
SOLVING THE RADIO LINK FREQUENCY ASSIGNMENT PROBLEM

WITH THE GUIDED GENETIC ALGORITHM

T. L. LAU, and E. P. K. TSANG

University of Essex
Dept. of Computer Science

Wivenhoe Park
Colchester CO4 3SQ
United Kingdom

email: ftllau, edwardg@essex.ac.uk

Received March 27, 1998
Revised March 27, 1998

The Radio Link Frequency Assignment Problem is an abstraction of a real life
military application that involves the assigning of frequencies to radio links. This
problem set consists of eleven instances that are classed as either a Constraint
Satisfaction Optimization Problem or a Partial Constraint Satisfaction Problem.
Each problem has di�erent optimization and constraint requirements, and can
have up to 916 variables, and up to 5548 constraints.

The Guided Genetic Algorithm (GGA) is a hybrid of Genetic Algorithm and
meta-heuristic search algorithm Guided Local Search. As the search progresses,
GGAmodi�es both the �tness function and �tness template of candidate solutions
based on feedback from constraints. In this paper, we have shown that GGA has
the best optimality-robustness advantage over current published results.

Keywords: Genetic Algorithm, Constraint Satisfaction Optimization Problem,
Partial Constraint Satisfaction Problem

1 Introduction

A �nite Constraint Satisfaction Problem (CSP) can be described as a prob-
lem with a �nite set of variables, where each variable is associated with a

�nite domain. Relationships between variables constraint the possible in-
stantiations they can take at the same time [1, 2]. To solve a CSP, one
must �nd the solution tuple that instantiate variables with values of their
respective domains, and that these instantiations do not violate any of the

constraints. Our area of research is in Constraint Satisfaction Optimization
Problem (CSOP) and Partial Constraint Satisfaction Problem (PCSP), two
variations of the CSP.

In the realms of CSP, the instantiation of a variable with a value from its
domain is called a label. A simultaneous instantiation of a set of variables is
called a compound label, which is a set of labels. A complete compound label

is one that assigns values, from the respective domains, to all the variables
in the CSP.

A CSOP is a CSP with an objective function f that maps every com-
plete compound label to a numerical value. The goal is to �nd a complete
compound label S such that f(S) gives an optimal value, and that no con-

straint is violated. A PCSP is similar to a CSOP except that the complete
compound label may have variable instantiations that violate some of its
constraints. Violation is unavoidable because the constraints are so tight
that a satis�able solution does not exist, or cannot be found [3, 1]. De-

ciding which constraint to violate is inuenced by its cost and type. Hard
constraints are types of constraints that must not be violated, whereas soft
constraints may. The sum cost of all violated constraints is reected in the
objective function, further to other optimization criteria.

1.1 The Radio Link Frequency Assignment Problem

1.1.1 Background

The EUCLID CALMA (Combinatorial Algorithms for Military Applica-

tions) consortium is a group of six research bodies in Europe that was formed
to investigate the use of AI techniques to aid military decisions. The Ra-
dio Link Frequency Assignment Problem (RLFAP) is a case study proposed
within the group to observe the e�ectiveness of di�erent approaches. It is

an abstraction of a real world military application that is concerned with
assigning frequencies to radio links. The RLFAP1 contains eleven instances
with various optimization criteria, made publicly available through the ef-
forts of the French Centre d'Electronique l'Armament. RLFAP is NP-hard

and is a variation on the T-graph colouring problem introduced in [4].

1.1.2 Types of Instances

Each instance in the RLFAP has a set of �les that describe its variables,

their domains, the constraints, and the objective. In addition, we are also
given information on the respective optimization requirements based on the
solubility of the problem. Optimization criteria describe the interpretation
of variable instantiations and the means of measuring their desirability; thus

shaping the objective function of our search routine, whereas the solubility
of the problem states if a solution can be found under the condition that

1RLFAP is available at the Centre d'Electronique l'Armament (France), via ftp at
ftp.cert.fr/pub/bourret.

2

no constraint was violated. If an instance can be solved without constraint
violation, then its optimality is de�ned as either O1 or O2, otherwise it
is O3 (see below). For an insoluble instance, we use the violation cost of

each constraint to solve the instance as a PCSP. In this paper, regardless of
the problem's solubility, all instances in RLFAP are solved as PCSP since
a CSOP problem can be mapped into a PCSP by giving each constraint a
violation cost. This violation cost is the same value for all constraints in the

instance.

O1 - optimal solution is one with the fewest number of di�erent values in
its variables.

O2 - optimal solution is one where the largest assigned value is minimal.

O3 - if a the problem cannot be solved without violating constraints, �nd
a solution that minimizes the objective function as follows:

a1 � nc1 + a2 � nc2 + a3 � nc3 + a4 � nc4 +

+ b1 � nv1 + b2 � nv2 + b3 � nv3 + b4 � nv4 (1)

Where nci is the number of violated constraints of priority i, nvi is the
number of modi�ed variables with mobility i. Mobility for a radio link
states the cost for changing the frequency from its assigned default.
The values of the weights ai and bi are given if necessary.

All constraints in the RLFAP are binary; that is, each constraint operates
on the values in two variables. These constraints test the absolute di�erence
of two variables in a candidate solution, where this logical test can belong

to either of the two following classes:

C1 - the absolute di�erence must be lesser than a constant.

C2 - the absolute di�erence must be equal to a constant.

Table 1 lists the instances, their characteristics and its objective. From

this table, we can observe that the RLFAP contains instances that are var-
ied in both the optimization and constraint criteria. Further, the number of
variables, their domain sizes, and the number of constraints on these vari-
ables make the RLFAP a non-trivial problem set for any algorithm. The

RLFAP would not only test the quality and robustness of an algorithm,
but also its exibility to adapt to the di�erent optimization and constraint
criteria of each instance.

3

Table 1: Characteristics of RLFAP instances.

Instance No. of No. of Souble Minimize Type
variables constraints

scen01 916 5548 Yes Number of di�erent values used O1
scen02 200 1235 Yes Number of di�erent values used O1
scen03 400 2760 Yes Number of di�erent values used O1
scen04 680 3968 Yes Number of di�erent values used O1
scen05 400 2598 Yes Number of di�erent values used O1
scen06 200 1322 No The maximum value used O2
scen07 400 2865 No Weighted constraint violations O3
scen08 916 2744 No Weighted constraint violations O3
scen09 680 4103 No Weighted constraint violations

and mobility costs
O3

scen10 680 4103 No Weighted constraint violations
and mobility costs

O3

scen11 680 4103 Yes Number of di�erent values used O1

2 The RLFAP in PCSP Expression

A PCSP is de�ned as a quadruple of fZ;D;C; fg where Z is a �nite set of
variables. With respect to Z, D is a function that maps every variable to
a set of values, which is called a domain. C is a �nite set of constraints
that a�ect a subset of the variables, and each constraint has a cost for its

violation. The objective function f returns a magnitude based on the instan-
tiation of the variables and the satisfaction of constraints. In the RLFAP,
each instance has a set of �les that conveniently describe the respective Z,
D and C sets.

2.1 Variables and Domains

For any of the RLFAP instance with m variables, let qj be a variable in Z

representing one radio link. For each variable qj in Z, there is one associated

domain mapped by the function D, denoted by D(qj), which contains a set
of n values, each value representing a valid frequency that can be assigned
to the variable.

Z = fq1; q2; : : : ; qmg (2)

where 8qj 2 Z : D(qj) = ffreq1; freq2; : : : ; freqng (3)

4

2.2 Constraints

The constraint set C consists of n elements, representing n constraints in
the instance. Each element in C consist of the constraint ci and its cost

costi
2 (Eq. 4). As discussed in section 1.1.2, there are two types of binary

constraints in the RLFAP; C1 and C2 which we formulate into Eq. 5. In
that equation, qa and qb are two variables from a candidate solution, and z

is a constant. Eq. 6 states that constraint ci returns a binary value that is
1 for a violation and 0 otherwise.

C = f< c1; cost1 >;< c2; cost2 >; : : : ; < cn; costn >g (4)

8ci 2 C :

(
ci � jqa � qbj < z; if ci is type C1
ci � jqa � qbj = z; if ci is type C2

(5)

where ci =

(
1; constraint is violated
0; otherwise

(6)

2.3 Objective Function

The respective objective function f of the instances in RLFAP are stated in

Table 1. The objective functions are also explained in section 1.1.2.

3 Algorithms

CSPs and CSOPs are generally NP-hard [1] and although heuristics have
been found useful in solving them, most systematic search algorithms are
deterministic and constructive [5], and would thereby be limited by the
combinatorial explosion problem. Systematic methods include search and

inference techniques. These search methods are complete, so they are able
to guarantee a solution, or to prove that one does not exist. Thus systematic
techniques will, if necessary, search the entire problem space for the solution
[6].

The combinatorial explosion is an obstacle faced by systematic search
methods for solving realistic CSPs, and in looking for optimal and or near-
optimal solutions in CSOPs. In optimization, to ensure that the solution
found is the optimal, systematic search algorithms would need to exhaust

the entire problem space to establish that fact.

Stochastic search methods are normally incomplete. They are not able
to guarantee that a solution can be found, and neither can they prove that

a solution does not exist. They forgo completeness for e�ciency. Often,
stochastic search methods can be faster in solving CSOPs than systematic

2Cost for violating the constraint.

5

methods [7]. Many publications such as [8, 9, 10] demonstrated on several
large problems that systematic search algorithms fail to solve, but stochastic
alternatives e�ciently conquer.

3.1 Genetic Algorithms

Geneitc Algorithms are stochastic search algorithms that borrow some con-
cepts from nature [11, 12, 13]. GA maintains a population pool of candidate
solutions called strings or chromosomes. Each chromosome p is a collec-

tion of � building blocks known as genes, which are instantiated with values
from a �nite domain. Let p;q denote the value of gene q in chromosome p

in the population .

Associated with each chromosome is a �tness value which is determined
by a user de�ned function. The function returns a magnitude that is propor-
tional to the candidate solution's suitably and/or optimality. Fig. 1 shows

the control and data ow of a canonical GA. At the start of the algorithm,
an initial population is generated. Initial members of the population may
be randomly generated, or generated according to some rules. The repro-

duction operator selects chromosomes from the population to be parents for

a new chromosome and enters them into the mating pool. Selection of a
chromosome for parenthood can range from a totally random process to one
that is baised by the chromosome's �tness.

The cross-over operator oversees the mating process of two chromosomes.
Two parent chromosomes are selected from the mating pool randomly and
the cross-over rate, which is a real number between zero and one, deter-

mines the probability of producing a new chromosome from the parents. If
the mating was performed, a child chromosome is created which inherits
complementing genetic material from its parents. The cross-over operator
decides what genetic material from each parent is passed onto the child

chromosome. The new chromosome produced is entered into the o�spring

pool.

The mutation operator takes each chromosome in the o�srping pool and
randomly change part of its genetic make-up, ie. it's content. The proba-
bility of mutation occuring on any chromosome is determined by the user

speci�ed mutation rate. Chromosomes, mutated or otherwise, are put back
into the o�spring pool after the mutation process.

Thus each new generation of chromosomes are formed by the action
of genetic operators (reproduction, cross-over and mutation) on the older
population. Finally, the members of the population pool are compared with
those of the o�spring pool. The chromosomes are compared via their �tness

value to derive a new population, where the weaker chromosomes may be
eliminated. In exact, weaker members in the population pool is replaced
by the �tter child chromosomes from the o�spring pool. The heuristic for

6

Generate initial
population

Start

Mutation
operator

Cross-over
operator

population
Re-assess

Criteria
met?

Control Flow

Data Flow

Reproduction
operator

Mating pool

End

Population
pool

Offspring
pool

yes

no

Figure 1: A canonical Genetic Algorithm

7

assessing the survival of each chromosome into the next generation is called
the replacement strategy.

The process of reproduction, cross-over, mutation and formation of a new
poplution completes one generation cycle. A GA is left to progress through

generations, until certain criteria (such as a �xed number of generations,
or a time limit) are met. GAs were initially used for machine learning
systems, but it was soon realised that GAs have great potential in function
optimization [14, 12, 11].

3.1.1 Shortcomings of GAs when solving CSPs

In applying the canonical GA to solve instances belonging to the CSP class,
the problem of high epistasis often limits its success. Epistasis is the inter-
action between di�erent genes in a chromosome. A candidate solution to a
typical CSOP is often represented as a chromosome, where each gene in the

chromosome describes a variable in the CSOP. Constraints inuence both
the values that sets of genes can take simulanteously and the overall �tness
of that chromosome. Goldberg suggested high epistasis as an explanation
to GAs failure in certain tasks [12].

3.2 Guided Genetic Algorithm

3.2.1 Background

Among our eariler work on CSOPs, we looked at the Processor Con�guration
Problem (PCP) [15, 16]. Briey, the PCP is a real life CSOP where the task

is to link up a �nite set of processors into a network, whilst minimizing the
maximum distance between these processors. Since each processor has a
limited number of communication channels, a carefully planned layout will
help reduce the overhead for message switching.

We developed a GA called the Lower Power Genetic Algorithm (LPGA)

[17, 18] speci�cally for solving the PCP. LPGA is a two-phase GA approach
where in the �rst phase, we run LPGA until a local optimum has been
determined. The best chromosome from this run is analysed and used to
construct a �tness template for use in the next phase. This �tness template

is a map that de�nes undesirable genes, so inuencing LPGA to change their
contents. By insisting that crucial genes do not change, the evolution in the
second phase shifts focus onto other parts of the string; resulting in a more
compact search space.

LPGA found solutions better than results published so far in the PCP.
It's success could be attributed to the use of an e�ective data representa-

tion and more importantly, the presence of an application speci�c penalty
algorithm. In our e�ort to generalize LPGA, we sought to develop a GA
that utilizes a dynamic �tness template constructed by a general penalty

8

algorithm. The Guided Genetic Algorithm (GGA) repeated in this paper
was the result of this e�ort.

3.2.2 Overview of GGA

In our jounrey to develop GGA, we have taken liberty with some of the

traditional GA concepts (such as the addition of a penalty operator, and
an alternate interpretation of the mutation rate). These will be introduced
as we progress through the rest of this paper. Comparing GGA in Fig. 2
against the canonical GA in Fig. 1, we could see the additions of a data

collection called the �tness templates, a penatly operator (see 3.2.3) and a
condition to activate that operator. Also added to Fig. 2 are the interactions
between the penalty operator and the data space in GGA. Appended at the
end of this section (section 3) are two tables (Table 2 and 3), summarizing for
the readers' convenience, the terms and technology introduced henceforth.

The control ow of the GGA is very much similar to that of the canoni-
cal GA, described in section 3.1. After the start of the algorithm, an initial

population is created. A new generation of chromosomes are derived from
the parent chromosomes through the actions of the reproduction, cross-over
and mutation operators. Both the cross-over and mutation operators (or
any operator thereof) may be adapted to use the information provided by

the penalty operator, via the �tness template of each chromosome which is
collected in the �tness templates (explained in section 3.2.4). Memberships
to the population pool are re-assessed by comparing the �tness of the chro-
mosomes from the population and o�spring pool. For the RLFAP, GGA

was con�gured to use an elitist replacement strategy. Under this strategy,
chromosomes from both the population and o�spring pool are ranked by
their �tness. The �ttest n chromosomes in the ranking are used to form
the next generation's population pool. In GGA, n is set to the size of the
population pool.

New elements of the GGA comes into play at this point. The new pop-
ulation is surveyed for the possibility of being trapped in a local optimum.

We can observe that when a search is trapped in a local optimum, it repeat-
edly returns the same solution since the neighbouring states does not o�er
any improvement. If the population is indeed trapped in a local optimum,
the penalty operator is called. The penalty operator looks for undesirable

features in the chromosomes and update the �tness template (or �tness
templates), so that mutation and cross-over operators might fade out these
features in the coming generations.

9

Generate initial
population

Start

Mutation
operator

Cross-over
operator

population
Re-assess

Local
optimum?

Criteria
met?

End

operator
Penalty

Control Flow

Data Flow

Reproduction
operatorMating pool

Population
pool

Offspring
pool

Fitness
templates

no

no

yes

yes

Figure 2: The Guided Genetic Algorithm

10

3.2.3 Penalty Operator

In LPGA, its use of a �tness template (generated by a specialized penalty
algorithm) was the motivating force in the development of GGA. In the
quest for a general penalty algorithm, we looked for functional similarities

to LPGA and more importantly, that the nature of the penalty algorithm
will not be obstructive to the operation of a canonical GA. The Guided
Local Search (GLS) [19] developed by our research group is an intelligent
search scheme for combinatorial optimization problems. It met our criteria
and further, its conceptual simplicity and proven e�ectiveness in a range of

well known problems was an added attraction [20, 21, 22, 23]. In GGA, we
adapted GLS in the form of the penalty operator.

Solutions are characterized by a set of solution features �, where a so-
lution feature �i can be any property exhibited by the solution (Eq. 7).

This property must be non-trival, such that it does not appear in all candi-
date solutions. Research on GLS has indicated that feature de�nition is not
di�cult, since the domain often suggests features that one could use. The
application in this paper supports this point.

� = f�1; �2; : : : ; �mg (7)

In GGA, a fearure is limited to variable assignments (in GLS, it is more
general); a feature in a chromosome may be exhibited by the simultaneous
assignments of a group of genes. Thus the feature �i de�nes a set of positions

in the chromosome representation. And the feature �i is represented by an
indicator function �i in Eq. 8, which test the existence of that feature.
For each feature �i, there is a cost �i which rates that feature's presence
in a solution in degrees of undesirability. Indicator functions and costs are

application dependent, and so they are de�ned by the user.

�i(p) =

(
1; solution p exhibits feature �i
0; otherwise

(8)

Penalty counter �i is a variable maintained by GGA that gives the degree
of extent that the feature �i is penalized as the search is progressing; the
counter is initialized to zero at the beginning of the search. A new �tness
function called the augmented cost function g (Eq. 9) is used in place of

function f , so that changes in penalty counters will a�ect the survival of
chromosomes. The regularization parameter � (adopted from GLS) mea-
sures the impact penalties have, with respect to function f .

g(p) = f(p) + � �
X

(�i � �i(p)) (9)

11

In GGA, if the �tness of the best chromosome remains unchanged for
a speci�c number of generations, we conclude that it is trapped in a local
optimum. The penalty operator comes in to analyze the best chromosome

p of the population for features to penalize. Penalties are used in GGA to
guide the search to escape local optima. To evaluate the utility of penalizing
individual features exhibited by a candidate solution, GGA (following GLS)
takes into consideration the cost as well as the penalty counter (Eq. 10).

Thus, for all features �i in the �ttest chromosome p that maximizes the
function util(p; �i) (Eq. 10), the related penalty counter �i is incremented
by one. It is hoped that by penalizing undesirable features, we can escape
from the local optimum and suppress the occurance of these features in the
coming generations.

util(p; �i) = �i(s) �
�i

1 + �i
(10)

3.2.4 Fitness Template

Central to the theme in GGA is the �tness templates. Besides the �tness
function, the �tness templates o�er an added channel of communication
between the penalty operator, and the mutation and cross-over operators.
The �tness template is a map that de�nes which genes in a chromosome are

more susceptible to be changed during cross-over or mutation.
In GGA, each chromosome p in the population is associated with ex-

actly one �tness template �p. Each �tness template is made up of smaller
units known as weights �p;q, each of which corresponds to a gene p;q. A

weight �p;q is a positive integer. The \heavier" a gene appears (compared
to its comrades), the greater are its chances of having its content altered.
Therefore in the case of mutation, the weight of a gene is proportional to the
probability that mutation may occur on it, relative to the weights of other

genes in the same chromosome. This is especially useful when the number
of genes in a chromosome is large, where random selection of genes might
not be helpful. More details on the role of the �tness template with the
mutation and cross-over operator will be given in their respective sections.

Weights in the �tness template for each chromosome are computed when

the chromosome was �rst created, and after the penalty operator has pe-
nalized feature(s). Computation of weights are needed after these events
because the content of either the chromosomes or the penalty counters have
changed.

For a chromosome, the distribution process (Fig. 3) starts by initializing
all weights to zero. It will check the chromosome for the presence of any
features from the set �. For a feature �i that exist in the chromosome3, all

3Feature �i is present when its indicator function �i returns a one.

12

the weights related to the gene positions de�ned by �i is incremented with
the value in its penalty counter �i.

FUNCTION DistributePenalty(chromosome p)
f

FOR EACH weight �p;q RELATED TO chromosome p
f

�p;q 0
g

FOR EACH solution feature �i IN feature set �
f

IF �i(p) = 1 THEN
f

FOR EACH gene position q de�ned by �i
f

�p;q �p;q + �i
g

g
g

g

Figure 3: Algorithm for the Distribution of Penalty

3.2.5 Cross-over Operator

The action of mating two individuals from the population produces a new
child. Each parent contributes a set of genes which the child inherits. In
GA, the process of choosing parents, deciding their respective contribution

rights of genetic material, and the forging of a child chromosome from these
material is the responsibility of the cross-over operator. The probabilty of
cross-over occuring is controlled by the parameter cross-over rate. By as-
sembling a new chromosome that contains parts of two parent chromosomes,

it may introduce to the popultion a new point in the search space. And since
the parents chosen for mating are selected with bias to their �tness, we hope
that the child chromosome may be �tter.

Cross-over operators di�er primarily from each other in the way that they
choose the genes from the parents to form the child. In the canonical GA,

one of the simplest form of cross-over is the one-point cross-over [12, 11]. In
Fig. 4, we have two parent chromosomes whose genes are binary encoded.
One random point along the length of the chromosomes are selected as the

13

cross-over point. Each parent donates one di�erent part of their chromosome
(de�ned by the cross-over point) to create the child chromosome.

1 0 1 1 0 0 1 1 0 0

0 1 0 1 1 0 0 1 0 1

1 0 1 1 0 0 0 1 0 1

Gene

Parent 1

Parent 2

Cross-over point

Child

Figure 4: An example of the One-point Cross-over Operator in action

In GGA, we have adapted the cross-over operator to take advantage of
the �tness template. Two chromosomes p and p0 are selected as parents
to produce the child p00 . Each gene in chromosome p competes against
the corresponding gene in p0 for a place in the child. This compeitition

is a weighted random selection, inuenced by the weights �p;q and �p0;q of
the respective genes; thus the \lighter" gene will have a greater chance
to propagate its information to the child. Note that the child does not
inherit the weights from its respective parent, since the child may represent
a di�erent solution from its parents, and thus requiring the penalty operator

to re-assess it. The algorithm of GGA's cross-over operator is shown in Fig.
5, and Fig. 6 shows its e�ect when applied to the situation for one-point
cross-over in Fig. 4.

The operator starts o� by receiving two parents p and p0 from the
mating pool. For each set of corresponding genes p;q and p0;q in the parents,
it computes the sum of their weights. The selection of the gene is randomly

biased, such that the probability for either p;q or p0;q to have its gene
passed onto their child is

p0;q

sum and p;q
sum respectively; giving the advantage

to a \lighter" gene, which we would want the child p00;q to inherit. This
gene selection process is repeated for all genes in the parents. When a child
chromosome is complete, its �tness and weights are computed.

3.2.6 Mutation Operator

Mutation produces variations in the population through altering the infor-
mation that genes carry. The mutation rate states the probability that

14

FUNCTION CrossOver(parent chromosomes p and p0)
f

FOR EACH gene position q IN the chromosome
f

sum �p;q + �p0;q

point random integer from f0; : : : ; sum� 1g

IF point < �p;q THEN
f

gene p0;q

g
ELSE
f

gene p;q
g

g

RETURN gene as p00;q for the o�spring
g

Figure 5: Algorithm of the GGA Cross-over Operator

GeneWeight

0 1 1 1 1 0 1 1 0 0

5 2 3 40 1 2 1 3 3

002 4 4 2 23 0 3

0 1 0 1 1 0 0 1 0 1

1 0 1 1 0 0 1 1 0 0

Parent 2

Parent 1

Child

Figure 6: An example of the GGA Cross-over Operator in action
(Weights for the child is calculated afresh, not inherited)

15

mutation may occur on a chromosome. In GGA, the mutation rate is de-
�ned as a fraction of the size of each chromosome; the number of genes in a
chromosome to mutate is the product of the mutation rate and the size of

that chromosome.

In GGA, mutation (Fig. 7) acts on every child chromosome p00 produced
by the cross-over operator. For each chromosome, a number of genes are
chosen (as above, decided by the mutation rate) to be modi�ed. A gene
p00;q is selected using the roulette wheel selection method. In this selection

method, the probability for each gene to be picked is directly proportional to
its weight. Thus a gene with a \heavier" weight (and therefore less desirable)
compared to others in the chromosome, will have a greater chance of being
selected. Appended below is a description of our implementation of the
roulette wheel selection method.

Given the chromosome p00 , we compute the sum of all the
weights in the �tness template associated to this chromosome as
sum =

P�
q=1 �p00;q. The probabilty that a gene p00;q is selected

is proportional to its weight over sum, ie. P (p00;q) =
�p00;q

sum .

The next step for a selected gene p00;q is to seek an appropriate value for

replacement. This could be totally random or in GGA's case, a value that
will derive the best �tness (the biggest improvement) for the chromosome.
In our algorithm, we have the variables best and list. The variable best holds
the best �tness value, while list contains a list of values that will allow the

chromosome to arrive at the �tness value in best. We step through all the
values xj in the domainD(q) relevant to the gene p00;q. If xj produces a new
�tness z greater4 than best, best is set to z and list is emptied. However,
if the z is equal to best, the value xj is added to the list. When all values
in the domain have been exhausted, we randomly instantiate p00;q with a

value from list. Since at this point, list should contain all possible values
that will give the chromosome p00 the biggest improvement.

Updating of a gene's weight takes place after it's value has changed,
where the weight associated with it is reduced by one unit 5 so that the
probability of the same gene getting selected by the roulette wheel selector

is reduced.

Gene mutation is repeated until the stopping criteria is met. As stated

before, we stop mutating when the number of genes changed have reached a
value that is the product of the mutation rate and the chromosome's length.

4Since RLFAP is a minimization problem, we would want the greatest decent.
5Since a weight is a positive integer, a weight will only be decremented if it is greater

than zero.

16

FUNCTION Mutation(chromosome p00)
f

i 0

WHILE i < mutation rate � � (length of chromosome)
f

q RouletteWheel(p00)
best g(p00)
list p00;q

FOR EACH value xj IN domain D(q)
f

p00;q xj
z g(p00)

IF z � best THEN
f

IF z > best THEN
f

best z

list fg
g

list list+ xj
g

g

p00;q random value in list

i i+ 1
g

RETURN the mutated chromosome p00

g

Figure 7: Algorithm of the GGA Mutation Operator

17

Table 2: Components of GGA

Algorithms Purpose

Cross-over operator Uses the �tness templates of two parent chro-
mosomes to decide each parent's contribution of
genetic material towards creating a child chro-
mosome.

Mutation operator The �tness template of a chromosome is used to
guide in the alteration of the chromosome's ge-
netic content.

Penalty operator This operator detects and selects undesirable so-
lution features in a chromosome to penalize. Pe-
nalization involves incrementing penalty coun-
ters of the assocaited features.

Local optimum detector Detects if the search is trapped in a local opti-
mum. If it is, the penalty operator is called.

Distribute Penalty If a solution feature is present in a chromosome,
the penalty counter associated with this feature
is added onto the weights of the genes that are
constituents of this feature.

Data structures Purpose

Weight � Each gene has one weight. The weight is a mea-
sure of undesirability of the gene's current instan-
tiation, compared to the rest of the chromosome.

Fitness template A �tness template is a collection of weights. Each
chromosome has one �tness template.

Solution feature � Solution features are domain speci�c and user
de�ned. A feature is exhibited by a set of variable
assignments that describes a non-trival property
of a problem.

Penalty counter � Each feature has one penalty counter. A penalty
counter keeps count of the number of times its
related solution feature has been penalized since
the start of the search.

18

Table 3: Inputs and Parameters to GGA

Inputs/Parameters Purpose

Solution feature � See Table 2

Cost � Each solution feature has a cost to rate its unde-
sirability of presence.

Indicator function � Each solution feature has a user de�ned indicator
function that tests for the feature's presence in a
chromosome.

Objective function A function that maps each solution to a numeri-
cal value.

Regularization parame-
ter �

A parameter that determines the proportion of
contribution that penalties have in an augmented
�tness function.

Augmented �tness func-
tion g

A function that is the sum of the objective func-
tion on a chromosome and the penalties of fea-
tures that exist in it.

Mutation rate A fraction that de�nes the number of genes in
the chromosome to mutate.

Cross-over rate The probability that cross-over will occur be-
tween two chromosomes.

19

4 Preparing GGA to solve RLFAP

In section 2, we expressed the RLFAP as a formal PCSP. In this section, we

discuss the steps needed to adapt those de�nitions into a form that GGA
can use.

The feature set � is a union of the feature set of constraints �cst and the

set of mobility of radio links �mbt (Eq. 11). Constraint ci de�ned in Eq. 5
is recast as a feature in the set �cst (Eq. 12), where a one is returned if the
constraint cannot be satis�ed, and zero otherwise. The value of cost �costi
to each constraint ci depends on the nature of the instance. If the instance

is soluble, then all �csti are set to a large value; usually 10000, to signify
that the constraint must not be borken (ie. hard constraints). For insoluble
instances, �csti is set to the weights given for its priority class (see section
1.1.2). Similar to soluble instances, hard constraints in insoluble instances

will have their �csti set to a large value. The set �cst has n features, where
n is the number of constraints in the instance.

For the O3 objective type of instances, we need to minimize the mo-

bility cost of our candidate solution, in addition to minimizing constraints
violation costs. The set of mobility cost de�nes our next feature set, �mbt

(Eq. 13). For each variable in these instances, there is a mobility cost �mbti

and a default assigned frequency defaulti. If in our candidate solution, a
variable has been assigned a value di�erent from its default defaulti, then

a one is returned and zero otherwise. The mobility cost �mbti is set to the
weights given for its prioriy class (again see section 1.1.2). There are radio
links whose frequency should never change, and the mobility cost for these
have been set to a large value. The feature set �mbt has n features, where n

is the number of variables in the instance.

� = f�cst; �mbtg (11)

8�i 2 �cst : �csti(p) �

8><
>:

1; if C1 and jp;a � p;bj � zi
1; if C2 and jp;a � p;bj 6= zi
0; otherwise

(12)

8�i 2 �mbt : �mbti(p) �

(
1; if p;i 6= defaulti
0; otherwise

(13)

For all instances in the RLFAP, we seek to minimize the function g (Eq.
14). In g, the function f depends on the objective type of the instance (Eq.
15). The cost �i and �i both refers to the uni�ed feature set of �. They

will automatically associate with �csti and �csti , or �mbti and �mbti where
applicable. Thus the value of n in Eq. 14 is the sum of number of features
in �cst and �mbt.

20

g(p) = f(p) + � �
nX

i=1

(�i � �i(p)) (14)

f(p) =

8>>><
>>>:

if O1; number of di�erent values used in p
if O2; largest value used in p
if O3; a1 � nc1 + a2 � nc2 + a3 � nc3 + a4 � nc4 +

+ b1 � nv1 + b2 � nv2 + b3 � nv3 + b4 � nv4

(15)

5 Benchmark

The RLFAP benchmark results by algorithms devised within the CALMA
group was reported by Tiourine et al. in [24]. In this section, we compare

GGA's results with the CALMA algorithms (section 5.2). Further, we will
also evaluate the examine the value that GGA adds to the canonical GLS
(section 5.3).

5.1 Test Environment

In our physical environment, GGA was written in C++ and complied using
GNU GCC version 2.7.1.2. The code runs on an IBM PC compatible with

a Pentium 133 MHz processor, 32MB of RAM and 512KB of Level 2 cache.
Both compilation and executaion of GGA was performed on the Linux op-
erating system, using kernel version 2.0.27. Under GGA's environment, we
have a mutation rate and cross-over rate of 1.0, a population size of 20, and
a stopping criterion of 100 generations. For the �tness function g, � has a

value of 10.

5.2 Comparing Quality of Solutions

In Table 4, we see the published results of all the CALMA algorithms,
GLS and GGA. Algorithms from the CALMA project groups consist of ei-
ther complete or stochastic methods. The results recorded in the table are
from the best solution each algorithm had generated. For soluble instances

(scen01, scen02, scen03, scen04, scen05 and scen11)6, we report the num-
ber of frequencies above the known optimum that each solution (generated
by the respective algorithms) uses. Results for the insoluble instances are
reported as the percentage deviation from the best known reported solution.

For soluble instances, we observe that only seven out of the 13 algo-
rithms7 were able to provide a solution to all the instances. Of the six

6Instance scen06 was found to be insoluble, and thus solved as an O3 problem.
7Genetic Algorithms (LU) was designed for PCSP, and so it did not attempt any of

the soluble instances.

21

soluble instances, GGA failed to return an optimum solution only for in-
stance scen11. This instance has proved to be di�cult for most of the
algorithms, since only three algorithms (Taboo Search (EUT), Branch and

Cut (DUT,EUT) and Constraint Satisfaction (LU)) were able to return a
solution on par with the best known. Only two algorithms (Branch and Cut
(DUT,EUT) and Constraint Satisfaction (LU) were able to report solutions
that gave the most optimal resutls. However, these two algorithms were

limited to solving soluble instances only.

Looking at insoluble instances, we see that 11 out of the 14 algorithms

were able to solve these PCSP instances. Of the 11, nine of these algorithms
managed to provide a satisfactory solution to the instances. Of note is the
Genetic Algorithms (LU), which has the best known solutions.

Overall, we see that top performers in each category (soluble and insol-
uble) are limited to only that category; Branch and Cut (DUT,EUT) and

Constraint Satisfaction (LU) for soluble instances, and Genetic Algorithms
(LU) for insoluble instances. Of the total of 14 algorithms, 10 were applica-
ble to both categories. Of these 10, only four algorithms were able to provide
a satisfactory solution to all the 11 instances. Of the four, GLS and GGA
consistently gave solution quality very close to the best known solutions.

5.3 Comparing GGA and GLS

From Table 4, we see that solution quality reported by GLS and GGA were

very much the same except in soluble instance scen11, where GGA managed
to better GLS's result. The amount of CPU time required for computing
these results have shown GLS to be much superior. However, it is unfair to
view GGA as just a parallel version of GLS. In section 3.2, we describe the
mechanics of GGA. We have integrated GLS as a component of GGA; ie.

as the penalty operator. The feedback from the GLS is used at two levels
within GGA. On one level, GLS modi�es the objective (�tness) function
of GGA to inunce its search. On another level, information from GLS
are encoded into the template of each chromosome, which rates the relative

�tness of each gene in the chromosome. The templates are used to inuence
the cross-over and mutation processes. But because GGA manages several
candidate solutions at the same time, it will have a more complex (and
perhaps less e�ective) means to detect local optimum traps.

Besides solution quality and computation speed, one other measure is
robustness. Robustness of an algorithm measures the consistency of the

solutions it returns. In certain environments, one may need to be absolutely
sure that the solution returned by an algorithm is, or very near the optimum.
Following, we compare the statistics of GGA and GLS.

For the comparison, GGA runs with a population of only �ve chromo-

22

Table 4: Comparison of GGA with GLS and the CALMA project algorithms.

Soluble Instances Insoluble Instances

Instance (scen) 01 02 03 04 05 11 Time 06 07 08 09 10 Time Platform

Simulated Annealing (EUT) 2 0 2 0 0 2 1min 6% 65% 5% 0% 0% 310min SUN Sparc 4

Taboo Search (EUT) 2 0 2 0 - 0 5min - - - - - - SUN Sparc 4

Variable Depth Search (EUT) 2 0 2 0 - 10 6min 3% 0% 14% 0% 0% 85min SUN Sparc 4

Simulated Annealing (CERT) 4 0 0 0 - 10 41min 42% 1299% 70% 2% 0% 42min SUN Sparc 10

Tabu Search (KCL) 2 0 0 0 0 2 40min 167% 1804% 566% 8% 1% 111min DEC Alpha

Extended GENET (KCL) 0 0 0 0 0 2 2min 12% 27% 40% - - 20min DEC Alpha

Genetic Algoritms (UEA) 6 0 2 0 - 10 24min 0% 386% 134% 3% 0% 120min DEC Alpha

Genetic Algorithms (LU) - - - - - - - 0% 0% 0% 0% 0% hours DEC Alpha

Partial Constraint Satisfaction (CERT) 4 0 6 0 0 - 28min 83% 2563% 246% 47% 12% 6min SUN Sparc 10

Potential Reduction (DUT) 0 0 2 0 0 - 3min 27% - - 4% 1% 10min HP 9000/720

Branch and Cut (DUT,EUT) 0 0 0 0 0 0 <10min - - - - - - -

Constraint Satisfaction (LU) 0 0 2 0 0 0 hours - - - - - - PC

Guided Local Search (UE) 0 0 0 0 0 6 20sec 4% 9% 7% 0.7% 0.003% 2.88min DEC Alpha

Guided Genetic Algorithm (UE) 0 0 0 0 0 2 30min 4% 9% 7% 0.7% 0.003% 2.88min PC Linux

Best known solution 16 14 14 46 792 22 3437 343594 262 15571 31516

Results for the soluble instances are reported as the number of frequencies more than the optimum used.

Results for the insoluble instances are reported as the percentage deviation from the best known solution.

CERT Centre d'Etudes et de Recherces de Toulouse, France

DUT Delft University of Technology, The Netherlands

EUT Eidhoven Univeristy of Technology, The Netherlands

KCL King's College London, United Kingdom

LU Limburg University, Maastricht, The Netherlands

UEA University of East Anglia, Norwich, United Kingdom

UE University of Essex, United Kingdom

23

somes8. We introduce variation of GLS, called GLS5 to compete with GGA
on even grounds. GLS5 is �ve GLS running concurrently of each other, each
maintaining its own candidate solution. Run time and iteration count for

each GLS thread within GLS5 has also been extended to meet with GGA's.
At the end of each run, only the best solution from GLS5 was used. For
all 11 instances, the three algorithms (GGA, GLS and GLS5) were each
sampled 50 solutions for each instance.

The results from Table 5 shows GGA to have better robustness than
GLS or GLS5 in soluble instances. Whereas results for insoluble instances
are mixed, with both algorithms having results very close to each other.

6 Conclusion

GGA was devised as a GA for arresting the e�ect of high epistatis when
GAs are deployed to solve problems such as those from the CSP class. In

the benchmarks, we have shown that GGA adds value to the canonical GLS.
And that overall, GGA performed well against the other algorithms. As a
GA, GGA was more exible than Genetic Algorithms (LU), and performed
better than Genetic Algorithms (UEA).

The integration of GLS and the introduction of new elements to the
foundation of the canonical GA gave GGA a technique of measuring gene
�tness for a chromosome, and the provision for multi-criteria optimization.

By knowing a gene's �tness within a chromosome, one could understand the
magnitude of its contribution to the overall �tness. Gene �tness inuence
the e�ects that genetic operators have on them, encouraging change to genes
with low �tness, whilst protecting the healthy ones.

For most applications where the users are more concerned with
turnaround time and less so on robustness, GLS is clearly the better choice.
But for mission critical applications, or applications where time is not as

tight, GGA can guarantee robustness and may perform better than GLS at
times.

References

[1] E. P. K. Tsang, Foundations of Constraints Satisfaction. Academic
Press Limited, 1993.

[2] E. Freuder and A. Mackworth, Constraints-based Reasoning. MIT

Press, 1994.

8This is the minimum number of chromosome needed to maintain any advantage over
GLS.

24

Table 5: Comparing Robustness between GGA, GLS and GLS5.

Best Solution Average Cost Standard Deviation Worst Solution

Instance GLS GLS5 GGA GLS GLS5 GGA GLS GLS5 GGA

scen01 16 18.6 17.0 16.0 2.3 0.8 0.0 22 18 16

scen02 14 14.0 14.0 14.0 0.0 0.0 0.0 14 14 14

scen03 14 15.4 14.4 14.0 1.3 0.4 0.0 18 16 14

scen04 46 46.0 46.0 46.0 0.0 0.0 0.0 46 46 46

scen05 792 792.0 792.0 792.0 0.0 0.0 0.0 792 792 792

scen06 3628 4333.8 4029.6 4029.6 766.0 538.2 529.3 6042 6028 6028

scen07 427054 530641.1 510532.5 51344.8 79666.7 75149.4 75612.8 700685 694011 698837

scen08 294 335.7 322.6 320.5 34.7 23.1 21.5 377 372 368

scen09 15805 15999.7 15895.0 15889.6 194.7 112.6 109.3 16340 16280 16124

scen10 31533 31686.6 31621.4 31626.1 146.1 101.7 104.8 31942 31922 31922

scen11� 28 - 33.9 30.2 - 3.1 1.7 - 36 32

� For scen11, results for GLS could not be computed because it did not return a satis�able solution for some runs.

25

[3] E. Freuder and R. Wallace, \Partial constraint satisfaction," Arti�cial

Intelligence, vol. 58, pp. 21{70, 1992.

[4] K. Hale, \Frequency assignment: Theory and applications," in IEEE,
vol. 68, pp. 1497{1514, 1980.

[5] P. Meseguer, \Constraint satisfaction problems: An overview," AI

Communications, vol. 2, pp. 3{17, Mar. 1989.

[6] Kumar, \Algorithms for constraint satisfaction problems: A survey,"

AI Magazine, vol. 13, no. 1, pp. 32{44, 1992.

[7] E. Freuder, R. Dechter, B. Selman, M. Ginsberg, and E. Tsang, \Sys-
tematic versus stochastic constraint satifaction," in 14th International

Joint Conference on Arti�cial Intelligence, 1995.

[8] S. Minton, M. Johnston, A. Philips, and P. Laird, \Minimizing conicts:

A heuristic repair method for constraint satisfaction and scheduling
problems," Arti�cial Intelligence, vol. 58, pp. 161{205, 1992.

[9] B. Selman, H. Levesque, and D. Mitchell, \A new method for solving

hard satis�ability problems," in 10th National Conference on Arti�cial

Intelligence, pp. 440{446, 1992.

[10] P. Langley, \Systematic and non-systematic search strategies," in Ar-

ti�cial Intelligence Planning Systems: Proceedings of the �rst interna-

tional conference, pp. 145{152, 1992.

[11] L. Davis, Handbook of Genetic Algorithm. Von Nostrand Reinhold,

1991.

[12] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Ma-

chine Learning. Addison-Wesley Pub. Co., Inc., 1989.

[13] J. Holland, \Some practical aspects of adaptive systems theory," Elec-

tronic Information Handling, pp. 209 { 217, 1965.

[14] A. Bethke, \Genetic algorithms as function optimizers," Tech. Rep.
197, Logic of Computer Group, University of Michigan, USA, 1978.

[15] A. Chalmers and S. Gregory, \Constructing minimum path con�gura-
tions for multiprocessor systems," Tech. Rep. CSTR-92-12, Computer
Science Department, University of Bristol, UK, Apr. 1992.

[16] T. Warwick, A GA Approach to Constraint Satisfaction Problems. PhD
thesis, Department of Computer Science, University of Essex, UK, 1995.

26

[17] T. L. Lau and E. P. K. Tsang, \Applying a mutation-based genetic
algorithm to the processor con�guration problem," in IEEE 8th Inter-

national Conference on Tools with Arti�cial Intelligence, 1996.

[18] T. L. Lau and E. P. K. Tsang, \Solving the processor con�guration

problem with a mutation-based genetic algorithm," International Jour-
nal on Arti�cial Intelligence Tools, vol. 6, no. 4, 1997.

[19] C. Voudouris, Guided Local Search. PhD thesis, Department of Com-
puter Science, University of Essex, UK, 1997.

[20] E. P. K. Tsang and C. Voudouris, \Fast local search and guided local
search and their application to british telecom's workforce scheduling
problem," Operations Research Letters, vol. 20, pp. 119{127, Mar. 1997.

[21] C. Voudouris and E. P. K. Tsang, \Guided local search," Tech. Rep.

CSM-247, Department of Computer Science, University of Essex, UK,
Aug. 1995.

[22] C. Voudouris and E. P. K. Tsang, \Function optimization using guided
local search," Tech. Rep. CSM-249, Department of Computer Science,
University of Essex, UK, Sept. 1995.

[23] C. Voudouris and E. P. K. Tsang, \Partial constraint satisfaction prob-
lems and guided local search," in Practical Application of Constraint

Technology, pp. 337{356, Apr. 1996.

[24] S. Tiourine, C. Hurkens, and J. Lenstra, \An overview of algorith-
mic approaches to frequency assignment problems," in CALMA Sym-

posium, Scheveningen, 1995.

27

