1994). These constraints can be infeasi-
ble in practice to represent as sets of allowed or disallowed tuples.

Pseudo-code forGenet is presented in algorithm 1. Initially all variables
in the csp are assigned values randomly from their domains. Genet then
hill-climbs using a variation of the min-conicts heuristic. The pseudo-code
for Genet hill-climbing is given in algorithm 2. A variable is selected for
repair, and is reassigned a value which minimizes the cost function g. In the
case that several values minimize this function one of these values is chosen
randomly. Sideways moves are allowed, where the value of the cost function
g remains unchanged after a repair, even though the value of a variable may
change. Note that the value of g will never increase due to a repair since
a variable can always be reassigned its current value, thus resulting in a
sideways move.

Like many other local searches, Genet will encounter local minima in
the search space, where some constraints are violated but no improvements

4This has been changed, for the purpose of clarity, from the presentation of constraint
weights described in (Davenport et al., 1994).

6

procedure GENET(Z, D, C, S)
begin

i 0;
Si an arbitrary assignment of values to variables;
repeat

Hill-Climb(Z;D;C; Si; Si+1);
if g(Si+1) = g(Si) then
begin

for c each element of C do

if c is violated in Si+1

wc wc + 1;
end

i i+ 1;
until g(Si) = 0 or stopping criteria met;
S Si;

end

Algorithm 1: Genet Procedure

can be made to the cost function g by changing the assignment of any of the
variables. When Genet encounters a local minima the weights of all the
constraints which are violated in the minima are increased. This increases
the cost of violating constraints which are violated in the minima, thus
increasing the value of the cost function g in the minima and enabling the
network to escape to other states. The version of Genet described in this
paper uses what we call limited sideways moves. Here we allow sideways
moves to be made, however if the value of the cost function remains the
same after two consecutive calls to Hill-Climb (or convergence cycles) we
activate learning.

SwapGenet

SwapGenet works in a similiar way toGenet, except that the hill-climbing
procedure is modi�ed to select possible moves from a \swap" neighbourhood.
This is inspired partly by the 2-Opt heuristic used in solving the travelling
salesman problem (Lin & Kernighan, 1973).

When solving a sequencing problem SwapGenet uses sequence con-
straints to structure the search space. Firstly, an initial assignment of values
to variables is generated in the following way: for each sequence constraint
sequence(Vars, Vals) in C, each variable in Vars will be randomly assigned

7

procedure GENET-Hill-Climb(Z, D, C, Si, Si+1)
begin

S = Si;
for hx; vii each element of Si do

begin

for v each element of Dx do

gv g(S � (hx; vii) + (hx; vi));
BestSet set of values with minimum gv;
vi+1 random value in BestSet;
S S � (hx; vii) + (hx; vi+1i);

end

Si+1 = S;
end

Algorithm 2: Genet hill-climbing.

a value in Vals, such that each value in Vals is assigned to exactly one vari-
able. Thus the sequence constraints will be satis�ed in the initial state of
the search.

Sequence constraints are also used to constrain the search space when
hill-climbing. Pseudo-code for SwapGenet hill-climbing is given in algo-
rithm 3. The procedure is as follows: A variable x is selected to be repaired.
The cost of swapping the value of x with the value of another variable y is
determined for all variables which do not have the same value as x. The
variable for which a swap of values would result in the lowest value of g for
the state resulting from the swap is then selected with any ties being broken
randomly. A new state generated by a swap will always be a permutation
of the previous state|thus every search space state in SwapGenet will
satisfy all the sequence constraints.

Example 2 We may generate the initial state for the csp in �gure 1 to
be (hA; 1i; hB; 2i; hC; 3i; hD; 4i), which satis�es the alldi�erent constraint.
Three constraints are violated in this state: even(A + D), even(B + C)
and A > B. We can improve this assignment by swapping the values of
variables A and B, resulting in the state (hA; 2i; hB; 1i; hC; 3i; hD; 4i) which
satis�es all the constraints. Since we only generate new states by swapping
the values of two variables the alldi�erent constraint will be satis�ed in all
the states of the search space.

Sequence constraints can be used to specify requirements other than the

8

procedure SwapGENET-Hill-Climb(Z, D, C, Si, Si+1)
begin

S = Si;
for x each element of Z do

begin

vx value of x;
for hy; vyi each element of S do

if sequence(Vars, Vals) 2 C and fx; yg � Vars
if vx 6= vy

gy g(S � (hx; vxi; hy; vyi) + (hx; vyi; hy; vxi));
BestSet set of values with minimum gy;
z random value in BestSet;
if z � g(S) then

S S � (hx; vxi; hz; vzi) + (hx; vzi; hz; vxi);
end

Si+1 = S;
end

Algorithm 3: SwapGenet hill-climbing.

alldi�erent constraint. For instance they can replace production constraints
in scheduling problems. An application of this is described in the next
section for the car-sequencing problem.

Empirical evaluation

Although the search space should always be smaller for SwapGenet than
for Genet on a given sequencing problem, this does not necessarily mean
that SwapGenet will always solve such problems in less time, since the
cpu time required to determine which swap to make for SwapGenet may
be higher than that of determining which repair to make for Genet. The
main reason for this is that since the values of two variables will be a�ected
by a swap the number of constraints this will a�ect will be larger than for
changing the value of a single variable, hence more cpu time will be needed
to evaluate the e�ect of a swap. (Zweben, Davis, Daun, & Deale, 1993)
discuss the same issue.

Furthermore the neighbourhood of possible moves may be larger for
SwapGenet than for Genet. Given a problem with n variables and a
domain of values D to sequence, if there are d distinct values in D then
SwapGenet has a neighbourhood of moves whose size is proportional to n,

9

whereas the size of the neighbourhood for Genet is proportional to d.
Thus the purpose of empirical evaluation was to determine whether in

practice SwapGenetwas faster at solving constraint satisfaction sequencing
problems than Genet. Although any extra cost in determining moves will
be countered by a reduction in constraints to satisfy and search space size,
this may not be worthwhile for all problems. We compared SwapGenet

and Genet the car sequencing problem, and present results below.

The car sequencing problem

The car-sequencing problem is a real-life general csp which is considered
particularly di�cult due to the presence of global atmost constraints (Par-
rello & Kabat, 1986; Dincbas et al., 1988).

In modern car production, cars are placed on conveyor belts which move
through di�erent work areas. Each of these work areas specialises to do a
particular job, such as �tting sunroofs, car radios or air-conditioners. When
a car enters a work area, a team of engineers in that area travels with the car
while working on it. The production line is designed so as to allow enough
time for the engineers to �nish their job while the car is in their work area.
For example, if the time taken to install a sunroof is 20 minutes, and one
car enters the conveyor belt every four minutes, then the area for sunroof
installation will be given a capacity of carrying �ve cars.

A production line is normally required to produce cars of di�erent mod-
els. The number of cars required for each model is called the production
requirement. Since cars of di�erent models require di�erent options to be
�tted, not every car requires work to be done in every work area. For exam-
ple, one model may need air-conditioning and power brakes to be installed,
but not a sunroof.

Each work area is constrained by its resource constraint. For example, if
three teams of engineers are designated to �tting sunroofs, and the sunroof
area has a space capacity for �ve cars, then the sunroof work area can cope
with no more than three out of �ve cars requiring the �tting of sunroofs
in any sub-sequence of cars on the conveyor belt. If more than three cars
in any sequence of �ve cars require sunroofs, then the engineers would not
have time to �nish before the conveyor belt takes the cars away. The ratio
3=5 is called the capacity constraint of the work area for the sunroof.

Given a number of car types with their option requirements, we can
specify a car sequencing problem by its production constraints and capac-
ity constraints. Production constraints are global constraints which, along
with the capacity constraints, make the car sequencing problem particularly

10

di�cult.

Example 3 We can express the car sequencing problem as a csp by letting
each variable represent a position on the conveyor belt and the domain of
each variable be the types of cars to be scheduled. For instance, table 1

Car Type Capacity
options type 1 type 2 type 3 Constraints

sunroof 1 1 0 2/3
radio 1 0 1 3/4

air-conditioning 0 1 1 2/3

required 10 20 20

Table 1: An example of a small car sequencing problem

shows a car sequencing problem where we want to schedule �fty cars, each
of which may be one of three types. Here car type 1 requires sunroof and
radio to be �tted, but no air-conditioning. For this problem we would have
�fty variables, each with a domain of f1; 2; 3g. We can represent the produc-
tion requirements in Genet with atmost constraints. Atmost constraints
are of the form atmost(n, Var, Val) and specify that at most n variables
from the set Var may take values from the set Val. The production re-
quirements for the problem given in table 1 can be represented by three at-
most constraints: atmost(10; f1; : : : ; 50g; f1g), atmost(20; f1; : : : ; 50g; f2g)
and atmost(20; f1; : : : ; 50g; f3g). However to represent this as a sequencing
problem we represent all the production constraints by a single sequence
constraint. In this case the sequence constraint would be:

sequence(f1; : : : ; 50g; J1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2

2; 2; 2; 2; 2; 2; 2; 2; 2; 2; 3K)

The capacity constraints are also implemented as atmost constraints. In
our example option 1 has a capacity constraint of 2=3. This means that we
need a capacity constraint on option 1 for every subsequence of three consec-
utive variables. However, since our variables are representing car types, not
car options, we need to constrain all the car types which have option 1 i.e.,
car types 1 and 2. So, for option 1 the capacity constraints will be atmost
(2; f1; 2; 3g; f1; 2g)), atmost (2; f2; 3; 4g; f1; 2g), : : : , atmost (2; f48; 49; 50g;
f1; 2g).

11

A measure of the di�culty of a car sequencing problem is given by its
mean utilisation percentage. The utilisation percentage of an option i for a
N -car sequencing problem expresses the ratio of number of cars requiring
option i to the maximum number of cars which could have option i while
satisfying the capacity constraint on i. For instance if the capacity constraint
on i is 2=4 and N = 100 then the maximum number of cars in a sequence
which could take option i is 50. If, to satisfy the production requirements,
40 cars need option i then the utilisation percentage of option i is 80%. The
mean utilisation percentage of a car sequencing problem is the mean of the
utilisation percentages for all its options.

In our experiments we used randomly generated problems of size 200
cars. We varied the mean utilisation percentage from 60% to 90%. At each
utilisation percentage we generated ten problems following the speci�cation
given in (Dincbas et al., 1988). The problems all had 200 variables with uni-
form domains varying from 17 to 28 values and approximately 1000 atmost
constraints of varying arity. All the problems we used were soluble.

Tables 2 and 3 present the results of our experiments. Genet and
SwapGenet were both run ten times on each problem. SwapGenet takes
less repairs to solve car sequencing problems at all utilisation percentages
than Genet. However the extra time needed to evaluate which swaps to
make mean that at low utilisation percentages it is actually slower than
Genet. For the harder problems at higher utilisation SwapGenet easily
outperformsGenet in cpu time as well as number of repairs needed to solve
these problems.

utilisa- mean cpu median mean lowest highest std.dev.
tion % time (sec.) repairs repairs repairs repairs repairs

60 1.40 470 927 209 7960 1104
65 1.40 496 879 207 4915 903
70 1.78 523 921 229 7130 1024
75 2.65 732 1033 282 5146 916

80 12.66 2077 2593 530 15147 1987
85 22.51 2939 3452 796 11640 2175
90 186.11 8652 11164 2626 99402 10797

Table 2: Genet on 200 car sequencing problems.

12

utilisa- mean cpu median mean lowest highest std.dev.
tion % time (sec.) repairs repairs repairs repairs repairs

60 2.70 317 453 132 2533 376
65 2.55 319 402 129 1635 285
70 3.32 332 477 160 3781 434

75 4.66 354 601 301 6649 724
80 8.45 739 948 305 3032 621
85 10.47 775 1017 323 4296 698
90 22.67 1314 1508 585 6343 824

Table 3: SwapGenet on 200 car sequencing problems.

Conclusions

We have shown that for the constraint satisfaction sequencing problem the
search space will be smaller if the problem is represented speci�cally as a
sequencing problem rather than as a generic constraint satisfaction problem.
Furthermore a sequencing formulation will implicitly satisfy the constraints
needed to specify that a problem is a sequencing problem in the generic
constraint satisfaction formulation.

We have presented a new iterative repair algorithm, SwapGenet, for
solving the constraint satisfaction sequencing problem. SwapGenet is de-
rived from Genet, a min-conicts based algorithm for solving constraint
satisfaction problems. SwapGenet di�ers from Genet in the way it per-
forms hill-climbing: whereas Genet makes moves by modifying the assign-
ment of a single variable at a time, SwapGenet makes moves taken from
a neighbourhood of possible swaps of the values of two variables.

Through empirical evaluation we have shown that although SwapGenet
takes less repairs to solve easy sequencing problems than Genet, in practice
it requires more cpu time since the cost of evaluating possible repairs is often
higher for SwapGenet than for Genet. However for hard constraint sat-
isfaction sequencing problems this extra repair cost is more than countered
by the reduction in constraints and search space size, so that SwapGenet
outperforms Genet both in terms of number of repairs and the cpu time
needed to solve these problems. Thus we believe SwapGenet to be of use
for hard constraint satisfaction sequencing problems.

13

Acknowledgements

The authors are very grateful for the help of Dr. John Ford in constructing
the proof of equation 2. We would like to thank James Borrett, Alvin Kwan
and Chris Voudouris for useful discussions and comments on this paper.
Andrew Davenport is supported by an Engineering and Physical Sciences
Research Council Ph.D studentship award. This research has also been
supported by an Engineering and Physical Sciences Research Council grant
(ref. GR/H75275).

References

Davenport, A. J., Tsang, E. P. K., Wang, C. J., & Zhu, K. (1994). GENET:
A connectionist architecture for solving constraint satisfaction prob-
lems by iterative improvement. In Proceedings of AAAI-94, Vol. 1, pp.
325{330.

Diller, A. (1990). Z: An Introduction to Formal Methods. Chichester: Wiley.

Dincbas, M., Simonis, H., & Van Hentenryck, P. (1988). Solving the car-
sequencing problem in logic programming. In Proceedings of ECAI-88,
pp. 290{295.

Lin, S., & Kernighan, B. W. (1973). An e�ective heuristic algorithm for the
travelling salesman problem. Operations Research, 21, 498{516.

Minton, S., Johnston, M., Philips, A., & Laird, P. (1992). Minimizing con-
icts: a heuristic repair method for constraint satisfaction and schedul-
ing problems. Arti�cial Intelligence, 58, 161{205.

Morris, P. (1993). The breakout method for escaping from local minima. In
Proceedings of AAAI-93, pp. 40{45. AAAI Press/The MIT Press.

Parrello, B., & Kabat, W. C. (1986). Job-shop scheduling using automated
reasoning: A case study of the car-sequencing problem. Journal of
Automated Reasoning, 2, 1{42.

Re�gin, J. C., & Puget, J.-F. (1997). A �ltering algorithm for global sequenc-
ing constraints. In Proceedings of Principles and Practice of Constraint
Programming, pp. 32{46.

Smith, B. M. (1996). Succeed-�rst or fail-�rst: A case study in variable
and value ordering. In Proceedings ILOG Solver and ILOG Scheduler
Second International Users' Conference.

14

Tsang, E. P. K. (1993). Foundations of Constraint Satisfaction. Academic
Press.

Zweben, M., Davis, E., Daun, B., & Deale, M. (1993). Informedness vs.
computational cost of heuristics in iterative repair scheduling. In Pro-
ceedings of IJCAI-93, pp. 1416{1422.

15

