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Abstract. In this paper, we show how Guided Local Search (GLS) can be applied
to the SAT problem and show how the resulting algorithm can be naturally extended
to solve the weighted MAX-SAT problem. GLS is a general, penalty-based meta-
heuristic, which sits on top of local search algorithms to help guide them out of local
minima. GLS has been shown to be successful in solving a number of practical real
life problems, such as the travelling salesman problem, BT's workforce scheduling
problem, the radio link frequency assignment problem and the vehicle routing prob-
lem. We present empirical results of applying GLS to instances of the SAT problem
from the DIMACS archive and also a small set of weighted MAX-SAT problem
instances and compare them against the results of other local search algorithms for
the SAT problem.
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1. Introduction

Guided Local Search [41] has been applied to a number of real life
problems, including BT's workforce scheduling problem [40], the trav-
elling salesman problem [43], the vehicle routing problem [20], function
optimization [42] and the radio link frequency assignment problem [44].

GLS is a meta-heuristic, which sits on top of local search procedures
for helping them escape from local minima. GLS is a generalisation of
the GENET neural network [4], for solving constraint satisfaction and
optimisation problems. Recently, Lau and Tsang [22, 23] have shown
how GLS can be sat on top of a specialised Genetic Algorithm, resulting
in the Guided Genetic Algorithm (GGA, [21]) for solving constraint
satisfaction and optimisation problems. They apply GGA to a number
of problems including the processor con�guration problem [23] and the
generalised assignment problem [22]. In this paper, we show how GLS
can be successfully applied to the SAT problem and weighted MAX-
SAT problem.

The SAT problem is an important problem in mathematical logic,
inference, machine learning, VLSI engineering, and computing theory
[14], and has been the focus of a lot of successful research into local
search algorithms. The SAT problem is a special case of a constraint
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satisfaction problem (CSP) where the variables take boolean values
and the constraints are disjunctions (logical OR) of literals (variables
or their negations). The weighted MAX-SAT problem is an extension
of the basic SAT problem, where each clause has a weight associated
with it, and the goal is to minimise the sum of the weights of violated
clauses.

In this paper, we show how GLS can be used to solve the SAT and
weighted MAX-SAT problems, by sitting it on top of a local search
algorithm, which is similar to GSAT [35] without restarts. We give an
evaluation of GLS's performance on benchmarks from the DIMACS
archive, and a set of weighted MAX-SAT problems, comparing the
results against the results of similar local search algorithms.

2. The SAT and weighted MAX-SAT problem

The SAT problem is an important class of constraint satisfaction prob-
lem [39], where the domain of a variable is always f false, true g, and
each constraint is a clause. The SAT problem is important in solving
many practical problems in mathematical logic, constraint satisfaction,
VLSI engineering and computing theory [14].

The SAT problem and it's extension, the weighted MAX-SAT prob-
lem are de�ned as follows:

� A set of m (boolean) variables, Z = fx1; x2; ::; xmg, each of which
may take the values true or false.

� A set of n clauses, C = C1; C2; ::; Cn, each of which is a disjunction
of a set of literals (a variable or it's negation), e.g. x1_:x2_x3. In
the weighted MAX-SAT problem, a weight wCi

is associated with
each clause.

� The goal of the SAT problem is to �nd an assignment of values to
variables, if one exists, where all the clauses are satis�ed (evaluate
to true) or prove it is unsatis�able if no valid assignment exists
(currently only complete algorithms can prove unsatis�ability). In
the weighted MAX-SAT problem the goal is to minimise the sum
of weights of violated clauses.

Both complete and incomplete algorithms have been used to solve
the SAT problem. Of the complete algorithms, one of the best known is
the Davis-Putnam procedure [6], which is based on resolution. Of the in-
complete stochastic algorithms, the best known is probably GSAT (�rst
reported in [35]), based on steepest gradient descent and the related

GLSSAT.tex; 30/08/1999; 15:26; p.2



3

WalkSAT [33] based on random walk with greedy variable selection
heuristics.

Whilst a lot of work has been done on the basic SAT problem, only a
small amount of work has been done on the weighted MAX-SAT prob-
lem by comparison. Examples include [18], where GSAT is extended to
solve instances based network steiner trees, and their results compared
against non-MAX-SAT techniques for the native network steiner tree
problems. Resende et al. ([29]) show how GRASP can be applied to
the instances of the weighted MAX-SAT problem based on soluble and
insoluble instances of the jnh* problems from the DIMACS benchmarks
archive with random weights associated with each clause. Borchers et
al. ([1]) show how a branch and cut algorithm can be used to solve
the MAX-SAT and weighted MAX-SAT problems. Recently, Wah and
Shang ([45]) have shown how DLM how can be applied to the same
set of instances of the weighted MAX-SAT problem as GRASP with
excellent results. Later, in this paper we also give results compared
with GRASP and DLM for these problems.

3. Other methods related to GLS

GENET ([46], [5], [4]), the direct ancestor of GLS, is a Min-Conicts
([26]) based repair algorithm with a simple weight update scheme for
solving constraint satisfaction problems (CSPs), inspired by neural net-
works and the earliest such scheme we know of which has been applied
to solving CSPs, where the weights of all constraints are increased
each time the algorithm converges to a local minimum. Morris ([27])
describes a very similar scheme called Breakout, which increases the
weights of all violated constraints, every time there are no local moves
available which will decrease the objective function. Selman and Kautz
([32]) modify GSAT to include clause weights, increasing the weights
of all clauses which are unsatis�ed at the end of each try (when the
maximum number of ips of variable values has been exhausted and
the algorithm is restarted from a new point in the search space) of
GSAT. Hampson and Kibler ([16]) suggest a heuristic for deciding
when to restart, based on the number of ips required to reach the
current plateau, according to how many ips it took to reach the current
plateau, from the initial solution. Later, Cha and Iwama ([2]) suggest
a scheme called weight, which is the equivalent to breakout. Frank ([8])
increases the weights of violated clauses after each ip, and later ([9])
re�nes his scheme, with decaying weights, where after each ip, weights
of all clauses are multiplied by a constant very close to 1.0. Recently,
Shang and Wah ([38]) have applied DLM to the weighted MAX-SAT
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and SAT problem with excellent results. DLM could be seen to be
quite similar to GLS, although it does not use selective penalisation
(see Section 5.2), and originated from theoretical mathematical foun-
dations, whereas GLS is the result of many years of research based on
empirical results. The two methods are related by the use of some kind
of augmented objective function, with extra terms to guide the search
out of local minima (Lagrangian multipliers in DLM, and penalties in
GLS). So far DLM has been applied to a number of problems (e.g.
nonlinear integer programming problems, nonlinear mixed integer pro-
gramming problems, and the design of multiplierless �lter banks), as
well as the SAT problem (see [36] and [49] for a full description), whilst
the GLS framework is more general and has also been applied to a wide
variety of other problems (and local search algorithms, for example in
the travelling saleman problem with 2-opting, [43]) as well (see Section
1).

4. Local Search for the SAT problem

To cast the SAT problem as a local search problem, we simply want to
minimise the number of unsatis�ed clauses, which we will give as our
basic objective function, g, given in ( 1), below.

g(s) = ]fci j ci is violated by the truth assignment sg (1)

The local search algorithm we use is based on ideas reported by
Gent and Walsh in [12], who conduct extensive experiments on lots of
di�erent variations of the basic GSAT algorithm ([35]), and �nd HSAT
to be the best hill climbing algorithm to use with GSAT at that time
(although other schemes have now been divised which may outperform
HSAT). Following Gent and Walsh's HSAT, we use a history mecha-
nism in our local search algorithm, to help diversify the search as much
as possible. We sort the variables into buckets of downward (if the
variable is ipped the objective function will decrease) and sideways
moves (if the variable is ipped the objective function remains the
same). We then select the least recently ipped variable, which will
result in a decrease in the objective function if one is available and ip
it. Otherwise we select a so-called sideways move and ip that variable.
We allow the maximum number of consecutive sideways moves to be a
parameter (smax ) to the local search algorithm. Pseudo code for our
local search algorithm is given in Figure 1. In this paper smax is always
set to 20, unless otherwise stated.

In our implementation, we incrementally update the changes in the
objective function, which would result when a variable is ipped, and
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Function LocalSATSearch(s, g, smax )
f

while(g(s) > 0)
f

Modify s, by ipping the least recently ipped
variable, which will decrease the objective function
g(s), if one exists.

Otherwise, if no such variable exists, which will
decrease the objective function g(s), modify s by,
ipping the least recently ipped variable, which
does not increase or decrease the objective function.

If the last smax moves were sideways moves or no
downwards or sideways move is available return s.

g

return s

g

Figure 1. Pseudo code for local search for the SAT problem

also the buckets storing the variables which if ipped result in down-
wards and sideways moves for the current search state, as this is more
e�cient than re-calculating every time.

5. Guided Local Search

Guided local search, (See [41] for more examples of applications of GLS)
sits on top of a local search algorithm. Given a candidate solution s

and a cost function g, a local search algorithm is expected to return
a candidate solution s' according to its neighbourhood function. s' is
hopefully better than s (i.e. hopefully g(s') < g(s) in a minimisation
problem).

5.1. Solution features

Solution features are used to distinguish between solutions with dif-
ferent characteristics, so that undesirable features can be penalised by
GLS. The choice of solution features therefore depends on the type of
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problem, and also to a certain extent on the local search algorithm.
Each feature, fi de�ned must have the following components:

� An Indicator function, indicating whether the feature is present in
the current solution s or not:

Ifi(s) =

�
1 if feature present in solution s
0 otherwise

(2)

� A cost function cfi(s), which gives the cost of having the feature
present in the solution s (in the SAT and MAX-SAT problems,
this is only used when the search is in a local minimum).

� A penalty pfi , initially set to 0, used to penalise occurrences of the
feature, in local minima of the augmented objective function, h.

In the SAT problem, we de�ne features as violated clauses (to be
elaborated below). A more complex feature, might be an edge between
cities in the travelling salesman problem, where the cost of the feature is
the length of the edge, and the indicator function is whether a candidate
solution contains the edge or not.

5.2. Selective penalty modifications

When the local search algorithm returns a local minimum, s, which
does not satisfy the termination criteria (e.g. all clauses satis�ed), GLS
penalises all the features present in that solution which have maximum
utility, Util(s; fi) (as de�ned in Equation 3, below), by incrementing
it's penalty.

Util(s; fi) =
cfi(s)

1 + pfi
(3)

The idea is to penalise features with higher costs �rst, with the
utility of doing so decreasing, the more times they are penalised. This
is more bene�cial for problems with lots of di�erent features of di�erent
costs (e.g. the MAX-SAT problem), although even on problems with
features with equal cost, this may still have some bene�ts in reducing
the number of penalties imposed.

5.3. Augmented cost function

GLS uses an augmented cost function (see Equation 4, below), to allow
it to guide the local search algorithm out of the local minimum, by
penalising features present in that local minimum. The idea is to make
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Ifi(s) =

�
1 if clause Ci violated by solution s
0 otherwise

cfi(s) =

�
1 if standard SAT problem
wCi

if weighted MAX-SAT problem

Figure 2. Clauses as features in the SAT and MAX-SAT problems

the local minimum more costly than the surrounding search space,
where these features are not present, thus guiding the local search
algorithm out of the local minimum.

h(s) = g(s) + �
nX
i=0

Ifi(s) � pfi (4)

The parameter � may be used to alter the intensi�cation of the
search for solutions. A higher value for � will result in a more diverse
search, where plateaus and basins in the search space are searched
more coarsely; a low value will result in a more intensive search for
the solution, where the plateaus and basins in the search landscape
are searched with more care. In this paper � is always set to 1, unless
otherwise stated.

6. Guided Local Search for the SAT and MAX-SAT

problems

To use Guided Local Search for a particular application, a set of features
must be de�ned, and the local search algorithm must be called within
the GLS procedure.

6.1. Features in the SAT and MAX-SAT problem

In the SAT problem unsatis�ed clauses seem to make a good feature
to penalise, as they are solution features, which we wish to eliminate
from the �nal solution, and moves made by the local search algorithm
(ipping a variable), will usually result in a di�erent set of violated
clauses.

This is similar to using constraints as features as in the Radio Link
Frequency Assignment Problem [44]. We de�ne the indicator and cost
functions associated with clause features in Figure 2. The feature is
present if the clause is unsatis�ed, and not present if it is satis�ed.
The cost of any unsatis�ed clause is 1 for the standard SAT problem
(since we have no preference for any particular unsatis�ed clauses to
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Function GLSSAT1(s, g, �, smax )
f

8fi; pfi = 0
s = random assignment
do

f
h = g augmented as in equation 4
s = LocalSATSearch(s,h, smax )
For each feature, fi, with maximum utility, Util(s, fi)

pfi = pfi + 1
g
while (h(s) > 0 or termination condition)
return s

g

Figure 3. Pseudo code for GLSSAT1

be eliminated from the solutions, as we want to eliminate all of them)
and wCi

for the weighted MAX-SAT problem (as we want to eliminate
the most costly violated clauses �rst). In a sense the standard SAT
problem is a weighted MAX-SAT problem where the weight wCi

of
each clause is always 1 (note the weight wCi

does not appear in the
augmented objective function for the MAX-SAT problem (the same
objective function is used as in the SAT problem); instead we leave
GLS's selective penalisation to do the job of removing costly clauses
from the solution).

6.2. Modifying the local search to use GLS

As GLS usually uses a simple augmented evaluation function, as de-
�ned in (4), we need to augment the objective function for the local
search algorithm in Section 4, to take into account the penalty terms.
This means passing the local search algorithm the augmented objective
function h, instead of original objective function g, so that it searches
for ips, which minimize h instead of minimising g. Pseudo code for
the overall algorithm including GLS is given in Figure 3.

We shall call this new local search algorithm GLSSAT1. GLSSAT1
can solve most of the instances in the DIMACS archive with little
di�culty. However, we have found that we are not able to solve the
par8-*, par16-*-c, par16-*, par32-*-c, par32-*, f2000, g250-29, g125-17,
hanoi4 or hanoi5 using GLSSAT1.

We believe that GLSSAT1 has di�culty with these harder problems,
as it learns incorrect information about the search space, penalising the
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Function GLSSAT2(s, g, �, smax )
f

8fi; pfi = 0
s = random assignment
do

f
h = g augmented as in equation 4
s = LocalSATSearch(s,h,smax )
For each feature, fi, with maximum utility, Util(s, fi)

pfi = pfi + 1
If (number of calls to LocalSATSearch mod 200 = 0)

For each pfi
pfi = pfi � (4=5)

g while (h(s) > 0 or termination condition)
return s

g

Figure 4. Pseudo code for GLSSAT2

wrong features, so that the search landscape becomes more and more
rugged (the reader might like to refer to [7] for a study of the search
landscape of the SAT problem) as time goes on, making it slower and
slower to traverse, crippling the local search algorithm and forcing GLS
to do all the work, and making it di�cult to �nd a path to the solution.
Frank ([9]) uses a weight decay scheme to try to counter this sort of
problem, by multiplying all the clause weights by a small constant close
to 1.0, after every ip with some success on random problems. Shang
and Wah [38] address the same kind of problem with their DLM A3
algorithm, by using a scheme whereby the langrangian multipliers are
scaled down every 10000 iterations. They report that this stops the
langrangian multipliers becoming too large, too quickly. We tried a
very similar method, whereby the penalties are multiplied by 4/5 every
200 iterations of GLS's outer loop (rather than every 10000 iterations),
which seems to have a very similar e�ect on GLS as Shang and Wah's
scheme does on DLM, allowing us to solve some of the harder problems
in the DIMACS archive. We call this version of the GLSSAT algorithm,
GLSSAT2 (see �gure 4).
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Table I. Summary of results on the easier DIMACS SAT instances

Problem Percent successful Average CPU time Average ips

group GLSSAT1 WalkSAT GLSSAT1 WalkSAT GLSSAT1 WalkSAT

ssa* 100.0 100.0 0.655 0.137 71025 51552

ii* 100.0 100.0 0.376 0.074 2331 2521

as* 100.0 100.0 0.295 0.127 1660 8818

tm* 100.0 100.0 0.244 0.024 724 602

aim* 99.8 51.5 0.259 0.144 20513 55263

jnh* 100.0 100.0 0.121 0.035 2989 5229

par8-*-c 100.0 100.0 0.609 0.085 55853 27080

7. Empirical results

In this section, we give an empirical evaluation of GLSSAT1 and GLSSAT2
on instances of the SAT problem from the DIMACS archive, and a set
of weighted MAX-SAT problems.

7.1. The easier DIMACS benchmark problems

We ran GLSSAT1 on the easier problems in the DIMACS benchmark
archive with the � parameter set to 1, and the smax (the maximum
number of consecutive sideways moves) set to 20. GLSSAT1 was run
10 times (this is to show that it is not just chance that GLSSAT1 �nds
a solution, rather than to study the e�ect of restarts) on each problem,
allowing a maximum of 3,000,000 ips to solve each problem, starting
from random starting points each time. We compared the results of
GLSSAT1 against WalkSAT [33] (with Maxips set to 3,000,000 and
noise set to 0.5) to give the reader another local search algorithm to
compare with. We give both the average number of ips to �nd a
solution (for an implementation independent comparison) and also the
average CPU time and success rate of each algorithm to �nd a solution.
All experiments on the easier DIMACS problems, were performed on a
Pentium II 300 Mhz PC running Windows NT 4.0, with 256MB of ram.
GLSSAT1 was implemented in C++, and compiled using Microsoft
Visual C++ 6.0.

Full results are listed in Appendix A.
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7.2. The harder DIMACS problems

For the harder DIMACS problems, we used GLSSAT2 and allowed it
10,000,000 ips for the g*, f* and par8-* problems, and 150,000,000
for the par16-*-c problems to �nd a solution averaged over 10 runs
from random starting points. The maximum number of consecutive
sideways moves (smax ) allowed was set to 20. For the graph coloring
problems, we found that if we ran GLSSAT2 with lambda set to 1
we could not solve g125-17 and g250-29. By lowering lambda to 0.05
and thus making the search more intensive, so that the plateaus and
basins in the search space are searched with more care, we found that
we could �nd solutions to these problems. In a similar way to the
graph coloring problems we found that we could not solve f1000 and
f2000 using GLSSAT2 with the lambda parameter set to 1, so we tried
lowering it to 0.05 and found again that we could �nd solutions for these
problems. For the parity problems, we set lambda to 1.0. We also ran
the standard WalkSAT on these problems to give the reader a reference
point, with the maxips paramter set to 10,000,000 on the g*, f* and
par8-* problems and 150,000,000 ips for the par16-*-c problems. The
noise parameter was tuned in 0.05 increments, between 0 and 1 (for the
par8 problems, noise = 0.1, for the par16 we could not �nd a suitable
noise setting which yielded solutions, for the g problems noise = 0.1 and
for the f problems, noise = 0.55) for each problem group to maximise the
number of successful runs. We allowed 10 tries to �nd a solution for each
problem. All the experiments on the harder benchmark problems were
run under Linux on identical Pentium III 450Mhz PCs with 128MB of
ram, compiled using g++/gcc.

7.3. Weighted MAX-SAT benchmark problems

For these problems, we used smax = 2 and lambda = 1. We ran
the algorithm 20 times with a maximum of 10000 ips allowed. We
compare our results against the results of DLM, MaxWalkSAT [18]
(with noise set to 0.3, which we found to give the best performance,
out of 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 and 1.0) and GRASP over 20
runs, with a maximum of 10000 ips allowed for each, giving the best,
worst and average deviation from the optimal solution for GLSSAT1
and the number of optimal solutions found for each problem. All the
weighted MAX-SAT experiments were performed on a Pentium II 300
Mhz PC running Windows NT 4.0, with 256MB of ram. GLSSAT1 was
implemented in C++, and compiled using Microsoft Visual C++ 6.0.
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Table II. Results on harder DIMACS SAT instances

Success rate / 10 Average CPU time Average ips

Problem GLSSAT2 Walksat GLSSAT2 Walksat GLSSAT2 Walksat

par8-1 10 6 8.14 11.58 856626 4996298

par8-2 10 6 8.23 9.85 856772 4197080

par8-3 10 3 7.71 9.50 799245 4003199

par8-4 10 1 4.38 23.08 480596 9878630

par8-5 10 2 12.24 4.83 1219965 2030019

par16-1-c 10 0 281.81 - 25259873 -

par16-2-c 6 0 413.17 - 38414206 -

par16-3-c 10 0 522.28 - 48584078 -

par16-4-c 10 0 386.39 - 35490303 -

par16-5-c 9 0 441.03 - 41180575 -

g125-17 9 10 308.20 61.16 3500340 2511688

g125-18 10 10 1.23 1.07 9629 43033

g250-15 10 10 1.59 0.52 2524 4666

g250-29 10 10 905.24 119.81 3797486 1935538

f600 10 10 8.61 1.07 542008 217203

f1000 9 10 50.89 3.11 2877619 570843

f2000 6 10 113.97 8.53 4458712 1431990

8. Analysis

Overall, GLSSAT performs robustly in solving the SAT problem and
solves problems in a comparable number of steps to WalkSAT, whilst
on the weighted MAX-SAT problem, GLSSAT performs extremely well
(performing better than any of the other local search algorithms, in-
cluding WalkSAT, in terms of both solution quality and robustness).

However, we could not �nd solutions to the following problems using
GLSSAT1 or GLSSAT2 in the DIMACS archive within 30 minutes:
Hanoi4, Hanoi5, par16-*, par32-*, par32-*-c, f2000. Warner and van
Maaren [47], report on a new approach to solving the parity problems,
whereby they use linear programming to extract conjunctions of equiv-
alencies from the original SAT formulation, so that they can solve a
reduced problem, with a modi�ed Davis-Putnam solver in a reasonable
time.

In terms of average CPU time, GLSSAT1 was generally outper-
formed by WalkSAT on most of the easier SAT problems in the DI-
MACS archive, although it outperformedWalkSAT on the aim problem
instances in both terms of average number of ips and success rate at
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Table III. Weighted MAX-SAT Results (continued on next page)

Over 20 runs/tries with a maximum of 10,000 ips for each algorithm

GLSSAT1 DLM MaxWalkSAT GRASP

Problem Deviation from optimal solution

name No. Optimal Worst Average Best Best Best Best

Jnh1 20 0.00 0.00 0.00 0.00 0.00 188.00

Jnh4 8 50.00 19.50 0.00 41.00 41.00 215.00

Jnh5 15 131.00 29.35 0.00 0.00 114.00 254.00

Jnh6 18 11.00 1.10 0.00 0.00 0.00 11.00

Jnh7 20 0.00 0.00 0.00 0.00 0.00 0.00

Jnh8 19 121.00 6.05 0.00 0.00 0.00 578.00

Jnh9 7 192.00 33.80 0.00 7.00 0.00 514.00

Jnh10 20 0.00 0.00 0.00 0.00 0.00 275.00

Jnh11 5 90.00 11.95 0.00 0.00 13.00 111.00

Jnh12 20 0.00 0.00 0.00 0.00 0.00 188.00

Jnh13 19 18.00 0.90 0.00 0.00 0.00 283.00

Jnh14 18 87.00 7.40 0.00 0.00 0.00 314.00

Jnh15 16 94.00 12.50 0.00 0.00 0.00 359.00

Jnh16 8 5.00 3.00 0.00 0.00 0.00 68.00

Jnh17 20 0.00 0.00 0.00 0.00 0.00 118.00

Jnh18 9 98.00 20.65 0.00 0.00 0.00 423.00

Jnh19 15 107.00 21.15 0.00 0.00 0.00 436.00

Jnh201 20 0.00 0.00 0.00 0.00 0.00 0.00

Jnh202 19 79.00 3.95 0.00 0.00 0.00 187.00

Jnh203 18 64.00 6.40 0.00 0.00 0.00 310.00

Jnh205 20 0.00 0.00 0.00 0.00 0.00 14.00

Jnh207 17 9.00 1.35 0.00 0.00 0.00 137.00

Jnh208 18 146.00 13.80 0.00 0.00 0.00 172.00

Jnh209 20 0.00 0.00 0.00 0.00 0.00 207.00

Jnh210 20 0.00 0.00 0.00 0.00 0.00 0.00

Jnh211 19 154.00 7.70 0.00 0.00 0.00 240.00

Jnh212 15 11.00 2.75 0.00 0.00 0.00 195.00

Jnh214 19 11.00 0.55 0.00 0.00 0.00 462.00

Jnh215 17 96.00 9.40 0.00 0.00 0.00 292.00

Jnh216 13 118.00 27.50 0.00 0.00 0.00 197.00

Jnh217 20 0.00 0.00 0.00 0.00 0.00 6.00

Jnh218 20 0.00 0.00 0.00 0.00 0.00 139.00

Jnh219 19 163.00 8.15 0.00 0.00 103.00 436.00

Jnh220 19 43.00 2.15 0.00 0.00 0.00 185.00

Jnh301 18 12.00 1.20 0.00 0.00 0.00 184.00

Jnh302 20 0.00 0.00 0.00 338.00 129.00 211.00
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Table III. Weighted MAX-SAT Results (continued from previous page)

Over 20 runs/tries with a maximum of 10,000 ips for each algorithm

GLSSAT1 DLM MaxWalkSAT GRASP

Problem Deviation from optimal solution

name No. Optimal Worst Average Best Best Best Best

Jnh303 16 152.00 28.60 0.00 143.00 80.00 259.00

Jnh304 19 273.00 13.65 0.00 0.00 31.00 319.00

Jnh305 9 258.00 91.90 0.00 194.00 196.00 609.00

Jnh306 20 0.00 0.00 0.00 0.00 0.00 180.00

Jnh307 12 63.00 15.70 0.00 0.00 0.00 155.00

Jnh308 13 156.00 34.40 0.00 0.00 156.00 502.00

Jnh309 19 49.00 2.45 0.00 0.00 0.00 229.00

Jnh310 16 38.00 7.60 0.00 0.00 0.00 109.00

Average 17 65.89 10.15 0.00 16.43 19.61 233.43

�nding a solution. GLSSAT2 solves the parity learning problems, quite
well, whereas WalkSAT has di�culty in solving the uncompressed par8-
* instances and par16-*-c instances (in fact it didn't �nd any solutions
to the par16-*-c instances). On the f and g problems, the tuned walksat
performs much better than GLSSAT2, suggesting that walksat may be
a more suitable algorithm for these problem instances.

On the weighted MAX-SAT problem, GLS's selective penalisation
mechanism comes into it's own. Of the best of 20 runs of GLSSAT1
on the weighted MAX-SAT problem, GLSSAT1 �nds the optimal so-
lution for every problem, in fact in 85% (on average 17 out of 20)
runs, GLSSAT1 �nds the optimal solution. Furthermore, the average
deviation, averaged over 20 runs of GLSSAT1 is less than the average
deviation of the best of 20 runs for DLM and MaxWalkSAT. This shows
that GLSSAT1 produces better quality solutions than both DLM and
MaxWalkSAT. In the worst of 20 runs, GLSSAT1 outperforms GRASP
for every problem. We believe that one of the reasons for GLSSAT1's
superiority on these weighted MAX-SAT problems, is because we do
not include the weights for each clause in the objective function (this is
backed up by the fact that when we ran GLSSAT1 with clause weights
in the objective function, it's performance was worse). Instead GLS
uses selective penalisation based on the cost of features (i.e. weights of
clauses) and the number of times they have already been penalised to
select which features to try to remove. This means that clauses with
large weights are penalised �rst, and thus discouraged earlier, so that
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GLS guides the search in a direction which favours unsatis�ed clauses
with low costs.

9. Conclusion

Guided Local Search gives good results on most of the SAT instances
in the DIMACS archive, comparable with those of WalkSAT in terms
of the number of ips to �nd a solution and on some problems more
reliable in �nding solutions than WalkSAT (an algorithm considered
to be state of the art). However, where GLSSAT comes into it's own
is on the weighted MAX-SAT problem instances, where it comfortably
outperforms DLM, MaxWalkSAT and GRASP, in both solution quality
and robustness. We believe this is due to GLS's selective penalisation
mechanism which is speci�cally designed for optimisation problems,
whereas DLM and WalkSAT are not really designed for this purpose.
This means the GLS does not need to include the weights for clauses
in the objective function and thus the local search algorithm has less
di�culty exploring the search space than DLM does, whilst GLS's
selective penalisation mechanism takes the responsibility for removing
high cost clauses from the solution.

In conclusion, we believe GLS has a place in the SAT problem, and
that it is particularly e�ective for solving weighted MAX-SAT prob-
lems. GLS is a general meta-heuristic, with very few parameters and has
been shown to be successful in solving a number of real life problems,
as mentioned earlier. In general, we speculate that GLS will add value
to many more local search algorithms, particular those dealing with
soft constraints with varying costs.
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10. Appendix A: Full results on DIMACS benchmark

problems

Table IV. Results on Technology mapping problems

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

tm1-yes 10 10 0.47 0.05 1287 1074

tm2-yes 10 10 0.02 0.00 161 129

Table V. Results on Circuit diagnosis problems

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

ssa7552-038 10 10 0.73 0.32 70052 118122

ssa7552-158 10 10 0.88 0.09 102904 32339

ssa7552-159 10 10 0.65 0.06 74412 24185

ssa7552-160 10 10 0.36 0.08 36732 31563
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Table VI. Results on the Asynchronous circuit synthesis problems

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

as2-yes 10 10 0.01 0.00 147 250

as3-yes 10 10 0.01 0.00 190 240

as4-yes 10 10 0.12 0.03 1078 2271

as5-yes 10 10 2.75 1.46 13014 102867

as6-yes 10 10 0.06 0.02 660 1419

as7-yes 10 10 0.53 0.09 2061 3705

as8-yes 10 10 0.04 0.00 696 350

as10-yes 10 10 0.10 0.01 969 643

as11-yes 10 10 0.08 0.01 1268 625

as12-yes 10 10 0.01 0.00 164 232

as13-yes 10 10 0.04 0.01 488 798

as14-yes 10 10 0.01 0.00 142 82

as15-yes 10 10 0.09 0.02 706 1157
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Table VII. Results on Circuit synthesis problems

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

ii8a1 10 10 0.00 0.00 92 42

ii8a2 10 10 0.01 0.00 171 109

ii8a3 10 10 0.01 0.00 219 203

ii8a4 10 10 0.03 0.00 499 364

ii8b1 10 10 0.02 0.00 226 132

ii8b2 10 10 0.06 0.01 933 706

ii8b3 10 10 0.10 0.02 1197 1645

ii8b4 10 10 0.15 0.03 1634 2641

ii8c1 10 10 0.03 0.00 304 213

ii8e2 10 10 0.08 0.01 692 402

ii8c2 10 10 0.09 0.01 735 422

ii8d1 10 10 0.04 0.00 505 256

ii8d2 10 10 0.08 0.01 651 436

ii8e1 10 10 0.03 0.00 320 240

ii16c1 10 10 0.28 0.02 1403 781

ii16c2 10 10 0.34 0.61 3357 23108

ii16d1 10 10 0.28 0.03 1482 1452

ii16d2 10 10 0.24 0.52 1974 20238

ii16e1 10 10 0.29 0.02 1118 1005

ii16e2 10 10 0.16 0.03 871 1479

ii16a2 10 10 0.37 0.16 2358 6410

ii16b1 10 10 0.41 0.05 2053 1711

ii16b2 10 10 0.28 0.32 2217 11069

ii16a1 10 10 0.31 0.02 1777 897
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Table VII. Results on Circuit synthesis problems (continued)

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

ii32a1 10 10 1.05 0.03 5543 1246

ii32b1 10 10 0.15 0.00 3931 252

ii32b2 10 10 0.34 0.01 4865 627

ii32b3 10 10 0.48 0.02 2560 974

ii32b4 10 10 0.33 0.02 1582 952

ii32c1 10 10 0.05 0.00 904 136

ii32c2 10 10 0.11 0.00 1216 299

ii32c3 10 10 0.80 0.01 8385 394

ii32c4 10 10 2.23 0.78 4315 11021

ii32d1 10 10 0.22 0.00 4832 480

ii32d2 10 10 0.63 0.02 7039 1519

ii32d3 10 10 3.41 0.11 13187 3199

ii32e2 10 10 0.21 0.01 2319 389

ii32e3 10 10 0.23 0.01 1483 685

ii32e4 10 10 0.57 0.03 2590 1046

ii32e5 10 10 0.86 0.13 2901 4057

ii32e1 10 10 0.05 0.00 1124 104

GLSSAT.tex; 30/08/1999; 15:26; p.22



23

Table VIII. Results on Arti�cial 3-SAT problems

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

aim-50-2 0-yes1-3 10 10 0.01 0.17 1181 81560

aim-50-1 6-yes1-1 10 1 0.02 0.03 1918 12359

aim-50-1 6-yes1-2 10 0 0.02 - 1636 -

aim-50-1 6-yes1-3 10 7 0.02 2.18 1709 1110424

aim-50-1 6-yes1-4 10 0 0.01 - 1444 -

aim-50-2 0-yes1-1 10 0 0.01 - 1268 -

aim-50-2 0-yes1-2 10 9 0.01 0.04 889 19688

aim-50-2 0-yes1-4 10 10 0.01 0.37 817 186927

aim-50-3 4-yes1-1 10 10 0.03 0.01 2146 3632

aim-50-3 4-yes1-2 10 10 0.01 0.00 517 1392

aim-50-3 4-yes1-3 10 10 0.01 0.00 342 882

aim-50-3 4-yes1-4 10 9 0.00 0.00 137 749

aim-50-6 0-yes1-1 10 10 0.01 0.00 86 778

aim-50-6 0-yes1-2 10 10 0.00 0.00 86 325

aim-50-6 0-yes1-3 10 10 0.01 0.00 162 543

aim-50-6 0-yes1-4 10 10 0.01 0.00 138 513

aim-100-1 6-yes1-2 10 0 0.08 - 8581 -

aim-100-1 6-yes1-3 10 0 0.10 - 11225 -

aim-100-1 6-yes1-4 10 0 0.09 - 10246 -

aim-100-2 0-yes1-1 10 0 0.09 - 8436 -

aim-100-2 0-yes1-2 10 0 0.10 - 9270 -

aim-100-2 0-yes1-4 10 0 0.08 - 7780 -

aim-100-3 4-yes1-1 10 10 0.13 0.04 9064 11587

aim-100-3 4-yes1-2 10 10 0.02 0.02 1459 6734

aim-100-3 4-yes1-3 10 0 0.03 - 1750 -

aim-100-3 4-yes1-4 10 10 0.02 0.01 1471 2624

aim-100-6 0-yes1-1 10 10 0.01 0.00 197 782

aim-100-6 0-yes1-2 10 10 0.01 0.01 330 1243

aim-100-6 0-yes1-3 10 10 0.01 0.01 294 1866

aim-100-2 0-yes1-3 10 0 0.09 - 7957 -

aim-100-6 0-yes1-4 10 6 0.01 0.01 309 824

aim-100-1 6-yes1-1 10 0 0.09 - 9206 -
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Table VIII. Results on Arti�cial 3-SAT problems (continued)

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

aim-200-6 0-yes1-4 10 10 0.03 0.02 715 2747

aim-200-1 6-yes1-1 10 0 0.52 - 50884 -

aim-200-1 6-yes1-2 10 0 0.58 - 57444 -

aim-200-1 6-yes1-3 10 0 0.54 - 53104 -

aim-200-1 6-yes1-4 10 0 0.56 - 54488 -

aim-200-2 0-yes1-1 10 0 0.95 - 86069 -

aim-200-2 0-yes1-2 10 0 0.67 - 60978 -

aim-200-2 0-yes1-3 10 0 0.69 - 62791 -

aim-200-2 0-yes1-4 10 0 0.80 - 72276 -

aim-200-3 4-yes1-1 10 10 3.27 0.20 218214 55052

aim-200-3 4-yes1-2 10 10 0.13 0.13 7639 35660

aim-200-3 4-yes1-3 9 5 2.20 3.27 138974 1008856

aim-200-3 4-yes1-4 10 9 0.29 0.31 17014 91361

aim-200-6 0-yes1-1 10 5 0.03 0.02 786 2932

aim-200-6 0-yes1-2 10 10 0.04 0.04 768 6042

aim-200-6 0-yes1-3 10 6 0.02 0.03 458 4518
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Table IX. Results on the Random SAT problems

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

jnh1 10 10 0.04 0.01 741 1934

jnh7 10 10 0.02 0.00 403 438

jnh12 10 10 0.05 0.04 951 5097

jnh17 10 10 0.04 0.01 762 810

jnh201 10 10 0.02 0.00 233 390

jnh204 10 10 0.04 0.02 916 2180

jnh205 10 10 0.04 0.01 904 1076

jnh207 10 10 0.19 0.09 4954 13996

jnh209 10 10 0.06 0.04 1285 5919

jnh210 10 10 0.01 0.01 205 791

jnh212 10 10 0.82 0.10 21652 14763

jnh213 10 10 0.02 0.02 421 3104

jnh217 10 10 0.02 0.01 426 605

jnh218 10 10 0.02 0.01 407 903

jnh220 10 10 0.33 0.16 8625 24381

jnh301 10 10 0.22 0.05 4943 7276

Table X. Results on easier Parity learning problems

Problem Success rate / 10 Mean CPU time Mean ips

name GLSSAT WalkSAT GLSSAT WalkSAT GLSSAT WalkSAT

par8-1-c 10 10 0.07 0.03 6390 10320

par8-2-c 10 10 0.05 0.03 4358 9049

par8-3-c 10 10 2.32 0.04 213274 12956

par8-4-c 10 10 0.18 0.21 15925 67803

par8-5-c 10 10 0.43 0.12 39316 35272

GLSSAT.tex; 30/08/1999; 15:26; p.25



GLSSAT.tex; 30/08/1999; 15:26; p.26


