Submission to Annals of OR (revised June 2002)

Applying an extended Guided Local Search to the Quadratic
Assignment Problem

Patrick Mills, Edward Tsang and John Ford
Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CQ/K3SQ,
Phone: +44 01206 87{2771,2774,2787}
E-mail: {millph,edward,fordj}@essex.ac.uk
World Wide Web: http://cswww.essex.ac.uk/CSP/

Abstract. In this paper, we show how an extended Guided Local Search (GLS) can be applied to the
Quadratic Assignment Problem AR). GLS is a general, penaltyased metdeuristic, which sits on

top of local search algorithms, to help guide them out of local minima. We present empirical results of
applying several extended versions of GLS to the QAP, and show that these exteasiomprove the
range of parameter settings within which Guided Local Search performs well. Finally, we compare the
results of running our extended GLS with some state of the art algorithms for the QAP.

Keywords: local search, metheuristics, quadratic aginment problem

Guided Local Search (GLSP$] has been applied to a number of problems, including the SAT problem
[18], the weighted MAXSAT problem [L8], the vehick routing problem10], BT's workforce scheduling
problem R§], the radio link frequency assignment proble®0], function optimisation 31] and the
travelling salesman probler3Z)].

GLS is a general metheuristic that sits on top of local search procedures and helps them escape from local
minima. GLS can be seen as a generalisation of the GENET neural ne@#&bld for solving constraint
satisfaction problems and optimisation problems. Recently, it has been shown that GLS can be put on top
of a specialised Genetic Algorithmesulting in the Guided Genetic Algorithm (GGA)g]. GGA has been
applied to a number of problems, including the processor configuration proble&®[14], the generalised
assignment problenip] and the radio link frequency assignment problet§,17]. In this paper, we show

how GLS and some extensions@LS can be successfully applied to the Quadratic Assignment Problem.

1 The Quadratic Assignment Problem

The Quadratic Assignment Problerd] [is one of the hardest groups of problems in combinatorial
optimisation, with many realorld applications and has been the focus of a lot of successful research into
heuristic search methods. The problem can be formally stated as in eg{ijtion

n n
ming(7), whereg(m) = > > &by (1)
i=1 j=1
where:
* nis the size of the problem (i.e. number of facilities or locations),
e J7is a permutation, wherg is theielement in permutatior
« aandb are then x n distance and flow matrices.

The problem is to find a permutatiorr(which represents which fadikes are placed at which locations),
which minimises the sum of the distance times the flow between different facilities. Each elgno¢tiie
matrix a, represents the distance between locatiamd locationj. The elemenb,;,; represents the flow
betveen facilities7/7 and 77. Whena; is multiplied byb;; 5, the cost of placing facilityz at locationi and
facility 77 at locationj, is obtained. Thus, by summing all the terms together, the total cost of the whole
permutation of locatioffacility assgnments is obtained.

Both exact and heuristic algorithms have been proposed for solving the Quadratic Assignment Problem (for
a survey, seeld]). The exact algorithms have the disadvantage that they can only solve relamely

QAPs (n< 20), whereas the heuristic methods can deal with much larger problems. The heuristic methods,
which have been used to solve the QAP, include Robust Tabu S&28@M][Reactive Tabh Search 2],
Simulated Annealing33,26], a Genetic Hybrid Algorithm 9], ant algorithms 22, 25] and various others

[1]. In this paper, we show how Guided Local Search (also a heuristic method) can be applied to the
Quadratic Assignment problem, and present empirical results showing two extensions ofl Goaie
Search which can increase the range of parameters under which good results are obtained.

2 Guided Local Search

Guided local search (GLS) (se2q for a more detailed description) is a metaheuristic, which sits on top of

a local search algorithm. When the given local search algorithm settles in local optimum, GLS changes the
objective function, by increasing penalties present in an augmented objective function, associated to
featurescontained in that local optimum. Thedal search then continues to search using the augmented
objective function, which is designed to bring it out of the local optimum.

Solution featuresare defined to distinguish between solutions with different characteristics, so that bad
characteristis can be penalised by GLS, and hopefully removed by the local search algorithm. The choice
of solution features therefore depends on the type of problem, and also to a certain extent on the local
search algorithm. Each featufegdefined must have the folwing components:

« An Indicator function}; indicating whether the feature is present in the current solution or not:

1, solutions haspropertyi
li(s) = : (2)
0, otherwise

« A cost functionc(s), which gives the cost of having the feature presentsolation.
* A penaltyp;, initially set to 0, used to penalise occurrences of the feature, in local minima.

2.1 Selective Penalty Modifications

When the Local Search algorithm returns a local minimgnGLS penalises (increments the penalty of the
feature) allthe features present in that solution which have maximum utilitil(s,f), as defined in
equation(3).
util(s,) = 1i(s) L9
' 1+ pi 3)
The idea is to penalise features, which have high costs firspudtithe utility of doing so decreases as the
feature is penalised more and more times.

2.2 Augmented Cost Function

GLS uses an augmented cost funct{@j to allow it to guide the Local Search algorithm out of the local
minimum, bypenalising features present in that local minimum. The idea is to make the local minimum
more costly than the surrounding search space, where these features are not present.

() = g(9 + A D 1(9) @

The parametek may be ued to alter the intensification of the search for solutions. A higher valua for

will result in a more diverse search, where plateaus and basins in the search are searched less carefully; a
low value will result in a more intensive search for the solutiwhere the basins and plateaus in the search
landscape are searched with more care. Generally, a value of lambda, which is near to the average change
in objective function after a move, will work well.

2.3 Local Search for the QAP

The Quadratic Assignment Rylem (QAP) can be formulated as a local search algorithm, using the
objective function defined in equatiofl), and searching the space of possible permutations. The local
search neighbourhood is simply the set of possible petiongaresulting from the current permutation
with any two of the elements transposed.

2.4 Efficient Local Search and Neighbourhood Updating for the QAP

The new value of the objective function after a swap can be efficiently incrementally updated in
approximaely O(rf) time using(5) and(6) (for asymmetric QAPs, se@® or (7) and(8) (for symmetric
QAPs, the symmetry in the atrices can be taken advantage of to speed up neighbourhood updating by a
factor of about 4, se€?)).

(arr - ass)(bnws - brfﬂ) + (ars - asr)(brsn - bm‘s) +
AU = S (@ — aue) (b = i) + (k — @ (b — D)) (5)

k=1,k#r,s

+Hau—avtav—a u_bf v+bfr v_bfr)+
DJ,v-uvir,s:Ag(ﬁ,u\/):Ag(nuv) (v=as) Orst —tart Horrty bt
(aJr_aIr+a/S_alg bfuﬂs _bfvn‘s +bfvn‘r _bTuITr) (6)

Ag(rr,s) =2 Zn:(ark — ask)(brex — brr)

K=LK#r,s (7)

Ag(7,u,v) +
Ou,veu,v#r,s:Ag(rT,u,v) = (8)
2(aru — arv + dsv — aSU)(bﬂ'sﬂ'u - bﬂ'sﬂ'v + bﬂ"rﬂ"v - b]T'rlT'\

Ag(ﬂ,r,S) =2 i(bmm —bﬂm)

k=1,k#r,s (9)
Ou,ve u,v#r,s:Ag(7',u,v) = Ag(72,u,V) + 2(br orw = br oz + br e = D o) (10)
Ah(m,r,s) =Ag(m,r,s) + A [«pr,ns + ps,n)_(pr,n + ps,ns)) (11

Where:

a & b are the distance and flow matricesis the problem size (i.e. the number of facilities or locations)
7 = the permutationmrwith elements ands swapped

4Ah(rzi,j) = change in augmented cost h of permutatipafter he elements andj have been swapped
49(7zi,j) = change in cosy of permutationsz after the elementsandj have been swapped

p. i=the penalty when thi' element of permutatiomis assigned the valug.

In addition to this, for Taillard’s Gregensity problems the neighbourhood may be restricted to swapping
elements from the first m values in the permutation with the last values in the permutation and may be
calculated and updated more efficiently using equat{®and(10) (as explained inZ4]). The augmented
cost may also be efficiently updated, using these equations, together with eqddjion

2.5 Features for the QAP

There is only @e obvious choice for the feature set: faciitcation assignmentsFor each facility

location assignmenti=v, there is an associated pengtty. Obviously the featurez=v is only present in a
solution r7if the ith element ofrzis v. All the penaltes can be kept in a matrix of sizeby n and the
augmented objective function can be updated efficiently. The cost of a particular fémdétion

assignment is the sum of the constituent parts of the objective function that it is invol{&Eg).in

Cost(i, 7) = zn: a 0, 12

j=1

2.6 A basic GLS for the QAP

In Figurel, we show pseudo code for a basic GLS for the QAP, which we call GLSQAP. In likéslset

to an initial value(we found the formula shown gave good results, by experimentation, whgfis 1). In

line 2, we setrtto a random initial start point, by randomly shufflihthe permutation (this gives equal
probability of using any given permutation as the starnpoiLines 310 iteratively apply local search to

the current solution, using the augmented objective function h. Line 6 calls the local search with the
current solution, the original objective function and the augmented objective function as parakieeers.

selects features with maximum utility in the current local minimum returned by the local search to penalise.
Line 8 increases the amount of penalty associated with each of those features in the augmented objective

1 We did try to use pairs of facilifocation assignments, with the flow between the facilities as the cost, but this meant
there were a too many (i\ features to store and incremental updating of the neighbourhood also became too
expensive (more than 4 times slower) for larger problems, evigh very “lazy” schemes for neighbourhood
updating.

2 This was implemented by the random_shuffle() function from the C++ standard template librar2)Xse®38 for
details of the random_suffle() function).

function. This continues until theermination criteria (line 10) is met (in our experiments in this paper,
when 1000 * n swaps of elements of the permutation have occurred). Finally (line 11), GLS rgtuthe
permutation with the best cost found, during the search.

In Figure2, we show pseudo code for a basic local search algorithm to be used with GLSQAP. This takes
as parameters, a starting permutatignan augmented objective functidp and the original objective
functiong. Line 1, sets the sideways @ot to zero. This is used to count the number of sideways moves
(moves to solutions of equal augmented clstLine 2-10 iteratively modify the solution until a local
minimum is found. This is defined to be (line 2) when there are no downwards and rwag&lenoves
available (or if the maximum number of consecutive sideways moves, 2 in this’phpebeen exceeded).

Line 3 modifies the current permutation by swapping the elements, which result in the permutation with
the lowest augmented cost. Lines74keep track of how many consecutive sideways moves have been
made. Line 8 records the current solutigras the current best solutiot, if it is the lowest cost solution
found so far, w.r.t. the original cost functign Line 10 returns the local miniom solutionsz

GLSQAPfcoer)
n n n n

PIILEDIPI

i=1 j=1 i=1 j=1
1. /] = !] n4l] mcoeﬁ
2. 7 = m=randomly generated permutation of the values [1..n]
3. do
4, {
5. Il rris a permutation, the second parameter is the augmented objective function and

/lthe third parameter is the original objective function

6. 77= LocalSearch{z 77, g+ A D:l B 9)

7. foreach(iin {1..n}), such that Cost(iz) / (1 + p; ») is maximised
8. Pii=Pinitl

9.

10. while (Not termination criteria)

11. return 7

}

Figure 1: Pseudo code for GLSQAP

LocalSearchQAPR{, 7, h, g)
{

1. sideways_count=0
2. while ((there is a downwards move w.r.t.)) or
(there is a sideways move w.r.t./h@nd sideways_ca < 2)
and termination criteria is not met)
{
3. = nwith the elementsr and 77 swapped such thath(7zwith 77 and
77 swapped) is minimised (ties are broken randomly)

4. if (4h(7)==0)

5. sidewgs_count = sideways_count + 1
6. else

7. sideways_count=0

8. If(g(n<g(1) n= nm

9.

3 This value was fond to work well previously in§], although this may not be the optimal value for this problem.

10.return 77

}

Figure 2: Pseudo code for a basic local search for the QAP

3 Guided Local Search extensions

Whilst applying Guided Local Search to the QAP, we tried various schemes in an attempt to further
improve Guided Local Search and try to understand why those schemes might work.

3.1 Adding aspiration moves to GLS

Aspiration criteria (as used in the tabu search framewo#lg]) are conditions under which a move is
allowed, even when it would normally be tabu, usually when it will give rise to a new best solution.
Intuitively, this is a good idea, since it would be stdipd avoid making a move just because it was tabu, if

it gave us a new best solution. In GLS, we have penalties rather than a tabu list, so in this paper, our
aspiration criterion means ignoring the penalties (lines 3 & Bigure 3 below, otherwise it is the same as

the standard local search, pseudo codé-igure 2), if there is a move which can produce a new best
solution. We shall call such a move, aspiration move

LocalSearchQAPAspiration(7, g, h)
{

1. sideways_count=0

2. while(there is a downwards move w.r.t.)(or
(there is a sideways move w.r.t./h@nd sideways_count < 2)
and termination criteria is not met)

/INOTE: the first term with the originallgective function
/lis the aspiration criteria, the second is the standard
/IGLS, minimizing the augmented objective function
if there exists a move, such thavdy¢- Ag(7rwith 77 and 77 swapped) < best cost so far
4, 1= nwith theelementst and 77 swapped such thalg(7zwith 77 and 77 swapped) is minimised
(ties are broken randomly)

w

5. else

6. 7= nrwith the elementgr and 77 swapped such thath(7zwith 7z,
and 77 swapped) is mimised, ties are broken randomly

7. if (4h(7)==0)

8. sideways_count = sideways_count + 1

9. else

10. sideways_count =0

11 I (9(n<g() m= m
12. }
13.return 71

}

Figure 3: Pseudo code for local seaih for the QAP with aspiration moves for use with GLS

We have found that aspiration moves improve the performance (in terms of %relative error, a measure of
solution quality, see equatiofi3)) of GLS in terms of the average befstund solution over a run (see
Figure4), particularly when large values of lambda are used.

Cost—Best_Known_Cost
*100 (13)
Best_Known_Cost
(where Best_Known_Cost is the best known cost (this can be four)ifof that problem

%relative_error(Cosf) =

18

1.6 e

1.4 ﬂ

1.2—\

—e— GLSQAP + Pr(rand mowe)=0.2
—m— GLSQAP

GLSQAP + Aspiration

GLSQAP + Pr(rand mowe)=0.2 +
Aspiration

0.4

0.2 4

Average %relative error of best found solution per run

0 —
PN I A T T N R S IR

Lambda coefficient

Figure 4: GLS variants over a range of lambda coefficients values on small to medium sized
QAPLIb [4] problems, average of 10 runs, 1000 * N repairs (N = problensize)

45.5

45

aa L\ oA

v
435 w 'S /‘A/v —e— GLSQAP + aspiration

—=— GLSQAP

43 1

42.5

42

Average %relative error of all better-than-
previous solutions during a run, over 10 runs

M5+—+—+—w——"—7—7—"—"+—"r—"r——"—+—""""1—""77"7

PP R L VOO H DD

Lambda coefficient

Figure 5: Average %relative error of better -than-previous solutions over all smalimedium sized
QAPLIib problems, over 10 runs

We theorised thatspiration moves work because they allow us to focmsnmonimising the original
objective function at critical points during the search and also allows us to find more hb#aprevious

solutions per run(seeFigure6). This is particularly important when the lambda coeffitiés large, as any
penalty will have a larger effect on the local search algorithm, and is a plausible explanation for the
improved performance of GLS when the lambda coefficient is large.

33

32

w
(@]
!

—e— GLSQAP + aspiration
—m— GLSQAP

N
©

solutions per run

N
(o]
!

N
~

Average number of better-than-previous

26YYYYTYTTYTYTYYYYTYTTYTTYYYY

SLLAL VO DO DA P

Lambda coefficient

Figure 6: Average number of better-than-previous solution found per run on all small to medium
sized QAPLib problems, over 10 runs

We ran controlled experiments, to try and substantiate this theory of why aspiration moves work. The first
was to allow a GLS without asgaition to follow the standard GLS scheme p% of the time and@d%@0of

the time choose a move according the original objective function. We found that simply allowing GLS to
ignore penalties p% of the time, does not result in an increase in performandacffaf space, we omit
these results here), and so is not the sole reason for the success of aspiration moves.

So the reason that aspiration moves produced better results was not just because they allowed GLS to
occasionally ignore the penalty term imetaugmented objective function. During the runs of GLS with and
without aspiration moves, we also recorded the average cost of each of thetlattprevious solutions

over each run of GLS (sdeigure5). We found that when ag@tion moves were used that this value was
substantially lower than when aspiration moves were not used. We also found that GLS with aspiration
moves found more bett¢hanprevious solutions per run, than GLS without aspiration. This suggests that
GLS with aspiration works as we theorised, because it allows GLS to find newfde®d solutions that it

might otherwise simply ignore due to penalties imposed on those solutions. We recorded several statistics
about the quality of solutions visited during teearch (including the average cost local minima visited, the
average cost of solutions visited) and only the statistics on the quality of {lesepreviousfound and

best found solutions per run, varied between GLS with and without aspiration. Thiswaigested that it

was precisely when and what aspiration does that is critical in its success.

4 A betterthanprevious solution, is one with a lower cost (in terms of the original objective function) than all the
previous saltions visited so far, during a run

3.2 Adding random moves to GLS

The second experiment was to run GLS, allowing a random move to be chosen from the neighbourhood p%
of the time, with the normal GLScheme being followed the rest of the time (this technique was partly
inspired by the walksat algorithn2@]). This was to check whether or not GLS was simply able to move

into areas of the search space which would otherwisee Hzeen difficult to reach, due to penalties
restricting GLS moves, when aspiration moves were added. These experiments gave rise to an increase in
the performance of GLS when small values of lambda were used, although the increase in performance
when thelambda coefficient was large that occurred with aspiration moves did not occur. In fact, from
looking at the average entropy (s€egure 7, this is a measure of the spread, 0 would mean only one
facility-location assignment wassited for a particular element in the permutation, 1 would mean all labels
were facilitylocation assignments were present in the same quantities, see eqad}itor a definition of
average entropy or3] for the definition of entropy) of facilityocation assignments, we observed that
random moves had a completely different effect from aspiration moves in that they allowed GLS to
diversify its search when lambda was too small, whereas GLSQAP wijtinatisn moves gave almost
identical values to the basic GLSQAP.

freq(7i = j)
Lo freq(7i = j) iterations
Average entropy= - B
9e by ;; iterations log(n)

where: (14

freq(ri=j) = the frequency of solutions visited where facility j is at location i,
iterations = the total number of solutions visited during the search &
n =the problem size in terms of the number of locations

3.3 Further studies of random moves

0.94

0.92

0.9

o

oo}

@
‘\

o
©
o

—e— GLSQAP + Pr(random mowve) = 0.2

o

o]

~
Il

—m— GLSQAP

Average entropy

0.82 1

0.8

0.78

0-76 L L T T T T T L T L T T T T T T T T L T L
NN AN S AT SR SRR
Lambda coefficient

Figure 7: Average entropy of GLSQAP with random moves verses basic GGQAP, over all small
medium sized QAPLIb problems, over 10 runs

As already mentioned, whilst trying to understand more precisely why aspiration moves gave a
performance improvement to GLS, we tried an additional scheme, whereby with probability p, wedllo
GLS to make a move at random. We found that GLS without random moves, at low values of lambda
produced a much less diverse search, than GLS with random moves, resulting in a better performance with
respect to the best cost of solution of GLS with ramdmoves. This suggests that the role of random moves

is to help GLS move out of local minima, when GLS on it's own might not be able to do so. This is
supported by the fact that the average entropy Bgare7) is higher when radom moves are used with
GLSQAP than GLSQAP without random moves. The number of repeated solutiorSigsee8) is lower,

for GLSQAP with random moves, when lambda is set to too low a value to allow escape from local
minimas, alhough when lambda becomes larger, this value crosses over, so that GLSQAP with random
moves produces more repeated solutions. This suggests that GLSQAP on it’s own is slightly more efficient
at escaping from local minima, when lambda is large enough,rdr@diom moves.

14000

12000 -

10000

8000 -

—e— GLSQAP + Pr(random mowe)=0.2

6000 - —m— GLSQAP

4000 -

Average number of repeated solutions

2000

s+ """"""""""""""—

PPN X VOO PP

Lambda coefficient

Figure 8: Average number of revisited solutions during runs of GLSQAP with and without
random moves, over smaHmedium sized QAPLIib problems, over 10 runs

4 Comparison with state of the art QAP algorithms

In this section, we compare our extended GLS against two state of the art QAP algorithms: Reactive Tabu
Search 2] and Robust Tabu Searcl24], but we should emphasise that this islyomo show that our
extended GLS has a place in solving the QAP, but not to show that GLS is by any means the “best”
algorithm for the QAP.

We allowed each algorithm a maximum of 108N repairs (where N is the number of variables in the
problem) and 1Quns each, taking the average deviation from the best known solution in every case and
taking the average result of those 10 runs. We set GLS to use a lambda coefficient of 0.6, Pr(random move)
= 0.2, and allowed GLS to make aspiration moves (we call thisant EGLS in the table). We also ran

GLS without random moves and aspiration moves for comparison, with a lambda coefficient of 1 (this
variant is called GLS in the table). The parameters for reactive tabu search (ReTS) and robust tabu search
(RTS) wee the standard parameters suggeste@jimifd [24], although we used our own implementation
(which according to our experience performs similarly to the original results in the papers). All latg®rit

were implemented on C++ and run on identical PCs running Linux. A summary of results are shown in
Tablel.

These results show EGLS gives a comparable performance to both reactive tabu search and robust tabu
search overall, ahin some cases outperforms one or both (the bur* groups of problems and on the els19
problem) of them in terms of solution quality. In terms of CPU seconds, EGLS performs comparably with
both reactive tabu search and robust tabu search. This is probeddyde all the algorithms use the same
neighbourhood structure and updating of the objective function values, thus giving similar CPU times.

5 Conclusion

In this paper, we have presented an Extended Guided Local Search algorithm and its application to the
Quadratic Assignment Problem. We have shown how two simple extensions of Guided Local Search, can
dramatically increase the range of parameters under which GLS performs well. We have also studied and
provided evidence on why they work. Since Guided Localr8le is a general mefaeuristic and given our
understanding of the extensions, we believe they should also generalise to other problems similar in nature
to the QAP Finally, we have shown that Guided Local Search with these two extensions gives comparabl
results to reactive tabu search and robust tabu search (two of the most famous heuristic methods for solving
the Quadratic Assignment Problem), in some cases outperforming them, given the same number of
iterations for each algorithm. Summarising, our éixded Guided Local Search algorithm, used with the
parameters given in Section 4 of this paper, is a useful algorithm for solving QAP instances, as we have
shown in the results of this paper.

Mean %Relative error Mean CPU seconds
Problem group GLS EGLS RTS| ReTS GLS| EGLS RTS| ReTS
bur* 0.001 0.001| 0.002/ 0.084 45 45 45 4.3
chr* 2.350 1.988| 1.516/ 1.909 1.4 1.3 1.2 1.1
els19 3.416 0.000| 0.193] 1.684 1.4 1.4 1.4 1.3
esc* 0.016 0.024| 0.000| 0.747 35.9 34.3 30.2 28.2
had* 0.000 0.000| 0.000/ 0.008 0.9 0.9 0.9 0.8
kra* 0.631 0.605| 0.105| 0.213 5.3 5.3 5.3 4.9
lipa* 0.118 0.398| 0.077] 0.231 66.1 66.9 67.2 64.2
nug* 0.005 0.004| 0.002] 0.009 1.8 1.8 1.7 1.6
rou* 0.013 0.037| 0.016] 0.015 1.0 0.9 0.9 0.8
scr* 0.003 0.000| 0.000/ 0.000 1.0 0.9 0.9 0.8
sko* 0.139 0.160| 0.130| 0.209| 125.2| 127.7| 1283 120.7
ste* 0.907 0.520| 0.075| 0.739 9.1 9.1 9.3 8.5
tai*a 0.271 0.811| 0.680| 0.430 31.7 31.5 31.2 29.3
tai*b 1.196 0.635| 0.420| 1.318] 115.3| 117.6| 117.4, 1135
tai*c 1.347 0.063| 0.039] 0.022] 626.4] 583.9 553.6/] 5327
tho* 0.132 0.180| 0.141] 0.221| 256.5| 260.6| 255.0, 244.1
wil* 0.093 0.100| 0.087| 0.146/ 109.6| 112.1| 113.1, 106.3
Average 0.626 0.325| 0.205| 0.470 81.9 80.0 77.8 74.3

Table 1: Summary of GLS verses reactive tabu search and robust tabu seaicmean % relative
error from best known solution and CPU seconds, over 10 runs, 1000 x N repairs per problem

6 Bibliography

1. Amin, A.: Simulated Jumping. Appears Annals of Operations Researctp98.

2. Battiti, R., Tecchiolli, G.: The Reactive Tabu Searth.ORSA Journal on Computing(2):126140,
1994.

3. Bishop, C.M. Hinton, G.: Neural Networks for Pattern Recognitid®larendon Press 1995.

4. Burkard, R.E., Karisch, S.E., and Rendl, F.: QAPLIB\ Quadratic Assignment Problem Library. In
Journal of GlobaDptimization 10:394403, 1997.

5. Davenport A., Tsang E.P.K., Zhu, K., Wang C.J.:. GENET: A Connectionist Architecture for Solving
Constraint Satisfaction Problems by Iterative Improvement. In Proceedings of AAAI, 1994;33825

6. Davenport, A.. Extensions andtvaluation of GENET in Constraint Satisfaction. PhD Thesis,
Department of Computer Science, University of Essex, Colchester, UK, July, 1997.

7. Glover, F.: Tabu search Part I. In Operations Research Society of America (ORSA) Journal on
Computing, Vol. 1, 16-206, 1989.

8. Glover, F.: Tabu search Part Il. In: Operations Research Society of America (ORSA) Journal on
Computing, Vol. 2, 432, 1990.

9. Fleurent, C., Ferland, J.A.: Genetic Hybrids for the Quadratic Assignment Problem. In Pardalos, P.,
Wolkowicz, H., (als.),Quadratic Assignment and Related Probleal. 16, pages 17387. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 1994.

10Kilby, P., Prosser, P., Shaw, P.: Guided Local Search for the Vehicle Routing Problem. In Proceedings
of the 2nd International Conference on Metaheuristics, July 1997.

1llau, T.L., Tsang, E.P.K.: Applying a MutatieBased Genetic Algorithm to Processor Configuration
Problems. In Proceedings of 8th IEEE Conference on Tools with Artificial Intelligence (ICBAI'9
Toulouse, France, November 1996 .

12lau, T.L., Tsang, E.P.K.: Solving the Processor Configuration Problem with a Mutatiead Genetic
Algorithm. In International Journal on Artificial Intelligence Tools (IJAIT), World Scientific, Vol.6,
No.4, 567585,December 1997.

13Llau, T.L., Tsang, E.P.K.: The Guided Genetic Algorithm and its application to the General Assignment
Problems. In IEEE 10th International Conference on Tools with Atrtificial Intelligence (ICTAI'98),
Taiwan, November 1998.

1l4lau, T.L., Tsang, BP.K.: Solving Large Processor Configuration Problems with the Guided Genetic
Algorithm. In IEEE 10th International Conference on Tools with Artificial Intelligence (ICTAI'98),
Taiwan, November 1998.

15Lau, T.L., Tsang, E.P.K.: Solving the Radio Link Freqogmssignment Problem with the Guided
Genetic Algorithm. In Proceedings, NATO Symposium on Radio Length Frequency Assignment,
Sharing and Conservation Systems (Aerospace), Aalborg, Demark, October 1998, Paper 14b.

16Lau, T.L.: Guided Genetic Algorithm. PhDhesis, Department of Computer Science, University of
Essex, 1999.

17lau, T.L., Tsang, E.P.K.: Guided Genetic Algorithm and its application to Radio Link Frequency
Assignment Problems. To appear in Journal of Constraints.

18Mills, P., Tsang, E.P.K.: Guideddcal Search for solving SAT and Weighted MAXAT Problems. In
Journal of Automatic Reasoning, Special Issue on Satisfiability Problems, Kluwer, Vol.24, 2000, 205
223.

19Pardalos,P.M., Rendl,F., Wolkowicz, H.: The Quadratic Assignment Problem: A Survey ahRe
Developments. In P. Pardalos and H. Wolkowicz, edit@sadratic Assignment and Related Problems
volume 16, pages-42. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
1994.

20Selman, B., Kautz, H., Cohen, B.: Noise Stratsdiar Improving Local Search. In Proceedings AAAI
94. 1994.

21 Stroustrup, B.: The C++ Programming Langua@ Edition. Addison Wesley 1997.

22 Stutzle T.: MAX-MIN Ant System for Quadratic Assignment Problems. Research Report ADA4,
Department of Computeschience, Darmstadt University of Technology, Germany, 1997.

23 Taillard, E.D.: Robust Tabu Search for the Quadratic Assignment ProblerRatallel Computing
17:443455, 1991.

24 Taillard, E.D.: Comparison of Iterative Searches for the Quadratic Assignfblem.Location
Science1994.

25Taillard, E.D., Gambardella, L.M.: Adaptive Memories for the Quadratic Assignment Problem.
Research Report, IDSIA Lugano, Switzerland, 1997.

26. Thonemann, U.W., Bolte, A.: An Improved Simulated Annealing Algorithm for fQaadratic
Assignment Problem. Working paper, School of Business, Department of Production and Operations
Research, University of Paderborn, Germany, 1994.

27Tsang, E.P.K., Wang, C.J.: A Generic Neural Network Approach for Constraint Satisfaction Problems.
In Taylor, J.G. (ed.), Neural network applications, Springerlag, p.1222, 1992.

28Tsang, E.P.K., Voudouris, C.: Fast Local Search and Guided Local Search and their application to
British Telecom's Workforce Scheduling Problem. In Operations Researchrd,eflsevier Science
Publishers, Amsterdam, Vol.20, No.3, $197, March 1997.

29Voudouris, C.: Guided Local Search for Combinatorial Optimisation Problems. Ph.D. thesis,
Department of Computer Science, University of Essex. 1997.

30Voudouris, C., Tsang, E.R.: Solving the Radio Link Frequency Assignment Problem using Guided
Local Search. In Proceedings of NATO Symposium on Radio Length Frequency Assignment, Sharing
and Conservation Systems (Aerospace), Aalborg, Demark, October 1998, Paper 14a.

31Voudouris, C. Guided Local Search An lllustrative Example in Function Optimisation. In BT
Technology Journal, Vol.16, No.3, July 1998 -26.

32Voudouris, C., Tsang, E.P.K.: Guided Local Search and its application to the Travelling Salesman
Problem. In European Jowrhof Operational Research, Anbar Publishing, Vol.113, Issue 2, March
1999, 469499.

33Wilhelm, M.R., Ward, T.L.: Solving Quadratic Assignment Problems by Simulated Annealinde In
Transaction19/1:107119, 1987.

