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Abstract. In this paper, we show how an extended Guided Local Search (GLS) can be applied to the 
Quadratic Assignment Problem (QAP). GLS is a general, penalty-based meta-heuristic, which sits on 
top of local search algorithms, to help guide them out of local minima. We present empirical results of 
applying several extended versions of GLS to the QAP, and show that these extensions can improve the 
range of parameter settings within which Guided Local Search performs well. Finally, we compare the 
results of running our extended GLS with some state of the art algorithms for the QAP.
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Guided Local Search (GLS) [29] has been applied to a number of problems, including the SAT problem 
[18], the weighted MAX-SAT problem [18], the vehicle routing problem [10], BT’s workforce scheduling 
problem [28], the radio link frequency assignment problem [30], function optimisation [31] and the 
travelling salesman problem [32]. 

GLS is a general meta-heuristic that sits on top of local search procedures and helps them escape from local 
minima. GLS can be seen as a generalisation of the GENET neural network [27,5,6] for solving constraint 
satisfaction problems and optimisation problems. Recently, it has been shown that GLS can be put on top 
of a specialised Genetic Algorithm, resulting in the Guided Genetic Algorithm (GGA) [16]. GGA has been 
applied to a number of problems, including the processor configuration problem [11,12,14], the generalised 
assignment problem [13] and the radio link frequency assignment problem [15,17]. In this paper, we show 
how GLS and some extensions of GLS can be successfully applied to the Quadratic Assignment Problem.

1 The Quadratic Assignment Problem
The Quadratic Assignment Problem [4] is one of the hardest groups of problems in combinatorial 
optimisation, with many real world applications and has been the focus of a lot of successful research into 
heuristic search methods.   The problem can be formally stated as in equation (1). 
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where: 
• n is the size of the problem (i.e. number of facilities or locations), 
• π is a permutation, where πi is the i th element in permutation π,
• a and b are the n x n distance and flow matrices.

The problem is to find a permutation π (which represents which facilities are placed at which locations), 
which minimises the sum of the distance times the flow between different facilities. Each element aij  of the 
matrix a, represents the distance between location i and location j. The element bπiπj represents the flow 
between facilities πi and πj. When aij is multiplied by bπiπj, the cost of placing facility πi at location i and 
facility πj at location j, is obtained. Thus, by summing all the terms together, the total cost of the whole 
permutation of location-facility assignments is obtained. 

Both exact and heuristic algorithms have been proposed for solving the Quadratic Assignment Problem (for 
a survey, see [19]). The exact algorithms have the disadvantage that they can only solve relatively small 
QAPs (n ≤ 20), whereas the heuristic methods can deal with much larger problems. The heuristic methods, 
which have been used to solve the QAP, include Robust Tabu Search [23,24], Reactive Tabu Search [2], 
Simulated Annealing [33,26], a Genetic Hybrid Algorithm [9], ant algorithms [22, 25] and various others 
[1]. In this paper, we show how Guided Local Search (also a heuristic method) can be applied to the 
Quadratic Assignment problem, and present empirical results showing two extensions of Guided Local 
Search which can increase the range of parameters under which good results are obtained.

2 Guided Local Search
Guided local search (GLS) (see [29] for a more detailed description) is a metaheuristic, which sits on top of 
a local search algorithm. When the given local search algorithm settles in local optimum, GLS changes the 
objective function, by increasing penalties present in an augmented objective function, associated to 
features contained in that local optimum. The local search then continues to search using the augmented 
objective function, which is designed to bring it out of the local optimum.  

Solution features are defined to distinguish between solutions with different characteristics, so that bad 
characteristics can be penalised by GLS, and hopefully removed by the local search algorithm. The choice 
of solution features therefore depends on the type of problem, and also to a certain extent on the local 
search algorithm. Each feature, fi defined must have the following components:
• An Indicator function, I i indicating whether the feature is present in the current solution or not:
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• A cost function ci(s), which gives the cost of having the feature present in a solution.
• A penalty pi, initially set to 0, used to penalise occurrences of the feature, in local minima.

2.1 Selective Penalty Modifications

When the Local Search algorithm returns a local minimum, s, GLS penalises (increments the penalty of the 
feature) all the features present in that solution which have maximum utility, util(s,fi), as defined in 
equation (3). 
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The idea is to penalise features, which have high costs first, although the utility of doing so decreases as the 
feature is penalised more and more times.

2.2 Augmented Cost Function

GLS uses an augmented cost function (4), to allow it to guide the Local Search algorithm out of the local 
minimum, by penalising features present in that local minimum. The idea is to make the local minimum 
more costly than the surrounding search space, where these features are not present.
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The parameter λ may be used to alter the intensification of the search for solutions. A higher value for λ
will result in a more diverse search, where plateaus and basins in the search are searched less carefully; a 
low value will result in a more intensive search for the solution, where the basins and plateaus in the search 
landscape are searched with more care. Generally, a value of lambda, which is near to the average change 
in objective function after a move, will work well.

2.3 Local Search for the QAP

The Quadratic Assignment Problem (QAP) can be formulated as a local search algorithm, using the 
objective function defined in equation (1), and searching the space of possible permutations. The local 
search neighbourhood is simply the set of possible permutations resulting from the current permutation 
with any two of the elements transposed.  

2.4 Efficient Local Search and Neighbourhood Updating for the QAP

The new value of the objective function after a swap can be efficiently incrementally updated in 
approximately O(n2) time using (5) and (6) (for asymmetric QAPs, see [24]) or (7) and (8) (for symmetric 
QAPs, the symmetry in the matrices can be taken advantage of to speed up neighbourhood updating by a 
factor of about 4, see [2]). 
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Where: 
a & b are the distance and flow matrices, n is the problem size (i.e. the number of facilities or locations)
π' = the permutation π with elements r and s swapped
∆h(π,i,j) = change in augmented cost h of permutation π, after the elements i and j have been swapped
∆g(π,i,j) = change in cost g of permutation π, after the elements i and j have been  swapped
pi,πi=the penalty when the i th element of permutationπ is assigned the value πi. 

In addition to this, for Taillard’s Grey density problems the neighbourhood may be restricted to swapping 
elements from the first m values in the permutation with the last n-m values in the permutation and may be 
calculated and updated more efficiently using equations (9) and (10) (as explained in [24]). The augmented 
cost may also be efficiently updated, using these equations, together with equation (11). 

2.5 Features for the QAP

There is only one obvious choice for the feature set: facility-location assignments1. For each facility-
location assignment πi=v, there is an associated penalty pi,v. Obviously the feature πi=v is only present in a 
solution π if the ith element of π is v. All the penalties can be kept in a matrix of size n by n and the 
augmented objective function can be updated efficiently. The cost of a particular facility-location 
assignment is the sum of the constituent parts of the objective function that it is involved in (12).  
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2.6 A basic GLS for the QAP

In Figure 1, we show pseudo code for a basic GLS for the QAP, which we call GLSQAP. In line 1, λ is set 
to an initial value (we found the formula shown gave good results, by experimentation, when λcoeff is 1). In 
line 2, we set π to a random initial start point, by randomly shuffling2 the permutation (this gives equal 
probability of using any given permutation as the start point). Lines 3-10 iteratively apply local search to 
the current solution π, using the augmented objective function h. Line 6 calls the local search with the 
current solution, the original objective function and the augmented objective function as parameters. Line 7 
selects features with maximum utility in the current local minimum returned by the local search to penalise. 
Line 8 increases the amount of penalty associated with each of those features in the augmented objective 

1 We did try to use pairs of facility-location assignments, with the flow between the facilities as the cost, but this meant 
there were a too many (N4) features to store and incremental updating of the neighbourhood also became too 
expensive (more than 4 times slower) for larger problems, even with very “lazy” schemes for neighbourhood 
updating.

2 This was implemented by the random_shuffle() function from the C++ standard template library (see [21], p538 for 
details of the random_suffle() function).



function. This continues until the termination criteria (line 10) is met (in our experiments in this paper, 
when 1000 * n swaps of elements of the permutation have occurred). Finally (line 11), GLS returns π* , the 
permutation with the best cost found, during the search.  

In Figure 2, we show pseudo code for a basic local search algorithm to be used with GLSQAP. This takes 
as parameters, a starting permutation π, an augmented objective function h, and the original objective 
function g. Line 1, sets the sideways count to zero. This is used to count the number of sideways moves 
(moves to solutions of equal augmented cost h). Line 2-10 iteratively modify the solution until a local 
minimum is found. This is defined to be (line 2) when there are no downwards and no sideways moves 
available (or if the maximum number of consecutive sideways moves, 2 in this paper3, has been exceeded). 
Line 3 modifies the current permutation π, by swapping the elements, which result in the permutation with 
the lowest augmented cost. Lines 4-7 keep track of how many consecutive sideways moves have been 
made. Line 8 records the current solution π as the current best solution π* , if it is the lowest cost solution 
found so far, w.r.t. the original cost function g. Line 10 returns the local minimum solution π.

GLSQAP(λcoeff)
{
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2.   π* = π = randomly generated permutation of the values [1..n]
3.   do
4.  {
5.     //π is a permutation, the second parameter is the augmented objective function and

    //the third parameter is the original objective function

6.    π = LocalSearch(π, π*, ∑⋅+
=

n

i
iipg

1
,πλ , g)

7.    foreach (i in {1..n}), such that Cost(i,πi) / (1 + pi,πi) is maximised
8.       pi,πi = pi,πi + 1
9.  }
10.  while (Not termination criteria)
11.  return π* 
}

Figure 1: Pseudo code for GLSQAP

LocalSearchQAP(π , π*, h, g)
{
1.   sideways_count = 0
2.   while ((there is a downwards move w.r.t. h(π)) or
              (there is a sideways move w.r.t. h(π) and sideways_count < 2)
               and termination criteria is not met ) 
     {
3.      π = π with the elements πi and πj swapped such that ∆h(π with πi and

πj swapped) is minimised (ties are broken randomly)

4.      if  (∆h(π) == 0)
5.         sideways_count = sideways_count + 1
6.      else
7.         sideways_count = 0

8.      If (g( π)<g( π*)) π* = π
9.  }

3 This value was found to work well previously in [6], although this may not be the optimal value for this problem.



10. return π
}

Figure 2: Pseudo code for a basic local search for the QAP

3 Guided Local Search extensions
Whilst applying Guided Local Search to the QAP, we tried various schemes in an attempt to further 
improve Guided Local Search and try to understand why those schemes might work.

3.1 Adding aspiration moves to GLS

Aspiration criteria (as used in the tabu search framework, [7,8]) are conditions under which a move is 
allowed, even when it would normally be tabu, usually when it will give rise to a new best solution. 
Intuitively, this is a good idea, since it would be stupid to avoid making a move just because it was tabu, if 
it gave us a new best solution. In GLS, we have penalties rather than a tabu list, so in this paper, our 
aspiration criterion means ignoring the penalties (lines 3 & 4 in Figure 3 below, otherwise it is the same as 
the standard local search, pseudo code in Figure 2), if there is a move which can produce a new best 
solution. We shall call such a move, an aspiration move.

LocalSearchQAPAspiration(π,π*, g, h)
{
1.  sideways_count = 0
2.  while(there is a downwards move w.r.t. h(π) or
            (there is a sideways move w.r.t. h(π) and sideways_count < 2)
            and termination criteria is not met )
    {
    //NOTE: the first term with the original objective function
    //is the aspiration criteria, the second is the standard
    //GLS, minimizing the augmented objective function
3.    if  there exists a move, such that g(π) + ∆g(π with πi and πj swapped) < best cost so far
4.          π = π with the elements πi and πj swapped such that ∆g(π with πI and πj swapped) is minimised
                    (ties are broken randomly)
5.    else
6.         π = π with the elements πi and πj swapped such that ∆h(π with πi7.

                   and πj swapped) is minimised, ties are broken randomly

7.    if  (∆h(π) == 0)
8.      sideways_count = sideways_count + 1
9.    else
10.        sideways_count = 0

11.      If (g( π)<g( π*)) π* = π
12.   }
13. return π
}

Figure 3: Pseudo code for local search for the QAP with aspiration moves for use with GLS

We have found that aspiration moves improve the performance (in terms of %relative error, a measure of 
solution quality, see equation (13)) of GLS in terms of the average best found solution over a run (see 
Figure 4), particularly when large values of lambda are used.
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Figure 4: GLS variants over a range of lambda coefficients values on small to medium sized 
QAPLib [4] problems, average of 10 runs, 1000 * N repairs (N = problem size)
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Figure 5: Average %relative error of better -than-previous solutions over all small-medium sized 
QAPLib problems, over 10 runs

We theorised that aspiration moves work because they allow us to focus on minimising the original    
objective function at critical points during the search and also allows us to find more better-than-previous  



solutions4 per run (see Figure 6). This is particularly important when the lambda coefficient is large, as any 
penalty will have a larger effect on the local search algorithm, and is a plausible explanation for the 
improved performance of GLS when the lambda coefficient is large.
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Figure 6: Average number of better-than-previous solution found per run on all small to medium 
sized QAPLib problems, over 10 runs

We ran controlled experiments, to try and substantiate this theory of why aspiration moves work. The first 
was to allow a GLS without aspiration to follow the standard GLS scheme p% of the time and 100-p% of 
the time choose a move according the original objective function. We found that simply allowing GLS to 
ignore penalties p% of the time, does not result in an increase in performance (for lack of space, we omit 
these results here), and so is not the sole reason for the success of aspiration moves. 

So the reason that aspiration moves produced better results was not just because they allowed GLS to 
occasionally ignore the penalty term in the augmented objective function. During the runs of GLS with and 
without aspiration moves, we also recorded the average cost of each of the better-than-previous solutions 
over each run of GLS (see Figure 5). We found that when aspiration moves were used that this value was 
substantially lower than when aspiration moves were not used. We also found that GLS with aspiration 
moves found more better-than-previous solutions per run, than GLS without aspiration. This suggests that 
GLS with aspiration works as we theorised, because it allows GLS to find new best-found solutions that it 
might otherwise simply ignore due to penalties imposed on those solutions. We recorded several statistics 
about the quality of solutions visited during the search (including the average cost local minima visited, the 
average cost of solutions visited) and only the statistics on the quality of better-than-previous-found and 
best found solutions per run, varied between GLS with and without aspiration. This also suggested that it 
was precisely when and what aspiration does that is critical in its success.

4 A better-than-previous solution, is one with a lower cost (in terms of the original objective function) than all the 
previous solutions visited so far, during a run



3.2 Adding random moves to GLS

The second experiment was to run GLS, allowing a random move to be chosen from the neighbourhood p% 
of the time, with the normal GLS scheme being followed the rest of the time (this technique was partly 
inspired by the walksat algorithm [20]). This was to check whether or not GLS was simply able to move 
into areas of the search space which would otherwise have been difficult to reach, due to penalties 
restricting GLS moves, when aspiration moves were added. These experiments gave rise to an increase in 
the performance of GLS when small values of lambda were used, although the increase in performance 
when the lambda coefficient was large that occurred with aspiration moves did not occur. In fact, from 
looking at the average entropy (see Figure 7, this is a measure of the spread, 0 would mean only one 
facility-location assignment was visited for a particular element in the permutation, 1 would mean all labels 
were facility-location assignments were present in the same quantities, see equation (14) for a definition of 
average entropy or [3] for the definition of entropy) of facility-location assignments, we observed that 
random moves had a completely different effect from aspiration moves in that they allowed GLS to 
diversify its search when lambda was too small, whereas GLSQAP with aspiration moves gave almost 
identical values to the basic GLSQAP. 
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where: 
freq(πi=j) = the frequency of solutions visited where facility j is at location i,
iterations  = the total number of solutions visited during the search &
n = the problem size in terms of the number of locations            

(14)

3.3 Further studies of random moves
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As already mentioned, whilst trying to understand more precisely why aspiration moves gave a 
performance improvement to GLS, we tried an additional scheme, whereby with probability p, we allowed 
GLS to make a move at random. We found that GLS without random moves, at low values of lambda 
produced a much less diverse search, than GLS with random moves, resulting in a better performance with 
respect to the best cost of solution of GLS with random moves. This suggests that the role of random moves 
is to help GLS move out of local minima, when GLS on it’s own might not be able to do so. This is 
supported by the fact that the average entropy (see Figure 7) is higher when random moves are used with 
GLSQAP than GLSQAP without random moves. The number of repeated solutions (see Figure 8) is lower, 
for GLSQAP with random moves, when lambda is set to too low a value to allow escape from local 
minimas, although when lambda becomes larger, this value crosses over, so that GLSQAP with random 
moves produces more repeated solutions. This suggests that GLSQAP on it’s own is slightly more efficient 
at escaping from local minima, when lambda is large enough, than random moves.
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Figure 8: Average number of revisited solutions during runs of GLSQAP with and without 
random moves, over small-medium sized QAPLib problems, over 10 runs

4 Comparison with state of the art QAP algorithms
In this section, we compare our extended GLS against two state of the art QAP algorithms: Reactive Tabu 
Search [2] and Robust Tabu Search [24], but we should emphasise that this is only to show that our 
extended GLS has a place in solving the QAP, but not to show that GLS is by any means the “best” 
algorithm for the QAP. 

We allowed each algorithm a maximum of 1000 × N repairs (where N is the number of variables in the 
problem) and 10 runs each, taking the average deviation from the best known solution in every case and 
taking the average result of those 10 runs. We set GLS to use a lambda coefficient of 0.6, Pr(random move) 
= 0.2, and allowed GLS to make aspiration moves (we call this variant EGLS in the table). We also ran 
GLS without random moves and aspiration moves for comparison, with a lambda coefficient of 1 (this 
variant is called GLS in the table). The parameters for reactive tabu search (ReTS) and robust tabu search 
(RTS) were the standard parameters suggested in [2] and [24], although we used our own implementation 
(which according to our experience performs similarly to the original results in the papers). All algorithms 



were implemented on C++ and run on identical PCs running Linux. A summary of results are shown in 
Table 1. 
 
These results show EGLS gives a comparable performance to both reactive tabu search and robust tabu 
search overall, and in some cases outperforms one or both (the bur* groups of problems and on the els19 
problem) of them in terms of solution quality. In terms of CPU seconds, EGLS performs comparably with 
both reactive tabu search and robust tabu search. This is probably because all the algorithms use the same 
neighbourhood structure and updating of the objective function values, thus giving similar CPU times. 

5 Conclusion
In this paper, we have presented an Extended Guided Local Search algorithm and its application to the 
Quadratic Assignment Problem. We have shown how two simple extensions of Guided Local Search, can 
dramatically increase the range of parameters under which GLS performs well. We have also studied and 
provided evidence on why they work. Since Guided Local Search is a general meta-heuristic and given our 
understanding of the extensions, we believe they should also generalise to other problems similar in nature 
to the QAP.Finally, we have shown that Guided Local Search with these two extensions gives comparable 
results to reactive tabu search and robust tabu search (two of the most famous heuristic methods for solving 
the Quadratic Assignment Problem), in some cases outperforming them, given the same number of 
iterations for each algorithm. Summarising, our Extended Guided Local Search algorithm, used with the 
parameters given in Section 4 of this paper, is a useful algorithm for solving QAP instances, as we have 
shown in the results of this paper.

Mean %Relative error  Mean CPU seconds
    Problem group GLS EGLS RTS ReTS GLS EGLS RTS ReTS

bur* 0.001 0.001 0.002 0.084 4.5 4.5 4.5 4.3
chr* 2.350 1.988 1.516 1.909 1.4 1.3 1.2 1.1
els19 3.416 0.000 0.193 1.684 1.4 1.4 1.4 1.3
esc* 0.016 0.024 0.000 0.747 35.9 34.3 30.2 28.2
had* 0.000 0.000 0.000 0.008 0.9 0.9 0.9 0.8
kra* 0.631 0.605 0.105 0.213 5.3 5.3 5.3 4.9
lipa* 0.118 0.398 0.077 0.231 66.1 66.9 67.2 64.2
nug* 0.005 0.004 0.002 0.009 1.8 1.8 1.7 1.6
rou* 0.013 0.037 0.016 0.015 1.0 0.9 0.9 0.8
scr* 0.003 0.000 0.000 0.000 1.0 0.9 0.9 0.8
sko* 0.139 0.160 0.130 0.209 125.2 127.7 128.3 120.7
ste* 0.907 0.520 0.075 0.739 9.1 9.1 9.3 8.5
tai*a 0.271 0.811 0.680 0.430 31.7 31.5 31.2 29.3
tai*b 1.196 0.635 0.420 1.318 115.3 117.6 117.4 113.5
tai*c 1.347 0.063 0.039 0.022 626.4 583.9 553.6 532.7
tho* 0.132 0.180 0.141 0.221 256.5 260.6 255.0 244.1
wil* 0.093 0.100 0.087 0.146 109.6 112.1 113.1 106.3
Average 0.626 0.325 0.205 0.470 81.9 80.0 77.8 74.3

Table 1 : Summary of GLS verses reactive tabu search and robust tabu search: mean % relative 
error from best known solution and CPU seconds, over 10 runs, 1000 x N repairs per problem 
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