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(Scen06-Scen10). For problem Scen11, the other methods tried to find an assignment

that satisfied the constraints and therefore no comparison can be made with GLS

which went further trying to minimise the number of different values used. In terms of

run times GLS was between 6 and 56 times faster than extended GENET while tabu

search required an enormous amount of time in comparison with either extended

GENET or GLS probably because of inefficient implementation.

Table 5.6 provides further evidence on the superiority of GLS over extended GENET.

The solution quality of GLS is compared with that of extended GENET on the

insoluble problems (Scen06-Scen09). Results for extended GENET are from [Sch95].

                                                          

9 For Scen11, GLS minimizes the number of different values used while tabu search and extended GENET simply
try to find a assignment that satisfied the constraints.

RLFAP best solution found found optimum average time
Instance GLS Ext.

GENET
Tabu
Search

GLS Ext.
GENET

Tabu
Search

GLS Ext.
GENET

Tabu
Search

Scen01 16 16 18 30% 20% n.a. 8.77sec 75sec 3hrs
Scen02 14 14 14 100% 100% 70% 0.59sec 9sec 4min
Scen03 14 14 14 40% 10% 20% 5.62sec 32sec 34min
Scen04 46 46 n.a. 100% 100% n.a. 0.46sec 12sec n.a.
Scen05 792 792 n.a. 100% 30% n.a. 8.50sec 8min n.a.
Scen06 3,628 3,852 9,180 - - - 2min 10min 14min
Scen07 427,054 435,132 6,541,695 - - - 1.3min 18min 46min
Scen08 294 366 1,745 - - - 3.9min 32min 6hrs
Scen09 15,805 n.a. 16,873 - - - 2.2min n.a. 18min
Scen10 31,533 n.a 31,943 - - - 5min n.a 2hrs
Scen119 28 values  0 viol. 0 viol. 80% 60% 60% 1.6min 25sec 54min

Table 5.5 Comparison of GLS with tabu search and extended GENET. Results for tabu search and extended

GENET are from Boyce et al. [BDST95].

RLFAP Average Solution Cost (Average CPU Time) Percentage excess of Ext. GENET
solutions over GLS solutions
 (Times faster than GENET)

Instance GLS Extended GENET

Scen06 4,333.8 (2 min) 5,076 (10.2 min) 17% (5 times)
Scen07 530,641.1 (1.3 min) 727,458 (18.3 min) 37% (14 times)
Scen08 335.7 (3.9 min) 451 (31.7 min) 34% (8 times)

Table 5.6 GLS and extended GENET on insoluble instances. Results for extended GENET are from

[Sch95].
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5.8 Compar ison with the CALMA Project Algor ithms

The RLFAP instances were made publicly available in the framework of the European

collaborative project CALMA (Combinatorial Algorithms for Milit ary Applications).

Six research groups from three countries participated in the project. Summary results

have been reported recently by Tiourine et al. [THL95] on a set of algorithms,

including extended GENET and tabu search mentioned in the last section, developed

by the six CALMA project research groups. In Table 5.7, we compare these summary

results (from Tiourine et al. [THL95]) with the results for GLS.

As it can be seen in Table 5.7, GLS achieves a very good performance compared with

the other algorithms and taking into account the values of the best known solutions. In

summary, it applies to all problems finding solutions of high quality while it is many

times faster than the other algorithms. Algorithms which produce marginally better

solutions than GLS (e.g. Genetic Algorithms-LU) were applied to only a subset of the

problems and require substantially more time, fine tuning and probably

implementation effort. On the other hand, although algorithms such as SA-EUT,

extended GENET-KCL and Variable Depth Search-EUT, are applied to most

problems and find solutions of good quality, they are between 5 to 100 times slower

than GLS (especially on the insoluble instances). This cannot be attributed just to the

different machines used in experiments. Besides, although the GA by UEA produces

good results for Scenarios 6 and 11, it performs badly in Scenarios 7 and 8; compared

to it, GLS is not only much faster, but also more consistent in its performance.

Bessiere et al. [BFR95] also applied arc-consistency algorithms to Scenarios 3, 5, 8

and 11. Since only the satisfiabilit y issue (not optimisation) was addressed their

results are not comparable with the rest in this section. To conclude, GLS is a highly

competitive, if not the best, method amongst the algorithms developed so far for the
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problem that are known to us. It is the fastest algorithm which consistently provides

quality solutions (never much worse than the best found so far, sometimes the best).

Significantly, this is achieved almost without any tuning required.

5.9 Discussion

We are well aware of the danger of over-generalising results obtained in competitive

tests, especially when running time is compared, as Hooker pointed out [Hoo95]. In

the experiments, we have shown that GLS is capable of solving RLFAPs where

solutions exist, and finding solutions with top quality in insoluble RLFAPs, compared

with, and in many cases, better than, other state-of-the-art algorithms designed for

RLFAPs.

The running time that we present in Table 5.7 is meant for reference only. The timing

should not be compared seriously, especially when different machines have been used

and we know nothing about the software platforms used in other research projects.

However, there is some value in reporting the running time: it gives an idea for

evaluating algorithms.

5.10 Conclusions

In this chapter, the application of the method to Partial CSPs was studied in the

context of a real world PCSP, namely the Radio Link Frequency Assignment Problem

(RLFAP). Results reported on RLFAP demonstrated the effectiveness and eff icacy of

the method. The technique finds high quality solutions in very short running times,

outperforming alternative schemes suggested for the problem. Given the generality

and effectiveness of the approach, GLS can be considered a promising optimisation

technique for real world constrained optimisation problems.
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6. Workforce Scheduling

Chapter 6

Workforce Scheduling

In the last chapter, we presented the application of GLS and FLS to a constrained

optimisation problem in which the main objective was the minimisation of constraint

violations. Constrained optimisation problems are not always of this type. In many

domains, partial solutions are sought which assign values only to a subset of the

variables such that all the problem’s constraints are satisfied. Such problems are very

useful in modelli ng overloaded resource allocation systems. In these systems, hard

resource constraints are satisfied only if a subset of activities is allocated resources or

in PCSP terms if a subset of the variables is assigned values. A penalty (or utilit y) is

defined for each activity when this activity is not allocated (or allocated) resources. If

penalties are used instead of utiliti es then the optimal solution is that which minimises

the sum of penalties for the unallocated activities. NP-hard problems such as the

Maximum Knapsack [MT90], Maximum Channel Assignment [Sim90] and
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Bandwidth Packing [LG93, AFPR93] are of this type. In this chapter, we are going to

examine BT’s Workforce Scheduling which apart from the above characteristics also

incorporates elements from the well -known Vehicle Routing Problem with Time

Windows (VRPTW) [Sol87]. The problem examined in here is representative of the

situations arising in the Work Manager job allocation system of British

Telecommunications plc. Work Manager is probably the largest automated job

allocation system in the world providing work for almost 20,000 field engineers.

6.1 BT's Workforce Scheduling Problem

The problem is to schedule a number of engineers to a set of jobs, minimising total

cost according to a function which is to be explained below. Each job is described by

a triple:

(Loc, Dur, Type)

where Loc is the location of the job (depicted by its x and y co-ordinates), Dur is the

standard duration of the job and Type indicates whether this job must be done in the

morning, in the afternoon, as the first job of the day, as the last job of the day, or

"don't care".

Each engineer is described by a 5-tuple:

(Base, ST, ET, OT_limit, Skill)

where Base is the x and y co-ordinates at which the engineer locates, ST and ET are

this engineer's starting and ending time, OT_limit is his/her overtime limit , and Skill  is

a skill factor between 0 and 1 which indicates the fraction of the standard duration that

this engineer needs to accomplish a job. In other words, the smaller this Skill factor,

the less time this engineer needs to do a job. If an engineer with skill factor 0.9 is to
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serve a job with a standard duration (Dur) of 20 then this engineer would actually take

18 minutes to finish the job.

The cost function which is to be minimised is defined as follows:

Eq. 6.1                           ( )TotalCost TC OT Dur Penalty UFi

i

NoT

i

i
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j j

j

NoJ

= + + + ×
= = =
∑ ∑ ∑
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1 1

where: 

NoT = number of engineers,
NoJ = number of jobs,
TCi = Travelling Cost of engineer i,
OTi = Overtime of engineer i,
Durj = Standard duration of job j,
UFj = 1 if job j is not served; 0 otherwise,
Penalty = constant (which is set to 60 in the tests).

The travelling cost between (x1, y1) to (x2, y2) is defined as follows:
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Here ∆x is the absolute difference between x1 and x2, and ∆y is the absolute difference

between y1 and y2. The greater of the x and y differences is halved before summing.

Engineers are required to start from and return to their bases everyday. An engineer

may be assigned more jobs than he/she can finish.

6.2 Local Search for Workforce Scheduling

To tackle BT's workforce scheduling problem, we represent a candidate solution (i.e. a

possible schedule) by a permutation of the jobs. Each permutation is mapped into a

schedule using the deterministic algorithm depicted in Figure 6.1:
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Given a permutation, local search is performed in a simple way: a pair of jobs is

examined at a time. Two jobs are swapped to generate a new permutation if the new

permutation is evaluated (using the Evaluation procedure above) to a lower cost than

the original permutation.

The starting point of local search is generated heuristically and deterministically: the

jobs are ordered by the number of quali fied engineers for them. Jobs which can be

served by the fewest number of quali fied engineers are placed earlier in the

permutation.

6.3 Fast Local Search for Workforce Scheduling

So far we have defined an ordinary first improvement local search algorithm. Each

solutions has O(n2) neighbours, where n is the number of jobs in the workforce

scheduling problem.

To apply the fast local search to workforce scheduling, each job permutation position

has associated with it an activation bit, which takes binary values (0 and 1). These bits

are manipulated according to the general FLS algorithm of section 2.8. In particular,

procedure Evaluation (input: one particular permutation of jobs)
1. For each job, order the quali fied engineers in ascending order of the distances

between their bases and the job (such orderings only need to be computed once and
recorded for evaluating other permutations).

2. Process one job at a time, following their ordering in the input permutation. For each
job x, try to allocate it to an engineer according to the ordered list of quali fied
engineers:
2.1. to check if engineer g can do job x, make x the first job of g; if that fails to

satisfy any of the constraints, make it the second job of g, and so on;
2.2. if job x can be fitted into engineer g's current tour, then try to improve g's

new tour (now with x in it): the improvement is done by a simple 2-opting
algorithm (see section 3.2), modified in the way that only better tours which
satisfy the relevant constraints will be accepted;

2.3. if job x cannot be fitted into engineer g's current tour, then consider the next
engineer in the ordered list of quali fied engineers for x; the job is
unallocated if it cannot fit into any engineer's current tour.

3. The cost of the input permutation, which is the cost of the schedule thus created, is
returned.

Figure 6.1 Algorithm for mapping job permutations into complete schedules
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1. all the activation bits are set to 1 (or "on") when local search starts;

2. the bit for job permutation position x will be switched to 0 (or "off ") if every possible swap

between the job at position x and the other jobs under the current permutation has been

considered, but no better permutation has been found;

3. the bit for job permutation position x will be switched to 1 whenever x is involved in a swap

which has been accepted.

During local search, only those job permutation positions whose activation bits are 1

will be examined for swapping. In other words, positions which have been examined

for swapping but failed to produce a better permutation will be heuristically ignored.

Positions which are involved in a successful swap recently will be examined further.

The overall effect is that the size of neighbourhood is greatly reduced and resources

are invested in examining swaps which are more likely to produce better

permutations.

6.4 Guided Local Search for Workforce Scheduling

To apply GLS to workforce scheduling, we need to implement a local search

algorithm for workforce scheduling, identify a set of features to be used and assign

costs to them. In the previous section, we have described a fast local search algorithm

for BT's workforce scheduling problem.

Our next task is to define the solution features to be used and assign costs to them. In

the workforce scheduling problem, the inabilit y to serve jobs incurs a cost, which

plays an important part in the objective function which is to be minimised. Therefore,

we intend to bias local search to serve jobs of high importance. To do so, we define a

feature for each job in the problem:
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Eq. 6.3                  ( )I schedule
job schedule
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

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The cost of this feature is given by (Dur j + Penalty) which is equal to the cost

incurred in the cost function (Eq. 6.1) when a job is unallocated. The jobs penalised in

a local minimum are selected according to the utilit y function (Eq. 2.5) which for

workforce scheduling takes the form:

Eq. 6.4                     ( ) ( )
( )

Util schedule job I schedule
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The travelli ng cost is taken care of by the ordering of engineers by their distance to the

jobs in the local search described in the Evaluation procedure above as well as

2-Opting. (If the travelli ng cost in this problem is found to play a role as important as

unallocated jobs, we could associate a penalty to each possible edge as we did for the

TSP in chapter 3 to further minimise this cost factor). Integrated into GLS, FLS will

switch on (i.e. switching from 0 to 1) the activation bits associated with the positions

where the penalised jobs currently lie.

It may be worth noting that since the starting permutation is generated heuristically,

and local search is performed deterministically, the application of FLS and GLS

presented here does not involve any randomness.

6.5 Experimental Results and Compar ison with GAs, SA and CLP.

The best results published so far on the workforce scheduling problem is in Azarmi &

Abdul-Hameed [AA95]. Azarmi & Abdul-Hameed have looked at simulated

annealing, constraint logic programming [Hen89, LWR95] and genetic algorithms

[Hol75, Gol89, Dav91, WT94, ERR94]. The results are based on a benchmark test
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problem with 118 engineers and 250 jobs. Each job can be served by 28 engineers on

average, which means the search space is roughly 28250, or 10360, in size. This suggests

that a complete search is very unlikely to succeed in finding the optimal solution.

Azarmi & Abdul-Hameed [AA95] reported results obtained by a particular genetic

algorithm (GA), two constraint logic programming (CLP) implementations, ElipSys

and CHIP, and a simulated annealing (SA) approach. Azarmi & Abdul-Hameed cited

Muller et. al. [MMS93] for the GA approach and Baker [Bak93] for the SA approach.

Results obtained by GA and CLP were "repaired" (i.e. amended by local search). All

the tests reported there relax the constraints in the problem by:

 (a) taking first jobs as AM jobs, and last jobs as PM jobs; and

 (b) allowing no overtime.

The best result (total cost) so far was 21,025, which was obtained by the SA approach.

No timing was reported on the tests. These results are shown in Table 6.1 (Group I).

To allow comparison between our results and the published ones, we have made the

same relaxation to the problem. The results are reported in Group II of Table 6.1. FLS

obtained a result of 20,732, which is better than all the reported results. This result is

further improved by GLS. The best result obtained in this group is 20,433, when λ is

set to 100 in GLS. Such results are remarkable as the best results published were

obtained by nontrivial amount of work by prominent research groups in UK. (Note

that a saving of 1% could be translated to tens of thousands of pounds per day!)

In the objective function, the overtime term is squared. This discourages overtime in

schedules, but it does not mean that a good schedule cannot have overtime. We tried

to restate this constraint, but gave each engineer a limit i n overtime. The best result,

which were found by limiti ng overtime to 10 minutes per engineer, is shown in Group

III of Table 6.1. FLS in this group obtained a result of 20,224, which was better than
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all the results in Group II. The best result in Group III , which is 19,997, was found by

GLS when λ was set to 20.

The λ parameter is the only parameter that needs to be set in GLS (there are relatively

more parameters to set in both GA and SA). The above test results show that the total

cost is not terribly sensitive to the setting of λ.

6.6 The Role of FLS in BT’s Workforce Scheduling Problem

To evaluate the role of the activation bits in the eff iciency of FLS, we compared FLS

with a best improvement local search algorithm which used the same moves as FLS,

Algorithms Total cost CPU time
(sec)

Travel cost Cost
(number) of
unallocated
jobs

over-time
cost

Group I: Best results reported in the literature (no overtime allowed):
GA 23,790 N.A. N.A. N.A. (67) disallow
GA + repair 22,570 N.A. N.A. N.A. (54) disallow
CLP - ElipSys + repair 21,292 N.A. 4,902 16,390 (53) disallow
CLP - CHIP + repair 22,241 N.A. 5,269 16,972 (48) disallow
SA 21,025 N.A. 4,390 16,660 (56) disallow

Group II: Best results on FLS and GLS with overtime disallowed:
Fast Local Search (FLS) 20,732 1,242 4,608 16,124 (49) disallow

λ = 10 20,556 5,335 4,558 15,998 (48) disallow
λ = 20 20,497 7,182 4,533 15,864 (49) disallow

Fast GLS λ = 30 20,486 6,756 4,676 15,810 (50) disallow
λ = 40 20,490 5,987 4,743 15,747 (48) disallow
λ = 50 20,450 3,098 4,535 15,915 (49) disallow
λ = 100 20,433 9,183 4,707 15,726 (48) disallow

Group III: Best results on FLS and GLS, with a maximum of 10 minutes overtime allowed:
Fast Local Search (FLS) 20,224 1,244 4,651 15,448 (51) 125

λ = 10 20,124 4,402 4,663 15,329 (50) 132
λ = 20 19,997 4,102 4,648 15,209 (49) 140

Fast GLS λ = 30 20,000 2,788 4,690 15,155 (48) 155
λ = 40 20,070 4,834 4,727 15,194 (48) 149
λ = 50 20,055 2,634 4,690 15,197 (49) 168
λ = 100 20,132 2,962 4,779 15,152 (48) 201

1. GA, CLP and SA results from Azarmi & Abdul-Hameed [AA95], Muller et. al. [MMS93] and
Baker [Bak93];

2. FLS and GLS are implemented in C++, all results obtained from a DEC Alpha 3000/600
175MHz machine.

3. The benchmark problem, which has 118 engineers and 250 jobs, was obtained from British
Telecom Research Laboratories, UK.

Table 6.1 Results obtained in BT's benchmark workforce scheduling problem.
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but without using activation bits to reduce its neighbourhood (we refer to this

algorithm as LS). The results are shown in Table 6.2.

When no overtime is allowed, FLS runs 16 times faster than LS, which converged to a

slightly worse local minimum. When a maximum of 10 minutes is allowed for

overtime, FLS runs 20 times faster than LS, though LS produced a slightly better

result. Our conclusion is that the activation bits help to speed up FLS significantly and

there is no convincing evidence that quality of results has been sacrificed in the

workforce scheduling problem.

6.7 Remarks

We have also experimented with random starting permutations and a starting

permutation with the jobs ordered by the ratio between their duration and the number

of qualified engineers. Their results are shown in Table 6.3.

Algorithms Total cost CPU time
(sec)

speedup
by FLS in
cpu time

Travel
cost

Cost
(number) of
unallocated
jobs

over-
time cost

No overtime
allowed

FLS 20,732 1,242 16 times 4,608 16,124 (49) disallow

LS 20,788 20,056 4,604 16,184 (50) disallow
Max. 10 min.
OT allowed

FLS 20,224 1,244 20 times 4,651 15,448 (51) 125

LS 20,124 25,195 4,595 15,358 (48) 171
Notes: Local Search (LS) use the same hill climbing strategy as FLS, but no activation bits are used;
Both algorithms implemented in C++, all results obtained from a DEC Alpha 3000/600 175MHz
machine.

Table 6.2 Evaluation of the efficiency of FLS.

Heuristics used in generating
starting permutation

Initial
Cost

After FLS After Fast GLS

cost cpu sec cost cpu sec
Random ordering 25,886 21,204 767 20,287 7,639
Job duration / # of qualified eng. 23,828 20,286 903 20,187 2,468
# of qualified engineers 22,846 20,224 1,218 20,132 2,962
Notes: a maximum of 10 minutes is allowed in overtime; a maximum of 500 penalty cycles is allowed
in GLS, which uses λ = 100; all programs implemented in C++; all results obtained from a DEC Alpha
3000/600 175MHz machine.

Table 6.3 Ordering heuristics used in starting permutation.
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In Table 6.3, an (almost) arbitrary λ value of 100 has been chosen to give the reader

more information about the sensitivity of GLS over this parameter (though this was

not the parameter under which the best result were generated when overtime was

allowed). Results in Table 6.3 show that the result of FLS can be affected by the initial

ordering of the jobs, though even the worst result is comparable with those reported in

the literature. However, Fast GLS is relatively insensitive to it - all the results of GLS

are better than the best result reported in the literature.

6.8 Conclusions

Real world problems are often characterised by complex objective functions, side

constraints and hierarchical structure. To deal effectively with them, it is sometimes

necessary to develop tailor-made techniques which combine together a number of

heuristics. These heuristics may operate at different stages of the optimisation process

or at different levels of the problem. Using BT’s workforce scheduling, we

demonstrated how GLS and FLS can provide the foundation for such tailor-made

techniques.

GLS and FLS easily integrate with each other and with the complex move operators

and heuristics often required. Moreover, they provide the tools to identify the most

important cost factors in the problem and minimise them effectively. Tuning is

relatively simple reducing the demands from the users of the scheduler. Finally,

solutions obtained by the GLS-FLS combination are of high quality and in the case of

BT’s workforce scheduling problem better than the best results reported in the

literature. Last but not least, this chapter viewed in conjunction with the chapter on the

RLFAP problem provides a complete guide for applying GLS and FLS to constrained

optimisation problems.
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7. Nonconvex Optimisation

Chapter 7

Nonconvex Optimisation

In the preceding chapters, we examined the application of Guided Local Search to a

number of hard combinatorial optimisation problems from the well -known TSP and

QAP to real world problems such as the RLFAP and BT’s Workforce Scheduling

problem. In this chapter, we are going to demonstrate that the potential applications of

GLS are not limited to optimisation problems of discrete nature but also to diff icult

continuous optimisation problems.

7.1 Nonconvex Optimisation and Global Optimisation Methods

Continuous optimisation problems arise in many engineering disciplines (such as

electrical and mechanical engineering) in the context of analysis, design or simulation

tasks. Particularly diff icult problems are those with non-linear multi -extremal cost

functions (that is functions with many local minima). These problems, also known as

nonconvex optimisation problems [HL95], are diff icult to solve using deterministic
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gradient-based algorithms used extensively elsewhere in continuous optimisation.

Gradient algorithms can be easily trapped in the many local minima of the cost

function, so failing to reach the global minimum.

Global Optimisation (GO) methods which seek the global minimum are utili sed to

solve such problems. The most simple global optimisation algorithm is to run a

gradient algorithm many times and from different starting points in the hope that the

global minimum will be amongst the local minima obtained over the many runs.

Example of such algorithm is the variation of the Sequential Unconstrained

Minimisation Technique suggested in [HL95]. Many other GO algorithms exist which

make use of gradient techniques or derive directly from general search methods such

as Genetic Algorithms [Hol75], Simulated Annealing [KGV83, Ing89], Function

Smoothing [ST90], Orthogonal Arrays with the GRG algorithm [KC93] to name but a

few.

7.2 Local Search for Continuous Optimisation Problems

Recently and mainly driven by the use of Genetic Algorithms [Hol75, Gol98, Dav91]

in combinatorial optimisation, GO methods have been developed which deal with

nonconvex optimisation as a combinatorial optimisation task. The idea is to convert

the continuous problem to a discrete one by encoding the real variables of the cost

function as binary strings.

In the case of binary encoding, a binary string value is interpreted to represent an

integer in base-2 notation. The mapping of the binary string to a real variable works as

follows. The binary string value is first converted to the corresponding integer. This

integer is then scaled by the appropriate coeff icient to give a real value in the desired

range (i.e. domain of variable) [Dav91]. One binary string is used for each problem
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variable and combinatorial search is utili sed to find these binary string configurations

which after decoding result in the optimal value for the real-valued cost function.

Increasing the number of bits used for representing each variable increases the

accuracy of the solution but also results in an increase of the combinatorial search

space.

Although binary encoding schemes were principally developed for Genetic

Algorithms, they have also been used in the context of local search [WZ93, BT94]. To

explain how local search operates in this case, let us consider the problem with two

variables x ∈  A ⊂  ℜ  and y ∈  B ⊂  ℜ  and a function f(x, y) to be minimised in A×B ⊂

ℜ 2. A local search move flips the value of a bit in the binary string representing the

solution (comprises the binary strings of the function’s variables). In the x-y plane, bit

flips translate to “ jumps” in either the x or y direction. The more significant the bit

changed, the larger the step of the “jump” performed. Local search starting from a

random binary string examines all possible bit flips and performs that which results in

the maximum reduction in cost (minimisation case). The new solution if better

replaces the old solution and the procedure continues from there on until a solution is

reached for which no further improvement is possible. As before, GLS can be used to

help local search escape from local minima moreover distribute search efforts in the

search space.

7.3 The Sine Envelope Sine Wave (F6) Function

As mentioned in section 7.1, nonconvex optimisation refers to non-linear

multi -extremal cost functions. An example of such a function, mentioned many times

in the literature, is the sine envelope sine wave function also known as F6 [Dav91,

WZ93, BT94]:
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Eq. 7.1                                      
( )[ ]

F x y
x y

x y
6 05

05

10 0 001

2 2 2

2 2 2( , ) .
sin .

. .
= +

+ −

+ ⋅ +

minimised in the domain [-100,100]×[-100,100]. F6 has been suggested as a

benchmark for Genetic Algorithms [SCED89].     

A cross section of the function is shown in Figure 7.1. The global minimum of F6 is

located at (0,0) where the function takes the value 0. The basin of the global minimum

is very narrow and therefore diff icult to reach unless a lucky start is made from within

the domain of attraction of the global minimum. The many local minima of the

function are arranged in concentric cycles around the global minimum forming an

ideal trap for hill -climbing based techniques. In F6, local gradients provide limited (if

any) information on the location of the global minimum. GLS may be exploited to

help local search to escape from local minima and moreover distribute search effort in

the search space.
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Figure 7.1 Cross section of F6 function



139

7.4 Guided Local Search for Global Optimisation

GLS is iteratively posting constraints which modify the landscape and guide local

search out of local minima and towards promising areas in the search space.

Constraint posting in this problem could be based on information gathered during the

search process. For example, if local search reaches a local minimum then an

assumption can be made that the global minimum is unlikely to reside in the

surrounding area. Constraints could then be introduced that exclude this area from

being searched in future iterations. These constraints are essentially soft because we

cannot be suff iciently confident that local search thoroughly searches the space around

a solution when this solution is visited.

A set of features is defined that allow us to constrain solutions. A feature can be any

solution property represented by an indicator function (see section 2.4). A simple

setting for global optimisation is to divide the domains of variables into a number of

non-overlapping and equally-sized intervals. Let us consider the variable x∈ (a,b] . A

set of features fi, i=1, ...,n, can be defined by the intervals (a0=a,a1] , (a1, a2] , ..., (an-1,

an=b]  as follows:

Eq. 7.2                                               ( ) ( ]
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Each feature fi is attached to a penalty parameter pi to allow GLS to penalise solutions

that are characterised by the feature such that they can be avoided. The cost function is

augmented with penalty terms to form the augmented cost function. This function

replaces the original function and it is minimised instead. The augmented version of

F6 is defined as follows:
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where n the number of features defined over the domain of x, m is the number of

features defined over the domain of y, and λ is the parameter that controls the relative

importance of constraints with respect to the primary cost term (i.e. function to be

minimised). Initially, all penalty parameters of features are set to 0 (pxi = 0, pyj = 0, i =

1, ..., n , j = 1, ..., m). Each time local search settles in a local minimum, we simply

increment by one the penalty parameters of the features exhibited by the local

minimum (only two at a time). This increases by 2*λ the cost of all solutions that lie

in the intersection of the zones corresponding to the penalised features and by λ the

cost of all solutions that lie in either one of these zones (see Figure 7.2). As a result,

local search will primarily avoid the rectangular area with centre the local minimum

and also to a lesser degree the two zones that run parallel to the co-ordinate axis as

shown in Figure 7.2. This simple technique can be used to minimise arbitrary

functions. In fact, there is nothing that binds the method to F6 which may not be used

for other functions with two or more variables. In the following, we examine the

results obtained for F6.

local minimum
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x

 Figure 7.2 Changes in cost due to penalising the features exhibited by a local minimum


