
1. Introduction

Guided Local Search originally proposed by
Voudouris and Tsang [29] is a general
optimisation technique suitable for a wide
range of combinatorial optimisation problems.
Successful applications of the technique so far
include practical problems such as Frequency
Allocation [29], Workforce Scheduling [28]
and Vehicle Routing [2, 18] and also classic
problems such as the Travelli ng Salesman
Problem (TSP) and the Quadratic Assignment
Problem (QAP) [30]. Guided Local Search
(GLS) belongs to a class of techniques known
as Metaheuristics [22, 23, 25]. Prominent
members of this class include Tabu Search [7-
12], Simulated Annealing [1, 5, 19, 21],
GRASP [6], Genetic Algorithms [4, 14, 24],
Scatter Search [8] and others. Metaheuristics
aim at enhancing the performance of heuristic
methods in solving large and difficult
combinatorial optimisation problems.
In the case of GLS, the main focus is on the
exploitation of problem and search-related
information to effectively guide local search
heuristics in the vast search spaces of NP-hard
optimisation problems. This is achieved by
augmenting the objective function of the
problem to be minimised with a set of penalty
terms which are dynamically manipulated
during the search process to steer the heuristic
to be guided. Higher goals, such as the
distribution of the search effort to the areas of
the search space according to the promise of

these areas to contain high quality solutions,
can be expressed and pursued.
GLS is closely related to the Frequency-Based
Memory approaches introduced in Tabu Search
[9, 13], extending these approaches to take into
account the quali ty of structural parts of the
solution and also react to feedback from the
local optimisation heuristic under guidance. In
this paper, we provide an il lustrative example
of how GLS works by explaining its use for
solving an a non-convex optimisation problem.

2. Nonconvex Optimisation and Global
Optimisation Methods

Continuous optimisation problems arise in
many engineering disciplines (such as
electrical and mechanical engineering) in the
context of analysis, design or simulation tasks.
Particularly difficult problems are those with
non-linear multi-extremal cost functions (that
is functions with many local minima). These
problems, also known as nonconvex
optimisation problems [15], are diff icult to
solve using deterministic gradient-based
algorithms used extensively elsewhere in
continuous optimisation. Gradient algorithms
can be easily trapped in the many local minima
of the cost function, so failing to reach the
global minimum.
Global Optimisation (GO) methods which
seek the global minimum are utilised to solve
such problems. The most simple global
optimisation algorithm is to run a gradient
algorithm many times and from different
starting points in the hope that the global

Guided Local Search: An Illustrative Example in
Function Optimisation

Christos Voudouris

The Guided Local Search method has been successfully applied to a number of hard combinatorial
optimisation problems from the well-known TSP and QAP to real world problems such as
Frequency Assignment and Workforce Scheduling.
In this paper, we are demonstrating that the potential applications of GLS are not limited to
optimisation problems of discrete nature but also to difficult continuous optimisation problems.
Continuous optimisation problems arise in many engineering disciplines (such as electrical and
mechanical engineering) in the context of analysis, design or simulation tasks. The problem
examined gives an illustrative example of the behaviour of GLS, providing insights on the
mechanisms of the algorithm.

minimum will be amongst the local minima
obtained over the many runs. Example of such
algorithm is the variation of the Sequential
Unconstrained Minimisation Technique
suggested in [15]. Many other GO algorithms
exist which make use of gradient techniques or
derive directly from general search methods
such as Genetic Algorithms [16], Simulated
Annealing [17], Function Smoothing [27],
Orthogonal Arrays with the GRG algorithm
[20] to name but a few.

3. Local Search for Continuous
Optimisation Problems

Recently and mainly driven by the use of
Genetic Algorithms [4, 14, 16] in
combinatorial optimisation, GO methods have
been developed which deal with nonconvex
optimisation as a combinatorial optimisation
task. The idea is to convert the continuous
problem to a discrete one by encoding the real
variables of the cost function as binary strings.
In the case of binary encoding, a binary string
value is interpreted to represent an integer in
base-2 notation. The mapping of the binary
string to a real variable works as follows. The
binary string value is first converted to the
corresponding integer. This integer is then
scaled by the appropriate coeff icient to give a
real value in the desired range (i.e. domain of

variable) [4]. One binary string is used for
each problem variable and combinatorial
search is util ised to find these binary string
configurations which after decoding result in
the optimal value for the real-valued cost
function. Increasing the number of bits used
for representing each variable increases the
accuracy of the solution but also results in an
increase of the combinatorial search space.
Although binary encoding schemes were
principally developed for Genetic Algorithms,
they have also been used in the context of local
search [3, 31]. To explain how local search
operates in this case, let us consider the
problem with two variables x ∈ A ⊂ ℜ and y
∈ B ⊂ ℜ and a function f(x, y) to be
minimised in A×B ⊂ ℜ 2. A local search move
flips the value of a bit in the binary string
representing the solution (comprises the binary
strings of the function’s variables). In the x-y
plane, bit flips translate to “ jumps” in either
the x or y direction. The more significant the
bit changed, the larger the step of the “ jump”
performed. Local search starting from a
random binary string examines all possible bit
flips and performs that which results in the
maximum reduction in cost (minimisation
case). The new solution if better replaces the
old solution and the procedure continues from
there on until a solution is reached for which
no further improvement is possible.

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

Figure 1. Cross section of F6 function.

4. The Sine Envelope Sine Wave (F6)
Function

As mentioned in the section 2, nonconvex
optimisation refers to non-linear
multi -extremal cost functions. An example of
such a function, mentioned many times in the
literature, is the sine envelope sine wave
function also known as F6 [3, 4, 31]:

()[]
F x y

x y

x y
6 05

05

10 0 001

2 2 2

2 2
2(,) .

sin .

. .
= +

+ −

+ ⋅ +
 (1)

minimised in the domain [-100,100]×[-
100,100]. F6 has been suggested as a
benchmark for Genetic Algorithms [26].
A cross section of the function is shown in
Figure 1. The global minimum of F6 is located
at (0,0) where the function takes the value 0.
The basin of the global minimum is very
narrow and therefore difficult to reach unless a
lucky start is made from within the domain of
attraction of the global minimum. The many
local minima of the function are arranged in
concentric cycles around the global minimum
forming an ideal trap for hil l-climbing based
techniques. In F6, local gradients provide
limited (if any) information on the location of
the global minimum. Guided Local Search
may be exploited to help local search to escape
from local minima and moreover distribute its
search efforts in the search space.

5. Guided Local Search for Global
Optimisation

GLS is iteratively posting constraints which
modify the landscape and guide local search
out of local minima and towards promising
areas in the search space. Constraint posting in
this problem could be based on information
gathered during the search process. For
example, if local search reaches a local
minimum then an assumption can be made that
the global minimum is unlikely to reside in the
surrounding area. Constraints could then be
introduced that exclude this area from being
searched in future iterations. These constraints
are essentially soft because we cannot be
sufficiently confident that local search
thoroughly searches the space around a
solution when this solution is visited.
A set of features is defined that allow us to
constrain solutions. A feature can be any
solution property represented by an indicator
function [30]. A simple setting for global
optimisation is to divide the domains of

variables into a number of non-overlapping
and equally-sized intervals. Let us consider the
variable x∈ (a,b]. A set of features fi, i=1, ...,n,
can be defined by the intervals (a0=a,a1], (a1,
a2], ..., (an-1, an=b] as follows:

() (]
I x

x a a

otherwise
i

i i=
∈

î

−1

0
1, ,

,
 (2).

Each feature fi is attached a penalty parameter
pi to allow GLS to penalise solutions that are
characterised by the feature such that they can
be avoided. The cost function is augmented
with penalty terms to form the augmented cost
function. This function replaces the original
function and it is minimised instead. The
augmented version of F6 is defined as follows:

() () () ()H x y F x y I x p I y pxi xi yj yj
j

m

i

n

, ,= + ⋅ ⋅ + ⋅

==
∑∑6

11

λ (3),

where n the number of features defined over
the domain of x, m is the number of features
defined over the domain of y, and λ is the
parameter that controls the relative importance
of constraints with respect to the primary cost
term (i.e. function to be minimised). Initially,
all penalty parameters of features are set to 0
(pxi = 0, pyj = 0, i = 1, ..., n , j = 1, ..., m). Each
time local search settles in a local minimum,
we simply increment by one the penalty
parameters of the features exhibited by the
local minimum (only two at a time). This
increases by 2*λ the cost of all solutions that
lie in the intersection of the zones
corresponding to the penalised features and by
λ the cost of all solutions that lie in either one
of these zones (see Figure 2). As a result, local
search will primarily avoid the rectangular area
with centre the local minimum and also to a
lesser degree the two zones that run parallel to
the co-ordinate axis as shown in Figure 2. This
simple technique can be used to minimise
arbitrary functions. In fact, there is nothing
that binds the method to F6 which may not be
used for other functions with two or more
variables. In the following, we examine the
results obtained for F6.

6. Experimentation with the F6 Function

Following Davis [4], we used 22-bits for
representing each variable. An equal number
of features was used to cover the domain of
each variable (n=m). The algorithm was
relatively insensitive to the parameter λ and
performed well for values of λ greater than
0.2. The value 0.25 for λ was used in the tests.
Experiments were performed for varying n (i.e.
number of features per variable) to determine
how this parameter affects GLS. The values
tried for n were 5, 10, 15, 20, 50, and 100.
Fifty runs from random solutions (random
binary strings) were performed for each value
of n considered with the iteration limit set to
10,000 local search improvement cycles. Table
1 ill ustrates the results obtained. The best
setting proved to be n=m=5. Under this
setting, the algorithm succeeded in finding the
exact optimal solution (0,0) in 100% of 50
runs. Under all settings, the algorithms found
the exact optimum many times.
This performance further improves if more
time is given to the algorithm. For example, in
the case (n=m=100) where most failures

occurred (28 out of 50 runs), we performed the
same experiment but this time allowed the
algorithm to complete 100,000 local search
iterations. The performance of GLS
significantly improved and the algorithm
found the exact optimum in 50 out of 50 runs
(no failures).
The main observation made was that GLS
performance degraded as the number of
features used increased. More features meant
more effort to leave a particular area but also
more careful exploration. For this particular
function, diversification of search to sample
the whole search space proved important to
find the global minimum quickly. The
distribution of points visited for n=m=10
during 10,000 iterations of local search is
shown in Figure 3. During the particular run
that generated Figure 3, the optimal solution
was found early and after 1965 iterations.
Despite that, the algorithm was allowed to
continue until 10,000 iterations were
completed to get a better picture of the
solutions visited by the algorithm. As one can
see in Figure 3, the algorithm distributed its
efforts over the whole of the search space but
visited mainly local minima. That is why
points in are arranged in concentric cycles
around the point (0,0).

local minimum

feature penali sed

feature penali sed

λ

2×

y

x

 Figure 2. Changes in cost due to penalising the features exhibited by a local minimum.

 No. of features n=m=5 n=m=10 n=m=15 n=m=20 n=m=50 n=m=100

Mean Cost 0.00E+00 4.55E-11 3.19E-10 2.73E-10 1.97E-04 3.21E-04

Best Solution 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Worst Solution 0.00E+00 2.28E-09 2.28E-09 2.28E-09 9.72E-03 9.72E-03

Mean Iterations 2287.32 2566.22 2954.08 3526.9 4132.66 3738.48

Mean Time 2.823333 3.150668 3.634334 4.382333 5.188333 4.654

Mean Funct. Eval. 104958.6 117778.8 135588 161878.4 189675.6 171578.5

Optimal Runs 50 49 43 44 31 22

Total runs 50 50 50 50 50 50

Table 1. GLS performance on F6 (Time in CPU seconds on a DEC Alpha 3000/600 175MHz).

-100

-50

0

50

100
-100

-50

0

50

100

0

0.5

1

Figure 4. 3-D View of Figure 3.

-100

-50

0

50

100

-100 -50 0 50 100

Figure 3. All the points visited during the first 10,000 iterations of local search.

This is more clearly demonstrated in Figure
where a 3-D view of the visited points is
shown. The shape formed is exactly the bottom
part of F6 which suggests that the points are
actually local minima in the great majority.
Note here, that GLS is exploring binary space
and not numeric space. In general, local
minima and their attraction basins in the binary
space are different from the local minima and
their attraction basins appearing in the numeric
space. Because of the symmetrical landscape,
the binary encoding used and the structure of
the GLS features, the majority of the solutions
visited by GLS in the case of F6 have the
property of being numeric local minima as
ill ustrated in Figures 3 and 4. This is not
necessarily the case for functions with non-
symmetrical landscapes. In these cases, grey
encodings (see [3] for example) and/or features
of different structure may yield better
performance than the encoding scheme and
features used in this paper.

7. Conclusions

In this paper, we have shown that GLS has the
potential to be utili sed in the optimisation of
real-valued functions with numerous local
minima, which are considered to be diff icult
for gradient-based methods. The application of
GLS to optimise the F6 function, a benchmark
for Genetic Algorithms, has been examined.
GLS repeatedly located the exact global
optimum of the function. The paper also serves
in demonstrating how artificial solution
features can be created when no features can
be deduced from the structure of the objective
function, which adds support to our claim that
GLS has wide applications.

References

[1] Aarts, E.H.L., and Korst, J.H.M.,
Simulated Annealing and Boltzmann machines,
Wiley, Chichester, 1989.
[2] Backer, B.D., Furnon, V., Prosser, P.,
Kilby, P., and Shaw, P., “Solving vehicle
routing problems using constraint
programming and metaheuristics” , Submitted
to the Journal of Heuristics special issue on
Constraint Programming, July 1997.
[3] Battiti , R., and Tecchioli , G., “The
Reactive Tabu Search” , ORSA Journal on
Computing, Vol. 6, 126-140, 1994.
[4] Davis., L., Handbook of Genetic
Algorithms. Van Nostrand Reinhold, 1991.
[5] Dowsland, A., “Simulated Annealing” ,
in: Reeves, C. R. (ed.), Modern Heuristic

Techniques for Combinatorial Problems,
Blackwell Scientific Publishing, 20-69, 1993.
[6] Feo, T.A., and Resende, M.G.C., “Greedy
Randomized Adaptive Search Procedures” ,
Journal of Global Optimization, vol. 6, pp.
109-133, 1995.
[7] Glover, F., “Future paths for integer
programming and links to artificial
intell igence”, Computers Ops Res., 5, 533-549,
1986.
[8] Glover, F., “Tabu Search and Adaptive
Memory Programming - Advances,
Applications and Challenges” , in: Interfaces in
Computer Science and Operations Research,
Barr, Helgason and Kennington eds., Kluwer
Academic Publishers, 1996.
[9] Glover, F., “Tabu Search Fundamentals
and Uses” , Graduate School of Business,
University of Colorado, Boulder, 1995.
[10] Glover, F., “Tabu search Part I” , ORSA
Journal on Computing, Vol. 1, 190-206, 1989.
[11] Glover, F., “Tabu search Part II” , ORSA
Journal on Computing, Vol. 2, 4-32, 1990.
[12] Glover, F., “Tabu Search: improved
solution alternatives for real world problems” ,
in: Birge & Murty (ed.), Mathematical
Programming: State of the Art, 64-92, 1994.
[13] Glover, F., and Laguna, M., “Tabu
Search” , in: Reeves, C. R. (ed.), Modern
Heuristic Techniques for Combinatorial
Problems, Blackwell Scientific Publishing, 71-
141, 1993.
[14] Goldberg, D. E., Genetic algorithms in
search, optimisation, and machine learning.
Addison-Wesley, 1989.
[15] Hill er, F.S., and Lieberman, G.,
Introduction to Operations Research. Sixth
edition, McGraw-Hill , New York, 1995.
[16] Holland, J.H., Adaptation in natural and
artificial systems. University of Michigan
press, Ann Arbor, MI, 1975.
[17] Ingber, A.L., “Very fast simulated re-
annealing” , Journal of Mathematical Computer
Modelli ng, Vol. 12 No. 8, 967-973, 1989.
[18] Kilby, P., Prosser, P., and Shaw, P.,
“Guided local search for the vehicle routing
problem”, Proceedings of the 2nd
International Conference on Metaheuristics,
July 1997.
[19] Kirkpatrick, S., Gelatt, C.D., and Vecchi,
M.P., “Optimisation by Simulated Annealing” ,
Science, Vol. 220, 671-680, 1983.
[20] Kota, S., and Chiou, S., “Use of
Orthogonal Arrays in Mechanism Synthesis” ,
Mechanical Machine Theory, Vol. 28, 777-
794, 1993.
[21] Laarhoven, P.J.M.V., and Aarts, E.H.L.,
Simulated Annealing: Theory and
Applications, Kluwer, Dordrecht, 1988.

[22] Osman, I.H., ”An Introduction to Meta-
Heuristics” , M. Lawrence and C. Wilson
(eds.), in: Operational Research Tutorial
Papers, Operational Research Society Press,
Birmingham, UK, 92-122, 1995.
[23] Reeves, C.R. (ed.), Modern Heuristic
Techniques for Combinatorial Problems,
Blackwell Scientific Publishing, 1993.
[24] Reeves, C.R., “Genetic Algorithms” , in:
Reeves, C. (ed.), Modern Heuristic Techniques
for Combinatorial Problems, Blackwell
Scientific Publishing, 151-196, 1993.
[25] Reeves, C.R., “Modern Heuristic
Techniques” , in: V. J. Rayward-Smith, I. H.
Osman, C. R. Reeves and G. D. Smith (ed.),
John Wiley & Sons, Modern Heuristic Search
Methods, 1-25, 1996.
[26] Schaffer, J.D., Caruana, R.A., Eshelman,
L.J., and Das, R., “A study of control
parameters affecting online performance of
genetic algorithms for function optimisation” ,
Proceedings of 3rd Int. Conf. on Genetic
Algorithms, Morgan Kaufmann, 51-60, 1989.
[27] Styblinski, M.A. and Tang, T.S.,
“Experiments in Nonconvex Optimisation:
Stochastic Approximation with Function
Smoothing and Simulated Annealing” , Neural
Networks, Vol. 3, 467-483, 1990.
[28] Tsang, E., and Voudouris, C., “Fast local
search and guided local search and their
application to British Telecom's workforce
scheduling problem”, Operations Research
Letters, Vol. 20, No. 3, 119-127, 1997.
[29] Voudouris, C., and Tsang, E., “Partial
Constraint Satisfaction Problems and Guided
Local Search” , Proceedings of 2nd Int. Conf. on
Practical Application of Constraint
Technology (PACT'96), London, April ,
337-356, 1996.
[30] Voudouris, C., Guided Local Search for
Combinatorial Optimization Problems, PhD
Thesis, Department of Computer Science,
University of Essex, Colchester, UK, July,
1997.
[31] Woodruff, D.L., and Zemel, E., “Hashing
vectors for tabu search” , Annals of Operations
Research, 41, 123-137, 1993.

