Guided Local Search: An lllustrative Examplein

Function Optimisation

Christos Voudouris

The Guided Local Search method has been successfully applied to a number of hard combinatorial
optimisation problems from the well-known TSP and QAP to real world problems such as

Frequency Assignment and Workforce Scheduling.

In this paper, we are demonstrating that the potential applications of GLS are not limited to
optimisation problems of discrete nature but also to difficult continuous optimisation problems.
Continuous optimisation problems arise in many engineering disciplines (such as electrical and
mechanical engineering) in the context of analysis, design or simulation tasks. The problem
examined gives an illustrative example of the behaviour of GLS providing insights on the

mechanisms of the algorithm.

1. Introduction

Guided Locd Seach originaly proposed by
Voudouris and Tsang [29] is a genera
optimisation technique suitable for a wide
range of combinatorial optimisation problems.
Succesdul applicaions of the technique so far
include pradicd problems such as Frequency
Allocdion [29], Workforce Scheduling [28]
and Vehicle Routing [2, 18] and aso classc
problems such as the Travelling Salesman
Problem (TSP) and the Quadratic Assignment
Problem (QAP) [30]. Guided Locd Seach
(GLS) belongs to a dassof techniques known
as Metaheurigtics [22, 23, 25]. Prominent
members of this class include Tabu Search [7-
12], Smulated Annealing [1, 5, 19, 21],
GRASP [6], Genetic Algorithms [4, 14, 24],
Scater Seach [8] and athers. Metaheuristics
aim at enhancing the performance of heuristic
methods in solving large ad dfficult
combinatorial optimisation problems.

In the cae of GLS, the main focus is on the
exploitation of problem and seach-related
information to effectively guide locd seach
heurigtics in the vast search spaces of NP-hard
optimisation problems. This is achieved by
augmenting the objedive function of the
problem to be minimised with a set of penalty
terms which are dynamicdly manipulated
during the seach processto stea the heuristic
to be guided. Higher goals, such as the
distribution of the search effort to the aeas of
the seach space acording to the promise of

these aeas to contain high quality solutions,
can be expressed and pursued.

GLSisclosely related to the Frequency-Based
Memory approaches introduced in Tabu Seach
[9, 13], extending these gproaches to take into
acount the quality of structura parts of the
solution and also read to feedbadk from the
locd optimisation heuristic under guidance In
this paper, we provide an illustrative example
of how GLS works by explaining its use for
solving an a non-convex optimisation problem.

2. Nonconvex Optimisation and Global
Optimisation M ethods

Continuous optimisation problems arise in
many engneging disciplines (such as
eledricd and mechanicd engineaing) in the
context of analysis, design or simulation tasks.
Particularly difficult problems are those with
nortlinea multi-extremal cost functions (that
is functions with many locd minima). These
problems, aso known as nonconvex
optimisation problems [15], are difficult to
solve wusing deterministic gradient-based
agorithms used extensively elsewhere in
continuous optimisation. Gradient algorithms
can be eaily trapped in the many locd minima
of the st function, so failing to read the
global minimum.

Global Optimisation (GO) methods which
seek the global minimum are utilised to solve
such problems. The most simple global
optimisation algorithm is to run a gradient
agorithm many times and from different
starting points in the hope that the global



minimum will be amongst the locd minima
obtained over the many runs. Example of such
algorithm is the variation of the Sequential
Unconstrained Minimisation  Technique
suggested in [15]. Many other GO agorithms
exist which make use of gradient techniques or
derive direaly from general seach methods
such as Genetic Algorithms [16], Simulated
Anneding [17], Function Smoacthing [27],
Orthogonal Arrays with the GRG agorithm
[20] to name but a few.

3. Local Sear ch for
Optimisation Problems

Continuous

Recetly and mainly driven by the use of
Genetic  Algorithms  [4, 14, 16] in
combinatorial optimisation, GO methods have
been developed which ded with nonconvex
optimisation as a mbinatorial optimisation
task. The idea is to convert the mntinuous
problem to a discrete one by encoding the red
variables of the st function as binary strings.

In the cae of binary encoding, a binary string
value is interpreted to represent an integer in
base-2 notation. The mapping of the binary
string to ared variable works as follows. The
binary string value is first converted to the
corresponding integer. This integer is then
scded by the gpropriate wefficient to give a
red value in the desired range (i.e. domain of

1 T

variable) [4]. One binary string is used for
eadh problem variable ad combinatorial
seach is utilised to find these binary string
configurations which after decoding result in
the optimal value for the red-valued cost
function. Increasing the number of bits used
for representing ead variable increases the
acarracy of the solution but also results in an
increase of the wmbinatorial seach space
Although binary encoding schemes were
principally developed for Genetic Algorithms,
they have dso been used in the context of locd
seach [3, 31]. To explain how locd seach
operates in this case, let us consider the
problem with two variablesx O A O O and y
0 B O O and a function f(x, y) to be
minimised in AxB O 0 A locd seach move
flips the value of a bit in the binary string
representing the solution (comprises the binary
strings of the function’s variables). In the x-y
plane, bit flips trandate to “jumps’ in either
the x or y diredion. The more significant the
bit changed, the larger the step of the “jump”
performed. Locd seach starting from a
random binary string examines all possble bit
flips and performs that which results in the
maximum reduction in cost (minimisation
case). The new solution if better replaces the
old solution and the procedure wntinues from
there on until a solution is readed for which
no further improvement is passble.
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Figure 1. Cross section of F6 function.

50 100



4, The Sine Envelope Sine Wave (F6)
Function

As mentioned in the sedion 2, nonconvex
optimisation refers to non-linea
multi-extremal cost functions. An example of
such a function, mentioned many times in the
literature, is the sine ewelope sine wave
function also known as F6 [3, 4, 31]:

F6(xy) = 05+ ST VX +Y’ 05 > (1)
[10 +0.0010{x + yz)]

minimised in the domain [-100100x[-
100100]. F6 has been suggested as a
benchmark for Genetic Algorithms [26].

A cross ®dion of the function is shown in
Figure 1. The global minimum of F6 is located
at (0,0) where the function takes the value 0.
The basin of the global minimum is very
narrow and therefore difficult to read unlessa
lucky start is made from within the domain of
attradion of the global minimum. The many
locd minima of the function are aranged in
concentric cycles around the global minimum
forming an ided trap for hill-climbing based
techniques. In F6, locd gradients provide
limited (if any) information on the locaion of
the global minimum. Guided Locd Seach
may be exploited to help locd seach to escgpe
from locd minima and moreover distribute its
seach effortsin the search space

5. Guided Local Search for Global
Optimisation

GLS is iteratively posting constraints which
modify the landscgpe and guide locd seach
out of locd minima axd towards promising
areas in the search space Constraint posting in
this problem could be based on information
gathered during the seach process For
example, if locd seach reaches a locd
minimum then an assumption can be made that
the global minimum is unlikely to reside in the
surrounding area Constraints could then be
introduced that exclude this area from being
seached in future iterations. These nstraints
are esentially soft becaise we canot be
sufficiently confident that locd seach
thoroughly seaches the space aound a
solution when this lution is visited.

A set of features is defined that allow us to
constrain solutions. A fedure can be ay
solution property represented by an indicator
function [30]. A simple setting for global
optimisation is to dvide the domains of

variables into a number of non-overlapping
and equally-sized intervals. Let us consider the
variable x[J(a,b] . A set of feauresf;, i=1, ...n,
can be defined by the intervals (apg=a,a4], (as,
), ..., (@n1, 8,=b] asfollows:

li(x) = 0. xDfa...a)] ).
' ,  otherwise
Eacd fedure f; is attached a penalty parameter
p; to alow GLS to penalise solutions that are
charaderised by the feaure such that they can
be avoided. The st function is augmented
with penalty terms to form the augmented cost
function. This function replaces the origina
function and it is minimised insteal. The
augmented version of F6 is defined as foll ows:
n m [
o) =) NI + 51,00 R
=1 IES

where n the number of feaures defined over
the domain of x, m is the number of feaures
defined over the domain of y, and A is the
parameter that controls the relative importance
of constraints with resped to the primary cost
term (i.e. function to be minimised). Initialy,
al penaty parameters of feaures are set to 0
(Pi=0,pj=0,i=1..,n,j=1 ..,m).Eah
time locd seach settles in a locd minimum,
we simply increment by one the penaty
parameters of the feaures exhibited by the
locd minimum (only two at a time). This
increases by 2*A the st of al solutions that
lie in the intersedion of the nes
corresponding to the penalised feaures and by
A the st of all solutions that lie in either one
of these zones (seeFigure 2). As aresult, locd
seach will primarily avoid the redangular area
with centre the locd minimum and also to a
lesser degreethe two zones that run parallel to
the w-ordinate axis as iown in Figure 2. This
simple technique @n be used to minimise
arbitrary functions. In fad, there is nothing
that binds the method to F6 which may not be
used for other functions with two or more
variables. In the following, we examine the
results obtained for F6.
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Figure 2. Changesin cost due to penalising the features exhibited by a local minimum.

6. Experimentation with the F6 Function

Following Davis [4], we used 22bits for
representing ead variable. An equal number
of feaures was used to cover the domain of
eadh variable (n=m). The dgorithm was
relatively insensitive to the parameter A and
performed well for values of A greaer than
0.2. The value 0.25 for A was used in the tests.
Experiments were performed for varyingn (i.e.
number of features per variable) to determine
how this parameter affeds GLS. The vaues
tried for n were 5, 10, 15, 20, 50, and 100.
Fifty runs from random solutions (random
binary strings) were performed for ead value
of n considered with the iteration limit set to
10,000 locd search improvement cycles. Table
1 illustrates the results obtained. The best
setting proved to be n=m=5. Under this
setting, the dgorithm succealed in finding the
exad optimal solution (0,0) in 100% of 50
runs. Under all settings, the dgorithms found
the exad optimum many times.

This performance further improves if more
time is given to the dgorithm. For example, in
the cae (n=m=100) where most failures

occurred (28 out of 50 runs), we performed the
same experiment but this time dlowed the
algorithm to complete 100000 locd seach
iterations. The performance of GLS
significantly improved and the dgorithm
found the exad optimum in 50 aut of 50 runs
(no failures).

The main observation made was that GLS
performance degraded as the number of
feaures used increased. More fegures meant
more effort to leave aparticular areabut also
more caeful exploration. For this particular
function, diversificaion of seach to sample
the whole seach space proved important to
find the globa minimum quickly. The
distribution of points visited for n=m=10
during 10,000 iterations of locd seach is
shown in Figure 3. During the particular run
that generated Figure 3, the optimal solution
was found ealy and after 1965 iterations.
Despite that, the dgorithm was alowed to
continue until 10,000 iterations were
completed to get a better picture of the
solutions visited by the dgorithm. As one can
seein Figure 3, the dgorithm distributed its
efforts over the whole of the search spacebut
visited mainly locd minima. That is why
points in are aranged in concentric cycles
around the paint (0,0).

No. of fedures n=m=5 n=m=10 n=m=15 n=m=20 n=m=50 n=m=100
Mean Cost 0.00E+00 455E-11 3.19E-10 2.73E-10 1.97E-04 3.21E-04
Best Solution 0.00E+00 |0.00E+00 |0.00E+00 |0.00E+00 |0.00E+00  [0.00E+00
Worst Solution 0.00E+00 [2.28E-09 2.28E-09 2.28E-09 9.72E-03 9.72E-03
Mean Iterations 228732 256622 295408 35269 413266 373848
Mean Time 2823333 [3.150668 |3.634334 |4.382333 [5.188333 [4.654
Mean Funct. Eval. |104958.6 1177788 135588 1618784 189%675.6 1715785
Optimal Runs 50 49 43 44 31 22
Total runs 50 50 50 50 50 50

Table 1. GLS performance on F6 (Time in CPU seconds on a DEC Alpha 3000/600 175MH2).
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Figure 3. All the points visited during the first 10,000 iterations of local search.

Figure 4. 3-D View of Figure 3.



This is more dealy demonstrated in Figure
where a 3-D view of the visited pdnts is
shown. The shape formed is exadly the bottom
part of F6 which suggests that the points are
adualy locd minima in the grea majority.
Note here, that GLS is exploring binary space
and not numeric space In general, locd
minima and their attradion basinsin the binary
space ae different from the locd minima and
their attradion basins appeaing in the numeric
space Because of the symmetricd landscape,
the binary encoding used and the structure of
the GLS feaures, the mgjority of the solutions
visited by GLS in the cae of F6 have the
property of being numeric locd minima &
illustrated in Figures 3 and 4. This is not
necessarily the cae for functions with non-
symmetricd landscgpes. In these caes, grey
encodings (see[3] for example) and/or feaures
of different structure may vyield better
performance than the encoding scheme and
fedures used in this paper.

7. Conclusions

In this paper, we have shown that GLS has the
potential to be utilised in the optimisation of
red-valued functions with numerous locd
minima, which are mnsidered to be difficult
for gradient-based methods. The gplicaion of
GL S to optimise the F6 function, a benchmark
for Genetic Algorithms, has been examined.
GLS repeaedly locaed the exad global
optimum of the function. The paper also serves
in demonstrating how artificial solution
feaures can be aeded when no feaures can
be deduced from the structure of the objedive
function, which adds suppart to our claim that
GLS haswide gplicaions.
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