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Abstract

In this thesis, we show how an Extended Guided Local Search can be applied to a set

of problems and show that the extensions can improve its performance. We show how

an aspiration criterion can be added to Guided Local Search to improve its

performance for some problem types and parameter settings. We then demonstrate

how, by making an occasional random move, the performance of Guided Local

Search can be further improved for some problems and parameter settings. For both

extensions, we make use of search monitors to attempt to analyse when and why each

extension succeeds or fails. Finally, we combine the extensions and compare the

resulting Extended Guided Local Search with some state-of-the-art algorithms for the

different problem types, we have used for our experiments.
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Abbreviations and Notations

ABBREVIATION FULL NAME

GLS Guided Local Search

SAT Satisfiability Problem

MAX-SAT Maximum Satisfiability Problem

QAP Quadratic Assignment Problem

ILS Iterated Local Search

AA Ant Algorithms

SS Scatter Search

GA Genetic Algorithms

MA Memetic Algorithms

VNS Variable Neighbourhood Search

TS Tabu Search

FLS Fast Local Search

DLM Discrete Langrangian Multipliers

GGA Guided Genetic Algorithm

TSP Travelling Salesman Problem

GRASP Greedy Randomised Adaptive Search Procedure

SA Simulated Annealing

SJ Simulated Jumping

RTS Robust Tabu Search

ReTS Reactive Tabu Search

RLFAP Radio Link Frequency Assignment Problem
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GLSSAT Guided Local Search for Satisfiability Problems

GLSMAXSAT Guided Local Search for Maximum Satisfiability Problems

GLSQAP Guided Local Search for Quadratic Assignment Problems

NOTATION DESCRIPTION

n Problem size (number of cities in TSP, number of elements in

permutation in QAP, number of variables in SAT & MAX-SAT

D Distance matrix for TSP

dij Distance between cities i and j

x A solution (a permutation in the TSP & QAP, a list of boolean

variables in the SAT and MAX-SAT problems)

xi The ith element of the solution x

Z The set of variables in SAT/MAX-SAT

xi A variable in SAT/MAX-SAT

C The set of clauses in SAT/MAX-SAT

Ci A clause in SAT/MAXSAT

WCi The weight of clause Ci in MAX-SAT

A The distance matrix in the QAP

aij An element of the distance matrix A in the QAP

B The flow matrix in the QAP

bxixj
An element of the flow matrix B in the QAP

g(x) Original objective function

x* The best solution found so far, according to g(x)

h(x) Augmented objective function used by GLS
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fi A solution feature associated to penalties used by GLS

pi A penalty associated with the feature fi

I i(x) An indicator function which defines whether solution x contains the

feature fi

Costi(x) An cost function which gives the cost associated with feature fi, if

present in solution x

util(x,fi) The utility of penalising feature fi in solution x

λ The main parameter in GLS, used for altering the amount of effect the

penalty term of the augmented objective function has

a Problem specific coefficient for balancing the augmented objective

function

aSAT Coefficient a for the SAT problem

aMAX-SAT Coefficient a for the MAX-SAT problem

aQAP Coefficient a for the QAP

vj A value assigned to a variable

fx
i
=v

j
The number of times xi = vj in solutions

Dxi
The set of possible values that the variable xi may take

N(x) Neighbourhood function giving neighbouring solutions of x

f(x) Cost function

T Temperature in SA

⊕ Applies a move m to a solution s, returning the new solution

Pignore Probability of ignoring penalties in GLS

Prandmove Probability of making a random move in GLS

Prandwalk Probability of making a random walk move in GLS
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Prandpenaltywalk Probability of making a random penalty walk move in GLS

∆ The change in some value (usually cost or augmented cost)
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1 Introduction

In this chapter, we give our motivations for understanding extensions of Guided Local

Search and state the scope and objectives of this thesis. We then introduce Guided

Local Search, using concrete examples of Guided Local Search instantiations, which

are used in the following chapters. Finally, we state and justify the experimental

methodology that we use throughout the rest of the thesis.

1.1 Motivations

Guided Local Search (GLS) [102] has been applied to a number of problems,

including the vehicle routing problem [47], the radio link frequency assignment

problem [104], function optimization [101] and the travelling salesman problem

[103].  In this thesis, we use the SAT, weighted MAX-SAT and QAP problems as

testbeds (see chapter 2 for more details) for our extensions of Guided Local Search.

GLS is a meta-heuristic that sits on top of local search procedures and helps them

escape from local minima. GLS can be seen as a generalization of the GENET neural

network [95,16,20] for solving constraint satisfaction problems and optimization

problems. Recently, it has been shown that GLS can be put on top of a specialized

Genetic Algorithm, resulting in the Guided Genetic Algorithm (GGA) [50]. GGA has

been applied to a number of problems, including the processor configuration problem

[52], the generalized assignment problem [51] and the radio link frequency

assignment problem [52,53].

In this thesis, we examine ways of extending Guided Local Search, so that the

performance can be improved for some problems and/or parameter settings, whilst
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hopefully having a minimal degradation (if any) on performance for other

problems/parameter settings. We believe it is important to examine these possible

extensions in a systematic and intelligent manner, owing to the vast number of

possible ways of extending GLS. Later in this chapter, we outline our methodology

for achieving this end.

1.2 Scope and objectives

In this thesis, we focus on:

• extending Guided Local Search only, and not attempting to modify other

algorithms,

• enhancing the parameter setting range of GLS, or at least improving its

performance for some settings and/or problems, and

• understanding what effect the extensions have on the search algorithm, and

hopefully therefore gaining an idea of why they work, when and for which

problems types.

1.3 Problems

In this section, we give examples of problems commonly studied by researchers in

discrete optimization and local search metaheuristics.

1.3.1 The Travelling Salesman Problem (TSP)

The travelling salesman problem [55] is probably the most famous combinatorial

optimisation problem and one of the most heavily researched. Because of the

simplicity of the basic symmetric TSP and the way it lends itself to graphical

representation of solutions, it is an ideal candidate for illustrating how general

algorithms may be tailored to a particular problem.
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The problem is to find a tour (a list or permutation of n cities) through a set of cities,

such that the length of the tour is minimised. The problem can be defined by a matrix

D, each element dij of which defines the distance between a city i and a city j. The

problem is then to find a permutation of n cities, such that the sum of the distances

between each city in the permutation is minimised. This can be stated formally as:













+










∑

−

= + 0

1

0
1

min xxdxxd
x n

n

i
ii

(1)

where:
D is a matrix whose elements dx

i
x

j
represent the distance between cities xi and xj

x is a permutation representing the order in which the n cities are visited.

1.3.2 The Satisfiability Problem (SAT)

The SAT problem [31] is an important class of constraint satisfaction problem [94],

where the domain of a variable is always the set {false, true},and each constraint is a

logical disjunction. The SAT problem is important in solving many practical problems

in mathematical logic, constraint satisfaction, VLSI engineering and computing theory

[35].

The SAT problem is defined below:

• A set of n (boolean) variables, Z = {x1,x2,..,xn}, each of which may take the values

true or false.

• A set of m clauses, C = {C1, C2,.., Cm}, each of which is a disjunction of a set of

literals (a variable or its negation), e.g. x1 ∨ ¬x2 ∨ x3.

• The goal of the SAT problem is to find an assignment of values to variables (if

one exists) where all the clauses are satisfied (evaluate to true) or prove that the

problem is unsatisfiable if no valid assignment exists (currently, only complete

algorithms can prove unsatisfiability).
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Both complete and incomplete algorithms have been used to solve the SAT problem.

Of the complete algorithms, one of the best known is the Davis-Putnam procedure

[21], based on resolution. Of the incomplete local search algorithms, the best known

is probably GSAT (first reported in [81]), based on random restarts and steepest

gradient descent and the related WalkSAT [79], based on random walk with greedy

variable selection heuristics. Another penalty-based algorithm called DLM [84, 83,

82, 113, 115] has also been applied to the SAT problem with good results.

When local search is applied to the SAT problem, it is well known to contain many

long plateaus of so-called sideways moves (moves to solutions of identical cost), as

shown in [77] and [27]. This means that the algorithm is stuck in a "flat" landscape of

these solutions, moving between solutions of equal cost, with nothing to guide it as to

which direction to move next. This moving between solutions of equal cost whilst

traversing the plateau may carry on until some solution is found with neighbouring

solutions of lower cost, usually leading to an even larger "plateau" of solutions of

slightly lower cost (this carries on until the lowest plateau is reached (and the search

continues indefinitely if no meta-heuristic is applied), or a solution which satisfies all

the clauses is obtained).

1.3.3 The Weighted MAX-SAT Problem

The weighted MAX-SAT problem [75] is defined as follows:

• A set of n variables, Z = {x1, x2,…,xn}, each of which can take the values true or

false.

• A set of m clauses, C = {C1, C2, …, Cm}, each of which is a disjunction of a set of

literals (a variable or its negation), e.g. x1 ∨ ¬ x2 ∨ x3. Each clause has a weight

WCi
associated with it.
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• The goal of the weighted MAX-SAT problem is to find an assignment of values to

variables, if one exists, where all the clauses are satisfied (evaluate to true) or, if

none exists, find an assignment that maximizes the sum of the weights of

satisfied clauses.

Only a small amount of work has been done on the weighted MAX-SAT problem in

comparison to the pure SAT problem. For example, [43] extends GSAT to handle the

weighted MAX-SAT problem, and has had some success in solving instances based

on the network Steiner tree problems, in comparison to some techniques specialised

for the task. Another algorithm, GRASP [75], has also been applied to a set of

weighted MAX-SAT problems, this time derived from a set of problems from the

DIMACS archive. Recently, in [107] a new and effective discrete Langrangian-

multiplier-based global-search method, called DLM, has been applied to the weighted

MAX-SAT problem. This produces excellent results on the same set of benchmark

instances as in [75].

The landscape of the weighted MAX-SAT problem is similar to that of the SAT

problem, if the number of unsatisfied clauses is used as the objective function. If the

weighted sum of unsatisfied clauses is used (the natural choice of objective function),

the landscapes may differ, however.

1.3.4 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) [8] is one of the hardest groups of

problems in combinatorial optimization, with many real-world applications, and it has

been the focus of much successful research into heuristic search methods.

Roughly speaking, the QAP can be thought of as trying to find a suitable plan for

placing a set of facilities at a set of given locations, where we know the quantities of



16

objects which flow between the different facilities and the distances between the

different location. The problem is defined by two matrices A and B. Element aij of the

matrix A gives the distance between the different locations labelled i and j. An

element bx
i
x

j
of the matrix B gives the flow between the facilities xi and xj. The

problem is to find a permutation x (representing which facility xi is placed at location

i) which minimizes the sum of the distance times the flow between the different

facilities. The problem can be formally stated as:

∑∑
= =

n

i

n

j
jxixij

x
ba

1 1

min
(2)

where:

• n is the size of the problem (i.e. number of facilities or locations);

• x is a permutation of (1, 2, .. , n) and where xi is the i th element in permutation x,

representing the facility placed at location i;

• A is the distance matrix, each element aij representing the distance between

locations i and j;

• B is the flow matrix, each element bxixj
representing the flow between facilities xi

and xj.

Both exact and heuristic (inexact) algorithms have been proposed for solving the

Quadratic Assignment Problem (for a survey, see [69]). The exact algorithms have the

disadvantage that they can only find optimal solutions to relatively small QAPs

(where n <= 20), whereas the heuristic methods can find near-optimal if not optimal

solutions (it is often unknown if these are the optimal solutions, since no exact or

complete methods exist which can solve them in a reasonable amount of time) to

much larger problems (where n > 20). The heuristic methods which have been used to

solve the QAP include Robust Tabu Search [89, 90], Reactive Tabu Search [4],
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Simulated Annealing [93, 111], Simulated Jumping [1], a Memetic Algorithm [60], a

Genetic Hybrid Algorithm [24], Ant Algorithms [29, 87] and others [91]. In this

thesis, we show how Guided Local Search can be applied to the Quadratic

Assignment problem, and present empirical results showing two extensions of Guided

Local Search which can increase the range of parameters under which good results are

obtained.

Some studies of a measure of the ruggedness of the search landscape called the

ruggedness coefficient have been carried out for the QAP [61, 2, 3].

1.4 Guided Local Search

Guided local search (GLS) (see [102] for a more detailed description) sits on top of a

local search algorithm to help it escape from local minima and plateaus. When the

given local search algorithm settles in a local optimum, GLS modifies the objective

function using a scheme that will be explained below. Then the local search will

search using an augmented objective function, which is designed to bring the search

out of the local optimum. The key is in the way that the objective function is

modified.

1.4.1 Local Search

For each problem, a neighbourhood function N(x) which returns a set of neighbouring

solutions to x and an objective function g(x) giving the cost of the solution x, must be

defined for the local search algorithm (see Section 2.1 for a description of local

search) used by GLS. For the SAT problem, the neighbourhood N(x) is simply the set

of all solutions resulting from changing the value of one variable from true to false or

vice-versa. The objective function g(x) is the number of unsatisfied clauses, given the

solution x. For all problems, the standard local search algorithm (see Figure 1-1 for
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pseudo code) we use for GLS, allows a maximum of two consecutive sideways moves

before the local search algorithm terminates. We use the same objective function and

neighbourhood scheme for the MAX-SAT problem (although the weight WCi for each

clause Ci is used by GLS, see Section 1.4.2 and the sum of the weights of unsatisfied

clauses is used to record the best found solution x*) as for the SAT problem. For the

Quadratic Assignment Problem, the neighbourhood function N(x) is set of all

solutions with two distinct elements of the permutation swapped (see [5,89,90] for

details of how to update the change in objective function of the neighbourhood

efficiently). The objective functions used  (this is the original objective function

denoted as g(x) later and used in the augmented objective function h(x), defined later)

for the SAT and weighted MAX-SAT1 problems are to minimise the number of

unsatisfied clauses, whilst for the QAP g(x) is as defined earlier in (2) in Section

1.3.4.

1.4.2 Solution features

Solution features are defined to distinguish between solutions with different

characteristics, so that poor characteristics can be penalized by GLS, and hopefully

removed by the local search algorithm. The choice of solution features therefore

depends on the type of problem, and also to a certain extent on the local search

algorithm. We define for each feature fi a cost function ci (which often comes from the

objective function). Each feature is also associated with a penalty pi (initially set to 0)

to record the number of occurrences of the feature in local minima. Examples of

features are unsatisfied clauses in the SAT and weighted MAX-SAT problems, and

location-facility assignments in the QAP. At the implementation level, we define for

1 This is not the natural formulation for the weighted MAX-SAT problem, but this has been used
successfully for problems involving soft constraints before, e.g. for the RLFAP in [104] and the
weighted MAX-SAT in [64].
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each feature fi an Indicator Function I i indicating whether the feature is present in the

current solution or not:





=
otherwise0,

iproperty hassolution ,1
)(

x
xIi

(1)

Concrete examples of indicator functions for the SAT, the weighted MAX-SAT and

Quadratic Assignment Problems are (2) and (3).





=
otherwise,0

clausesatisfy not doessolution if,1
)( i

iC

Cx
xI

(2)





=>< otherwise0,

)isn permutatio theofelement th (thefacility containslocation if,1
)(,

kxikx
xI i

kxi

(3)

Examples of cost functions for features for the SAT & weighted MAX-SAT and QAP

are (4) and (5).





=
problemsSATfor ,1

problemsSAT-MAXedfor weight
)( iWc

xCost iC

(4)

kx,kxbaxCost ii

n

j
kxijkx ji

facility containslocation  when ngrepresentifeaturefor the)(
0

, ><= ∑
=

><

(5)

1.4.3 Selective penalty modifications

When the Local Search algorithm returns a local minimum, x, GLS penalizes all those

features (through increments to the penalty of the features) present in that solution

which have maximum utility, util(x,fi), as defined in (6). (See Figure 1 for pseudo

code of the overall GLS algorithm.)

i

i
ii p

xc
xIfxutil

+
⋅=
1

)(
)(),(

(6)

The idea is to penalize features that have high costs, although the utility of doing so

decreases as the feature is penalized more and more often.



20

Guided_Local_Search (x, g, a, �1)
{

for all p i , p i  = 0
x* = x = random assignment or permutation (QAP)
do
{

h = g augmented as in (7)
x = Local_Search(x,h,g,N)
Features_To_Penalise = { fi| util(x,fi) is maximised &

          fi is present in x        }
for each fj in Features_To_Penalise
{

pj  = p j  + 1
}

}
while (not termination condition)
return x*

}

Local_Search(x,h,g,N)
{

do
{

y = solution in N(x) such that h(x) is minimised,
 breaking ties randomly

 ∆h = h(y) - h(x)
if ( ∆h <= 0) x = y
if ( ∆h = 0) sideways = sideways + 1
else  sideways = 0
if (g(x) < g(x*)) x* = x

}
while ( ∆h <= 0) and (sideways < 2)

return x
}

where:

•  g(x) returns the cost of a solution x with regard to the original cost

function,

•  h(x) returns the augmented cost of a solution x,

•  x* is the solution of lowest (original) cost found so far by the algorithm,

•  N(x) is the neighbourhood function, giving neighbouring solutions of x.

See Section 1.4.1 for problem specific neighbourhood functions used in

this thesis.

Figure 1-1: Pseudo code for GLS

1.4.4 Augmented cost function

GLS uses an augmented cost function (7), to allow it to guide the Local Search

algorithm out of the local minimum, by penalizing features present in that local
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minimum. The idea is to make the local minimum more costly than the surrounding

search space, where these features are not present.

i

m

i
i pxIaxgxh ∑

=

⋅⋅⋅+=
1

)()()( λ
(7)

The parameter λ may be used to alter the intensification of the search for solutions. A

higher value for λ will result in a more diverse search, where plateaus and basins in

the search are searched more coarsely; a low value will result in a more intensive

search for the solution, where the plateaus and basins in the search landscape are

searched with finer steps. The coefficient a is used to make the penalty part of the

objective function balanced relative to changes in the objective function and is

problem specific. A simple heuristic for setting a is simply to record the average

change in objective function up until the first local minimum, and then set a to this

value. However in this thesis a is pre-defined based on each problem (8), as below.

This is because the former method may depend on the initial solution, whereas a fixed

value will make the experiments more easily repeatable.

aSAT = 1

aMAX-SAT = 1

aQAP = 
4

1 11 1

n

ba
n

i

n

j
ij

n

i

n

j
ij ∑∑∑∑

= == =

×

(8)

Summarising, to use GLS, a number of things need to be defined: an objective

function, a local search algorithm, a set of features found in solutions together with

indicator and cost functions, and also the a coefficient and the  intensity/diversity

setting.
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1.5 Methodology

In this section, we outline the experimental methodology that we use in the rest of this

thesis.

1.5.1 Empirical evaluation with search monitors

In this thesis, we evaluate and test our extensions of GLS empirically, using search

statistics (which we call "search monitors") collected over multiple runs of Guided

Local Search. Table 1.1 defines the search monitors which we use in this thesis

(although it should be noted that many others were tried, but those below were found

to be the most useful for our purposes).

Name of search

monitor

Definition Purpose

Repetitions Number of times solutions are

revisited

Monitors the extent to which

the search algorithm revisits

previous solutions.

Average label

entropy

The average label entropy (for a

description of entropy see [7]) is

defined below:

n

xEntropy

entropylabelAverage

n

i
i∑

== 0

)(

__

where Entropy(xi) of a single

variables xi in the problem is defined

below:

Monitors how diverse the

search is.
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∑
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where xi is a variable, Dxi
 is the set

of possible values of variable xi, vj

is a value of the variable xi & fx
i
=vj

the number of occurrences of the

label xi=vj in solutions visited by the

search so far, iterations is the

number of solutions visited by the

local search algorithm so far.

Average solution

cost

This is the average cost of all

solutions visited over a run.

Monitors the quality of

solutions visited over the

whole search.

Average local

minimum cost

This is the average cost of all local

minima found over a run.

Monitors the quality of local

minima found during the

search.

Average better-

than previous

Solution cost

This is the average cost of all

solutions whose cost is better-than-

previous found during a run.

Monitors the quality of best

found solutions found over a

whole run.

Table 1: Search monitors for GLS
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1.5.2 Benchmark problems

During our empirical tests, we use benchmarks found by other researchers, as these

are known to contain "hard problems", yet still contain a sufficient variety and

number of problems to be of interest.

1.6 Conclusion

In this chapter, we have introduced our motivations for extending Guided Local

Search. Finally, we have introduced our experimental methodology, which is designed

to assess empirically the effects of the extensions of Guided Local Search, using

search statistics, which we call "search monitors" collected over multiple runs of

Guided Local Search.
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2 Related work

In this chapter, we examine other algorithms which perform a similar function to

Guided Local Search.

2.1 Local Search

Local search algorithms work by starting with a solution (usually randomly

generated) representing some possible configuration (for example, a tour of cities in

the TSP) and then making small changes to that solution that decrease the cost of the

configuration. A local search algorithm must consist of a neighbourhood function for

generating the set of neighbouring solutions N(x) of a solution x, a cost function for

evaluating the cost f(x) of a solution x and some heuristic for choosing between

solutions, for example choosing the best solution with respect to the cost (best-

improvement). However, local search algorithms have a drawback that very often

after a few "moves" (small changes to solutions) to neighbouring solutions, the cost

function f(x) can no longer be reduced (if minimising) and the algorithm is stuck in

what is known as a local minimum.

2.2 Metaheuristics

Meta-heuristics are heuristics that are designed to control heuristics like local search

(in this thesis) to either avoid or escape from the local minima described in the

previous subsection. Many such metaheuristics exist, each with many variations on

the theme and, due to this, we restrict our attention to the main ones. In Figure 2-1,

we show an approximate map of current metaheuristic research related to Guided

Local Search (we recognise that this is by no means a complete picture or a unified

view of current research).
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Figure 2-1: An approximate map of the position of Guided Local Search (GLS)
in metaheuristic research

We split algorithms into four main classes: those using some element of randomness

to randomly move out of and escape or avoid local minima, those using populations

of solutions either for the purpose of restarting or for searching multiple solutions in

parallel, rather than just concentrating on a single solution, neighbourhood-

modification based metaheuristics and those using penalties or weights to modify the

objective function so that a local minimum can be escaped by increasing the cost of

solution attributes within that local minimum.
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2.3 Randomness based meta-heuristics

In this section, we describe other meta-heuristics that perform a similar function to

Guided Local Search, but which do so by adding some form of randomness or noise

to the search process.

2.3.1 Simulated Annealing

SimulatedAnnealing(StartTemperature, AnnealingSchedule())
{

x* = x = GenerateInitialSolution()
T = StartTemperature
i = 0
do
{

Pick a neighbour y from the neighbourhood N(x) at random
g = g(y) - g(x)

if ( g < 0) x = y
else
{

r = random number in range [0,1]
if (r < e � J�7) x = y //Accept the change

}
i = i + 1
T = AnnealingSchedule(T,i) //Reduce T according to some

   //Annealing Schedule
if (g(x) < g(x*)) x* = x

}
while not termination condition

}

Figure 2-2: Pseudo code for Simulated Annealing

Simulated Annealing [48, 60] is a meta-heuristic used to navigate through the space

of solutions containing many local minima and has been applied to many

combinatorial optimisation problems. The main idea behind Simulated Annealing is

an analogy with the way in which liquids freeze and crystallize.  When liquids are at a

high temperature their molecules can move freely in relation to each other. As the

liquid’s temperature is lowered, this freedom of movement is lost and the liquid

begins to solidify. If the liquid is cooled slowly enough, the molecules may become

arranged in a crystalline structure. The molecules making up the crystalline structure

will be in a minimum energy state. If the liquid is cooled very rapidly it does not form

such a crystalline structure, instead forming a solid whose molecules will not be in a
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minimum energy state. The idea is that the moves made by an iterative improvement

algorithm are like the re-arrangements of molecules in a liquid that occur as it is

cooled and that the energy of those molecules is like the cost function which is being

optimised by the iterative improvement algorithm.  Thus, the simulated annealing

algorithm aims to achieve a global optimum by slowly converging to a final solution,

by making downwards moves with occasional "upwards" moves (the probability of

these occurring decreasing with the "temperature") and by doing this hopefully it ends

up in a global optimum.  This is in contrast to the greedy approach of only

considering the move which results in the largest possible decrease (if minimising) in

the objective function, which resembles a rapid cooling of a liquid to a solid, and thus

according to the hypothesis, resulting in a local optimum rather than global optimum

solution.

Figure 2-2 shows pseudo code for Simulated Annealing. The algorithm begins by

generating an initial start point (usually at random) and setting the temperature to a

suitably high value (this must be determined by experimentation). The algorithm then

iteratively chooses a neighbouring solution to the current solution and evaluates the

change in the cost from the current solution. If the change in the cost is negative (i.e.

the neighbouring solution is better, assuming we are minimising) then the move to the

neighbouring solution is made. Otherwise, the move is made with probability e� I�7

(this is simply implemented by choosing a random number in range from 0 to 1 and

comparing this with the probability; if it is less, we make the move, otherwise we do

not). The temperature T is then reduced according to the annealing schedule (which

again must be determined by experimentation). The algorithm terminates when some

termination condition becomes satisfied (typically when no improvement has been
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made for a certain number of iterations or the maximum number of iterations has been

reached).

2.3.2 Simulated Jumping

A variation on Simulated Annealing is Simulated Jumping  [1] which is a relatively

new meta-heuristic. It is based on the idea in physics that some materials containing

both ferromagnetic and anti-ferromagnetic materials have many metastable states.

The theory is that for these types of materials, it is much harder to find a ground state

(low energy state) just by cooling alone and, instead, a process of rapid heating and

rapid cooling may be more likely to obtain such a low energy state. Thus, simulated

jumping tries to exploit this in combinatorial optimisation problems. Rather than

gradually decreasing over a run the probability of accepting an upwards (if we are

minimising) move (as in simulated annealing), simulated jumping increases and

decreases this probability many times over a run.

Pseudo code for Simulated Jumping is shown in Figure 2-3. The cooling and heating

schedules are those suggested in [1] and may need to be adapted for different

problems. The algorithm is the same as Simulated Annealing, except that if no move

is made, the temperature is increased and the temperature is only decreased after a set

number of moves/temperature increases. Simulated Jumping has been applied to the

quadratic assignment problem, the asymmetric travelling salesman problem and

channel assignment in mobile radio networks.
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SimulatedJumping(T0, γ, R, MaxCycles)
{

//Typical values for parameters: (from [ 1])
//T0 = 0.001, γ = [0.001,0.2], R = 0.15, MaxCycles = 300 
x* = x = GenerateInitialSolution()
T = T0

do
{
   for i = 1 to MaxCycles
   {

Pick a neighbour y from the neighbourhood N(x) at random
g = g(y) - g(x)

 if ( g < 0) x = y
else
{

r = random number in range [0,1]
if (r < e - J�7) x = y //Accept the change
else T = T+R/i //Heat the system

}
T = γ * T //Cool the system
if (g(x) < g(x*)) x* = x

   }
}
while not termination condition

}

Figure 2-3: Pseudo code for Simulated Jumping

2.3.3 GSAT and Walksat

GSAT  [81, 77, 78] and Walksat [79, 59] are algorithms for dealing specifically with

the SAT problem (a version of Walksat was also adapted for solving weighted MAX-

SAT problems [43]). Both GSAT and Walksat make use of randomness to help them

escape from local minima and plateaus by flipping a variable involved in a clause at

random (although the way this is done for each is slightly different).

Pseudo code for the basic GSAT algorithm is given in Figure 2-4. The algorithm

starts with a random solution x and then makes MAX_FLIPS changes to x (by

flipping one boolean variable in the solution x, at a time, with probability 1 - noise,

flipping that variable which decreases the maximum number of unsatisfied clauses, or

with probability noise flipping a randomly picked variable that is involved in one or

more unsatisfied clauses), unless of course a solution that satisfies all the clauses is

found, in which case this is returned. If a solution has not been found after
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MAX_FLIPS, the algorithm restarts from a new random point. This continues until a

solution is found, or the maximum number of restarts (MAX_TRIES) has been made.

GSAT(noise,MAX_FLIPS,MAX_TRIES)
{

for i = 0 to MAX_TRIES-1
{

x = random assignment
j = 0

 while (j < MAX_FLIPS) and (#unsat_clauses > 0)
{

With probability(noise)
{

      x = x with a variable flipped at random which
    is involved in an unsatisfied clause

}
else
{

      x = x with the variable flipped which leads to
    the minimum number of unsatisfied clauses

}

j = j + 1
 }
 if (#unsat_clauses = 0) return x

}
return FALSE //Couldn’t find an feasible assignment

}

Figure 2-4: Pseudo code for GSAT

Pseudo code for the basic Walksat is given in Figure 2-5. Walksat works in a similar

fashion to GSAT, except that the way it chooses which variable to flip is slightly

different. Walksat first chooses an unsatisfied clause at random. If no variable exists

in the chosen clause, such that it may be flipped with zero "breaks" (a "break" is

defined to be a clause that becomes unsatisfied from satisfied as a result of flipping a

variable’s value), then with probability noise, a variable in the chosen clause is picked

at random and flipped (thus satisfying the chosen clause). Otherwise, the variable in

the chosen clause which minimises the number of "breaks" is flipped. This continues

until the maximum number of flips has been made (MAX_FLIPS) and then the search

is restarted (MAX_TRIES) times or until a solution is found. The difference between

Walksat and GSAT is that variables involved in many clauses are more likely to be

flipped with Walksat, whereas GSAT considers all variables involved in unsatisfied
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clauses equally. It should be noted that we have only presented the most commonly

known versions of GSAT and Walksat and that many other variants exist. The

interested reader should refer to [78,79,45,46,10,26,25,27,43] for information on

many other extensions of the basic versions of these algorithms (although this is by no

means a complete list).

Walksat(noise,MAX_FLIPS,MAX_TRIES)
{

for i = 0 to MAX_FLIPS-1
{

x = random initial assignment
j = 0
while (j < MAX_FLIPS) and (#unsat_clauses > 0)
{

c = pick an unsatisfied clause at random
with probability(noise) and only if no variable may
be flipped with 0 "breaks" resulting (see text)
{
    x = x with a variable in c chosen at random

                          flipped
}
else
{
    x = x with the variable in c which minimises

      the number of breaks flipped (clauses which
      become unsatisfied from satisfied as a
            result of the flipping the variable)

}
j = j + 1

}
if (#unsat_clauses = 0) return x

}
return FALSE //Couldn’t find an feasible assignment

}

Figure 2-5: Pseudo code for walksat

2.3.4 Iterated Local Search (ILS)

The simplest meta-heuristic for local search is to restart the algorithm from a new

random start point. However, this means that all previous information gathered in the

search is lost. A more sophisticated version of this approach, which utilises

information collected in the previous runs of the local search algorithm, is the Iterated

Local Search [88] meta-heuristic. The main motivation behind this approach is to

utilise the previous local minima solutions and recombine (in fact, in almost all

implementations, the best found solution so far is used) and modify them (usually just
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making a set number of random moves) to create new start points in order to increase

the amount of time exploring more promising regions of the search space.

The mutations of previous local optima are commonly known as kick-moves, and

simply provide a way to escape from these local optima. The difference between this

and simple random restarting is that previously found local optima (in most

implementations, the best-found solution so far) are used to generate the new start

point, with a few random modifications.

IteratedLocalSearch
{

x = GenerateInitialSolution()
x = LocalSearch(x)
do
{

x = Modify(x,history)
y = LocalSearch(x)
x = AcceptanceCriterion(x,y,history)

}
while (termination condition not met)

}

Figure 2-6: Pseudo code for Iterated Local Search

Pseudo code for ILS is given in Figure 2-6. First, an initial solution (usually randomly

generated) is generated by the GenerateInitialSolution function. The Local Search

procedure is then used to improve upon this solution. The Modify function then takes

the solution x, and changes it in some way (possibly based partly on the search

history) and returns this new solution. The new solution is then improved by the local

search until a local minimum y is found and returned. This new solution y is then

compared with the solution x, possibly taking into account information from the

search history to decide whether to replace the old solution s with this new solution y

and attempt to improve it further. If the Acceptance Criterion procedure accepts the

new solution y, it returns y, otherwise it returns x. This process then continues until

the termination condition is met.
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The main limitation of this approach is that if the local optimum or previous best

found solutions are not located close (in terms of the minimum number of moves

between the two solutions) to the global optimum then this method is probably no

better or may be even worse than simple random restarting.

Many schemes can be made to fit into the ILS framework, by changing the Modify,

LocalSearch and AcceptanceCriterion functions appropriately. However, here we just

list the basic ILS algorithm. The main variations, however, are in the way in which

Modify changes the best found solution so far and how large (how many random

moves it is composed of) the "kick-move" is.

2.4 Population based algorithms

In this section, we describe meta-heuristics that store a population of solutions to help

prevent them converging prematurely.

2.4.1 Ant algorithms (AAs)

Ant algorithms [22, 29, 87, 91] are based on the idea of having a population of

solutions, with each solution worked on by an individual "ant", with all the ants

sharing a common data structure containing "pheromone information" accumulated

over the course of the search. For example, in the TSP [22], the pheromone

information is a matrix, representing the amount of pheromone on each edge joining

two cities.  The higher the value for the pheromone trail on each edge, the more

desirable the edge is.

Pseudo code for an ant algorithm, based on the HAS-QAP from [29], is given in

Figure 2-7.  The algorithm starts by giving each "ant" a random solution and then

improving it using a local search algorithm. The pheromone trails are initialised to a

value based on the cost of the best solution found so far. Then each ant performs a
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number of steps of either exploitation (attempting to improve the current ant’s

solution [partly greedily, according to the pheromone information, and partly

randomly]) or exploration (attempting to modify the current ant’s solution, partly

randomly and partly probabilistically weighted towards solutions containing high

amounts of pheromone). The resulting solution from the modifications is then

improved using local search. If the algorithm is in an intensification phase, then the

best solution found during the modification steps and after the local search is set as

the current ant’s current solution. Otherwise the most recent solution is set as the

current solution of each ant. This is repeated for all the "ants". If no improvement is

made by any of the ants to their solutions, then the intensification is switched off (as

the current area of the search space is not very promising). If the best solution so far

has been improved, then intensification is turned on (as the current area of the search

space is promising). All elements of the pheromone trail now have their values

reduced (to simulate evaporation of a real pheromone trail). Next, those elements of

the pheromone trail that are present in the best found solution so far, have their values

increased (to reinforce these good features of solutions).  If after a number of

iterations no improvement has been made to the best found solution so far, then the

algorithm "diversifies" by reinitialising the pheromone trail data structure, and setting

all but one of the ants’ solutions to a new random start point, with the remaining ant

having its solution set to the best found solution so far. This process continues until

some termination condition is satisfied. It should be noted that this is only one

example of an ant algorithm, and it should be stressed that there are many other

variations in the literature.
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AntAlgorithm( γ, α1, α2,q,R,S) //e.g. γ=100, α1=0.1, α2=0.1, q=0.9, R=n/3
{

foreach ant  i
{ 

xant i
 = GenerateInitialStartPoint()

xant i
 = LocalSearch(x ant i

)
}
foreach pheromone trail j, T j  = 1 / ( γ.g(x*))

 intensification = true

do
{

foreach ant i = 1 to n
{
    for k = 1 to r

         {
 withprobability (q)

{  //perform exploitation
   choose a neighbouring solution x ant i

k from N(x ant i
)

    partly randomly, and partly such that the amount
    of pheromone is maximised

}
else
{  //perform exploration
   choose a neighbouring solution x ant i

k from N(x ant i
)

    partly randomly and partly randomly weighted
     towards those solutions with high amounts of
    pheromone

}
    }

        x ant i

r+1  = LocalSearch(x ant i

r )

     if intensification = true
 x ant i

 = best x ant i

k for k = 1 to r+1
    else

xant i
 = x ant i

k

}

 if no improvement in any solution x ant i
 this cycle

   intensification = false
if there exists an x ant i

, such that g(x ant i
) < g(x*)

 {
 x* = x ant i

 intensification = true
}

//Evaporation
foreach pheromone trail T j  = T j .(1- α1)

 //Reinforcement
foreach pheromone trail T b present in solution x*

 T b = T b + α2/g(x*)

if S iterations have past, without x* being improved
{     //Perform diversification

  foreach ant  i, x ant i
 = GenerateInitialStartPoint()

  foreach pheromone trail j, T j  = 1 / ( γ.g(x*))
  x ant 1

 = x* //Keep the best solution so far
}

}
while not termination condition

}

Figure 2-7: Pseudo code for an ant algorithm (based on HAS-QAP from [29])
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2.4.2 Scatter Search (SS)

Scatter Search [14] is a simple evolutionary heuristic which is very similar to

memetic and genetic algorithms. Pseudo code for Scatter Search is given in Figure

2-8. To use Scatter Search, the R and Q parameters need to be set to appropriate

values and a function for combining several solutions into one new solution

(GenerateNewSolFromSols) in a random way needs to be defined. The idea is to keep

a pool of "elite" solutions, and combine R best of these Q elite solutions, then apply

an "improvement operator" (typically some form of local search) to each one to

generate a new solution. Then, if this solution is better than the worst of the Q elite

solutions, it is inserted among the Q elite solutions, replacing the current worst elite

solution, and the process continues until some stopping criterion is met.

ScatterSearch(R,Q)
{

population = GenerateInitialPopulationOfQSolutions()
while not termination condition
{

sols = SelectRBestSolsForCombining(population)
x = GenerateNewSolFrom(sols)
x = LocalSearch(x)
population = InsertSolIntoPopulation(population,x)

}

}

Figure 2-8: Pseudo code for Scatter Search

2.4.3 Genetic Algorithms (GAs)

Genetic Algorithms [41] are the most famous population based method and have been

applied to a large number of different types of problems. The idea stems from

attempting to copy the way in which nature has evolved and selected the fittest

individuals for reproduction, whilst occasionally mutating the chromosomes/genes of

these individuals. To use a Genetic Algorithm to solve a problem, a cost function

must be defined for evaluating potential solutions along with a suitable representation

for those solutions, along with crossover and mutation operators which must
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manipulate solutions in the chosen representation. The crossover operator must take

two (or possibly more, but most GAs use only two) parents from the population and

recombine them in some way, which is usually partly random, into a new valid

solution. The mutation operator must take an existing solution from the population

and make a small (possibly random) modification to it, also producing a new valid

solution. As one might guess, how the designer of a GA represents solutions as

chromosomes and how the crossover and mutation operators work are critical in how

well the GA will work. Pseudo code for a basic Genetic Algorithm is given in Figure

2-9. The algorithm starts by creating an initial population of solutions, and then

creating a new generation, by means of probabilistically selecting parents and

individuals to perform crossover, mutation and reproduction a number of times until

the new population has reached the predefined population size. This process then

continues until some termination condition is reached (e.g. a sufficiently good

solution has been found or the algorithm has performed the maximum number of

iterations has been reached or no improvement has been made for a number of

iterations).

Whilst Genetic Algorithms have been used with some success on many problems, we

believe that the most successful use of such algorithms is when a local search or

similar heuristic is used in a hybrid scheme to help improve solutions produced by the

GA. An example of such an approach is the Genetic Hybrid algorithm of [24], where

a Robust Tabu Search algorithm (see the later section on Tabu Search) is run for a set

number of iterations to improve solutions generated by the Genetic Algorithm before

they are inserted into the population (this algorithm has been successfully applied to

the Quadratic Assignment Problem, finding some new best known solutions). The
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Genetic Hybrid algorithm is similar to the approach taken by a new group of

algorithms called Memetic Algorithms, which we discuss in the next subsection.

GeneticAlgorithm(Pr,Pc,Pm)
{

population = GenerateInitialPopulation()

do
{

next_population = {}

for i=1 to population_size
{

random_number = random number between [0,1]
if (random_number < Pr) //reproduce
{
   solution = roulettewheelselection(population)
   next_population = next_population ∪  {solution}
}
else if (random_number < Pr+Pc) //crossover
{
   sol1 = roulettewheelselection(population)
   sol2 = roulettewheelselection(population)
   child = crossover(sol1,sol2)
   next_population = next_population ∪  { child }
}
else //mutation
{
   solution = roulettewheelselection(population)

    mutated_solution = mutate(solution)
   next_population = next_population ∪

                                               {mutated_solution}

}
}

population = next_population
}
while (not termination condition)

}

Figure 2-9: Psuedo code for a basic Genetic Algorithm (adapted from [49])

2.4.4 Memetic algorithms (MAs)

Memetic algorithms [67,68] combine ideas from genetic algorithms with more

"aggressive" local search algorithms. The difference between GAs and MAs is that

MAs are a more general concept than GAs, since memetic algorithms supposedly

mimic "cultural evolution" rather than "genetic evolution" and therefore are not

confined to the Genetic Algorithm framework and may also incorporate many other

types of algorithms and heuristics.
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MemeticAlgorithm()
{

population = GenerateInitialPopulation()
foreach x in population

 x = LocalSearch(x)
do
{

for i = 1 to #recombinations
{

select two parents p1, p2 from population randomly
x = Recombine(p1,p2)
x = LocalSearch(x)
population = AddToPopulation(x)

}
population = Select(population)

 if Converged(population)
{

foreach x in population \ { best } do
x = LocalSearch(Mutate(x))

}
}
while (not termination condition)

}

Figure 2-10: Pseudo code for an example of a simple Memetic Algorithm (MA)
(adapted from [60])

Figure 2-10 shows pseudo code for a simple example of a memetic algorithm, which

has been successfully applied to the Quadratic Assignment Problem. The algorithm

starts by generating a pool of random start points. The local search algorithm is then

applied to each start point to improve it. Then two parents are selected randomly

(without fitness bias) from this pool and combined using a recombination operator.

Then a local search algorithm is again applied to the resulting meme, which is added

to the population. This is repeated for the desired number of recombinations. Then the

P best solutions are selected from the population and kept, throwing away any worse

solutions. If the population has not changed for a constant number of iterations

(typically around 30), or the average Hamming distance between solutions in the

population drops below 10, then the population is deemed to have converged. When

this happens, a mutation operator followed by the local search algorithm is applied to

each solution in the population to restart/diversify the search, and the search continues

as before until some termination condition is satisfied.
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A very similar approach to memetic algorithms is the Genetic Hybrid algorithm of

[24], already covered in the previous section on Genetic Algorithms. These methods

are also very similar to the elite solutions restarting [40] from tabu search, where a list

of elite solutions is kept for generating new start points, possibly with additional

information about the frequency of occurrence of solution attributes in good quality

solutions. Many other similar hybrid approaches also exist, for example combining

Simulated Annealing with Tabu Search (by representing the tabu list as penalties) and

Genetic algorithms, as in [23].

2.5 Neighbourhood based algorithms

In this section, we describe meta-heuristics which help prevent local search

algorithms becoming trapped in local minima (and also some that speed up the search

process) by restricting the neighbourhood or expanding the local search

neighbourhood when they become trapped.

2.5.1 Variable Neighbourhood Search (VNS)

Variable Neighbourhood Search (VNS) [65] has several local search neighbourhoods

of increasing size available to it. It starts at some initial start point (usually randomly

chosen). It then picks a neighbouring solution at random from the smallest-sized

neighbourhood and then applies a local search until a local minimum is obtained.

Then, when the solution has not been improved, the next largest neighbourhood is

utilised in the same way (the neighbourhood of the local search procedure is the same

however). If an improving solution is obtained, then the smallest neighbourhood is

again utilised, otherwise the next largest neighbourhood is tried, until the maximum-

sized neighbourhood has been reached. Pseudo code for VNS is given in Figure 2-11.
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VariableNeighbourhoodSearch(N 1(),N 2(),..,N kmax())
{

x = GenerateInitialSolution()
k = 1
do
{

y = random solution picked from N k(x)
z = LocalSearch(y)
if (f(z) < f(x))

 {
 x = z

k = 1 //improved solution => use smallest N(x)
}
else if (k < kmax) //no improved solution found
{

k = k + 1 //=>use next largest neighbourhood
}

}
while (not termination condition)

}

Figure 2-11: Pseudo code for basic Variable Neighbourhood Search (VNS)

2.5.2 Tabu Search (TS)

BasicTabuSearchWithBestImprovedAspirationCriterion()
{

x = GenerateInitialSolution()
x* = x;
TabuList = {}

while (not termination condition)
{
   //note: 2nd condition is best-improved aspiration criterion
   Pick best y from N(x) such that (not Tabu(x,y,TabuList))

     or (g(y) < g(x*))
   if (g(y) < g(x*))

 x* = y

   x = y

   TabuList = TabuList ∪  {attribute of x or move from x to y}

   if (size of TabuList > MaxTabuListSize)
 remove oldest element from TabuList

}

}

Tabu(x,y,TabuList)
{

foreach element t in TabuList
if (move from x to y is tabu because y contains t or the

     move itself is tabu as it reverses an earlier move)
 return true

return false
}

Figure 2-12: Pseudo code for basic Tabu Search with the best-improved
aspiration criterion

Tabu Search [37, 38, 39, 40] is a framework for local search which incorporates many

different ideas. The main idea is that of the tabu list, where a list of tabu attributes
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(such as arcs between cities in the TSP or variables flipped in the SAT problem) of

previously visited solutions or moves used is maintained, so that the local search

algorithm may escape from local minima, by disallowing moves to previous solutions

that possess these "already used/explored" attributes. In most successful

implementations, if there exists a move, which is tabu but never the less improves the

best found solution so far, then the tabu status of the move is ignored and the move is

made to generate the new best found solution. This is an example of an aspiration

criterion, and is known as the "improved-best" aspiration criterion. Pseudo code for a

basic tabu search algorithm is shown in Figure 2-12.

Protagonists of Tabu Search would claim that any local search algorithm which uses

some form of memory based on the previous history of the search to influence the

future direction of the search is a member of the tabu search family. However, I

believe that while there may be some element of truth in this, there is also an element

that if one tries hard enough, it is always possible to draw parallels between different

search methods. For this reason, I have only listed the basic elements of tabu search in

this section, and some examples of successful tabu search algorithms in the next two

subsections, although the interested reader may refer to Glover’s book [40] for a

detailed look at the many ideas that he and other researchers have had.

2.5.2.1 Robust Tabu Search (RTS)

Robust tabu search is an enhanced version of the basic tabu search scheme, which

uses a randomly varing length tabu list and a form of long term memory. The

maximum tabu list length is varied by plus or minus some percentage (10% in the

QAP, [89,90]) around some fixed value (the number of elements in a solution

permutation in the QAP, [89,90]) every time a local search move is made. The long

term memory forces solution attributes back into solutions which have not been
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present for a certain number of moves (e.g. 4.5 n2  for the QAP, where n =

permutation solution size). This is done by making any move which does not

introduce the desired attribute "tabu" and disallowed (unless the best-improved

aspiration criterion is applicable). Robust Tabu Search has been shown to be

successful in tackling the Quadratic Assignment Problem (QAP).

2.5.2.2 Reactive Tabu Search (ReTS)

Reactive Tabu Search (ReTS) is yet another notable enhancement of the basic tabu

search scheme. This scheme is quite complicated, so it is not possible to give full

details here. The interested reader should refer to [4,5]. The main idea is that the tabu

list length is increased, if there are many solutions being revisited, and shortened,

when not so many solutions are revisited. In this way, the algorithm maintains a list

length which is best suited to the current problem and the area of the search space.

The second thing that Reactive Tabu Search does is to make a sequence of random

moves if the algorithm finds that it is trapped in an area of the search space (this is

again determined by counting the number of times a number of solutions are

revisited) which for some reason cannot be escaped from just using a tabu search

strategy. This part of ReTS resembles the idea of Iterated Local Search (ILS), where a

similar method is employed to escape from local minimas, rather than using a random

restart from a completely new solution.

2.5.3 Fast Local Search (FLS) , "don’t look bits" and Elite Candidate Lists

Fast Local Search (FLS) [102] is an generalisation/adaptation of an earlier scheme

known as "don’t look bits" [6] which is designed to be used to speed up "first

improvement" local search algorithms. Together these two similar heuristic speed-ups

have been successfully applied to the TSP, partial constraint satisfaction problems
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(Radio Link Frequency Assignment Problem (RLFAP)) and recently, the Quadratic

Assignment with Iterated Local Search [88].

FastLocalSearch(x)
{

foreach m in movesofN(x) don’t_look(m) = false
UnscannedNs = movesofN(x)

do
{

m = pick an element m of movesofN(x) at random,
     such that don’t_look(m) = false

UnscannnedNs = UnscannnedNS - {m}

 if (delta(m(x)) <= 0)
 {
     //Don’t bother checking inverse of move
     don’t_look(inverse(m)) = true
     x = m(x) //Execute move m(x)
     forall moves m’ such that m’ effected by m
     {
  don’t_look(m’) = false //Re-activate those moves
     }

}
else

 {
     //Move is currently poor, so don’t check it next time

    don’t_look(m(x)) = true
}

}
while (there exists a move m(x) in UnScannedNs,

  such that do n’t_look(m) = false)

return x
}

Figure 2-13: Pseudo code for basic Fast Local Search / "don’t look bits"
procedure

The idea of FLS and "don’t look bits" is to speed up neighbourhood search by

ignoring parts of the neighbourhood which are unlikely to yield better solutions

(based on previous evaluations of the neighbourhood). This is implemented by simply

storing a "don’t look bit" with each element or sub-component of the neighbourhood.

If during scanning of the neighbourhood, an element of the neighbourhood yields an

upwards (if minimising) move, the bit is turned on, and that element of the

neighbourhood is no longer evaluated until the bit is turned off again. The bit is only

turned off again when some event occurs which makes it likely that the move may

now have become desirable again, e.g. a move is made which affects that element of

the neighbourhood in some way or a penalty is imposed. When this occurs, the "don’t
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look bit" is flipped back to zero (off), and evaluation of this element of the

neighbourhood is no longer ignored (at least, until the don’t look bit is again turned

on). Figure 2-13 shows pseudo code giving a rough idea of how such a scheme should

work in general.

FLS and "don’t look bits" are also similar to the elite candidate list strategy used in

tabu search [39,40]. In this method, a list of "elite moves" is constructed by

examining the whole or part of the neighbourhood and this list of moves is used until

the moves become too poor in quality, when a new list of elite moves is built and this

process is then reiterated throughout the search.

All three of these techniques take advantage of the fact that, in many applications, a

move’s status, in terms of whether it is a good or a bad quality move, may be highly

likely to stay the same, even after several other moves have been made. In problems

where this is not the case, then these techniques are obviously not likely to be useful,

but in problems where the neighbourhood is massive, these techniques may make a

large saving in running time.

2.6 Weighted and Penalty based algorithms

In this section, we describe algorithms that use penalties or weights to modify the

objective function that the local search is optimizing in order to help them escape

from local minima.

2.6.1 Guided Local Search

For more details of Guided Local Search, refer to the section on it in Chapter 1, or

[102].
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2.6.2 GENET and other Weighted constraint algorithms

GENET (the algorithm which Guided Local Search generalised to the wider group of

combinatorial optimisation problems [98,99,102]) is a heuristic repair method, which

modifies a weighted objective function in order to escape from local minima. To use

GENET to solve a particular problem, each constraint in the problem must have a

weight associated with it, along with a violation function V(), which defines to what

degree the constraint is violated (this may be as simple as 1 for violated or 0 for

satisfied, but if the constraint may be violated, such that more than one variable will

require its value to be changed, it is much more efficient that this function gradually

decreases as the constraint becomes closer to being satisfied). GENET uses these

violation functions as it attempts to maximise the (negatively) weighted sum of

violation functions for all the constraints in the problem (this is referred to as the

energy of the GENET algorithm for historical reasons (GENET was originally a

Neural Network)).

Pseudo code for the basic limited sideways GENET scheme is shown in Figure 2-14.

The algorithm goes through one variable at a time, trying to maximise the energy of

GENET by modifying the current label for the current variable it is examining. If

more than two consecutive sideways moves (moves to solutions of equal cost) are

made, the algorithm is regarded as being stuck in a local minimum and all the weights

of violated constraints in that local minimum state are decreased by 1. The algorithm

then continues like this until some termination condition is satisfied or all the

constraints are satisfied.

For more information on GENET the interested reader may refer to [20]. For a

historical interest in GENET’s development, the interested reader may refer to

[95,94,16,97]. Much work has been carried out on extending GENET. This includes
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adding lazy constraint consistency to GENET [85,86] and introducing variable

ordering strategies [92] to attempt to improve its performance, as well as various

other schemes based on adding additional constraints and "nogood" constraints to the

problem [56,57,58]. For a study of GENET compared to Tabu Search on a group of

partial constraint satisfaction problems, the interested reader should refer to [9].

GENET has also been shown to belong to the class of Discrete Langrangian Search

algorithms in [12].

GENET(Z,D,C,V)
//Z = variables, D = domains of variables,
//C = set of constraints
//V = set of violation functions, 1 per constraint
{

foreach x i  in Z, x i  = a random element from D xi

foreach c i  in C, w ci
 = -1

sideways = 0

while  #{c in C | c is not satisfied} > 0 and
 sideways < 2 and

   not termination condition
{

foreach x i  in Z
{

    x i  = value from D xi
 such that it maximises sum of

   V ci
(x 0..x n)*w ci

 of violated constraints on x i

   (Break ties randomly)

    if (sum(V ci
(x 0..x n)*w ci

) of violated constraints stays
  the same and value of x i  is different from before)

 sideways = sideways + 1
   else if (value of x i  is different from before)

 sideways = 0
}

foreach violated constraint c i  in C
 w ci

 = w ci
 - 1

}
if (#{c i  in C | c i  is not satisfied} = 0)

 return true //solution found
else

 return false //no solution found
}

Figure 2-14: Pseudo code for GENET, an example of a weighted constraint
solver

As well as GENET, many other algorithms based on the same principle have been

used for solving problems with simpler types of constraints than those used by the

GENET researchers. These include Breakout [66], where a weight on each clause

(nogood) is increased every time a local minimum solution is reached, otherwise a
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move is made to reduce the cost function (sum of the weights of violated constraints).

However, the really important point made in [66] is that, if every time a local

minimum is found, the weight of a nogood representing the complete current solution

is increased, then this algorithm can be shown to be complete (although it should be

noted that this result does not extend to weighted and penalty based algorithms, where

only part of the current solution’s cost is increased (e.g. the weight of a nogood tuple

of a violated constraint)).

Another algorithm to use weighted constraints is an extension of the GSAT algorithm

(see section 2.3.3 in this chapter) with weights [77,78]. In this algorithm, the weights

of all clauses not satisfied at the end of a "try" (a run of algorithm beginning at a

(usually random) start point) are increased. Later work involving weights on each

clause for GSAT, increased the weights of all unsatisfied clauses after each flip [25].

Later, this scheme was extended to also decrease all weights of clauses after each flip

as well [26], although we believe this "short term" weighted clause approach is

probably infeasible owing to excessive CPU requirements of decreasing every

clause’s weight after every flip of a variable.

2.6.3 Discrete Langrangian Multipliers (DLM)

 The Discrete Langrangian Multiplier (DLM) search algorithm is based on a modified

mathematical theory from continuous optimisation. DLM associates a "Langrangian

multiplier" with each constraint in the problem, which is increased each time DLM

reaches a local minimum. As one can easily see, this is almost exactly what GENET

does, and in fact GENET has been shown to belong to the same class of Langrangian-

based search algorithms in [12].

 DLM has been applied to a number of problems, including the weighted MAX-SAT

problem [107], the SAT problem [84], as well as others, such as some continuous and
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mixed integer programming problems [82]. The theory is that the algorithm is

maximising the Langrangian multipliers (performing ascent in the Langragian

multiplier space), while minimising the objective function of the problem it is trying

to solve (performing descent in the space of feasible solutions).

 To gain good performance from DLM, it has been shown to be important

periodically to reduce the Langrangian multipliers [83]. An ad hoc "trap" escaping

strategy has been added to DLM to improve its performance in [115]. This strategy

increases the Langrangian multipliers more than usual for clauses, that become

unsatisfied more frequently. However, this trap escaping strategy has no mathematical

basis, although it has produced very good results on hard SAT benchmark problems.

A slightly less "ad hoc" and more general scheme, which performs the same job as the

"trap escaping" strategy, is given in [116], where a queue of previously visited

solutions is maintained and then the number of previously visited solutions which are

within a certain Hamming distance (one, in that paper) is added as a penalty to the

objective function. For details of this and other extensions to DLM and many

applications to other problems and the theory behind it, the interested reader should

refer to [82, 113, 114].

2.6.4 Tabu Search Penalties

Tabu Search (see earlier section), has also been suggested as a possible penalty based

algorithm, by associating a penalty in the objective function with each item in the

tabu list  [23]. In many ways, this is a very similar approach to Guided Local Search,

except that Guided Local Search penalises only a subset of those features found in

local minima, whereas a tabu penalty algorithm would penalise all items in the tabu

list.
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Another technique from the tabu search community called Frequency based memory

[40] uses penalties added to the objective function to penalise solution attributes or

moves, if they occur more frequently (the more often such an attribute occurs in a

solution or such a move is made, the higher the penalty).
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3 An Aspiration Criterion for Guided Local Search

Aspiration criteria have been commonly used with tabu search algorithms (see [40]

for a description of the many types of aspiration criteria used in tabu search). In this

chapter we give our motivation for adding a simple aspiration criterion to Guided

Local Search. We show how Guided Local Search can be extended using an

aspiration criterion. We then present experimental results on three groups of

problems: the SAT problem, the QAP problem, and the weighted MAX-SAT

problem. Finally, we put forward some theories, based on our experimental results, as

to when and why this extension may improve the performance of Guided Local

Search.

3.1 Motivation

Guided Local Search (see chapter 1) is a penalty-based method, whereby higher cost

solution features found in local minima are penalised until the local search algorithm

can escape from the local minimum solution. However, sometimes a feature may be

penalised early on in the search and then at a future point during the search, this

penalty may become less relevant and/or misleading to the local search algorithm in

the current part of the search space, either because the cost of the penalised feature

has changed (e.g. this happens in the QAP), or because the penalised feature acts as a

barrier in the search space, preventing GLS from visiting some solutions. This is

particularly damaging if an area of the search space is visited where there is a

possibility of finding a new best solution, but where this new best solution may be

prevented (by penalties previously imposed in the search) from being visited. This

blocking of solutions is made more likely if a higher value of λ is used, as this

increases the influence of penalties in the augmented objective function, whereas a
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lower value of λ decreases the chances of this situation happening, but reduces the

effect of the penalties. Thus, if some method for avoiding this situation can be found

without having to take into account the λ value, then GLS should be less sensitive to

the λ parameter and also should be better able to deal with problems where the cost of

features varies during the search.

3.2 Definition of an aspiration criterion

Aspiration criterion is an idea that comes from Tabu Search (see [37]). In tabu search,

an aspiration criterion is any condition under which the status of a tabu move or a

tabu attribute may be overridden. The most commonly used form of aspiration

criteron is called the improved best aspiration criterion [40, p36] whereby if a new

improved solution can be obtained by a tabu move, then the tabu status of that move

is ignored and the move is executed anyway, thus obtaining a new best solution. In

this chapter we only consider the improved best aspiration criterion, unless otherwise

stated. Several other types of aspiration criterion exist, and the interested reader may

refer to [40].

In Guided Local Search, we have a set of penalties imposed on solution features,

rather than a list of tabu solution attributes and/or a list of tabu moves. Thus in

Guided Local Search, an (improved best) aspiration move is defined to be a move

such that a new best found solution is generated by that move, and that move would

not have otherwise been chosen by the local search using the augmented objective

function. Pseudo code for local search with aspiration moves for GLS is given in

Figure 3-1.
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Local_Search_With_Aspiration(x,h,g,N)
{
  do
  {
    if (Get_Aspiration_Move(x,h,g,N,z))
      x = z
    else
    {
      y = y in N(x) such that h(y) is minimised,
           breaking ties randomly

      ∆h = h(y) - h(x)

      if ( ∆h <= 0) x = y
      if ( ∆h = 0)  sideways = sideways + 1
      else         sideways = 0
    }

    if (g(x) < g(x*)) x* = x
  }
  while ( ∆h <= 0) and (sideways < 2)

  return x
}

  Get_Aspiration_Move(x,h,g,N,z)
  {
    z = z in N(x) such that g(z) is minimised, breaking ties randomly
    if (g(z) < g(x*) and ((h(z)-h(x)) > 0))
       return true
    else
       return false
  }
where:

•  x,y & z are solutions,

•  g() returns the cost of a solution with regard to the original cost function,

•  h() returns the augmented cost of a solution,

•  x* is the solution of lowest (original) cost found so far by the algorithm,

•  N(x) is the neighbourhood function, giving neighbouring solutions of x.

Figure 3-1: Pseudo code for local search for GLS with aspiration moves

This may be simply implemented by considering, first of all, if there is any move in

the neighbourhood that will yield a new best solution, according to the cost function f.

The neighbourhood is then examined using the augmented objective function g to see

if a move exists which will reduce the augmented cost of the next solution. If the best

move in the neighbourhood w.r.t. the original objective function yields a new best
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solution, whose original objective function cost is less than that of the move that

would have been chosen according to the augmented objective function, then we

choose that move which generates the lowest cost new best solution (this is deemed to

be an aspiring move), breaking ties randomly. Otherwise, we choose the move with

the lowest augmented objective function cost, breaking ties randomly.

3.3 Experiments

We ran experiments on the SAT, weighted MAX-SAT and Quadratic Assignment

problems, using both the standard GLS schemes for those problems (see  Chapter 1)

and these GLS schemes along with the improved best aspiration criterion.

For the SAT problem, we ran both algorithms, allowing a maximum of 10*n repairs

(where n = number of variables in the problem) and 10 runs, from random start points

on the easier2 soluble problems (129 problems in all) in the DIMACS benchmark [44]

suite3. These were all the problems in the set {aim*, as*, ii*, jnh*, par8-?-c, ssa*,

tm*}. For detailed information about the number of variables and clauses for each

problem, see the Appendix. We chose not to run on the harder (those problems which

took many hours or days to solve) problems, since it would have been too costly, in

terms of CPU run time, to perform all the experiments we wanted to perform. We

varied the λ parameter over the set of values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

For the weighted MAX-SAT problem we ran GLS with and without aspiration on the

problems (44 problems in all) from [75]. For detailed information about the number

of variables and clauses, see the Appendix. We allowed a maximum of 10*n repairs
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and 10 runs for each problem, over the same set of λ parameter values as for the SAT

problem.

For the QAP problem, we ran GLS with and without the aspiration criterion over all

the small to medium size4 problems (i.e. where n < 50 ; for a list of problems used

and their size, see the Appendix) in the QAPLib [8], allowing a maximum of 1000*n

repairs (we allowed more repairs for the QAP problems, since they in general require

more repairs to find the best known solution, than the SAT or MAX-SAT problems)

with 10 runs for each problem and the same set of λ coefficients as the set used for

the SAT problem.

In addition to this, we also ran a control experiment where, with probability

Pignore={0.2, 0.4, 0.6, 0.8}, we allowed a move to be made according to the original

objective function. We used the same problems, and the same number of repairs and

runs as for the other experiments above, whilst performing each experiment with λ

coefficients in the set {0.1, 1, 10, 100}. This was to test the hypothesis that just

ignoring penalties every so often might yield the same effect as the best-improved

aspiration criterion, or at least account for some of the effect of it.

3.3.1 Search monitors used for aspiration move experiments

During all these experiments, we recorded information gathered by the search

monitors (see Chapter 1), to help us evaluate what was happening during the search.

The search monitors we measured specifically for this chapter were:

                                                                                                                                     
2 We only used the easier problems due to time constraints.
3 DIMACS benchmarks available from ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/.
4 We only ran on small to medium sized instances, due to time constraints.
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•  Best found solution cost (for the SAT problem) or %relative error (for the

MAX-SAT and QAP problems) per run,

•  Average fraction of best found solutions due to an aspiration move,

•  Average number of better-than-previous solutions found per run,

•  Average cost (for the SAT problem) or %relative error (for the MAX-SAT

and QAP problems) of all better-than-previous solutions found per run,

•  Average number of aspiration moves made per run.

These search monitors were used as they were the ones which gave different values

when aspiration moves were added to GLS and thus best showed the effect that

aspiration moves had on the search.

3.4 Results

In this section we show graphs of the results obtained from the experiments described

in the previous section. For each relevant monitor, we plot the average values for all

problems and all runs for each problem type. The x-axis represents the value of λ

used (unless otherwise stated), and is logarithmic. In addition to this, many of the

graphs have two lines plotted on them, one representing the results for GLS with

aspiration and one for GLS without aspiration. So, for example, in Figure 3-2, the

average cost of the best found solution, found by GLSSAT at λ = 2, is 0.94, and for

GLSSAT with aspiration, it is 0.78. For full results tables, see the appendix.

3.4.1 Comparing GLS with and without aspiration

3.4.1.1 SAT Results

In Figure 3-2, the average cost (the number of unsatisfied clauses for SAT) of final

best found solutions from each run of GLSSAT with and without aspiration are

compared, for each value of λ in the set of values given earlier. The purpose of this
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graph is to illustrate any performance differences between GLSSAT and GLSSAT

with aspiration, over different parameter settings (i.e. different λ settings). It should

be noted that lower values mean the algorithm performed better. For example, when λ

is set to 1, GLSSAT with aspiration (denoted by the diamond shaped points) over all

problems and all runs produces a final best found solution with on average 0.7

unsatisfied clauses and GLSSAT without aspiration moves (denoted by the square

shaped points) having on average 0.82 unsatisfied clauses. Obviously, in this case

GLSSAT with aspiration performed slightly better.

Figure 3-2: Average of number of unsatisfied clauses in final best found solution,

for GLSSAT with and without aspiration in the SAT problem

From Figure 3-2 above, we can see that the average number of unsatisfied clauses

(i.e. the cost) over all problems and all runs is sometimes slightly lower with

aspiration (than without) between λ = 0.1 and λ = 7. From λ = 8 to λ = 100, GLSSAT
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with aspiration gives marginally worse results than GLSSAT without. Using a sign

test we have found that there is no significance difference between the pair of

algorithms (see the Appendix for details of this). The sign test was conducted by

taking the difference between the average number of unsatisfied clauses for each

value of lambda for both algorithms, and then counting the number of positive and

negative differences (if there is no difference between the values for a parameter

setting, then that setting is ignored by the test). The probability of this number of

positive and negative differences occurring by chance is then calculated using a

binomial distribution. If the probability of this occurring is less than or equal to 5%,

then the result is said to be statistically significant, otherwise it is said that there is no

significant difference between the results (the interested reader should refer to a

statistics book such as [13] for details of how to perform the sign test).

In Figure 3-3 below, we show the average fraction of best found solutions (see

Definition 3.1) at the end of a a run found by an aspiration move.

solutions foundbest #

move aspirationan   todue solutions foundbest #
  move aspirationan   todue solutions foundbest  ofFraction =

Definition 3.1 : Average fraction of best found solutions due to an aspiration
move
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Figure 3-3: Average fraction of final best found solutions due to aspiration for

GLSSAT in the SAT problem

From Figure 3-3, we can see that the fraction of best solutions found by GLSSAT

with aspiration, due directly to aspiration, increases sharply from λ = 1 to λ = 5,

(rising from about 0.012 to 0.055) and then stays roughly constant for λ values from 5

to 100 (at about 0.058). The sharp increase between λ = 0.9 and λ = 3 is different

from the QAP case and also the MAX-SAT case (see the comparison and discussion

sections).

In Figure 3-4, we measure the average number of better-than-previous solutions

found during a run of GLSSAT compared to GLSSAT with aspiration, plotting a

point for each value of λ tried. A better-than-previous solution is a solution whose

cost is lower than all the previous solutions before it. Thus the set of all better-than-
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previous solutions for a particular run of GLSSAT is the set of all solutions whose

cost was better than all previous solutions, when it was found during the current run.
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Figure 3-4: Average number of better-than-previous solutions found by

GLSSAT with and without aspiration in the SAT problem

In Figure 3-4 above, we can see that the average number of better-than-previous

solutions found over 10 runs on all problems, is higher with aspiration than without

aspiration, with the gap tending to widen slightly as λ increases.

Figure 3-5 shows the average cost of better-than-previous solutions, over all problems

and all runs of GLSSAT with and without aspiration. This is intended to illustrate the

difference in the quality of better-than-previous solutions.
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Figure 3-5: Average cost of all better-than-previous solutions found by GLSSAT

with and without aspiration in the SAT problem

In Figure 3-5 above, we can see that GLSSAT with aspiration finds (on average)

better-than-previous solutions with lower cost, than GLSSAT without aspiration. The

gap again widens as λ increases.
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Figure 3-6: Average number of aspiration moves made per run, for GLSSAT

with aspiration in the SAT problem

In Figure 3-6 above, we show the average number of aspiring moves made per run,

over all problems, relative to λ. We can see that the average number of aspiring

moves increases as λ increases from λ = 0.1 to λ = 1, carries on increasing much

more rapidly5 from λ = 1 to λ = 3 and then flattens out at about λ = 5, remaining

roughly constant at about 12 aspiring moves per run.

                                               
5 We do not have a reason why this might be, and this is different from the GLSMAXSAT and
GLSQAP cases. Possibly it is just due to properties of the set of problems we used.

3.4.1.2 MAX-SAT Results

The graph below shows the average % relative error of the best found solution per run

(which is a measure of how far a solution of a given cost is from the optimum [see
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Definition 3.2]) found by GLSMAXSAT and GLSMAXSAT with aspiration. This is

intended to show the difference in performance of GLSMAXSAT with and without

aspiration.

100*
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tknownBestCost
Costerrorrelative

−=

Definition 3.2: %relative error of a solution
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Figure 3-7: Average %relative error of the best found solution per run for

GLSMAXSAT with and without aspiration in the MAX-SAT problem

Figure 3-7 shows that GLSMAXSAT with aspiration sometimes produces solutions

of better quality than GLSMAXSAT without aspiration, particularly for values of λ

between 5 and 30. We have applied a sign test to the two series of data and have

found that based on this, there is evidence that GLSMAXSAT with aspiration moves

performs better than GLSMAXSAT without aspiration moves (see Appendix for

details of this).
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Figure 3-8: Fraction of best found solutions, found by an aspiration move for

GLSMAXSAT in the MAX-SAT problem

Figure 3-8 above shows that the fraction of best found solutions per run, due directly

to an aspiration move, increases slightly (from about 0.17 to 0.4) as λ increases from

1 to 100.
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Figure 3-9: Average number of better-than-previous solutions per run for

GLSMAXSAT with and without aspiration in the MAX-SAT problem

Figure 3-9 shows that slightly more (about 3 per run) better-than-previous solutions

(see definition in previous section) are found on average by GLSMAXSAT with

aspiration than without.
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Figure 3-10: Average %relative error of all better-than-previous solutions per

run, over 10 runs in the MAX-SAT problem

Figure 3-10 shows that the average %relative error of all better-than-previous

solutions per run is lower (so that these solutions are of better quality) for

GLSMAXSAT with aspiration moves than without.
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Figure 3-11: Average number of aspiration moves made per run for

GLSMAXSAT with aspiration in the MAX-SAT problem

Figure 3-11 above shows that the number of aspiration moves made with

GLSMAXSAT  generally increases (although very slowly) with increasing values of

λ.

3.4.1.3 QAP Results

The graph below gives the %relative error (see Definition 3.2) of the average best

found solution from the best known solution cost for both GLSQAP and GLSQAP

with aspiration.
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Figure 3-12: Average %relative error from best known solution cost of GLSQAP

with and without aspiration of best found solution over 10 runs in the QAP

The figure above (Figure 3-12) shows that when relatively high values of the λ

coefficient are used for the QAP, aspiration makes quite a significant improvement to

the best found solution cost, although at lower values (λ coefficient < 1) the effect is

much less noticeable.
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Figure 3-13: Average fraction of best found solutions found by an aspiring move,

for GLSQAP with aspiration in the QAP

In Figure 3-13 above we can see that, as the λ coefficient increases from 1 to 10, the

fraction of best found solutions (see Definition 3.1) directly due to aspiration

increases from 0.3 to about 0.64 (when the λ coefficient is in the range 10-100).
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Figure 3-14: Average number of better-than-previous solutions during a run of

GLSQAP with and without aspiration in the QAP

In Figure 3-14, we can see that the number of times a better-than-previous solution

(see 3.4.1.1 for a definition of better-than-previous solution) is found over a run of

GLSQAP is higher with aspiration moves than without, for all values of λ tried.
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Figure 3-15: Average %relative error of all better-than-previous solutions found

during a run of GLSQAP with and without aspiration in the QAP

In Figure 3-15 above, we can see that the %relative error (see Definition 3.2), i.e. the

average quality of all better-than-previous solutions (see 3.4.1.1 for a definition of

better-than-previous solution) over a run is also lower (better) when aspiration moves

are used than when they are not, over all λ coefficient values tried.
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Figure 3-16: Average number of aspiration moves per run for GLSQAP in the

QAP

In Figure 3-16 above, we can see that the average number of aspiration moves for

GLSQAP is approximately 6 to 9 per run, out of 1000*n moves in total per run. This

is obviously quite a small fraction of the total moves.

3.4.2 Control experiment: GLS with ignoring penalties

In this section, we present results from our control experiment, where we allow the

local search algorithm to use the original objective function with a certain

probability6, and otherwise use the augmented objective function. The idea is to see

whether "ignoring" the penalties at random with a certain probability achieves a

similar effect to improved-best aspiration moves (where the penalties are "ignored"

when an improved best found solution is present in the local search neighbourhood).

                                               
6 With hindsight, perhaps we should have also tried smaller values for P(ignore penalties) since only a
small fraction moves made during a run of GLS with aspiration are aspiration moves.
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3.4.2.1 SAT Results
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Figure 3-17: GLSSAT and GLSSAT + aspiration versus GLSSAT with

probabilistically ignoring penalties in the SAT problem

Figure 3-17 shows that picking a move (with probability 0.2) that ignores the penalty

term of the augmented objective function does not produce such good-quality

solutions for the SAT problem as basic GLSSAT or GLSSAT with aspiration and,

when higher probablities are used, this actually makes the solution quality worse.



75

3.4.2.2 MAX-SAT Results
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Figure 3-18: GLSMAXSAT and GLSMAXSAT + aspiration versus

GLSMAXSAT with probabilistically ignoring penalties in the MAX-SAT

problem

Figure 3-18 shows that, for GLSMAXSAT, ignoring penalties does not produce better

quality solutions over standard GLSMAXSAT (or GLSMAXSAT with aspiration)

and, when higher probabilities are used, the solution quality becomes worse.
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3.4.2.3 QAP Results
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Figure 3-19: The effect of probabilistically ignoring the penalty term of the

augmented objective function for GLSQAP, in comparison with basic GLSQAP

and GLSQAP with aspiration in the QAP

Figure 3-19 shows that picking a move with a certain probability of ignoring the

penalty term of the augmented objective function does not produce such good-quality

solutions as GLSQAP with aspiration, although for P(ignore penalties) = 0.4, when λ

= 100 there is a slight improvement over the basic GLSQAP scheme, but much worse

results are found (than for GLSQAP with aspiration) when the λ coefficient is set to

0.l and 10. When higher values of P(ignore penalties) are used (0.6 and 0.8), worse

results are obtained for all values of λ.
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3.5 Comparison

From the results in the previous section, it is clear that the best-improved aspiration

criterion can be useful to GLS, particularly in the Quadratic Assignment Problem,

where variable cost features may lead to some features being penalised which, later in

the search, may become irrelevant. In the SAT problem it is less clear that aspiration

moves are useful, although in some cases, clearly better results were obtained and

GLSSAT with aspiration moves does not perform worse than basic GLSSAT. In the

weighted MAX-SAT problem, GLSMAXSAT with aspiration performs better overall,

although for a few settings of the λ parameter it performs slightly worse. Overall it

therefore appears that the best-improved aspiration moves are a useful extension of

GLS, particularly for optimisation problems and problems where the only suitable

formulation of features for GLS is where the cost of features varies during a run of

GLS (for example, the QAP).

The improved-best aspiration criterion allows GLS to visit more, better quality,

better-than-previous found solutions, as it allows the local search algorithm to visit

solutions which otherwise might have been blocked off due to penalties imposed

earlier in the search, and thus which might have been missed. From our experiments

with ignoring penalties, it is clear that the reason that the best-improved aspiration

criterion works is not simply because every so often it allows GLS to ignore the

penalties, since simply ignoring penalties with a certain probability does not produce

the increased solution quality that adding the aspiration criterion does. The reason that

the best-improved aspiration criterion works is because when a potential new best

found solution is present in the neighbourhood of the local search algorithm, it allows
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the local search algorithm to visit this new best solution regardless of the penalties

already imposed on features of that new best solution.

3.6 Discussion

Aspiration moves are less useful for problems like the SAT problem, with long

plateaus leading to lower long plateaus. They work better for problems like the QAP,

which contain many local minima basins. However, why they are more useful for

problems with more local minima is a topic for further investigation and thought.

As well as all the results reported in the results section, we also looked at all the other

search monitors apart from those involving either the final best found solution or

those involving better-than-previous solutions. We found that these did not vary much

with or without aspiration. For example, aspiration moves did not affect the average

cost of local minima or the average cost of all solutions visited during a run. This was

probably because aspiration moves do not change the course of the search very much,

and only account for a very small fraction of moves made (e.g. approximately 2-12

out of 10*n for SAT, approximately 31 out of 10*n for MAX-SAT, approximately 6-

9 moves per run out of 1000*n for QAP. See Figure 3-6, Figure 3-11 & Figure 3-16).

There are a number of things we wanted to attempt, but which will have to be left to

future work, owing to time considerations. These included experimenting with the

effect of the maximum number of repairs allowed for GLS with and without

aspiration, and investigating whether this affected the results. We believe that, as the

number of repairs is increased, the effect of the aspiration criterion will decrease as

the basic GLS without aspiration criterion will have more opportunity to find better

solutions.
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Another aspect we would have liked to have experimented with is to try a more

advanced aspiration criterion. This would allow the penalties to be ignored if a

solution existed, such that it was of better quality (lower cost) than the worst of the

best Q solutions visited so far. Aspiration moves to the current Q best found solutions

would not be allowed, thus ensuring that this scheme will not cause solutions to be

revisited. This would allow us to vary the number of aspiration moves. Thus, we

would be able to see if allowing more aspiration moves had any effect on the quality

of solutions and if it would be possible to produce even better results. Hopefully, this

would lead to GLS exploring higher quality basins and plateaus in the search

landscape, which might otherwise have been ignored owing to penalties imposed

earlier on in the search.

3.7 Conclusion

In this chapter, we have shown how GLS may be extended to include the best-

improved aspiration criterion previously used with tabu search algorithms. We have

shown that this generally does not make the performance of GLS worse, and in many

cases improves the performance of GLS, in terms of solution quality. We have also

performed experiments to confirm our intuition as to why aspiration moves work with

GLS, and have produced some evidence to support these hypotheses, namely that the

best-improved aspiration criterion works partly due to the condition under which an

aspiration move is applicable (i.e. when there exists a move that can generate a new

best found solution, regardless of the penalties imposed on that solution). This helps

to prevent GLS from missing these important solutions, because of penalties imposed

earlier in the search. This is particularly useful for GLSQAP, as it allows higher

values of λ to be used, without such a large degradation of performance (as without
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aspiration moves), thus increasing the range of λ settings under which GLS can work

acceptably well. Since aspiration moves do not usually decrease solution quality and

in many cases improve solution quality, we believe that they are an extension of GLS

that should become a standard part of the GLS.
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4 Random moves

In this chapter we give our motivation for random moves (or some other mechanism

to create the same effect) to be added to Guided Local Search and show how this may

be done. We then present experimental results on three groups of problems: the SAT

problem, the QAP problem, and the weighted MAX-SAT problem. Finally, we put

forward some theories as to when and why random moves may improve the

performance of Guided Local Search, based on our experimental results.

4.1 Motivation

Guided Local Search works very well, as long as a good value for the λ parameter is

used. If the value is too high, GLS performs less well, because the search becomes too

diverse, preventing the algorithm from getting deep into local minima and thus

finding good solutions. If the value is too low, GLS also performs worse, because the

search becomes too intense, searching plateaus and local minima in too much detail,

so that it never gets to search new areas of the search space. Thus, the motivation

behind random moves is to try to prevent GLS getting "stuck" in one part of the

search space (for example, when λ is too low) and force it to move into other areas of

the search space that it might not otherwise visit.

4.2 Adding random moves to GLS

Random moves can be added to GLS, by simply augmenting the local search

algorithm, so that with probability 1-Prandmove we allow the local search algorithm to

pick the best move from the neighbourhood and with probability Prandmove we pick a

move at random from the neighbourhood (with equal chance of picking any move).

This random move extension of GLS was inspired by the work by Selman et al.
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[79,59], who use a similar scheme in conjunction with their GSAT and Walksat

algorithms (which are specific to the SAT problem). In addition to this, we also tried

two other similar schemes specifically for the SAT and MAX-SAT problems. With

probability Prandwalk, we select an unsatisfied clause at random (with all unsatisfied

clauses having equal chance of being picked), and then pick a variable at random in

that clause (all variables in that clause having equal chance of being picked) and flip

it (otherwise, with probability 1-Prandwalk the standard local search scheme would be

followed); this is the same as the random walk component in the walksat algorithm

[79]. In the second scheme, which we call random penalty walk (an extension of the

previous one), with probability Prandpenaltywalk, we select an unsatisfied clause from the

set of all unsatisfied clauses at random, with the probability of picking any clause

weighted according to Ppick_clause_randpenaltywalk (see Definition 4.1 below). Then, a

variable chosen at random from the chosen clause (with all the variables in that clause

having equal chance of being chosen) would be flipped.

( )∑
∈

⋅⋅+
⋅⋅+=

dClausesUnsatisfieC

c
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where:  = GLS search intensity parameter

 a = GLS problem specific penalty weight (1 for SAT)

          pci = the penalty associated with clause Ci

                        UnsatisfiedClauses = the set of all clauses unsatisfied in the current solution

Definition 4.1: Probability of picking an unsatisfied clause, for random penalty
walk
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Local_Search_Random_Move(x,h,g,N)
{
   do
   {
     if (withprobability(P r andmove))
     {
        y = solution picked at random from N(x)
        x = y
        ∆h = h(y) - h(x)
        randmove = true
     }
     else
     {
        y = solution in N(x) such that h(x) is minimised,

breaking ties randomly
        ∆h = h(y) - h(x)
        if ( ∆h <= 0) x = y
        randmove = false
     }

     if ( ∆h = 0) sideways = sideways + 1
     else      sideways = 0

     if (g(x) < g(x*)) x* = x
   }
   while (( ∆h <= 0) or randmove) and (sideways < 2)

   return x
}

//NOTE: SAT and MAX-SAT only
Local_Search_Random_Walk(x,h,g,N)
{
   do
   {
      if (withprobability(P randwalk ))
      {
        c = clause picked at random from the set of all

unsatisfied clauses
        y = solution picked at random from the set of all solutions

resulting from flipping one of the variables in c
        x = y
        ∆h = h(y) - h(x)
        randwalkmove = true
      }
      else
      {
        y = solution in N(x) such that h(x) is minimised,

breaking ties randomly
        ∆h = h(y) - h(x)
        if ( ∆h <= 0) x = y
        randwalkmove = false
      }

      if ( ∆h = 0) sideways = sideways + 1
      else  sideways = 0

      if (g(x) < g(x*)) x* = x
   }
   while (( ∆h <= 0) or randwalkmove) and (sideways < 2)

   return x
}
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//Note: SAT and MAX-SAT only
Local_Search_Random_Penalty_Walk(x,h,g,N)
{
   do
   {
      if (withprobability(P randpenaltywalk ))
      {
         c = clause picked randomly weighted according to

  Definition 4.1 from the set of all unsatisfied clauses
         y = solution picked at random from set of all solutions

 resulting from flipping one of the variables in c
         x = y
         ∆h = h(y) - h(x)
         randpenaltywalkmove = true
      }
      else
      {
         y = solution in N(x) such that h(x) is minimised,

 breaking ties randomly
         ∆h = h(y) - h(x)
         if ( ∆h <= 0) x = y
         randpenaltywalkmove = false
      }

      if ( ∆h = 0) sideways = sideways + 1
      else  sideways = 0

      if (g(x) < g(x*)) x* = x
   }
   while (( ∆h <= 0) or randpenaltywalkmove) and (sideways < 2)

   return x
}

where:

•  g() returns the cost of a solution with regard to the original cost function,

•  h() returns the augmented cost of a solution,

•  x* is the solution of lowest (original) cost found so far by the algorithm,

•  N(x) is the neighbourhood function, giving neighbouring solutions of x

Figure 4-1: Pseudo code for local search with random moves, random walk and
random penalty walk

4.3 Experiments

For all the SAT and MAX-SAT experiments in this section, we allowed 10*n repairs

and 10 runs (n = the number of variables in the problem). For all the QAP

experiments in this section, we allowed GLSQAP 1000*n repairs and averaged the

results of 10 runs. For the SAT and MAX-SAT problems, if a solution with no
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unsatisfied clauses was found, we restarted the local search from a random start point.

This was to ensure that the algorithm always ran for the same number of iterations, so

that the search monitors would be consistent over different runs of GLS, regardless of

whether a solution was found or not during the run.

4.3.1 Preliminary tuning of GLS with random moves

The experiments for random moves were performed in two phases. First, a set of

experiments were run to find suitable values for the probabilities of Prandmove (for all

problems) and  Prandwalk and Prandpenaltywalk (for the SAT and MAX-SAT problems

only7). Obviously different probabilities may work better or worse for different values

of . However, testing all combinations of  and values for the probabilities would

involve too many tests. Thus, we limited our first set of experiments to run over the

set of  values { 0.1, 1, 10, 100 }, varying the probabilities for the SAT and MAX-

SAT over the set of values { 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.05, 0.1, 0.2,

0.4, 0.6, 0.8 }8 and for the QAP over the set of values { 0.2, 0.4, 0.6, 0.8 }.

4.3.2 Extended evaluation of GLS with random moves

For the second phase, the approximately-tuned GLS algorithms were run over the set

RI� �YDOXHV�^������������������������������������������������������������������������������������

40, 50, 60, 70, 80, 90, 100 } to assess the effect that the random move extensions had

on GLS for each problem type and when and why they had that effect.  The

approximately tuned parameter values used for each extension and problem are

shown in Table 2 below.

                                               
7 It should be noted that random walk and random penalty walk are only applicable to the SAT and
MAX-SAT problems, as they are specifically designed for these problems and not the QAP.
8 The reason why only the SAT and MAX-SAT were tested with the lower probabilities is, because
when we used only the set {0.2,0.4,0.6,0.8} we could not find good values for the probabilities, so we
then added the lower probabilities, to see if these would perform better.
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Parameter SAT MAX-SAT QAP

Prandmove 0.01 0.006 0.2

Prandwalk 0.1 0.006 NA

Prandpenaltywalk 0.2 0.004 NA

Table 2: Approximately tuned parameter values for GLS random move
extensions

4.4 Results

In this section, we present results of the experiments outlined in the last section. For

each graph the x-axis represents the value of the GLS  parameter, and the y-axis

represents the average value for the search monitor over all runs and all problems

tried for each variant of GLS which was tested. The legend shows which line (or bar

of the bar chart) of the graph corresponds to which GLS variant. For example, in

Figure 4-2, the third bar of each set in the bar chart corresponds to GLSSAT with

Prandmove set to 0.004, so for example when  is 10, this variant of GLSSAT has an

average best found solution cost of 0.64 over 10 runs for all problems it was tested on.

A typical example of the graph obtained is Figure 4-5, where each line represents a

different variant of GLSSAT, the differently shaped points on each line corresponding

to different variants of GLSSAT. In this case, the basic GLSSAT is represented by

square points, GLSSAT with random moves by diamond points, GLSSAT with

random walk by triangular points, and GLSSAT with random penalty walk by

crosses. So, for example, the average best-found solution cost, when  is 0.8, for

GLSSAT with random moves is 0.83. For the SAT results, we have used the number

of unsatisfied clauses (i.e. solution cost) rather than %relative error, since this is the

usual way in which the quality of solutions to problems in SAT are judged if no

solution was found which satisfies all the clauses.
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4.4.1 SAT Results
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Figure 4-2: Results of the tuning phase for GLSSAT with random moves

Figure 4-2 shows the variation in performance of GLSSAT with different values of λ

and different values of Prandmove, the probability of executing a move picked at random

from the local search neighbourhood. This shows that a probability of making a

random move of 0.1 or more produces a detrimental effect on the average

performance of GLSSAT. In fact, even with lower probabilities of making a random

move, little performance appears to be gained, with the best performing probability

for picking a random move appearing to be 0.01.
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Figure 4-3: Results of the tuning phase for GLSSAT with random walk

Figure 4-3 shows the variation in performance of GLSSAT with different values of λ

and Prandwalk (the probability of picking an unsatisfied clause at random and then

picking a variable in that clause at random and flipping it). This shows that when

Prandwalk is in the range [0.1,0.4], the performance is GLSSAT is improved, when λ is

0.1, with the average best found solution, having roughly 1 less unsatisfied clause.

When λ is 1, 10, 100 and Prandwalk >= 0.05, performance becomes increasingly worse

with increasing Prandwalk.The best performing value of Prandwalk appears to be 0.1, as

this gives a performance increase when λ is 0.1, without compromising the

performance too much for higher values of λ.
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Figure 4-4: Results of the tuning phase for GLSSAT with random penalty walk

Figure 4-4 shows the performance of GLSSAT, with varying amounts of random

penalty walk and varying values of λ. When the probability of making a random

penalty walk move is greater than or equal to 0.4, then the performance of GLSSAT

is degraded for larger values of λ. The best value for the probability of making a

random penalty walk move appears to be Prandpenaltywalk = 0.2, as this gives maximum

increase in performance when λ is 0.1, and does not degrade the performance too

much when λ is higher.
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Figure 4-5: Average cost of best-found solutions of basic GLSSAT versus

GLSSAT with random moves, random walk and random penalty walk

Figure 4-5 shows the performance of basic GLSSAT and GLSSAT with random

moves, random walk and random penalty walk, with different values of λ, but with

fixed probabilities for each of the schemes. It appears that only when λ is very small

is there any real performance increase from using any of the schemes, although the

random move scheme appears to produce slightly improved performance for values of

λ between 0.5 and 1. Using a sign test, we found that the results of the basic GLSSAT

and GLSSAT with random moves were not statistically significantly different over

the two series of data, whilst the other two schemes were statistically significantly

worse than the basic GLSSAT (see Appendix for more details).
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Figure 4-6: Average entropy of basic GLSSAT versus GLSSAT with random

moves, random walk and random penalty walk

The above graph shows the average entropy of all variables for all problems and all

runs of GLSSAT. This is an indicator of how diverse the search is. This graph shows

that most of the randomness schemes make the search unexpectedly less diverse,

when used with GLSSAT (a sign test showed that GLSSAT with random moves

produced a more diverse search on average over a range of lambda settings, than the

basic GLSSAT, whilst the other two schemes both produced, a less diverse search on

average: see the appendix for details). The reasons why this may be are discussed

later (see Section 4.5.1).
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Figure 4-7: Average number of solution repetitions for basic GLSSAT versus

GLSSAT with random moves, random walk and random penalty walk

Figure 4-7 shows the average number of solutions visited more than once, for

GLSSAT, over different values of λ, for each of the randomness schemes and also the

basic GLSSAT. This shows that all the randomness schemes we tried unexpectedly

increase the number of repeated solutions, in two cases by substantial amounts. The

reasons why this may be are again discussed later, in the comparison section (see

Section 4.5.1).
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4.4.2 MAX-SAT Results
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Figure 4-8: Results of tuning phase of GLSMAXSAT with random moves

Figure 4-8 shows the performance of GLSMAXSAT with random moves, with

different probabilities of making a random move and different values of λ. It can be

seen that values for the probability of making a random move greater than 0.05

produce worse performance, for all the values of λ used. We can see that 0.006 seems

to give the best overall results, giving a very slightly better performance when λ is 0.1

and not degrading the performance too much for higher values of λ.



94

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.001 0.002 0.004 0.006 0.008 0.01 0.05 0.1 0.2 0.4

Pr(rand walk)

A
ve

ra
g

e 
%

re
la

ti
ve

 e
rr

o
r 

o
f 

b
es

t 
fo

u
n

d
 s

o
lu

ti
o

n

Lambda=0.1

Lambda=1

Lambda=10

Lambda=100

Figure 4-9: Results of tuning phase of GLSMAXSAT with random walk

Figure 4-9 shows the performance of GLSMAXSAT with random walk, for different

values of λ and different probabilities for executing a random walk move. We can see

that probabilities of picking a random walk move of 0.1, 0.2 and 0.4 are increasingly

detrimental to the average performance of GLSMAXSAT. Smaller probabilities (less

than 0.1), seem to work better, although none appear to give much performance

increase. The best overall probability for picking a random walk move for

GLSMAXSAT appears to be 0.006, as it gives a very slight increase in performance

over the basic GLSMAXSAT for all values of λ tried.



95

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.001 0.002 0.004 0.006 0.008 0.01 0.05 0.1 0.2

Pr(rand penalty walk)

A
ve

ra
g

e 
%

re
la

ti
ve

 e
rr

o
r 

o
f 

b
es

t 
fo

u
n

d
 s

o
lu

ti
o

n

Lambda=0.1

Lambda=1

Lambda=10

Lambda=100

Figure 4-10: Results of tuning phase of GLSMAXSAT with random penalty

walk

Figure 4-10 gives the performance of GLSMAXSAT for different values of λ and

different probabilities of picking a random penalty walk move. This shows that

probabilities of picking a random penalty walk move of 0.1 or more are detrimental to

the performance of GLSMAXSAT. Lower probabilities than this produce slightly

improved results when λ is 0.1, but not much (if any) improvement for the other λ

settings tried. The best overall probability for picking a random penalty walk move

appears to be 0.004, as this gives some improvement over the basic GLSMAXSAT

when λ is 0.1, whilst not making the performance too much worse for the other values

of λ.
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Figure 4-11: Average %relative error of best-found solutions for GLSMAXSAT

versus GLSMAXSAT with random moves, random walk and random penalty

walk

Figure 4-11 shows the average performance of GLSMAXSAT for each of the

randomness schemes, over different values of λ, with the probability of using a

particular scheme, fixed to the approximately tuned values found in the earlier

experiments. From these results, we can see that there are only slight increases in

performance for each of the schemes over the basic GLSMAXSAT, although these

are offset by decreases in performance. Only random walk shows any consistent

improvement over basic GLSMAXSAT when λ is between 10 and 100 (in fact, a sign

test showed this was on average, a statistically significant improvement over all the
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lambda settings, whilst the other two schemes gave on average statistically indifferent

results from the basic GLSMAXSAT: see the appendix for details).
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Figure 4-12: Average entropy for GLSMAXSAT versus GLSMAXSAT with

random moves, random walk and random penalty walk

Figure 4-12 shows average entropy of the search for the different schemes added to

GLSMAXSAT over a number of different values of λ. From this graph, we can see

that the entropy values are approximately the same for all the schemes (although a

sign test  revealed that overall GLSMAXSAT with random moves produced

statistically indifferent results for entropy, from the basic GLSMAXSAT, while the

other two schemes produced on average statistically worse results for entropy).

Perhaps the reason for this similarity in results for entropy, is due to the probabilities
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for each scheme being so low, meaning that none have very much effect on the

diversity of the search.
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Figure 4-13: Average number of revisited solutions for GLSMAXSAT versus

GLSMAXSAT with random moves, random walk and random penalty walk

Figure 4-13 shows the average number of solutions revisited during the search for the

different random move schemes when added to GLSMAXSAT. Again, it appears

there is little difference between them and between the basic GLSMAXSAT.

However, from closer inspection of the data from which the graph is drawn, it appears

that, overall, random moves give the most repeated solutions, then random walk, then

random penalty walk and then the basic GLSMAXSAT. A sign test on the series in

the graph revealed that overall all three schemes produced on average statistically

significantly more revisited solutions than the basic GLSMAXSAT.
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4.4.3 QAP Results
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Figure 4-14: Results of tuning phase for GLSQAP with and without random

moves

Figure 4-14 shows the performance of GLSQAP over different settings of λ and

different probabilities for executing a move selected at random from the search

neighbourhood. We can see that when a probability of 0.2 or 0.4 is used, that the

performance of GLSQAP is improved for a λ setting of 0.1, but made slightly worse,

when λ is 1, 10 and 100, when a probability of 0.4 is used. A probability of picking a

random move of 0.6, gives worse performance over all settings of λ tried. The best

overall setting for the probability of picking a random move, for GLSQAP, appears to

be 0.2, as this gives maximum increase in performance when λ is 0.1, 1 & 100 and

minimum decrease in performance when λ is 10.
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Figure 4-15: Average %relative error of best found solutions of GLSQAP versus

GLSQAP with random moves

Figure 4-15 shows the performance of GLSQAP with and without random moves

over a range of different λ settings, with the probability of making a random move

fixed at 0.2. We can see that the performance of GLSQAP is much better with

random moves for λ settings between 0.1 and 1, with the performance with random

moves then becoming gradually worse than without random moves, as λ increases

from 1 to 100.
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Figure 4-16: Average entropy of GLSQAP versus GLSQAP with random moves

Figure 4-16 shows the average entropy of the search for GLSQAP with and without

random moves, over a range of different λ settings, with the probability of making a

random move set at 0.2. We can see from this graph that the entropy is higher for

GLSQAP with random moves for all λ settings, and that in particular, the gap

between the entropy of each of the two variants of GLSQAP is largest when λ is

between 0.1 and 1.
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Figure 4-17: Average number of repeated solutions for GLSQAP versus

GLSQAP with random moves

Figure 4-17 shows the average number of solutions revisited in the search by

GLSQAP with and without random moves. We can see that when λ is between 0.1

and 1, the number of revisited solutions is lower with random moves. When λ is

between 1 and 100, the number of revisited solutions becomes increasingly higher

with random moves than without random moves. We discuss the reasons for this

interesting crossover in the number of repeated solutions in the Section 4.5.3.
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4.5 Comparison

Overall, the performance of all the random move variants tried gave little increase in

performance for the SAT problem, except for very small values of λ (Figure 4-5). For

the weighted MAX-SAT problem, there was a slight increase in performance when

random walk was used, for λ settings between 10 and 100, although otherwise the

performance of the random move variants was about the same as without the

extensions (Figure 4-11). For the QAP, the performance was greatly improved, using

random moves, for λ settings between 0.1 and 1, removing the decrease in

performance (present without random moves in GLSQAP) from using values of λ

which are too low, although the performance was slightly worse for λ settings from 1

to 100 (Figure 4-15).

4.5.1 The SAT Problem

The reason for the worse or indifferent performance of random moves, random walk

and random penalty walk for GLSSAT may be because the majority of the search

effort when solving the SAT problem is spent exploring plateaus of solutions of equal

cost (see Figure 4-18 & Figure 4-19, showing this by plotting solution cost over a run

of GLSSAT, as previously done by Selman & Kautz in [77] with GSAT. In addition

to this, the reader interested in problem landscapes should refer to

[27,61,70,71,72,73,74]). However, the size of λ is less critical when exploring

plateaus. This is because any small increase in the augmented objective function is

enough to escape from the current solution, and encourage a move to a neighbouring

unpenalised solution with equal cost (but due to penalties, lower augmented cost).

Adding random moves, random walk or random penalty walk, only seems to decrease
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the efficiency of the search, by increasing the number of revisited solutions, and in

some cases decreasing the diversity of the search.

0

100

200

300

400

500

600

700

800

900
0

55
5

11
10

16
65

22
20

27
75

33
30

38
85

44
40

49
95

55
50

61
05

66
60

72
15

77
70

83
25

88
80

94
35

99
90

Repairs

C
o

st
 (

#u
n

sa
ti

sf
ie

d
 c

la
u

se
s)

Figure 4-18: A graph of solution cost over the first 10,000 repairs over 1 run of

basic GLSSAT for problem instance ssa7552-038

This is backed up by the results in Figure 4-6 and Figure 4-7, which show that the

entropy, strongly related to the diversity of the search, is decreased by random move

schemes for the SAT problems, and the number of revisited solutions is increased.

One possible reason why this might be is that a random move (or random walk move,

or random penalty walk move) may be made and then immediately undone, so that

most times such a move is made, the previous solution is revisited after that move has

been reversed. This would explain the increase in the number of repeated solutions,

and also explain the decrease in the average label entropy in some cases, as more

solutions will be visited with the same labels.
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Figure 4-19: Graph of solution cost over first 1000 repairs over 1 run of GLSSAT

for problem instance ssa7552-038

4.5.2 The MAX-SAT Problem

The results for the MAX-SAT problem are similar to SAT, although random walk

gives a slight improvement in performance for high values of λ, possibly by helping it

go through barriers to the local search caused by penalties. Apart from this, we

believe that a similar hypothesis as that advocated in section 4.5.1 would explain why

the random move extensions do not generally improve the performance of

GLSMAXSAT, especially since GLSMAXSAT actually uses the number of

unsatisfied clauses as the objective function, rather than weighted sum of unsatisfied

clauses (which would be the natural choice of objective function), and only uses the

weights of clauses when deciding which features (clauses) to penalise.  It should be

noted that the differences, if any, in the graphs for entropy and repeated solutions are

much smaller for the MAX-SAT than for the SAT problem. This is probably due to

the smaller probabilities (0.006 compared to 0.01, for Prandmove, 0.006 compared to 0.1
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for Prandwalk and 0.004 compared to 0.2 for Prandpenaltywalk) of making a random move

(or random walk move, or random penalty walk move) used for the experiments for

the MAX-SAT problem.
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Figure 4-20: Graph of solution cost over first 10,000 repairs over 1 run of

GLSMAXSAT for problem instance jnh208
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Figure 4-21: Graph of solution cost over first 1000 repairs over 1 run of

GLSMAXSAT for problem instance jnh208
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4.5.3 The QAP Problem
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Figure 4-22: Graph of solution cost over first 10,000 repairs over 1 run of

GLSQAP for problem instance tai40a
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Figure 4-23: Graph of solution cost over first 1000 repairs over 1 run of

GLSQAP for problem tai40a

We believe that the improvement in performance for GLSQAP with random moves,

when λ is small (between 0.1 and 1), is because such moves help diversify the search,
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allowing it to escape more quickly from basins in the search landscape. Unlike the

SAT and MAX-SAT problems, the QAP landscape does not mainly consist of long

plateaus, but is composed of many basins at various different levels of cost (see

Figure 4-22 & Figure 4-23 showing an example of this, by plotting the cost of

solutions visited over a run of GLSQAP). This is an important difference between the

SAT and MAX-SAT problems and the QAP problem, because it means that low

values of λ become ineffective for solving these problems, as it takes more iterations

of GLSQAP to escape from these basins if λ is set too low. Thus when random moves

are added to GLSQAP, they provide an alternative means for the local search

algorithm to escape from these basins, and thus helping diversify the search when λ is

too low. This is backed up by Figure 4-16, which shows that the entropy of the search

(which is a measure of the diversity of the search) is higher for all values of λ for

GLSQAP with random moves, than without and, in particular, is higher for small

values of λ. Even more interestingly, Figure 4-17 shows that the average number of

revisited solutions, when λ is between 0.1 and 1, is lower for GLSQAP with random

moves than without, but then crosses over when λ is 1. The number of repetitions for

GLSQAP with random moves then becomes higher, when λ is between 1 and 100. At

the same point the performance of GLSQAP (see Figure 4-15) also switches from

being better with random moves, to be being worse, when λ is between 1 and 100.

This shows that when λ is too low, the addition of random moves to GLSQAP helps

diversify the search, but when λ becomes sufficiently large, then the addition of

random moves may actually cause a slightly less efficient search (resulting in more

repeated solutions). This evidence backs up the theory that random moves help GLS

diversify the search in the QAP, when too low a setting of λ hinders the ability of

GLS to do so without them.
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4.6 Discussion

4.6.1 When can random moves help GLS?

We have shown in the previous sections, that random moves are quite helpful in

solving the Quadratic Assignment Problem when a low setting of λ is used, but not so

useful in solving problems such as the SAT and weighted MAX-SAT problems

containing some plateau regions in the cost landscape. We believe that this result will

generalise and that random moves will help GLS when it is faced with problems in

general where many local minima basins and few plateaus are present in the cost

landscape.

4.6.2 Future work

Due to time considerations there were a number of issues we would have liked to

have investigated, but did not have time to do. These include running GLS on top of

the walksat [79] local search algorithm, with some of the other extended walksat

heuristics, such as Rnovelty and Novelty [59], to see if these would perform better

than the random moves, random walk and random penalty walk schemes we tried. In

addition, another variant we would have liked to have investigated, would have been

to restrict making random moves to those variables in the SAT and MAX-SAT

problems involved in unsatisfied clauses, in the same way that GSAT when random

walk is used with it [79]. Another possible area for investigation would be to vary

when and how random moves are made, in a similar way to Iterated Local Search [88]

or Variable Neighbourhood Search [65]. This could be done by restricting when

random moves can be made (for example only allowing random moves to be made

when a local minimum has been reached) and also varying the "strength" of random

moves (how much it changes the solution) by allowing a sequence of random moves
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to be made, rather than just a single random move. It would have also been interesting

to try some other smaller probabilities for executing random moves for GLSQAP, to

see if these might work even better than 0.2, as we did in the SAT and MAX-SAT

problems, and also experiment with even smaller λ settings for the SAT and MAX-

SAT to see if GLS with random moves helps more for these settings.

As well as trying different parameter and heuristic combinations, it would also be

worth applying GLS with random moves to other problems, particularly those with

landscapes similar to the QAP (possibly the Travelling Salesperson Problem), with

many local minima basins, but fewer plateaus. This would help verify the results

presented in this chapter.

4.7 Conclusion

We have shown that random moves, when added to GLS, can be useful for the QAP

problem, but not the SAT and MAX-SAT problems. We have presented a theory of

why this might be. Our theory is that random moves help GLS escape from basins in

the search landscape of the QAP. Such basins are not so common in the SAT and

MAX-SAT problems, which consist mainly of plateaus, where GLS already performs

very well, even with very low values for λ and without random moves. This possibly

explains why random moves do not improve the performance of GLS in solving these

types of problems. We therefore believe that random moves are a useful addition to

the GLS user’s toolkit for problems with very rugged cost landscapes, which contain

many local minima or basins in the search landscape and where it is difficult to find a

good setting for λ.
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5 Combining Aspiration and Random moves

We have shown in previous chapters the effectiveness of adding aspiration and

randomness separately to GLS. In this chapter, we study their combined effect. We

also provide the results of some other algorithms varying their main parameter

settings, to give the reader other algorithms with which to compare the parameter

sensitivity of the extended GLS.

5.1 Motivation

We have observed that aspiration moves help GLS when λ is set too high and random

moves help GLS when λ is set too low. By combining the extensions of GLS, the

hope is that sensitivity of the algorithm’s performance to the λ parameter may be

reduced and that performance will be improved for some settings of λ, where that

extension helps, without compromising the performance of the extended GLS for

other settings of λ.

5.2 Experiments

To test whether combining aspiration moves and random moves with GLS would be

successful, we ran GLS with both extension for each set of problems. We varied the λ

parameter over the values:

• 0.1 to 1 in steps of 0.1,

• 1 to 10 in steps of 1 and

• 10 to 100 in steps of 10.

The reason for choosing these values was to examine the effect of small, medium and

large changes to the λ parameter, as well as the effectiveness of small, medium and
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large values of λ. In addition to this, we also used the experimental results available

from previous chapters. We also ran another state-of-the-art algorithm for each set of

problems, over a range of parameter settings, to give the reader another algorithm to

compare the sensitivity of GLS with respect to λ.

To test how the extended GLSSAT compared with state-of-the-art algorithms, we ran

GLSSAT over easier soluble DIMACS problems, allowing 10*n repairs (n = number

of variables in the problem) and 10 runs per problem, over the range of λ values

previously indicated. These experiments were performed with GLSSAT plus

aspiration moves and random moves, GLSSAT plus aspiration moves and random

walk, and GLSSAT plus aspiration moves and random penalty walk. We also ran

Walksat (see [81,79] & chapter 2), under the same conditions, varying the noise

parameter over the set of values:

•  0.01 to 0.1 in 0.01 steps and

•  0.1 to 1 in 0.05 steps.

These values were chosen to test the effect of slightly smaller changes to smaller

values, as well as slightly larger changes to the higher values of Walksat’s noise

parameter (there seemed little point in making small changes which were

insignificant compared to the parameter values being tested).

To test how the extended GLSMAXSAT compared to state-of-the-art algorithms, we

similarly ran the GLSMAXSAT variants over all the max-sat benchmark problems,

allowing 10*n repairs and 10 runs, over the set of λ values previously indicated. We

ran this experiment for GLSMAXSAT plus aspiration moves plus random moves,

random walk or random penalty walk. We also ran maxwalksat [43] (also see Chapter
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2) over the same set of noise values as for walksat, also under the same conditions as

for GLSMAXSAT.

Finally, to test the extended GLSQAP against state-of-the-art algorithms, we ran

GLSQAP over all the small to medium sized (10�n�����SUREOHPV�IURP�WKH�4$3/LE

benchmarks, allowing 1000*n repairs and 10 runs per problem, with aspiration moves

and random moves, with λ varied over the values previously indicated. To provide

another algorithm for comparison, we ran robust tabu search [89,90] (also see Chapter

2) under the same conditions, varying its u parameter (the tabu list size = u * n varied

randomly over a run by +/- 10%) over the set of values (keeping the t parameter fixed

at 3.5):

•  0.1 to 2 in steps of 0.1 and

•  2 to 10 in steps of 1.

We also varied the t parameter (the number of repairs a facility-location pair may be

not present in a solution, before it is made a tabu condition to be made present) over

the set of values (whilst keeping the u parameter fixed at 1):

• 0.1 to 1 in steps of 0.1,

• 1 to 10 in steps of 1 and

• 10 to 100 in steps of 10

As before, we chose these values to test the effects of making small changes to

smaller values of the parameter, whilst making larger changes to larger values of the

parameter, since there would have been little point in making changes which relative

to the parameter value were extremely small.



114

5.3 Results

In this section we give the results of the experiments described above. For each graph,

each line represents a particular algorithm and where there is more than one algorithm

per graph, a legend shows which algorithm is which. For each statistic used, we plot

the average over all runs for each parameter setting (it should be noted that the scale

is not always linear).

5.3.1 SAT Results

5.3.1.1 Comparing GLSSAT variants
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Figure 5-1: Performance of GLSSAT with random moves, with and without

aspiration

Figure 5-1 shows the performance of the variants of the GLSSAT with and without

random moves, over a range of λ settings. From this, it appears that there is little
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difference between each of the variants, although GLSSAT with aspiration moves

appears to be slightly better than the other variants for λ values between 0.8 and 5.

The results appear inconclusive, however, with all the variants performing roughly

the same overall, some performing better for some settings and some performing

better for others.
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Figure 5-2: Performance of GLSSAT with random walk, with and without

aspiration moves

In Figure 5-2, we show the performance of the variants of GLSSAT with random

walk (with Pr(randwalk) = 0.1) and aspiration moves. Again, there is little difference

in the performance of the GLSSAT variants, although GLSSAT with aspiration again

does slightly better for λ between 0.8 and 5, and the GLSSAT variants with random

walk do slightly better when λ is 0.1. It appears that the random walk variants (at least
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with Pr(randwalk) = 0.1) perform worse than GLSSAT or GLSSAT with just

aspiration, except for λ values less than 0.3.
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Figure 5-3: Performance of GLSSAT with random penalty walk, with and

without aspiration moves

Figure 5-3 shows the performance of variants of GLSSAT with aspiration moves and

random penalty walk (Pr(rand penalty walk) = 0.2). From this we can see that the

performance of those GLSSAT variants with random penalty walk is degraded

slightly for λ values greater than 0.2, although it is slightly better when λ is 0.1.

Again, we can see that GLSSAT with aspiration moves only does slightly better than

the other GLSSAT variants, when λ is between 0.8 and 5. It appears that overall

GLSSAT and GLSSAT with aspiration moves perform the best overall except when λ

= 0.1 (perhaps because the Pr(rand penalty walk) =0.2 is too higher value).
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5.3.1.2 Comparing GLSSAT with walksat

Figure 5-4 shows the performance of walksat over a range of parameter settings for

noise.  We can see that walksat performs quite well over a range of settings from 0 to

0.65, before the performance deteriorates rapidly, as the noise parameter is increased

further, although the performance is still much worse than for any of the GLSSAT

variants over the majority of parameter settings.
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Figure 5-4: Performance of walksat in comparison to GLSSAT over a range of

parameter settings (note: x-axis scales represent different parameters for each

algorithm)
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5.3.2 MAX-SAT Results

5.3.2.1 Comparing GLSMAXSAT variants

Figure 5-5 shows the performance of GLSMAXSAT with all combinations of the

random moves and aspiration extensions. It can be seen that the variants with

aspiration moves perform slightly better than the other variants of GLSMAXSAT,

with the GLSMAXSAT variant with random moves and without aspiration

performing the worst. GLSMAXSAT with aspiration moves and random moves

performs better over most of the λ settings (except with λ settings of {0.6, 2}) than

GLSMAXSAT with just random moves.  From the figure, it is clear that the

GLSMAXSAT variants with aspiration moves perform the best overall.
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Figure 5-5: Performance of GLSMAXSAT with random moves with, and

without aspiration moves

Figure 5-6 shows the performance of GLSMAXSAT with the addition of all

combinations of aspiration moves and random walk. From this, we can see that
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GLSMAXSAT with random walk and aspiration moves performs better than

GLSMAXSAT with just random walk for most λ settings (all except when λ is in the

set {0.5,2,9,10,11}), and also performs better than GLSMAXSAT with aspiration

moves in some cases. GLSMAXSAT with no extensions performs the worst of all the

variants tested. Clearly GLSMAXSAT with both random walk and aspiration moves

peforms the best overall, due to its superiority over GLSMAXSAT with just

aspiration moves for higher values of λ.
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Figure 5-6: Performance of GLSMAXSAT with random walk, with and without
aspiration

Figure 5-7 shows the performance of all the possible variants of GLSMAXSAT with

random penalty walk and aspiration moves. We can see that GLSMAXSAT with

random penalty walk and aspiration moves performs better than GLSMAXSAT with

just random penalty walk, over a range of λ settings (all but 0.5 and 2).

GLSMAXSAT with just random penalty walk on its own performs worst of all the



120

variants. GLSMAXSAT with just aspiration moves performs roughly the same as

GLSMAXSAT with both random penalty walk and aspiration moves, except when λ

takes any of the values {70, 80, 90, 100} when GLSMAXSAT with both extensions

performs better. For this reason it appears that GLSMAXSAT with both random

penalty walk and aspiration moves is superior to GLSMAXSAT with just aspiration

moves, although there is little difference for λ settings less than 70.
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Figure 5-7: Performance of GLSMAXSAT with random penalty walk, with and

without aspiration moves

5.3.2.2 Comparing GLSMAXSAT with MaxWalksat

In Figure 5-8, we show the performance of MaxWalksat over a large number of

settings for its noise parameter, with its best performance being 0.1% relative error, as

compared with a worst performance of a GLSMAXSAT variant being just under

0.07%. MaxWalksat’s worst performance is just over 0.45% relative error.
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MaxWalksat %relative error varies by 0.38% over all parameter settings, as compared

with GLSMAXSAT’s having a variation of just under 0.04% over all λ settings.
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Figure 5-8: Performance of maxwalksat in comparison to GLSMAXSAT over a

range of parameter settings (note: x-axis scales represent different parameters for

each algorithm)

5.3.3 QAP Results

5.3.3.1 Comparing GLSQAP variants

Figure 5-9 shows the performance of GLSQAP with all possible combinations of the

aspiration move and random moves extensions. From this, we can see that the

GLSQAP variants with random moves work better for lower values of λ (< 1), and

GLSQAP variants with only aspiration moves work better for larger values of λ (>1),
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with the gap increasing as λ increases. GLSQAP with both aspiration moves and

random moves performs well over all values of λ, although it performs worse than

GLSQAP with just aspiration moves for larger values of λ (>1). The addition of

aspiration moves to the GLSQAP scheme with random moves, seems to produce a

better performance than one would expect, when λ is 0.5 and 0.6, although we have

no explanation of why this should be. We suspect it may just be a feature of the set of

test problems we used.
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Figure 5-9: Performance of GLSQAP with and without random moves and

aspiration moves

5.3.3.2 Comparing GLSQAP with Robust Tabu Search

Figure 5-10 and Figure 5-11 show the performance of Robust Tabu Search on the

same QAP problems and under the same conditions as were used for the experiments
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for GLSQAP, varying the u and t parameters respectively. In Figure 5-10, we can see

that the
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performance of robust tabu search varies between a relative error of just over 0.25 to

just under 2.77, when we vary the u parameter. From the graph, we can see that any

value for u between about 0.5*n and 2.0*n seems to give an average relative error of

less than 0.5%, although performance rapidly deteriorates outside these bounds. In

Figure 5-11, we can see the effect of varying the parameter t, which varies the number

of repairs (given by tN2) a facility-location assignment may be absent from any

solutions, before it is forced into one, by robust tabu search’s long term memory

mechanism. When t is less than 2, performance becomes worse with decreasing t.

When t is between 2 and 10, the performance of robust tabu search remains about the

same. When t is greater than 10 performance gradually degrades with increasing t, up
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to a relative error of 2%. We have no explanation of why this phenomenon occurs,

although it is probably just a feature of the particular set of problems we used.
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5.4 Comparison

5.4.1 Performance of GLS variants

For all problems, GLS algorithms with aspiration moves almost always do better or

no worse than those without. For the SAT problem, random moves and random walk

are not a successful extension for the problem set we tried, even with aspiration

moves, although random penalty walk works slightly better when combined with

aspiration moves. For the MAX-SAT, random moves, random walk and random

penalty walk with low probabilities combined with aspiration moves do show an



125

improvement over the performance of the basic GLSSAT. The performance of

GLSQAP for low λ settings is improved when random moves are used, whilst for

higher λ settings aspiration moves improve performance of GLSQAP over the basic

GLSQAP. Combining both extensions produces both these positive effects, although

there is a slight decrease in the performance over GLSQAP with just aspiration moves

for higher λ values (the performance is still better than the basic GLSQAP with no

extensions for these values, though).

5.4.2 Extended GLS verses state of the art algorithms

Comparing GLS with the other algorithms, we can see that GLSSAT performance is

generally much better than walksat over a range of parameter settings. Comparing the

performance of both algorithms with the best found parameter settings, the

performance of GLSSAT (on average about 0.6 unsatisfied clauses per best found

solution) is much better than walksat (about 3 unsatisfied clauses per best found

solution). GLSMAXSAT performance was better than maxwalksat over all parameter

settings, showing how good GLS is at solving problems involving soft constraints.

GLSQAP’s performance with aspiration moves and random moves is about the same

as robust tabu search, although the performance varies much less (only 0.63%

compared with 2.51% for the u parameter and 7.43% for the t parameter of Robust

Tabu Search) with different λ settings than robust tabu search does with the u and t

parameters (see Figure 5-10 & Figure 5-11). However, robust tabu search slightly

outperforms GLSQAP with aspiration and random moves by 0.098%, when using the

EHVW�IRXQG�SDUDPHWHU�VHWWLQJV��X� ����W� ���IRU�UREXVW�WDEX�VHDUFK��� � ������3randmove =

0.2 for GLSQAP) for both algorithms.
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It should be noted though, that perhaps some method of cross-calibration of the

algorithms is required to make the comparisons of performance over parameter

settings more meaningful. Perhaps, this could be achieved by using the average

entropy to find upper and lower bounds for each parameter of the algorithms, and

then comparing performance over those parameter settings.

5.5 Discussion

5.5.1 GLS and aspiration moves and random moves performance gap

The addition of aspiration moves to GLS decreases the relative error of algorithms

with random moves (and also those with random walk and random penalty walk),

more than those without for some settings of λ. This may be because it prevents

random moves from being made when a new best-found solution exists in the current

neighbourhood, forcing the search instead to make an aspiration move.

5.5.2 Robust Tabu Search long term memory compared to random moves

Another interesting feature of our comparison experiments was the effect that the t

parameter (controlling how long a facility-location pair could be left out of any

visited solutions) had on robust tabu search performance. Surprisingly this seemed to

have a larger effect on its performance than the u parameter, which controls the tabu

list length. This seems to indicate that this "long-term memory" mechanism for

introducing location-facility pairs into the current solution, which have not been

present for some time, improves the performance of RTS. We conjecture that random

moves may also produce a similar effect on GLS, albeit randomly, rather than by

forcing a particular facility-location pair into a solution (as in RTS), thus allowing the

algorithm to visit areas of the search space which would otherwise not be visited.
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Figure 5-12 shows that as the t parameter of robust tabu search (t*n = number of

repairs between when a facility-location pair was last present in a solution and when it

will be forced into a solution again) is increased, the entropy (a strong indicator of the

diversity of the search) decreases.  Hence, this element of robust tabu search appears

to help it increase the entropy (and therefore the diversity) of the search, allowing this

mechanism to take effect more frequently produces higher entropy. In Chapter 4, we

have seen how the entropy results of GLSQAP with random moves are also higher for

GLSQAP without random moves. This partly substantiates the conjecture that random

moves and robust tabu search’s long term memory scheme do a similar job when

solving the QAP: help diversify the search.
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Figure 5-12: Average Entropy of Robust Tabu Search when varying the t
parameter

5.6 Further work

Having observed how successful the long term memory mechanism of RTS is, we

wonder if it would work well with GLS. If we had more time, we would consider

replacing the random moves with a similar mechanism. One way in which this might
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be implemented would be to have an additional set of "negative" penalty terms in the

augmented objective function for helping to encourage facility-location pairs (or other

types of feature, e.g. edges between cities in the TSP) which had not been present in a

solution for a number of repairs to be reintroduced into a solution. These "incentive"

penalties would have to be present for a fixed number of iterations after the

reintroduction of the feature, to ensure the search had a chance to adapt the current

solution to the new solution feature.

5.7 Conclusion

In this chapter, we have presented the results of combining aspiration moves and

random moves with GLS, on the SAT, the weighted MAX-SAT and the QAP

problems, in comparison to GLS without any extensions, and GLS with only one of

aspiration moves, random moves, random walk or random penalty walk (the latter

two only for the SAT and MAX-SAT problems). We have shown that GLS with

random moves and aspiration moves gives either improved or comparable

performance to GLS with either one of the extensions or without either extension. For

the QAP problem, the Extended Guided Local Search (GLS with aspiration moves

and random moves) performs better for both low λ settings (due mainly to the random

move component) and high λ settings (due mainly to the aspiration moves). For the

weighted MAX-SAT problem, we have shown that the Extended Guided Local

Search (with either of random moves, random walk or random penalty walk

extensions and aspiration moves) performs better for many parameter settings (and

comparably for the rest) than the basic Guided Local Search or Guided Local Search

with any one of the extensions only (although Guided Local Search with just

aspiration moves performance is the closest of the other variants tried). For the SAT

problem, the Extended Guided Local Search (again with either of random moves,
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random walk or random penalty walk extensions and aspiration moves), performs

comparably to basic Guided Local Search or Guided Local Search with any one

extension only, although Guided Local Search with just aspiration moves appears to

have a slight edge in terms of overall performance.

Finally, we have compared the extended GLS with other state of the art local search

algorithms for each problem, over a range of parameter settings for both algorithms.

We have shown that extended GLSSAT and extended GLSMAXSAT have much

better performance for the SAT and MAX-SAT problems than Walksat and

MaxWalksat. We have shown that extended GLSQAP has comparable performance

to robust tabu search for the QAP, when compared over a range of parameter settings,

whilst the performance of extended GLSQAP varies much less, over a range of λ

settings, than robust tabu search does over its main parameter settings.

In summary Extended Guided Local Search (EGLS) performs better over a range of

parameter settings for some problem types and performs comparably for other types

to standard Guided Local Search. In addition to this, EGLS comfortably outperforms

the famous Walksat and MaxWalksat algorithms for the SAT and weighted MAX-

SAT problems, whilst performing comparably and in many cases better than Robust

Tabu Search (RTS) over a range of parameter settings for the QAP.
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6 Conclusion and Further work

In this chapter, we outline the contributions we have made and directions for further

work.

6.1 Contributions

Our main contribution is in better understanding of search performance and in

extending Guided Local Search. We elaborate on this, in the following sections.

6.1.1 Better understanding of search performance

In chapter 1, we introduced the concept of search monitors to help understand what

effect each extension is having on the search. By doing this, we can better evaluate if

an extension works as we expect, or if in fact something different is happening. This

helps to remove the ad hoc trial and error testing of meta-heuristics, which has

become common in the literature. In this way, as well as proposing extensions to

GLS, we have also gained some understanding into why each of the extensions works

for each problem type we tested.

6.1.2 Enhancing GLS with aspiration moves

In chapter 3 we have shown how the improved-best aspiration criterion can be used to

extend Guided Local Search. We show this can be done, by simply examining the

original objective function to check whether a new better than previously found

solution exists in the current neighbourhood, before following the standard GLS

scheme.

We have then shown how improved-best aspiration moves can on average improve

the performance of Guided Local Search, for some parameter settings and problems.
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Finally, we concluded that the improved-best aspiration criterion works mainly

because of when it makes the overriding aspiration moves - namely, when a new

better-than-previous found solution exists in the local search neighbourhood, meaning

that GLS no longer misses these very important solutions. We have backed this up by

performing a control experiment, involving a modified GLS, which (with a certain

probability) performs local search according to the original objective function,

otherwise it minimises the augmented objective function. We show that this variant of

GLS does not perform as well as GLS with aspiration moves, and that the success of

aspiration moves is not simply connected with every so often ignoring the penalty

terms in the augmented objective function. Therefore it must be to do with when the

penalty terms are ignored and an aspiration move made.

6.1.3 Enhancing GLS with random moves

In chapter 4, we show how every so often (according to some probability) making a

move at random from the local search neighbourhood (or a subset of) may have some

beneficial effects, when the λ parameter of GLS is set to a low value. We have shown

that this is particularly the case for the QAP, where many local minima exist and that

it is not so useful for problems like the SAT and weighted MAX-SAT where the local

search landscape consists mainly of long plateaus. We have concluded that the reason

for this is that random moves are unlikely to be as efficient at searching long plateaus

as penalties, as they are not as systematic as penalties. This is because random moves

may actually revisit already visited solutions. On the other hand, if penalties are used

to search plateaus, revisiting of solutions is less likely to occur and moves to worse

solutions are unlikely to occur until the plateau has been fairly thoroughly searched.

We have backed this theory up with empirical evidence, which shows that random
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moves actually lower the average entropy (strongly related to how diverse the search

is) of solution labels, in comparison to GLS without random moves.

6.1.4 Reducing the sensitivity of performance to parameter settings

In chapter 5, we have shown how aspiration moves and random moves can be used

together, improving over the performance of all other variants, over a range of

parameter settings, in the QAP. We have then shown the extended GLS performs

comparably or better than other state-of-the-art local search algorithms, over a wide

range of parameter settings. Since GLS has only one major parameter λ, and our

extensions have reduced the sensitivity of performance to this, then we believe this

should make our extended GLS easier to apply to future problems.

6.2 Further work

6.2.1 A more advanced aspiration criterion for GLS

We would have like to have experimented with a more advanced aspiration criterion

to see if we could improve over the basic improved-best aspiration criterion for GLS.

This would allow the penalties to be ignored if a solution existed, such that it was of

better quality (lower cost) than the worst of the best Q solutions visited so far.

Aspiration moves to the current Q best found solutions would not be allowed, thus

ensuring that this scheme will not cause solutions to be revisited. This would allow us

to vary the amount of aspiration moves. Thus, we would be able to see if allowing

more aspiration moves had any effect on the quality of solutions and if it would be

possible to produce even better results. Hopefully, this would lead to GLS exploring

higher quality basins and plateaus in the search landscape, which might otherwise

have been ignored due to penalties imposed earlier on in the search.
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6.2.2 A more advanced random move scheme

We would also have liked to experiment with a more elaborate random move scheme.

The first way in which we might improve the scheme would be to only allow random

moves to be made once GLS was in a local minimum as an alternative to penalising

features in that local minimum. In addition to this, the way in which a random move

is made could be extended by allowing a sequence of random moves from the

neighbourhood to be made, rather than just one individual random move, thus having

a greater effect on the solution. The number of random moves could be fixed

according to some parameter setting, be varied randomly, or varied according to the

quality of the current local minimum or learnt during the search in some way. By

using such a scheme, where larger jumps may be made, this might also alleviate

problems with poor random starting points, by allow a partial restarting strategy.

6.2.3 Long term memory using penalty incentives

Another aspect is the need to make sure the whole of the search space is explored as

evenly as possible for good quality regions. To this end, it may also be useful to look

at adding long term memory diversification strategies, such as are used by robust tabu

search [89], whereby solution attributes which have not been present for more than a

specified number of iterations are forced into the current solution. A softer version of

this could be implemented in GLS by the addition of incentives (negative penalties) to

the augmented objective function (present before, and then after the desired attribute

has been present in solutions for a number fixed number of repairs), which encourage

these attributes to be re-introduced into solutions. Because the incentives would not

actually force the attributes into solutions, but only "encourage" them with the right

amount of incentive, it might be that the local search algorithm would only place

these attributes in solutions when they were relatively advantageous to the current
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area of the search space. This might increase the likelihood of this resulting in higher

quality regions of the search space being discovered by such a mechanism.
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8 Appendix A: Details of problems used in experiments

In this section, we give details of the problems used for the experiments in Chapters
3,4 and 5.

8.1 SAT Problems

Table 3 below lists the 129 SAT problems used in the experiments described in this
thesis, along with the number of variables and clauses in each problem.
Problem #Vars #Clauses Problem #Vars #Clauses Problem #Vars #Clauses
aim-100-1_6-yes1-1 100 160 aim-50-3_4-yes1-4 50 170 ii32e4 387 7106
aim-100-1_6-yes1-2 100 160 aim-50-6_0-yes1-1 50 300 ii32e5 522 11636
aim-100-1_6-yes1-3 100 160 aim-50-6_0-yes1-2 50 300 ii8a1 66 186
aim-100-1_6-yes1-4 100 160 aim-50-6_0-yes1-3 50 300 ii8a2 180 800
aim-100-2_0-yes1-1 100 200 aim-50-6_0-yes1-4 50 300 ii8a3 264 1552
aim-100-2_0-yes1-2 100 200 as10-yes 216 2780 ii8a4 396 2798
aim-100-2_0-yes1-3 100 200 as11-yes 112 1312 ii8b1 336 2068
aim-100-2_0-yes1-4 100 200 as12-yes 72 1012 ii8b2 576 4088
aim-100-3_4-yes1-1 100 340 as13-yes 232 2276 ii8b3 816 6108
aim-100-3_4-yes1-2 100 340 as14-yes 92 758 ii8b4 1068 8214
aim-100-3_4-yes1-3 100 340 as15-yes 232 3692 ii8c1 510 3065
aim-100-3_4-yes1-4 100 340 as2-yes 96 954 ii8c2 950 6689
aim-100-6_0-yes1-1 100 600 as3-yes 96 954 ii8d1 530 3207
aim-100-6_0-yes1-2 100 600 as4-yes 328 4176 ii8d2 930 6547
aim-100-6_0-yes1-3 100 600 as5-yes 1208 31124 ii8e1 520 3136
aim-100-6_0-yes1-4 100 600 as6-yes 184 2277 ii8e2 870 6121
aim-200-1_6-yes1-1 200 320 as7-yes 760 17896 jnh1 100 850
aim-200-1_6-yes1-2 200 320 as8-yes 84 974 jnh12 100 850
aim-200-1_6-yes1-3 200 320 ii16a1 1650 19368 jnh17 100 850
aim-200-1_6-yes1-4 200 320 ii16a2 1602 23281 jnh201 100 800
aim-200-2_0-yes1-1 200 400 ii16b1 1728 24792 jnh204 100 800
aim-200-2_0-yes1-2 200 400 ii16b2 1076 16121 jnh205 100 800
aim-200-2_0-yes1-3 200 400 ii16c1 1580 16467 jnh207 100 800
aim-200-2_0-yes1-4 200 400 ii16c2 924 13803 jnh209 100 800
aim-200-3_4-yes1-1 200 680 ii16d1 1230 15901 jnh210 100 800
aim-200-3_4-yes1-2 200 680 ii16d2 836 12461 jnh212 100 800
aim-200-3_4-yes1-3 200 680 ii16e1 1245 14766 jnh213 100 800
aim-200-3_4-yes1-4 200 680 ii16e2 532 7825 jnh217 100 800
aim-200-6_0-yes1-1 200 1200 ii32a1 459 9212 jnh218 100 800
aim-200-6_0-yes1-2 200 1200 ii32b1 228 1374 jnh220 100 800
aim-200-6_0-yes1-3 200 1200 ii32b2 261 2558 jnh301 100 900
aim-200-6_0-yes1-4 200 1200 ii32b3 348 5734 jnh7 100 850
aim-50-1_6-yes1-1 50 80 ii32b4 381 6918 par8-1-c 64 254
aim-50-1_6-yes1-2 50 80 ii32c1 225 1280 par8-2-c 68 270
aim-50-1_6-yes1-3 50 80 ii32c2 249 2182 par8-3-c 75 298
aim-50-1_6-yes1-4 50 80 ii32c3 279 3272 par8-4-c 67 266
aim-50-2_0-yes1-1 50 100 ii32c4 759 20862 par8-5-c 75 298
aim-50-2_0-yes1-2 50 100 ii32d1 332 2703 ssa7552-038 1501 3575
aim-50-2_0-yes1-3 50 100 ii32d2 404 5153 ssa7552-158 1363 3034
aim-50-2_0-yes1-4 50 100 ii32d3 824 19478 ssa7552-159 1363 3032
aim-50-3_4-yes1-1 50 170 ii32e1 222 1186 ssa7552-160 1391 3126
aim-50-3_4-yes1-2 50 170 ii32e2 267 2746 tm1-yes 2421 40723
aim-50-3_4-yes1-3 50 170 ii32e3 330 5020 tm2-yes 337 1888

Table 3: Details of SAT problems used in experiments
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8.2 MAX-SAT Problems

Table 4 below lists the 44 MAX-SAT problems used in the experiments described in
this thesis, along with the number of variables and clauses in each problem.
Problem #Vars #Clauses Problem #Vars #Clauses Problem #Vars #Clauses Problem #Vars #Clauses

jnh1 100 850 jnh201 100 800 jnh215 100 800 jnh306 100 900
jnh10 100 850 jnh202 100 800 jnh216 100 800 jnh307 100 900
jnh11 100 850 jnh203 100 800 jnh217 100 800 jnh308 100 900
jnh12 100 850 jnh205 100 800 jnh218 100 800 jnh309 100 900
jnh13 100 850 jnh207 100 800 jnh219 100 800 jnh310 100 900
jnh14 100 850 jnh208 100 800 jnh220 100 800 jnh4 100 850
jnh15 100 850 jnh209 100 800 jnh301 100 900 jnh5 100 850
jnh16 100 850 jnh210 100 800 jnh302 100 900 jnh6 100 850
jnh17 100 850 jnh211 100 800 jnh303 100 900 jnh7 100 850
jnh18 100 850 jnh212 100 800 jnh304 100 900 jnh8 100 850
jnh19 100 850 jnh214 100 800 jnh305 100 900 jnh9 100 850

Table 4: Details MAX-SAT problems used in experiments

8.3 QAP Problems

Table 5 below lists the 94 QAP problems used in the experiments described in this
thesis, along with the number of elements in the permutation for each problem.
Problem Permutation Size Problem Permutation Size Problem Permutation Size
bur26a 26 esc32a 32 nug24 24
bur26b 26 esc32b 32 nug25 25
bur26c 26 esc32c 32 nug30 30
bur26d 26 esc32d 32 rou12 12
bur26e 26 esc32e 32 rou15 15
bur26f 26 esc32f 32 rou20 20
bur26g 26 esc32g 32 scr12 12
bur26h 26 esc32h 32 scr15 15
chr12a 12 had12 12 scr20 20
chr12b 12 had14 14 ste36a 36
chr12c 12 had16 16 ste36b 36
chr15a 15 had18 18 ste36c 36
chr15b 15 had20 20 tai10a 10
chr15c 15 kra30a 30 tai10b 10
chr18a 18 kra30b 30 tai12a 12
chr18b 18 lipa20a 20 tai12b 12
chr20a 20 lipa20b 20 tai15a 15
chr20b 20 lipa30a 30 tai15b 15
chr20c 20 lipa30b 30 tai17a 17
chr22a 22 lipa40a 40 tai20a 20
chr22b 22 lipa40b 40 tai20b 20
chr25a 25 nug12 12 tai25a 25
els19 19 nug14 14 tai25b 25
esc16a 16 nug15 15 tai30a 30
esc16b 16 nug16a 16 tai30b 30
esc16c 16 nug16b 16 tai35a 35
esc16d 16 nug17 17 tai35b 35
esc16e 16 nug18 18 tai40a 40
esc16g 16 nug20 20 tai40b 40
esc16h 16 nug21 21 tho30 30
esc16i 16 nug22 22 tho40 40
esc16j 16

Table 5: Details of QAP problems used in experiments



150

9 Appendix B: Full Results

Appendix B is on the CD-ROM provided with this thesis. It contains excel

spreadsheets of the results for all the experiments described in this thesis, as well as

many other statistics from the experiments. It should be noted however, that some of

these statistics may not be valid (for example, statistics about aspiration moves when

no aspiration moves were made or statistics that were not recorded to save CPU time.

These statistics usually have NA,NU, 0, or - as values in the results tables).

We group the sets of spreadsheets in 8 directories listed below:

• Aspiration_Results - contains spreadsheets with data on all the experiments

involving GLS variants with the aspiration move extension,

• Basic_GLS_Results - contains spreadsheets with data on all the experiments

involving just the basic GLS with no extensions,

• Combinations_Results - contains spreadsheets with data on all experiments

involving GLS with both random moves (or random walk or random penalty

walk) and aspiration moves,

• Cost_Plot_Results - contains spreadsheets with data on the costs of solutions

visited during a run of GLS on examples of each problem type from the random

moves chapter,

• Ignore_Penalties_Results - contains spreadsheets with data on all the control

experiments from Chapter 3 involving GLS ignoring penalties,

• Other_Algorithms_Results - contains spreadsheets with data on the performance

of Robust Tabu Search, walksat and maxwalksat,

• Random_Move_Results - contains spreadsheets with data on the performance of

GLS with the random move, random walk and random penalty walk extensions.
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• Significance_Tests - contains a spreadsheet with details of the sign tests

performed on some of the figures in chapters 3 & 4.

Each spreadsheet (these can be read using Microsoft Excel) contains data in the form

of multiple tables. The most common table is as follows (although the

Cost_Plot_Results directory are not). The first table of each spreadsheet is usually a

summary of the overall results in terms of performance over the parameter settings

tried in that experiment. The next table down and all the rest of the tables give the

average, standard deviation, minimum and maximum values out of 10 runs for

different parameter settings (1 parameter setting per column) and problems (1

problem per row), with 1 table for each search monitor. See Table 6 for a cut-down

example of such a table (showing the average fraction of runs per problem, where

solutions satisfying all clauses were found by GLSSAT).

Averages for
Sol_Found

lambda=0.1lambda=0.2lambda=0.3lambda=0.4lambda=0.5
aim-100-1_6-yes1-1 0.0 0.1 0.0 0.0 0.0
aim-100-1_6-yes1-2 0.0 0.0 0.0 0.0 0.0
aim-100-1_6-yes1-3 0.0 0.0 0.1 0.0 0.0
aim-100-1_6-yes1-4 0.0 0.0 0.0 0.0 0.0
aim-100-2_0-yes1-1 0.0 0.0 0.0 0.0 0.0
aim-100-2_0-yes1-2 0.0 0.0 0.0 0.0 0.0
aim-100-2_0-yes1-3 0.0 0.0 0.0 0.1 0.0
aim-100-2_0-yes1-4 0.0 0.0 0.0 0.0 0.0
aim-100-3_4-yes1-1 0.1 0.1 0.0 0.1 0.1
aim-100-3_4-yes1-2 0.0 0.2 0.0 0.3 0.4
aim-100-3_4-yes1-3 0.1 0.1 0.3 0.4 0.3
aim-100-3_4-yes1-4 0.3 0.4 0.5 0.5 0.8
aim-100-6_0-yes1-1 0.8 0.9 1.0 0.8 1.0

Table 6: A sample table, taken from the basic GLSSAT results
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