
41

times over a number of iterations then the term
c

p
i

i1+
 in Eq. 2.5 decreases for the

feature, diversifying choices and giving the chance for other features to also be

penalised. The policy implemented is that features are penalised with a frequency

proportional to their cost. Due to Eq. 2.5, features of high cost are penalised more

frequently than those of low cost. The search effort is distributed according to promise

as it is expressed by the feature costs and the already visited local minima, since only

the features of local minima are penalised. Incremental distribution of the search effort

according to prior information, though in a probabili stic framework, can be found in a

class of methods based on the optimal search theory of Koopman [Koo57, Sto83].

Also, counter based schemes for search diversification analogous to that of GLS are

used under the name counter-based exploration in reinforcement learning [Thr92].

The basic GLS algorithm as described so far is depicted in Figure 2.1.

procedure GuidedLocalSeach(S, g, λ, [I1, ...,IM], [c1,...,cM], M)
begin

k ← 0;
s0 ← random or heuristically generated solution in S;
for i ←1 until M do /* set all penalties to 0 */

pi ← 0;
while StoppingCriterion do
begin

h ← g + λ * ∑pi*I i ;
sk+1 ← LocalSearch(sk, h);
for i ←1 until M do

util i ← Ii(sk+1) * ci / (1+pi);
for each i such that utili is maximum do

pi ← pi + 1;
k ← k+1;

end
s* ← best solution found with respect to cost function g;
return s*;

end

where S: search space, g: cost function, h: augmented cost function, λ: regularisation parameter, Ii:
indicator function for feature i, ci: cost for feature i, M: number of features, pi: penalty for feature i.

 Figure 2.1 Guided Local Search in pseudocode

42

As we will see in the following chapters, this simple algorithm can be applied with

simple modifications to a variety of optimisation problems. Applying the algorithm to

a problem usually involves defining the features to be used, assigning costs to the

them and finally substituting the procedure LocalSearch in the GLS loop with a local

search algorithm for the problem in hand.

2.7 Regularisation Parameter

Something that has been left out from the analysis so far is the regularisation

parameter λ in the augmented cost function Eq. 2.2. This parameter determines the

degree up to which constraints on features are going to affect local search. Let us

examine how the regularisation parameter is going to affect the moves performed by a

local search method. A move alters the solution, adding new features and removing

existing features, whilst leaving other features unchanged. In the general case, the

difference ∆h in the value of the augmented cost function due to a move is given by

the following difference equation:

Eq. 2.6 ∆ ∆ ∆h g p Ii
i

M

i= + ⋅
=
∑λ

1

.

As we can see in Eq. 2.6, if λ is large then the selected moves will solely remove the

penalised features from the solution and the information will fully determine the

course of local search. This introduces risks because information may be wrong.

Conversely, if λ is 0 then local search will not be able to escape from local minima.

However, if λ is small and comparable to ∆g then the moves selected will aim at the

combined objective of improving the solution (taking into account the cost

differences) and also removing the penalised features (taking into account the

43

information). Since the difference ∆g is problem dependent, the regularisation

parameter is also problem dependent. GLS can be quite tolerant to the choice of the λ,

operating well for a wide range of values. In the applications, we are going to

elaborate further on the role of this parameter and on how it affects GLS in specific

problems.

2.8 Fast Local Search and Other Improvements

There are both minor and major optimisations that significantly improve the basic

GLS method. For example, instead of calculating the utiliti es for all the features, we

can restrict ourselves to the local minimum features since for non-local minimum

features the utilit y as given by Eq. 2.5 takes the value 0. Also, the evaluation

mechanism for moves needs to be changed to work eff iciently on the augmented cost

function. Usually, this mechanism is not directly evaluating the cost of the new

solution generated by the move but it calculates the difference ∆g caused to the cost

function. This difference in cost should be combined with the difference in penalty as

is shown in Eq. 2.6. This can be easily done and has no significant impact on the time

needed to evaluate a move. In particular, we have to take into account only features

that change state (being deleted or added). The penalty parameters of the features

deleted are summed together. The same is done for the penalty parameters of features

added. The change in penalty due to the move is then simply given by the difference:

Eq. 2.7 − +∑ ∑p pj k
over all features j added over all features k deleted

.

Leaving behind the minor improvements, we turn our attention to the major

improvements. In fact, these improvements do not directly refer to GLS but to local

search. Greedy local search selects the best solution in the whole neighbourhood. This

44

can be very time-consuming, especially if we are dealing with large instances of

problems. Next, we are going to present Fast Local Search (FLS), which drastically

speeds up the neighbourhood search process by redefining it. The method is a

generalisation of the approximate 2-opt method proposed in [Ben92] for the

Travelli ng Salesman Problem. The method also relates to Candidate List Strategies

used in tabu search (see section 1.5.5).

FLS works as follows. The current neighbourhood is broken down into a number of

small sub-neighbourhoods and an activation bit is attached to each one of them. The

idea is to scan continuously the sub-neighbourhoods in a given order, searching only

those with the activation bit set to 1. These sub-neighbourhoods are called active

sub-neighbourhoods. Sub-neighbourhoods with the bit set to 0 are called inactive

sub-neighbourhoods and they are not being searched. The neighbourhood search

process does not restart whenever we find a better solution but it continues with the

next sub-neighbourhood in the given order. This order may be static or dynamic (i.e.

change as a result of the moves performed).

Initially, all sub-neighbourhoods are active. If a sub-neighbourhood is examined and

does not contain any improving moves then it becomes inactive. Otherwise, it remains

active and the improving move found is performed. Depending on the move

performed, a number of other sub-neighbourhoods are also activated. In particular, we

activate all the sub-neighbourhoods where we expect other improving moves to occur

as a result of the move just performed. As the solution improves the process dies out

with fewer and fewer sub-neighbourhoods being active until all the

sub-neighbourhood bits turn to 0. The solution formed up to that point is returned as

an approximate local minimum.

45

The overall procedure could be many times faster than conventional local search. The

bit setting scheme encourages chains of moves that improve specific parts of the

overall solution. As the solution becomes locally better the process is settling down,

examining fewer moves and saving enormous amounts of time which would otherwise

be spent on examining predominantly bad moves.

Although fast local search procedures do not generally find very good solutions, when

they are combined with GLS they become very powerful optimisation tools.

Combining GLS with FLS is straightforward. The key idea is to associate solution

features to sub-neighbourhoods. The associations to be made are such that for each

feature we know which sub-neighbourhoods contain moves that have an immediate

effect upon the state of the feature (i.e. moves that remove the feature from the

solution). The combination of the GLS algorithm with a generic FLS algorithm is

depicted in Figure 2.2.

The procedure GuidedFastLocalSearch in Figure 2.2 works as follows. Initially, all

the activation bits are set to 1 and FLS is allowed to reach the first local minimum (i.e.

all bits 0). Thereafter, and whenever a feature is penalised, the bits of the associated

sub-neighbourhoods and only those are set to 1. In this way, after the first local

minimum, fast local search calls examine only a number of sub-neighbourhoods and

in particular those which associate to the features just penalised. This dramatically

speeds up GLS. Moreover, local search is focusing on removing the penalised features

from the solution instead of considering all possible modifications.

46

procedure GuidedFastLocalSearch(S, g, λ, [I1, ...,IM], [c1,...,cM], M, L)
begin

k ← 0; s0 ← random or heuristically generated solution in S;
for i ←1 until M do pi ← 0; /* set all penalties to 0 */
for i ←1 until L do biti ← 1; /* set all sub-neighbourhoods to the active state */
while StoppingCriterion do
begin

h ← g + λ * ∑pi*I i ;
sk+1 ← FastLocalSearch(sk, h,[bit1, …,bitL], L);
for i ←1 until M do util i ← Ii(sk+1) * ci / (1+pi);
for each i such that utili is maximum do
begin

pi ← pi + 1;
SetBits ← SubNeighbourhoodsForFeature(i);
/* activate sub-neighbourhoods relating to feature i penalised */
for each bit b in SetBits do b ← 1;

end
k ← k+1;

end
s* ← best solution found with respect to cost function g;
return s*;

end

procedure FastLocalSeach(s, h, [bit1, …,bitL], L)
begin

while ∃ bit, bit = l do
for i ←1 until L do
begin

if biti = 1 then /* search sub-neighbourhood for improving moves */
begin

Moves ← set of moves in sub-neighbourhood i;
for each move m in Moves do
begin

s′ ← m(s);
/* s′ is the solution generated by move m when applied to s */
if h(s′) < h(s) then /* for minimisation */
begin

biti ← 1;
SetBits ← SubNeighbourhoodsForMove(m);
/* spread activation to other sub-neighbourhoods */
for each bit b in SetBits do b ← 1;
s ← s′;
goto ImprovingMoveFound

end
end
biti ← 0; /* no improving move found */

end
ImprovingMoveFound: continue;

end;
return s;

end

where S: search space, g: cost function, h: augmented cost function, λ: regularisation parameter, I i: indicator
function for feature i, ci: cost for feature i, M: number of features, L: number of sub-neighbourhoods, pi: penalty for
feature i, bit i: activation bit for sub-neighbourhood i, SubNeighbourhoodsForFeature(i): procedure which returns
the bits of the sub-neighbourhoods corresponding to feature i, and SubNeighbourhoodsForMove(m): procedure
which returns the bits of the sub-neighbourhoods to spread activation to when move m is performed.

Figure 2.2 Guided Local Search combined with Fast Local Search in pseudocode

47

Apart from the combination of GLS with fast local search, other variations of GLS to

be presented in the applications include:

• features with variable costs where the cost of a feature is calculated during search

and in the context of a particular local minimum (see chapter 4)

• penalties with limited duration (see chapter 4)

• multiple feature sets where each feature set is processed in parallel by a different

penalty modification procedure (see chapter 4)

• feature set hierarchies where more important features overshadow less important

feature sets in the penalty modification procedure (see chapter 5).

Before presenting the applications of GLS, we examine some of the links between

GLS and other general optimisation methods also based on local search.

2.9 Connections with Other General Optimisation Techniques

2.9.1 Simulated Annealing

Non-monotonic temperature reduction schemes used in SA (see section 1.4) also

referred to as re-annealing or re-heating schemes are of particular interest in relation

to the work presented in this thesis. In these schemes, the temperature is decreased as

well as increased in a attempt to remedy the problem that the annealing process

eventually settles down faili ng to continuously explore good solutions. In a typical

SA, good solutions are mainly visited during the mid and low parts of the cooling

schedule. For resolving this problem, it has been even suggested annealing at a

constant temperature high enough to escape local minima but also low enough to visit

them [Con90]. It is seems extremely diff icult to find such a temperature because it has

48

to be landscape dependent (i.e. instance dependent) if not dependent of the area of the

search space currently searched.

Guided Local Search presented in this thesis can be seen as addressing this problem of

visiting local minima but also being able to escape from them. Instead of random

up-hill moves, penalties are utili sed to force local search out of local minima. The

amount of penalty applied is progressively increased in units of appropriate magnitude

(i.e. parameter λ) until the method escapes from the local minimum. GLS can be seen

adapting to the different parts of the landscape. The algorithm is continuously visiting

new solutions rather than converging to any particular solution as SA does.

Another important difference between this work and SA is that GLS is a deterministic

algorithm. This is also the case for a wide number of algorithms developed under the

tabu search framework.

2.9.2 Tabu Search

GLS has close links with tabu search. Both techniques can be seen as using

information (historical in the case of tabu search, prior and historical information in

the case of GLS) to impose constraints on local search either by modifying the

neighbourhood (tabu search) or by modifying the cost function to be minimised

(GLS). Let us consider the neighbourhood graph where each node is a solution to the

problem and the arcs are the moves which transform one solution to another. GLS

adopts a “solution or node”-centred approach to constrain local search by elevating the

cost of specific nodes (i.e. solutions), rather than the “move or arc”-centred approach

adopted by many tabu search variants which prevents local search from traversing

specific arcs (i.e. executing moves which are tabu). The two approaches can be seen to

49

be seeking the same goal (i.e. guide local search by using constraints) though they use

different means to achieve that.

Solution attributes used in tabu search can been seen as corresponding to the solution

features used in GLS. However, constraints on solution attributes by tabu search may

take many forms (i.e. tabu lists, frequency-based penalties) while in GLS a single

mechanism is used which utili ses indicator functions to introduce constraints on

solution features.

Rather than elevate selected penalties to drive the search out of a local minimum, as

GLS does, the typical tabu search approach seeks a best move to escape from a local

minimum based on the current evaluation function, influenced by prior memory and

by candidate list strategies. Penalties in tabu search are customarily applied to selected

attributes only after the move is made, as a way of preventing a return. Tabu search

also typically maintains a recency-based memory to provide a mechanism to avoid

reinstating selected attribute combinations found in recently generated solutions.

Diversification strategies that make use of frequency-based memory are generally

activated periodically, rather than continuously as in GLS.

A more detailed list of the various search elements that are present in both techniques

along with the ways they are realised in each individual technique is given in Table

2.1. As we can see in this table, despite the differences between tabu and guided local

search, there is common ground in many areas. This common ground may well be

utili sed in the future to define a more abstract class of methods which one may call

Intelligent Search methods.

50

Tabu Search Guided Local Search
Local search guidance
mechanism

modified neighbourhood, intelligent
restarts

modified cost function

Information used mainly the moves executed but also
transition & residence frequencies and
elite solution sets

feature costs, local minima visited

Constraints • hard constraints on moves or
solution attributes based on moves
recently executed, aspiration criteria
override the hard constraints

• soft constraints on moves or
solution attributes based on
transition or residence frequencies

soft constraints on solution features
based on search plan for
distributing search effort taking into
account the local gradients

Memory Utilised • tabu lists recording attributes of
moves recently executed

• frequency based memory recording
the frequency of moves or solution
attributes during search

memory of penalty modification
actions taken by GLS also used for
recording penalties on features

Intervention Period • every iteration (recency-based
memory, some types of
diversification strategies)

• every N iterations or when local
search fails to discover new better
solutions (intensification strategies,
diversification strategies)

at a local minimum of the
augmented cost function

Search Objectives • avoid getting trapped in local
minima and reversing changes
created by the moves (proactive
approach).

• Intensification: restart when slow
progress (reactive approach)

• Diversification: examine history
and penalise moves frequently
executed or solution attributes
frequently appearing in solutions
(reactive approach)

• escape from local minima
(reactive approach)

• plan and distribute search efforts
in the short or long term
according to feature costs taking
into account the local gradients
(proactive approach).

Intensification -
Diversification balance

- The lambda parameter of GLS
controls that.
• Low lambda leads to

intensification (due to cost
function term in the augmented
cost function).

• High lambda leads to
diversification (due to penalty
function term in the augmented
cost).

Neighbourhood
Reduction Mechanism

Candidate Lists Strategies Fast Local Search fully integrated
with the diversification -
intensification mechanisms of GLS

Table 2.1 Links between Guided Local Search and Tabu Search methods.

51

2.10 GLS Applications

GLS is a generalisation of GENET and as such it can be applied with the same success

as GENET in any of the applications of the latter (i.e. CSP problems). Apart from that,

GLS has been successfully applied to a set of seven problems in combinatorial

optimisation. This set includes the famous Travelli ng Salesman and Quadratic

Assignment problems, the real-world problems of Radio Link Frequency Assignment,

Workforce Scheduling, Bandwidth Packing and Maximum Channel Assignment, and

finally a continuous Nonconvex Optimisation problem. FLS has also been applied to

all these problems except for the Quadratic Assignment Problem and the NonConvex

Optimisation problem. All these applications of GLS and FLS are examined in this

thesis except for the Bandwidth Packing and Maximum Channel Assignment

problems for which GLS and FLS have been applied in a way similar to that for the

Workforce Scheduling problem examined in chapter 6. However, demonstration

programs have been developed for both the Bandwidth Packing and Maximum

Channel Assignment problems which can be obtained via WWW at

http://cswww.essex.ac.uk/CSP/demos.

52

3. Travelling Salesman Problem

Chapter 3

Travelling Salesman Problem

The Travelli ng Salesman Problem (TSP) is one of the most famous problems in

combinatorial optimisation. In this chapter, we are going to examine how guided local

search and fast local search can be applied to the problem. The combination of GLS

and FLS with TSP local search heuristics of different eff iciency and effectiveness will

be studied in an effort to determine the dependence of GLS on local search.

Comparisons will be made with some of the best TSP heuristic algorithms and general

optimisation techniques which will demonstrate the advantages of GLS over

alternative heuristic approaches suggested so far for this problem.

3.1 The Problem

There are many variations of the Travelli ng Salesman Problem (TSP). In this work,

we examine the classic symmetric TSP. The problem is defined by N cities and a

symmetric distance matrix D=[dij] which gives the distance between any two cities i

53

and j. The goal in TSP is to find a tour (i.e. closed path) which visits each city exactly

once and is of minimum length. A tour can be represented as a cyclic permutation π

on the N cities if we interpret π(i) to be the city visited after city i, i = 1,... ,N. The cost

of a permutation is defined as:

 Eq. 3.1 () ()g di i
i

N

π π=
=
∑

1

and gives the cost function of the TSP [PS82].

Recent and comprehensive surveys of TSP methods are those by Laporte [Lap92],

Reinelt [Rei94] and Johnson & McGeoch [JM95]. The reader may also refer to

[LLKS85] for a classical text on the TSP. The state of the art is that problems up to

1,000,000 cities are within the reach of specialised approximation algorithms [Ben92].

Moreover, the optimal solutions have been found and proven for non-trivial problems

of size up to 7397 cities [JM95]. Nowadays, TSP plays a very important role in the

development and testing of new optimisation techniques. In this context, we examine

how guided local search and fast local search can be applied to this problem.

3.2 Local Search Heuristics for the TSP

Local search for the TSP is synonymous with k-Opt moves. Using k-Opt moves,

neighbouring solutions can be obtained by deleting k edges from the current tour and

reconnecting the resulting paths using k new edges. The k-Opt moves are the basis of

the three most famous local search heuristics for the TSP, namely 2-Opt [Cro58],

3-Opt [Lin65] and Lin-Kernighan (LK) [LK73]. These heuristics define

neighbourhood structures which can be searched by the different neighbourhood

search schemes described in sections 1.3 and 2.8, leading to many local optimisation

54

algorithms for the TSP. The neighbourhood structures defined by 2-Opt, 3-Opt and

LK are as follows [Joh90]:

2-Opt. A neighbouring solution is obtained from the current solution by deleting two

edges, reversing one of the resulting paths and reconnecting the tour (see Figure 3.1).

The worst case complexity for searching the neighbourhood defined by 2-Opt is O(n2).

3-Opt. In this case, three edges are deleted. The three resulting paths are put together

in a new way, possibly reversing one or more of them (see Figure 3.1). 3-Opt is much

more effective than 2-Opt, though the size of the neighbourhood (possible 3-Opt

moves) is larger and hence more time-consuming to search. The worst case

complexity for searching the neighbourhood defined by 3-Opt is O(n3).

Figure 3.1 k-Opt moves for the TSP

Lin-Kernighan (LK). One would expect “4-Opt” to be the next step after 3-Opt but

actually that is not the case. The reason is that 4-Opt neighbours can be remotely apart

because “non-sequential” exchanges such as that shown in Figure 3.1 are possible for

k ≥ 4. To improve 3-Opt further, Lin and Kernighan developed a sophisticated edge

exchange procedure where the number k of edges to be exchanged is variable [LK73].

The algorithm is mentioned in the literature as the Lin-Kernighan (LK) algorithm and

it was considered for many years to be the “uncontested champion” of local search

a) 2-Opt move b) 3-Opt move c) Non-sequential 4-Opt move

55

heuristics for the TSP. Lin-Kernighan uses a very complex neighbourhood structure

which we will briefly describe here.

LK, instead of examining a particular 2-Opt or 3-Opt exchange, is building an

exchange of variable size k by sequentially deleting and adding edges to the current

tour while maintaining tour feasibilit y. Given node t1 in tour T as a starting point: In

step m of this sequential building of the exchange: edge (t1, t2m) is deleted, edge (t2m,

t2m+1) is added, and then edge (t2m+1, t2m+2) is picked so that deleting edge (t2m+1, t2m+2)

and joining edge (t2m+2, t1) will close up the tour giving tour Tm. The edge (t2m+2, t1) is

deleted if and when step m+1 is executed. The first three steps of this mechanism are

illustrated in Figure 3.2.

Figure 3.2 The first three steps of the Lin-Kernighan edge exchange mechanism

As we can see in this figure, the method is essentially executing a sequence of 2-Opt

moves. The length of these sequences (i.e. depth of search) is controlled by the LK’s

gain criterion which limits the number of the sequences examined. In addition to that,

limited backtracking is used to examine the sequences that can be generated if a

number of different edges are selected for addition at steps 1 and 2 of the process.

The neighbourhood structure described so far, although it provides the depth needed,

is lacking breadth, potentially missing improving 3-Opt moves. To gain breadth, LK

m = 1 m = 2 m =3

t4

=

t3

=

t2

=

t1

=

t3

=

t4

=

t1

=

t2

=

t1

=

t2

=

t3

=

t4

=

t6

=t5

=

t7

=

t8

=

t6

=t5

=

56

temporarily allows tour infeasibilit y, examining the so-called “ infeasibilit y” moves

which consider various choices for nodes t4 to t8 in the sequence generation process,

examining all possible 3-Opt moves and more. Figure 3.3 ill ustrates the

infeasibilit y-move mechanism. The interested reader may refer to the original paper by

Lin and Kernighan for a more elaborate description of this mechanism.

Figure 3.3 Lin-Kerhighan’s infeasibility moves

LK is the standard benchmark against which all heuristic methods are tested. The

worst case complexity for searching the LK neighbourhood is O(n5).

Implementations of 2-Opt, 3-Opt and LK-based local search methods may vary in

performance. A very good reference for eff iciently implementing local search

procedures based on 2-Opt and 3-Opt is that by Bentley [Ben92]. In addition to that,

Reinelt [Rei94] and also Johnson and McGeoch [JM95] describe some improvements

that are commonly incorporated in local search algorithms for the TSP. We will refer

to some of them later in this chapter. The best reference for the LK algorithm is the

original paper by Lin and Kernighan [LK73]. In addition to that, Johnson and

McGeoch [JM95] provide a good insight into the algorithm and its operations along

with information on the many variants of the method. A modified LK version which

avoids the complex infeasibilit y moves without significant impact on performance is

described in [MM93].

t4

=

t3

=

t2

=

t1

=

t3

=

t4

=

t1

=

t2

=

t1

=

t2

=

t3

=

t4

=

t6

=t5

=

t7

=t8

=

t6

=

t5

=

57

Fast local search and guided local search can be combined with the neighbourhood

structures of 2-Opt, 3-Opt and LK with minimal effort. This will become evident in

the next sections where fast local search and guided local search for the TSP are

presented and discussed.

3.3 Fast Local Search Applied to the TSP

A fast local search procedure for the TSP using 2-Opt has already been suggested by

Bentley [Ben92]. Under the name Don’ t Look Bits, the same approach has been used

in the context of 2-Opt, 3-Opt and LK by Codenotti et al. [CMMR96] to reduce the

running times of these heuristics in very large TSP instances. More recently, Johnson

et al. [JBMR96] also use the technique to speed up their LK variant (see [JM95]). In

the following, we are going to describe how fast local search variants of 2-Opt, 3-Opt

and LK can be developed on the guidelines for fast local search presented in section

2.8.

2-Opt, 3-Opt and LK-based local search procedures are seeking tour improvements by

considering for exchange each individual edge in the current tour and trying to extend

this exchange to include one (2-Opt), two (3-Opt) or more (LK) other edges from the

tour. Usually, each city is visited in tour order and one or both3 the edges adjacent to

the city are checked if they can lead to an edge exchange which improves the solution.

We can exploit the way local search works on the TSP to partition the neighbourhood

in sub-neighbourhoods as required by fast local search. Each city in the problem may

be seen as defining a sub-neighbourhood which contains all edge exchanges

3 In our work, if approximations are used such as nearest neighbour lists or fast local search then both edges
adjacent to a city are examined, otherwise only one of the edges adjacent to the city is examined.

58

originating from either one of the edges adjacent to the city. For a problem with N

cities, the neighbourhood is partitioned into N sub-neighbourhoods, one for each city

in the instance. Given the sub-neighbourhoods, fast local search for the TSP works in

the following way (see also Figure 2.2).

Initially all sub-neighbourhoods are active. The scanning of the sub-neighbourhoods,

defined by the cities, is done in an arbitrary static order (e.g. from 1st to Nth city).

Each time an active sub-neighbourhood is found, it is searched for improving moves.

This involves trying either edge adjacent to the city as bases for 2-Opt, 3-Opt or LK

edge exchanges, depending on the heuristic used. If a sub-neighbourhood does not

contain any improving moves then it becomes inactive (i.e. bit is set to 0). Otherwise,

the first improving move found is performed and the cities (corresponding

sub-neighbourhoods) at the ends of the edges involved (deleted or added by the move)

are activated (i.e. bits are set to 1). This causes the sub-neighbourhood where the

move was found to remain active and also a number of other sub-neighbourhoods to

be activated. The process always continues with the next sub-neighbourhood in the

static order. If ever a full rotation around the static order is completed without making

a move, the process terminates and returns the tour found. The tour is declared

2-Optimal, 3-Optimal or LK-Optimal, depending on the type of the k-Opt moves used.

3.3.1 Local Search Procedures for the TSP

Apart from fast local search, first improvement and best improvement local search

(see section 1.3) can also be applied to the TSP. First improvement local search

immediately performs improving moves while best improvement (greedy) local search

performs the best move found after searching the complete neighbourhood.

59

Fast local search for the TSP described above can be easily converted to first

improvement local search by searching all sub-neighbourhoods irrespective of their

state (active or inactive). The termination criterion remains the same with fast local

search: that is, to stop the search when a full rotation of the static order is completed

without making a move. The LK algorithm as originally proposed by Lin and

Kernighan [LK73] performs first improvement local search.

Fast local search can also be modified to perform best improvement local search. In

this case, the best move is selected and performed after all the sub-neighbourhoods

have been exhaustively searched. The algorithm stops when a solution is reached

where no improving move can be found. The scheme is very time consuming to be

combined with the 3-Opt and LK neighbourhood structures and it is mainly intended

for use with 2-Opt. Considering the above options, we implemented seven local

search variants for the TSP (implementation details will be given later in this chapter).

These variants were derived by combining the different search schemes at the

neighbourhood level (i.e. fast, first improvement, and best improvement local search)

with any of the 2-Opt, 3-Opt, or LK neighbourhood structures. Table 3.1 ill ustrates the

variants and also the names we will use to distinguish them in the rest of the chapter.

Name Local Search Type Neighbourhood Type
BI-2Opt Best Improvement 2-Opt
FI-2Opt First Improvement 2-Opt
FLS-2Opt Fast Local Search 2-Opt
FI-3Opt First Improvement 3-Opt
FLS-3Opt Fast Local Search 3-Opt
FI-LK First Improvement LK
FLS-LK Fast Local Search LK

Table 3.1 Local search procedures implemented for the study of GLS on the TSP.

60

3.4 Guided Local Search Applied to the TSP

3.4.1 Solution Features and Augmented Cost Function

The first step in the process of applying GLS to a problem is to find a set of solution

features that are accountable for part of the overall solution cost. For the TSP, a tour

includes a number of edges and the solution cost (tour length) is given by the sum of

the lengths of the edges in the tour (see Eq. 3.1). Edges are ideal features for the TSP.

First, they can be used to define solution properties (a tour either includes an edge or

not) and second, they carry a cost equal to the edge length, as this is given by the

distance matrix D=[dij] of the problem. A set of features can be defined by

considering all possible undirected edges eij (i = 1..N, j = i+1..N, i ≠ j) that may

appear in a tour with feature costs given by the edge lengths dij. Each edge eij

connecting cities i and city j is attached a penalty pij initially set to 0 which is

increased by GLS during search. These edge penalties can be arranged in a symmetric

penalty matrix P=[pij] . As mentioned in section 2.5, penalties have to be combined

with the problem’s cost function to form the augmented cost function which is

minimised by local search. This can be done by considering the auxili ary distance

matrix:

 Eq. 3.2 D′ = D + λ⋅P = [dij + λ⋅pij] .

Local search must use D′ instead of D in move evaluations. GLS modifies P and

(through that) D′ whenever local search reaches a local minimum. The edges

penalised in a local minimum are selected according to the utilit y function (Eq. 2.5),

which for the TSP takes the form:

61

Eq. 3.3 () ()Util tour e I tour
d

pij e

ij

ij
ij

, ,= ⋅
+1

where

Eq. 3.4 ()I tour
e tour

e toure

ij

ij
ij

=
∈
∉

î

1

0

,

,
.

3.4.2 Combining GLS with TSP Local Search Procedures

GLS as depicted in Figure 2.1 makes no assumptions about the internal mechanisms

of local search and therefore can be combined with any local search algorithm for the

problem, no matter how complex this algorithm is.

The TSP local searches of section 3.3.1 to be integrated with GLS need only to be

implemented as procedures which, provided with a starting tour, return a locally

optimal tour with respect to the neighbourhood considered. The distance matrix used

by local search is the auxili ary matrix D′ described in the last section. A reference to

the matrix D is still needed to enable the detection of better solutions whenever moves

are executed and new solutions are visited. There is no need to keep track of the value

of the augmented cost function since local search heuristics make move evaluations

using cost differences rather than re-computing the cost function from scratch.

Interfacing GLS with fast local searches for the TSP requires a littl e more effort (see

also Figure 2.2). In particular, each time we penalise an edge in GLS, the

sub-neighbourhoods corresponding to the cities at the ends of this edge are activated

(i.e. bits set to 1). After the first local minimum, calls to fast local search start by

examining only a number of sub-neighbourhoods and in particular those which

associate to the edges just penalised. Activation may spread to a limited number of

other sub-neighbourhoods because of the moves performed though, in general, local

62

search quickly settles in a new local minimum. This dramatically speeds up GLS,

forcing local search to focus on edge exchanges that remove penalised edges instead

of evaluating all possible moves.

3.4.3 How GLS Works on the TSP

Let us now give an overview of the way GLS works on the TSP. Starting from an

arbitrary solution, local search is invoked to find a local minimum. GLS penalises one

or more of the edges appearing in the local minimum, using the utilit y function Eq. 3.3

to select them. After the penalties have been increased, local search is restarted from

the last local minimum to search for a new local minimum. If we are using fast local

search then the sub-neighbourhoods (i.e. cities) at the ends of the edges penalised need

also to be activated. When a new local minimum is found or local search cannot

escape from the current local minimum, penalties are increased again and so forth.

The GLS algorithm constantly attempts to remove edges appearing in local minima by

penalising them. The effort invested by GLS to remove an edge depends on the edge

length. The longer the edge, the greater the effort put in by GLS. The effect of this

effort depends on the regularisation parameter λ of GLS. A high λ causes GLS

decisions to be in full control of local search, overriding any local gradient

information while a low λ causes GLS to escape from local minima with great

diff iculty, requiring many penalty cycles before a move is executed. However, there is

always a range of values for λ for which the moves selected aim at the combined

objective to improve the solution (taking into account the gradient) and also remove

the penalised edges (taking into account the GLS decisions). If longer edges persist in

appearing in solutions despite the penalties, the algorithm will diversify its choices,

trying to remove shorter edges too.

63

As the penalties build up for both bad and good edges frequently appearing in local

minima, the algorithm starts exploring new regions in the search space, incorporating

edges not previously seen and therefore not penalised. The speed of this “continuous”

diversification of search is controlled by the parameter λ. A low λ slows down the

diversification process, allowing the algorithm to spend more time in the current area

before it is forced by the penalties to explore other areas. Conversely, a high λ speeds

up diversification, at the expense of intensification.

From another viewpoint, GLS realises a “selective” diversification which pursues

many more choices for long edges than short edges by penalising the former many

more times than the later. This selective diversification achieves the goal of

distributing the search effort according to prior information as expressed by the edge

lengths. Selective diversification is smoothly combined with the goal of intensifying

search by setting λ to a value low enough to allow the local search gradients to

influence the course of local search. Escaping from local minima comes at no expense

because of the penalties but alone without the goal of distributing the search effort, as

implemented by the selective penalty modification mechanism, is not enough to

produce high quality solutions.

3.5 Evaluation of GLS in the TSP

To investigate the behaviour of GLS on the TSP, we conducted a series of

experiments. The results presented in subsequent sections attempt to provide a

comprehensive picture of the performance of GLS on the TSP. First, we examine the

combination of GLS with 2-Opt, the simplest of the TSP heuristics. The benefits from

using fast local search instead of best improvement local search are clearly

demonstrated, along with the abilit y of GLS to find high quality solutions in small to

64

medium size problems. These results for GLS are compared with results for Simulated

Annealing and Tabu Search when these techniques use the 2-Opt heuristic.

From there on, we focus on eff icient techniques for the TSP based on GLS. The

different combinations of GLS with the local search procedures of Table 3.1 are

examined and conclusions are drawn on the relation between GLS and local search.

Eff icient GLS variants are compared with methods based on the Lin-Kernighan

algorithm (known to be the best heuristic techniques for the TSP).

3.5.1 Experimental Setting

In the experiments conducted, we used problems from the publicly available library of

TSP problems, TSPLIB [Rei91]. Most of the instances included in TSPLIB have

already been solved to optimality and they have been used in many papers in the TSP

literature.

For each algorithm evaluated, ten runs from different random initial solutions were

performed and the various performance measures (solution quality, running time etc.)

were averaged. The solution quality was measured by the percentage excess above the

best known solution (or optimal solution if known), as given by the formula:

Eq. 3.5 excess= ×
solution cost - best known solution cost

best known solution cost
100.

Unless otherwise stated, all experiments were conducted on DEC Alpha 3000/600

machines (175 MHz) with algorithms implemented in GNU C++.

3.5.2 Regularisation Parameter λλ
The only parameter of GLS which requires tuning is the regularisation parameter λ.

The GLS algorithm performed well for a relatively wide range of values when we

65

tested it on problems from TSPLIB with either one of the 2-Opt, 3-Opt or LK

heuristics. Experiments showed that GLS is quite tolerant to the choice of λ as long as

λ is equal to a fraction of the average edge length in good solutions (e.g. local

minima). These findings were expressed by the following equation for calculating λ:

Eq. 3.6 λ = ⋅a
g

N

()local minimum
 ,

where g(local minimum) is the cost of a local minimum tour produced by local search

(e.g. first local minimum before penalties are applied) and N the number of cities in

the instance. Eq. 3.6 introduces a parameter a which, although instance-dependent,

results in good GLS performance for values in the more manageable range (0,1].

Experimenting with a, we found that it depends not only on the instance but also on

the local search heuristic used. In general, there is an inverse relation between a and

local search effectiveness. Not-so-effective local search heuristics such as 2-Opt

require higher a values than more effective heuristics such as 3-Opt and LK. This is

because the amount of penalty needed to escape from local minima decreases as the

effectiveness of the heuristic increases and therefore lower values for a have to be

used to allow the local gradients to affect the GLS decisions. For 2-Opt, 3-Opt and

LK, the following ranges for a generated high quality solutions in the TSPLIB

problems.

The lower bounds of these intervals represent typical values for a that enable GLS to

escape from local minima at a tolerable rate. If values less than the lower bounds are

used, then GLS requires too many penalty cycles to escape from local minima. In

Heuristic Suggested range for a
2-Opt 1/8 ≤ a ≤ ½
3-Opt 1/10 ≤ a ≤ ¼
LK 1/12 ≤ a ≤ 1/6

Table 3.2 Suggested ranges for parameter a when GLS is combined with different TSP heuristics.

66

general, the lower bounds depend on the local search heuristic used and also the

structure of the landscape (i.e. depth of local minima). On the other hand, the upper

bounds give a good indication of the maximum values for a that can still produce

good solutions. If values greater than the upper bounds are used then the algorithm is

exhibiting excessive bias towards removing long edges and faili ng to reach high

quality local minima. In general, the upper bounds also depend on the local search

heuristic used but they are mainly affected by the quality of the information contained

in the feature costs (i.e. how accurate is the assumption that long edges are preferable

over short edges in the particular instance).

3.6 Guided Local Search and 2-Opt

In this section, we look into the combination of GLS with the simple 2-Opt heuristic.

More specifically, we present results for GLS with best improvement 2-Opt local

search (BI-2Opt) and fast 2-Opt local search (FLS-2Opt). The set of problems used in

the experiments consisted of 28 small to medium size TSPs from 48 to 318 cities all

from TSPLIB. The stopping criterion used was a limit on the number of iterations not

to be exceeded. An iteration for GLS with BI-2Opt was considered one local search

iteration (i.e. complete search of the neighbourhood) and for GLS with FLS-2Opt, a

call to fast local search as in Figure 2.2. The iteration limit for both algorithms was set

to 200,000 iterations. In both cases, we tried to provide the GLS variants with plenty

of resources in order to reach the maximum of their performance.

The exact value of λ used in the runs was manually determined by running a number

of test runs and observing the sequence of solutions generated by the algorithm. A

well -tuned algorithm generates a smooth sequence of gradually improving solutions.

A not so well tuned algorithm either progresses very slowly (λ is lower than it should

67

be) or very quickly finds no more than a handful of good local minima (λ is higher

than it should be). The values for λ determined in this way were corresponding to

values for a around 0.3. Ten runs from different random solutions were performed on

each instance included in the set of problems and the various performance measures

(excess, running time to reach the best solution etc.) were averaged. The results

obtained are presented in Table 3.3.

Both GLS variants found solutions with cost equal to the optimal cost in the majority

of runs. GLS with BI-2Opt failed to find the optimal solutions (as reported by Reinelt

in [Rei91] and also [Rei94]) in only 15 out of the total 280 runs. From another

Problem GLS with BI-2Opt GLS with FLS-2Opt
optimal runs
out of 10

Mean
Excess (%)

Mean CPU
Time (sec)

optimal runs
out of 10

Mean
Excess(%)

Mean CPU
Time (sec)

att48 10 0.0 0.77 10 0.0 0.4
eil51 10 0.0 1.62 10 0.0 0.46
st70 10 0.0 7.68 10 0.0 1.2
eil76 10 0.0 3.83 10 0.0 0.97
pr76 10 0.0 15.1 10 0.0 3.01
gr96 10 0.0 16.48 10 0.0 2.26
kroA100 10 0.0 11.27 10 0.0 1.25
kroB100 10 0.0 16.36 10 0.0 2.46
kroC100 10 0.0 12.2 10 0.0 0.74
kroD100 10 0.0 12.94 10 0.0 1.78
kroE100 10 0.0 35.68 10 0.0 2.46
rd100 10 0.0 10.75 10 0.0 2.74
eil101 10 0.0 19.49 10 0.0 2.37
lin105 10 0.0 17.46 10 0.0 2.06
pr107 10 0.0 150.28 10 0.0 5.41
pr124 10 0.0 22.47 10 0.0 1.56
bier127 10 0.0 254.36 10 0.0 24.67
pr136 9 0.0009 416.78 10 0.0 32.16
gr137 10 0.0 66.54 10 0.0 7.82
pr144 10 0.0 52.84 10 0.0 6.95
kroA150 10 0.0 257.06 10 0.0 7.03
kroB150 10 0.0 289.02 10 0.0 44.85
u159 10 0.0 74.35 10 0.0 6.9
rat195 8 0.01 525.48 10 0.0 55.15
d198 0 0.08 1998.37 0 0.05 353.97
kroA200 10 0.0 614.6 10 0.0 50.16
kroB200 10 0.0 665.3 10 0.0 61.79
lin318 8 0.01 4484.4 9 0.005 346.44

Table 3.3 Performance of 2-Opt based variants of GLS on small to medium size TSP instances.

68

viewpoint, the algorithm was successful in finding the optimal solution in 94.6% of

the runs. Ten out of the 14 failures referred to a single instance namely d198.

However, the solutions found for d198 were of high quality and on average within

0.08% of optimality.

GLS with FLS-2Opt found the optimal solutions in 3 more runs than GLS with

BI-2Opt, missing the optimal solution in only 11 out of the 280 runs (96.07% success

rate). In particular, the algorithm missed only once the optimal solution for lin318 but

still found no optimal solution for d198 which proved to be a relatively ‘hard’

problem for both variants. GLS using fast local search was on average ten times faster

than GLS using best improvement local search and that without compromising on

solution quality. In the worst case (att48), it was two times faster while in the best

case (kroA150) it was thirty seven times faster. Remarkably, GLS with fast local

search was able in most problems to find a solution with cost equal to the optimum

(already known) in less than 10 seconds of CPU time on the DEC Alpha 3000/600

machines used.

The results presented in this section clearly demonstrate the abilit y of GLS even when

combined with 2-Opt the simplest of TSP heuristics to find consistently the optimal

solutions for small to medium size TSPs. The use of fast local search introduces

substantial savings in running times without compromising in solution quality.

3.6.1 Comparison with General Methods for the TSP

The above performance of GLS is remarkable considering that GLS is not an exact

method and that in this case it only used the short-sighted 2-Opt heuristic. Searching

the related TSP literature, we could not find any other approximation methods that use

only the simple 2-Opt move and consistently find optimal solutions for problems up to

69

318 cities. Only the Iterated Lin-Kernighan algorithm and its variants [Joh90, JM95,

JBMR96] share the same consistency in reaching the optimal solutions. These

algorithms will be considered later in this chapter.

A meaningful comparison that can be made is between GLS using 2-Opt and other

general methods that also use the same heuristic. For that purpose, we implemented

simulated annealing [KGV83] and a tabu search variant for the TSP suggested by

Knox [Kno94].

3.6.2 Simulated Annealing

The Simulated Annealing (SA) algorithm implemented for the TSP was the one

described by Johnson in [Joh90] and uses geometric cooling schedules (see section

1.4.1). The algorithm generates random 2-Opt moves. If a move improves the cost of

the current solution then it is always accepted. Moves that do not improve the cost of

the current solution are accepted with probability:

e T

−∆

where ∆ is the difference in cost due to the move and T is the current temperature. In

the final runs, we started the algorithm from a relatively high temperature (around

50% of moves were accepted). At each temperature level the algorithm was allowed to

perform a constant number of trials to reach equili brium. After reaching equili brium,

the temperature was multiplied by the cooling rate a which was set to a high value (a

= 0.9) . To stop the algorithm, we used the scheme with the counter described in

[JAMS89].

70

3.6.3 Tabu Search

The tabu search variant implemented was the one proposed by Knox [Kno94] using a

combination of tabu restrictions and aspiration level criteria. The method is briefly

described in here.

Tabu search performs best improvement local search selecting the best move in the

neighbourhood but only amongst those not characterised as tabu. Determining the

tabu status of a move is very important in tabu search and holds the key for the

development of efficient recency-based memory (see section 1.5).

In this tabu search variant for the TSP, a 2-Opt move is classified as tabu only if both

added edges of the exchange are on the tabu list. If one or both of the added edges are

not on the tabu list, then the candidate move is not classified as tabu. Updating the

tabu list involves placing the deleted edges of the 2-Opt exchanges performed on the

list. If the list is full , the oldest elements of the list are replaced by the new deleted

edge information.

In order for a 2-Opt exchange to override tabu status, both added edges of the

exchange must pass the aspiration test. An individual edge passes the aspiration test if

the new tour resulting from the candidate exchange is better than the aspiration values

associated with the edge. The aspiration values of edges are the tour cost which exists

prior to making the candidate 2-Opt move. Only edges deleted by the exchanges

performed have their values updated.

For the experiments reported here, the tabu list size was set to 3N (where N is the

number of cities in the problem) as suggested by Knox [Kno94]. Tabu search was

allowed to run for 200,000 iterations which is equivalent in terms of number of moves

evaluated to the number of iterations GLS with BI-2Opt was given on the same

instances.

71

3.6.4 Simulated Annealing and Tabu Search Compared with GLS

Simulated annealing and tabu search were tested on 8 instances from the greater set of

28 instances mentioned above. The results were averaged as with GLS. Table 3.4

ill ustrates the results for simulated annealing and tabu search compared with those for

GLS with FLS-2Opt on the same instances. Results are also contrasted with the best

solution found by repeating BI-2Opt starting from random tours until a total of

200,000 local search iterations were completed.

As we can see in Table 3.4, the superiority of GLS over the tabu search variant and

simulated annealing is evident. The tabu search variant found easily the optimal

solutions for small problems and it scaled well for larger problems. However, it was

many times slower than GLS and moreover failed to reach the solution quality of GLS

in the larger problems. Simulated annealing had a consistent behaviour finding good

solutions for all problems but failed to reach the optimal solutions in all but 3 runs.

All three meta-heuristics significantly improved over the performance of repeated

2-Opt.

Problem
Name

GLS with FLS-2Opt Simulated Annealing Tabu Search Repeated BI-2Opt
(200,000 iterations)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

eil51 0.0 0.46 0.73 6.34 0.0 1.14 0.23 42.4
eil76 0.0 0.97 1.21 18.0 0.0 5.24 1.85 153.45
eil101 0.0 2.37 1.76 33.29 0.0 61.41 3.97 319.15
kroA100 0.0 1.25 0.42 37.36 0.0 21.34 0.34 706.35
kroC100 0.0 0.74 0.80 36.58 0.25 4.80 0.33 1301.98
kroA150 0.0 7.03 1.86 103.32 0.03 413.06 1.41 3290.95
kroA200 0.0 50.16 1.04 229.38 0.72 776.93 1.7 731.1
lin318 0.005 346.44 1.34 829.46 1.31 2672.80 3.11 9771.28

Table 3.4 GLS, Simulated Annealing, and Tabu Search performance on TSPLIB instances.

72

3.7 Efficient GLS Variants for the TSP

In order to study the combinations of GLS with higher order heuristics such as 3-Opt

and LK, a library of TSP local search procedures was developed in C++. The library

comprises all l ocal search procedures of Table 3.1 and allows combinations of GLS

with any one of these procedures. Furthermore, a number of approximations (not used

in the GLS of section 3.6) are adopted which further reduce the computation times of

local search and GLS as reported in section 3.6. In the rest of the chapter, we will

examine and report results for these efficient variants of GLS.

The most significant approximation introduced is the use of a pre-processing stage

which finds and sorts by distance the 20 nearest neighbours of each city in the

instance. 2-Opt, 3-Opt and LK were considering in exchanges only edges to these 20

nearest neighbours (see also [Rei94, JM95]). Each time the penalty was increased for

an edge, the nearest neighbour li sts of the cities at the ends of the edge were reordered

though no new neighbours were introduced.

To reduce the computation times required by 3-Opt, 3-Opt was implemented as two

locality searches each of which looks for a “short enough” edge to extend further the

exchange (see [Ben92] for details). The LK implementation was exactly as proposed

by Lin and Kernighan [LK73] incorporating their lookahead and backtracking

suggestions (i.e. backtracking at the first two levels of the sequence generation,

considering at each step only the five smallest and available candidate edges that can

be added to the tour and taking into account in the selection of the edges to be added

the length of the edges to be deleted by these additions).

The library is portable to most UNIX machines though experiments reported in here

were solely performed on DEC Alpha workstations 3000/600 (175 MHz) using a

library executable generated by the GNU C++ compiler.

73

The set of problems used in the evaluation of the GLS variants included 20 problems

from 48 to 1002 cities all from TSPLIB. For each variant tested, 10 runs were

performed and 5 minutes of CPU time were allocated to each algorithm in each run.

To measure the success of the variants, we considered the percentage excess above the

optimal solution as in Eq. 3.5. The normalised lambda parameter a was provided as

input to the program and λ was determined after the first local minimum using Eq.

3.6. For GLS variants using 2-Opt, a was set to a = 1/6 while the GLS variants based

on 3-Opt used the slightly lower value a = 1/8 and the LK variants the even lower

value a = 1/10. The full set of results for the various combinations of GLS with local

search can be found in Appendix A. Next, we focus on selected results from this set.

3.7.1 Results for GLS with First Improvement Local Search

Figure 3.4 graphically ill ustrates the results for the first improvement versions of

2-Opt, 3-Opt and LK when combined with GLS. In this figure, we see that the

0

1

2

3

4

5

6

7

at
t4

8

ei
l7

6

kr
oA

10
0

bi
er

12
7

kr
oA

15
0

u1
59

kr
oA

20
0

gr
20

2

gr
22

9

gi
l2

62

lin
31

8

gr
43

1

pc
b4

42

at
t5

32

u5
74

ra
t5

75

gr
66

6

u7
24

ra
t7

83

pr
10

02

Problem

M
ea

n
 E

xc
es

s
(%

)

GLS-FI-LK

GLS-FI-3Opt

GLS-FI-2Opt

Figure 3.4 Performance of GLS variants using first improvement local search procedures

74

combination of GLS with FI-3Opt and FI-LK significantly improves over the

performance of GLS with FI-2Opt especially when applied to large problems. FI-LK

combined with GLS achieved the best performance amongst the three methods tested.

3.7.2 Results for GLS with Fast Local Search

Figure 3.5 graphically ill ustrates the results obtained for GLS when combined with the

fast local search variants of 2-Opt, 3-Opt and LK. GLS with FI-LK (found to be best

amongst the first improvement versions of GLS) is also displayed in the figure as a

point of reference. In this figure, we can see that the fast local search variants of GLS

are much better than the best of the first improvement local search variants (i.e.

GLS-FI-LK). Another far more important observation is that for fast local search the

2-Opt variant is better than the 3-Opt variant which in turn is better than the LK

variant. This is exactly the opposite order than one would have expected. One possible

explanation can be derived by considering the strength of GLS. More specifically,

FLS-2Opt allows GLS to perform many more penalty cycles in the time given than its

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

at
t4

8

ei
l7

6

kr
oA

10
0

bi
er

12
7

kr
oA

15
0

u1
59

kr
oA

20
0

gr
20

2

gr
22

9

gi
l2

62

lin
31

8

gr
43

1

pc
b4

42

at
t5

32

u5
74

ra
t5

75

gr
66

6

u7
24

ra
t7

83

pr
10

02

Problem

M
ea

n
 E

xc
es

s
(%

)

GLS-FLS-LK

GLS-FLS-3Opt

GLS-FLS-2Opt

GLS-FI-LK

Figure 3.5 Performance of GLS variants using fast local search procedures

75

FLS-3Opt or FLS-LK counterparts. More GLS penalty cycles seem to increase

eff iciency at a level which outweighs the benefits from using a more sophisticated

local search procedure such as 3-Opt or LK.

The remarkable effects of GLS on local search are further demonstrated in Figure 3.6

where GLS with FLS-2Opt is compared against Repeated FLS-2Opt and Repeated

FI-LK. In Repeated FLS-2Opt and Repeated FI-LK, local search is simply restarted

from a random solution after a local minimum and the best solution found over the

many runs is returned. These two algorithms along with other versions of repeated

local search were tested under the same settings with the GLS variants. Appendix A

includes the full set of results for repeated local search. In Figure 3.6, we can see the

huge improvement in the basic 2-Opt heuristic when this is combined with GLS. GLS

is the only technique known to us which when applied to 2-Opt can outperform the

Repeated LK algorithm (and that without requiring excessive amounts of CPU time)

as illustrated in the same figure.

0

2

4

6

8

10

12

at
t4

8

ei
l7

6

kr
oA

10
0

bi
er

12
7

kr
oA

15
0

u1
59

kr
oA

20
0

gr
20

2

gr
22

9

gi
l2

62

lin
31

8

gr
43

1

pc
b4

42

at
t5

32

u5
74

ra
t5

75

gr
66

6

u7
24

ra
t7

83

pr
10

02

Problem

M
ea

n
 E

xc
es

s
(%

)

Repeated FI-LK

Repeated FLS-2Opt

GLS-FLS-2Opt

Figure 3.6 Improvements introduced by the application of GLS to the simple FLS-2Opt

76

3.8 Comparison with Specialised TSP algorithms

3.8.1 Iterated Lin-Kernighan

The Iterated Lin-Kernighan algorithm (not to be confused with Repeated LK) has

been proposed by Johnson [Joh90] and it is considered to be one of the best if not the

best heuristic algorithm for the TSP [JM95]. Iterated LK uses LK to obtain a first local

minimum. To improve this local minimum, the algorithm examines other local

minimum tours “near” the current local minimum. To generate these tours, Iterated

LK first applies a random and unbiased non-sequential 4-Opt exchange (see Figure

3.1) to the current local minimum and then optimises this 4-Opt neighbour using the

LK algorithm. If the tour obtained by the process (i.e. random 4-Opt followed by LK)

is better than the current local minimum then Iterated LK makes this tour the current

local minimum and continues from there using the same neighbour generation

process. Otherwise, the current local minimum remains as it is and further random

4-Opt moves are tried. The algorithm stops when a stopping criterion based either on

the number of iterations or computation time is satisfied. Figure 3.7 contains the

original description of the algorithm as given in [Joh90].

1. Generate a random tour T.

2. Do the following for some prespecified number M of iterations:

2.1. Perform an (unbiased) random 4-Opt move on T, obtaining T′.

2.2. Run Lin-Kernighan on T′, obtaining T″.

2.3. If length(T″) ≤ length (T′), set T = T″.

3. Return T′.

Figure 3.7 Iterated Lin-Kernighan as described by Johnson in [Joh90]

77

The random 4-Opt exchange performed by Iterated LK is mentioned in the literature

as the “double-bridge” move and plays a diversification role for the search process,

trying to propel the algorithm to a different area of the search space preserving at the

same time large parts of the structure of the current local minimum. Martin et al.

[MOF92] describe this action as a “kick” and show that can be also used with 3-Opt in

the place of LK. The same authors also suggest the combination of the method with

Simulated Annealing (Long Markov Chains method). Martin and Otto [MO96] further

demonstrate the eff iciency of this last algorithm on the TSP and also the Graph

Partitioning problem though they admit that simulated annealing does not significantly

improve the method for TSP problems up to 783 cities. Finally, Johnson and

McGeoch [JM95] review Iterated LK and its variants and provide results for both

structured and random TSP instances.

Iterated LK or Iterated 3-Opt share some of the principles of GLS in the sense that

they produce a sequence of diversified local minima though this is conducted in a

random rather than a systematic way. Furthermore, iterated local search accepts the

new solution, produced by the 4-Opt exchange and the subsequent LK or 3-Opt

optimisation, only if it improves over the current local minimum (or it is slightly

worse in the case of Large Markov Chains Method which uses simulated annealing) .

Iterated LK outperforms Repeated LK previously thought to be the “champion” of

TSP heuristics and also long simulated annealing runs [MO96]. More recent

experiments show that even sophisticated tabu search variants of LK cannot improve

over Iterated LK [ZD95] which rightly deserves the title of the “champion” of TSP

meta-heuristics.

To compare Iterated LK and its other variants such as Iterated 3-Opt with GLS, we

extended our C++ library mentioned above to allow the iterated local search scheme

78

to be combined with the local search procedures of Table 3.1 included in the library.

In particular, a random and unbiased Double-Bridge (DB) move was performed in a

local minimum. The solution obtained was optimised by either one of the procedures

of Table 3.1 before compared against the current local minimum. The new solution

was accepted only if it improved over the current local minimum. To combine iterated

local search with fast local search procedures, we activated the sub-neighbourhoods

corresponding to the cities at the ends of the edges involved in the Double-Bridge

move (see also [CMMR96]). The above extensions to the library made available a

general meta-heuristic method applicable to all the local search procedures of Table

3.1. We will refer to this method as the Double-Bridge (DB) meta-heuristic.

We tested all the possible combinations of the DB meta-heuristic with the local

searches of Table 3.1 (except for BI-2Opt) on the set of 20 problems used to test the

GLS combinations. The same time limit (5 minutes of CPU time on DEC Alpha

3000/600 machines) was used and ten runs were performed on each instance in the

set. The percentage excess was averaged in each problem for each DB variant. The

best combination proved to be that of the DB heuristic with FLS-LK which

outperformed DB with FI-LK (this last algorithm is roughly the same with the original

method proposed by Johnson [Joh90]). The results for the various combinations of

DB with local search are included in Appendix A.

79

Table 3.5 presents the results obtained for DB with FLS-LK and DB with FI-LK

compared with those for GLS with FLS-2Opt found to be the best GLS variant. As a

point of reference, we also provide results for FI-LK when repeated from random

starting points and for the same amount of time. As we can see in Table 3.5, GLS with

FLS-2Opt is better on average than both DB with FLS-LK and DB with FI-LK. The

solution quality improvement over these methods although small it i s very significant

given that these methods are amongst the best heuristic techniques for the TSP. Note

here that GLS with FLS-2Opt is by far a simpler method requiring only a fraction of

the programming effort required to develop the DB variants based on LK.

To further test GLS against the DB variants of LK, we used a set of 66 TSPLIB

problems from 48 to 2392 cities but this time we performed longer runs lasting 30

minutes of CPU time each. This amount of time on the DEC Alpha machines used

translates to many hours of CPU time on an average PC where most of these

Problem Mean Excess (%) over 10 runs
GLS with FLS-2Opt DB with FLS-LK DB with FI-LK Repeated FI-LK

att48 0 0 0 0
eil76 0 0 0 0
kroA100 0 0 0 0
bier127 0 0 0 0.0301
kroA150 0 0 0 0.00226
u159 0 0 0 0
kroA200 0 0 0 0.02452
gr202 0 0 0.00921 0.14143
gr229 0.00431 0.00475 0.01412 0.0977
gil262 0.00421 0 0.01682 0.05467
lin318 0.02641 0.24079 0.25578 0.62957
gr431 0.02392 0.22239 0.3327 0.67964
pcb442 0.04431 0.08173 0.06637 0.48525
att532 0.08994 0.08163 0.22502 0.53023
u574 0.14144 0.0924 0.11435 0.73838
rat575 0.09892 0.09745 0.13731 0.80762
gr666 0.20628 0.17587 0.41888 0.83762
u724 0.16822 0.16655 0.35696 0.93367
rat783 0.16125 0.15331 0.24075 1.00045
pr1002 0.62063 0.44633 1.04742 1.5046
Average Excess 0.07949 0.08816 0.16178 0.42488

Table 3.5 GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan.

80

algorithms are most likely to be utili sed. Because of the large number of instances

used and the long time the algorithms were allowed to run, one run was performed on

each instance. The results from the experiments are presented in Table 3.6.

Even in these longer runs, GLS with FLS-2Opt still finds better solutions than the DB

variants of LK. This result is of great significance since it further supports our claim

that the application of GLS on FLS-2Opt successfully converted the method to a

powerful algorithm. As we can see in Table 3.6, the method is able to compete and

even outperform highly specialised heuristic methods for the TSP.

The relative gains from the GLS and also DB meta-heuristic are further ill ustrated in

Figure 3.8. In this figure, we give the absolute improvement in average solution

quality (i.e. excess above the optimal solution) by the GLS and DB variants over the

corresponding repeated local search variants in the set of 20 problems from TSPLIB.

0.26

1.06

2.96

0.34

1.42

4.85

-0.30

0.33

2.98

0.10

1.49

5.14

-1

0

1

2

3

4

5

6

F
I-LK

F
I-3O

pt

F
I-2O

pt

F
LS

-LK

F
LS

-3O
pt

F
LS

-2O
pt

A
bs

ol
ut

e
Im

pr
ov

em
en

t
=

M
ea

n
E

xc
es

s
of

 R
ep

ea
te

d
L

oc
al

 S
ea

rc
h

(%
)

-
M

ea
n

E
xc

es
s

of
 G

L
S

or
 D

B
 V

ar
ia

nt
 (

%
) DB Improvement

GLS Improvement

Figure 3.8 Improvements in solution quality by the GLS and DB meta-heuristics in a set of 20 TSPLIB
problems

