Problem Excess (%) in onerun per instance
GLSwith FLS-20pt |DB with FLS-LK DB with FI-LK

att48 0 0 0
eil51 0 0 0
st70 0 0 0
eil76 0 0 0
pr76 0 0 0
gro6 0 0 0
rat99 0 0 0
kroA100 0 0 0
kroB100 0 0 0
kroC100 0 0 0
kroD100 0 0 0
kroE100 0 0 0
rd100 0 0 0
eil101 0 0 0
lin105 0 0 0
pr107 0 0 0
pri24 0 0 0
bierl27 0 0 0
pri36 0 0 0
gri37 0 0 0
prld4 0 0 0
kroA150 0 0 0
kroB150 0 0 0
pri52 0.18454 0 0
ul59 0 0 0
rat195 0 0 0
d198 0 0 0
kroA200 0 0 0
kroB200 0 0 0
gr202 0 0 0
pr226 0 0 0
gr229 0 0 0
gil262 0 0 0
pr264 0 0 0
pr299 0 0 0
1in318 0 0.27124 0
fl417 0.00844 0.00849 0.42994
gr431 0 0 0.01454
pr439 0.00659 0.04104 0
pch442 0.01187 0 0
d493 0.02) 0.00857 0.09147
att532 0.0650] 0 0.04694
ali535 0.02329 0.01439 0.01439
u574 0 0.08124 0.10564
rat575 0.04424 0.08859 0.05904
p654 2.04659 2.27174 0.04619
d657 0.0184 0.0364 0.13289
gr666 0.00617 0.09984 0.20314
u724 0.05727 0.09789 0.04534
rat783 0 0.06814 0.01134
dsj1000 0.31224 0.40289 0.88747
pr1002 0.12314 0.07564 0.11654
ul060 0.05137 0.15664 0.43284
pch1173 0.14764 0.0246] 0.43767
d1291 0.22244 0.63581 1.16139
r11304 0.2024] 0 0.50364
rl1323 0.18547 0.14027 0.22909
11400 1.56009 2.58359 3.1102§
ul432 0.05294 0.27789 0.30464
d1655 0.40727 0.27844 1.19753
vm1748 0.33219 0.32387 0.75674
ul817 0.57517 0.3914 1.02094
rl1889 0.37279 0.90959 0.52449
u2152 0.61474 0.46379 0.75327
u2319 0.00724 0.25224 0.28724
pr2392 0.35209 0.27454 0.90019
Mean 0.12138 0.15575 0.20947
Standard Deviation 0.33047 0.43627 0.47294

Table 3.6 GLSwith FLS-20pt compared with variants of Iterated Lin-Kernighan (long runs).

81

As down in Figure 3.8 the DB meta-heuristic is more dfedive than GLS when
combined with LK. In fad, GLS when combined with FI-LK is even worse than
Repeaed FI-LK. This stuation damaticdly changes for fast loca seach variants
where GLS is better than DB when combined with the FLS-30pt or FLS-20pt locd
seaches improving the solution quality over repeded locd seach upto 5.14% in the
case of FLS-20pt. The overall ranking of al the variants developed in terms of
average excessin the set of 20 TSALIB problems is given in Figure 3.9, GLS with

FLS-20pt was found to be best amongst the 18 algorithms tested.

5.220

Mean Excess(%)
w

1.642 1.653 1.676 1.686
1.356

0.624 0729
3 0.425 0.432

0.330 0.37
0.079 0.08g 0156 0.162 0-226

DB-FLS-LK
GLS-FLS-30pt
DB-FI-LK
DB-FLS-30pt
GLS-FLS-LK
DB-FLS-20pt
DB-FI-30pt
GLS-FI-LK
GLS-FI-30pt
GLS-FI-20pt
DB-FI-20pt

)=
o
o
0
i
w
(%]
i
O]

Repeated FI-LK
Repeated FLS-LK
Repeated FLS-30pt
Repeated FI-30pt
Repeated FI-20pt
Repeated FLS-20pt

TSP algorithm

Figure 3.9 Overall ranking of the algorithmsin terms of solution quality when tested on a set of 20 TSPLIB problems

82

3.8.2 Genetic Local Search

In an effort to further improve the LK heuristic, Genetic Algorithms recently appeaed
which internally use LK for improving offspring solutions generated by crossover
operations. These methods, athough of grea complexity and therefore of limited
pradicd use in ou opinion, pesent theoreticd interest and they will be potentially
useful when parallel computers becane more accesble in the future. An example of
such a technique is the Genetic Locd Seach algorithm proposed by Freisleben and
Merz [FM96]. This method, in addition to using LK for improving offspring
solutions, uses a mutation operator which performs first an 4-Opt exchange on a
popuation solution and then runs LK to convert this lution to a locd minimum.
Iterated LK mentioned above can be seen as a speda case of this method.In [FM96],
results are reported for Genetic Locd Seach on TSALIB instances. The aithors
consider the results produced by the technique & superior to those pulished for any
GA approaches known to them and comparable to top quality nonGA heuristic
techniques. Fortunately, the experiments in [FM96] were dso conduwcted ona DEC
Alpha workstation runnng at 175 MHz. This permits a meaningful comparison
between this GA variant and GLS. We ran GLS-FLS-20pt on the same instances with
a=1/6 andfor an equal number of times as the GA approadc. In Table 3.7, the results

from [FM96] are compared with those we obtained for GLS using FLS-20pt.

Problem GL Swith FLS-20pt Genetic Local Search
Mean Excess Mean CPU Mean Excess Mean CPU
time (sec) time (sec)
eil51 (20 runs) 0% 1.2 0% 6
kroA100 (20 runs) 0% 1.59 0% 11
d198(20 runs) 0% 435 0% 253
att532 (10 runs) 0% 3526 0.05% 6076
rat783 (10 runs) 0% 5232 0.04% 14925

Table 3.7 GLSwith FLS-20pt compared with Genetic Local Search on five TSPLIB instances.

83

Except for d198which isahard instancefor GLS (seeresultsin sedion 3.6), GLS was
better than the GA approad finding solutions of better quality for att532 and rat783
while running faster between 1.7to 6.9times. Note here that the GA is using the best
heuristic for the TSP (i.e. DB followed by LK) while GLS the worst (i.e. 2-Opt).
Another remarkable result which emerged from these experiments was that GLS with
FLS-20pt can consistently find the optimal solutions for problems att532 and rat783.
Asfar aswe know, optimal solutions to such large problems can be @nsistently found
only by heuristic methods that are using LK (e.g. Iterated LK or its variant Large-Step
Markov Chains method).

In fad, GLS was able to find the optima solution in even larger problems. For
example, GLS with FLS-30pt found the optimal solution for a 2319city problem
from TSALIB (u2319 in lessthan 20 minutes while GLS with FLS-20pt foundthe
optimal solution to a 1002city problem from TSALIB (pr1002 in 14 hous of CPU
time despite running on Sparcstation 5 workstation which is much slower than the

DEC Alpha machines used in the rest of the experiments.

3.9 Conclusions

In this chapter, the gplicaion d GLSto the TSPwas examined. The cmbinations of
GLS with commonly used TSP heuristics were described and evaluated on pullicly
avail able instances of the TSP. GLS with FLS-20pt was foundto be the best GLS
variant for the TSP. The variant was compared and foundto be superior to genera
seach methods sich as smulated anneding and tabu seach. Furthermore, we
demonstrated that GLS with FLS-20pt is highly competitive (if not better) than some
of the best spedalised algorithms for the TSP such as Iterated Lin-Kernighan and

Genetic Local Search.

84

Nonetheless experimental results $ioud be treaed with cae. Experimentation no
matter how elaborate and extensive it may be, it can orly give indicaions of which
algorithms are better than athers and that because of the many parameters involved in
the dgorithms, differences in implementation, and the limited number of instances
used in experiments.

We can safely conclude that the evidence provided in this chapter is enough to place
GLS amongst what somebody will charaderise & efficient and effedive methods for
the TSP. Given the simplicity of the dgorithm and the e&e of tuning (i.e. single
parameter), GLS with FLS-20pt could be ansidered as an ided pradicd method for
the TSP espedally when no pogramming effort can be devoted in implementing one

of the complex specialised TSP algorithms.

85

Chapter 4

Quadratic Assignment Problem

The TSP, examined in the last chapter, is probably the most famous problem in
combinatorial optimisation. Ancther problem which has aso attraded the interest of
reseachers for many yeas is the Quadratic Assgnment Problem (QAP). QAP could
be probably listed second after the TSP in the list of the most famous combinatoria
optimisation poblems. The gplicaion d GLS to the QAP is examined in this
chapter. Problems in GLS arising from the use of fedures with variable wsts are
identified and strategies for resolving them are proposed. Comparison with state of the
art QAP agorithms demonstrates the adility of GLS to compete on equal terms with

these methods and even to outperform them.

4.1 TheProblem

Quadratic Assgnment Problem (QAP) is one of the most difficult problems in

combinatorial optimisation. The problem can model a variety of applicaions but it is

86

mainly known for its use in fadlity location poblems. For a recent QAP survey, the
reader is referred to Pardalos, Rendl, and Wolkowicz [PRW93]. In the following, we
describe the QAP in its simplest form.

Givenaset N= {1, 2, ..., n} andn x n matrices A= [&;] andB = [by], the QAP can be
stated as follows:

n n

Eq. 4.1 min > 2 A By

=1 =1

where p isapermutation o N and My isthe set of all possble permutations. There ae
several other equivalent formulations of the problem. In the fadlity locaion context,
eah permutation represents an assgnment of n fadlities to n locaions. More
spedficdly, ead pasition i in the permutation represents a locaion and its contents
p(i) the fadlity assgned to that locaion. The matrix A is cdled the distance matrix
and gives the distance between any two o the locaions. The matrix B is cdled the
flow matrix and gives the flow of materials between any two of the fadliti es. In this
work, we only consider the Symmetric QAP case for which bah the distance and flow

matrices are symmetric.

4.2 Local Search for the QAP

QAP solutions are represented by permutations. A move commonly used for the
problem is smply to exchange the @ntents of two permutation pasitions (i.e. swap the
fadliti es assgned to a pair of locaions). A best improvement locd seach procedure
starts with a random permutation. In every iteration, al possble moves (i.e. swaps)
are evaluated and the best is ®leded and performed. The dgorithm reades a locd
minimum when there is no move which improves further the st of the arrent

permutation.

87

An efficient update scheme can be used in the QAP which al ows evaluation d moves
in constant time. The scheme works only with best improvement locad seach. Move
values of the first neighbouhood seach are stored and updited eat time a new
neighbouhood seach is performed to take into acournt changes from the move last
exeauted (see[BT94] or [Tai99] for details). Move values do nd neeal to be evaluated
from scratch and thus the neighbouhoodcan be fully searched in roughly O(n?) time
instead of O(n®) required atherwise®. To evaluate moves in constant time, we have to
examine dl possble moves in ead iteration and have their values updated. Because
of that, the scheme can na be combined with FLS which examines only a number of
moves in ead iteration. FLS for the QAP requires O(n) operations to evaluate amove
and therefore O(n®) to evaluate dl moves in the neighbourhood. This prevented us
from developing a dficient version d FLS for the QAP and instead we used simple

GLS without neighbourhood reduction.

4.3 Guided L ocal Search Applied tothe QAP

Applying GLS to the QAP is a simple two-stage process of identifying the solution
fedures to be used and asggning costs to them. A set of feaures that can be used in
the QAP is the set of al possble assgnments of fadliti es to locaions (i.e. locaion
fadlity pairs). This kind d fedure is general and can be used in a variety of other
assgnment problems where anumber of variables are assgned values from finite

domains. In the QAP, there arepossible location-facility combinations (features)

4 To evaluate the change in the cost funciop4.1 caused by a move normally requife@) time. Since there
areO(n? moves to be evaluated, the search of the neighbourhood without the update scheme@duires
time.

® Features that detect assignment combinations (i.e. combinations of location-facility pairs) are also possible but
the number of features in this case rises td\Ofrmking practically impossible the storage of penalties for
problems of size n>30.

88

After deading on the feaures, the next step is to assgn costs to them. Assgnment of
fadliti esto locaions are tightly couped ore to the other because of the problem’s cost
function. For that reason, it is difficult to isolate the dfed that particular assgnments
have on the solution cost. To ded with this problem, we used variable feaure asts
where the st of afedure is evaluated in the context of the solution it appeasin. In
particular, feaure msts are evaluated ony for the feaures of the locd minimum and

their cost is given by the expression:
Eq. 4.2 c(i, pli)) = > A By
=1

where i is the location and p(i) is the fadlity assgned to that location in the locd
minimum solution. The &ove expresson for the feaure st gives the wst arising
from the flow of materials from fadlity p(i) to the other fadliti es with fadlity p(i)
placed at locationi. In alocd minimum, feaures that maximise the utility expresson
Eg. 2.5 are pendised and the mrrespondng locaion-fadlity combinations are
avoided.

To determine arange of vaues for the lambda parameter of GLS, we mnducted a
large number of test runs on problems from the pulicly available library of QAP
instances, QAPLIB [BKR91]. An equation similar to Eq. 3.6used in the TSPwas aso
derived for the QAP case. In particular, we foundthat GLS performed well for an A

given by the following parametric equation:

locad minimum
Eq. 4.3 A =aDg(oz), 1/5<ax<l1

where g(local minimum) is the st of the first locd minimum found duwing arun and

n the size of the problem. In terms of implementation, the dgorithm is given as input

89

the parameter a which is used to cdculate lambda dter the first locd minimum and

before the first features are penalised.

4.4 Thelssueof Featureswith Variable Costs

Feaures with variable wsts are apotential problem for GLS. The problem arises
becaise dedsions to penalise fedures are based on feaure wsts. If the @sts of
feaures change during seach then bad feaures may becmme good and vice versa.
Penalties imposed on tad feaures which turn good at a latter stage may prevent these
features from being used again in the solution.

For instance, let us consider a locd minimum solution where fadlity j is assgned to
locdioni. If locationi isfar from the locations of fadliti es conneded with high flows
to faality j then the assgnment of fadlity j to locaioni is a bad combination. This
resultsin a high cost for the mrrespondng feaure. GLS will penali se the cmbination
of locaion i with fadlity j and fadlity j will be assgned elsewhere. Although the
deasionis corred in this context, it may prevent locd seach from assgning fadlity |
to locaion i a a later stage in seach when the arangement of al other faaliti es
makes locaion i a good choice The GLS dedsion besed ona single locd minimum
solutionis incorredly generalised constraining many other potentially good solutions.
The result is that diversificaion is triggered prematurely and GLS leaves the good
areas of the seach spacewithou thoroughly searching them. To resolve this problem
a number of strategies were explored. After experimentation, three strategies were

identified as the most promising ones.

90

44,1 Reset Strategy

This drategy is identicd to the basic GLS depicted in Figure 2.1 with the exception
that all penalties are reset to O every t iterations. By resetting the penalties, GLS can
revisit solutions that include feaures penalised ealier in the seach process This leals
to an intensificaion d seach in the “good’ aress of the seach space which
compensates for the unnecessary diversification caused by the variable feature costs.
The drawbadk of the goproad is that GLS loases ome of its diversificaion ability
which drives the dgorithm to urexplored regions of the seach spacewhen enough
effort is gent in the promising areas. In the following, we will refer to this GLS

variant adReset-GLS.

4.4.2 Restart Strategy

Instead of resetting the penalties, the dgorithm is restarted from a “good’ solution
every t iterations. The objedive is the same & with Reset-GLS, that is to intensify
seach in the “good’ areas of the seach space The new starting points are generated
by combining the K best solutions found duing seach prior to reating the restart
point, in a way that very much resembles Genetic Algorithm approadhes. The
approad is smilar to intensificaion schemes used in the Vehicle Routing Problem by
tabu search methods [RT95] (see seclidn3.

In particular, the K best solutions found duing seach prior to the restart point are
organised in alist which is then sorted by the solution cost. A seledion pobability is
assgned to eat solution degpending on its paosition in the list. In the version d the
procedure implemented, the ten best solutions were used and the probabiliti es

assgned from best to worst solutionwere 0.36, 0.18, 0.12, 0.09, 0.07, 0.06, 0.05, 0.04,

91

0.02, and 0.01 respedively. New solutions were generated using the following
procedure.

Starting from an empty permutation and scanning the locaions from left to right, eat
locaion is assgned the same fadlity as in a solution pseudo-randamly seleded from
the list of the best solutions acrding to the éowve probabiliti es. After all |ocaions
have been assgned fadliti es, the permutation is again scanned from left to right and
fadlities which appea more than orce ae randamly replacal by the unassgned
facilities. GLS is restarted from the solution generated without resetting the penalties.
To recaitulate, the restart strategy tries to achieve seach intensificaionin the “good’
areas of the search spaceby restarting the dgorithm from a solution which is formed
by combining the best locd optima visited upto the restart point. Although variable
fedure asts may mislead the dgorithm into unpomising aress, the restart strategy
tries to bring the method kadk to the aeas of the good solutions. Moreover, diff erent
seach trajedories are tried in these aess after ead restart because of the memory of
the dgorithm (i.e. penalties) which is not cleaed. In the following, we will refer to

this GLS variant aRestart-GLS

4.4.3 Multiple Feature Sets Strategy

In the QAP, GLS deddes which feaures to penalise using the asts of fedures as
measured in the mntext of a particular locd minimum. As the dgorithm leaves this
locd minimum and swaps are performed, feadure sts gradually change up to the
point where they have totally different values from those cdculated in the locd
minimum. In ather words, the information wsed in GLS dedsions gradually becomes

invalid after the point these dedsions are made. A sensible thing to dois to remove

92

the dfeds of dedsions as on as the information they were based on lemmes
invalid.

In a more globa perspedive, information which is valid orly for a cetain period d
time shoud lea to restrictions of equal duration onlocd seach. When information
bewmes invalid or out of context, the restrictions impaosed on the basis of this
information shoud be retraded. Tabu seach as originally presented by Glover
[Glo89,Glo9(makes extensive use of this principle. This same principle can be dso
used to explain why dynamic tabu lists are preferable over their static courterparts in
many problems [Tai91, LG93]. The former, by varying the duration d restrictions,
match better than the latter the duration for which search history information is valid.
We put to use the @bove ideas and developed a strategy which overcomes the problem
of variable feaure wsts in GLS. The strategy uses a tabu list [Glo89 to retrad the
effeds of deasions made ealier in the seach process More spedficdly, penalties
increased are deaeased after a catain nunber of penalty increases is performed. The
scheme uses an array of sizet where the t most recent feaures penali sed are recorded.
The aray is treded as a drcular list, adding elements in sequence in pgasitions 1
through t and then starting over at paosition 1. Each time the pendty of a feaure is
increassed (by one unit), the fedure is inserted in the aray and the pendty of the
feature previously stored in the same position is decreased (by one unit).

One problem with this approad is that GLS totaly loses its long term memory and
therefore is unable to dversify seach. Thisis the oppasite problem from that with the
Reset-GLS and Restart-GLS variants which either reset long-term memory after a
relatively large number of iterations (Reset-GLS) or do nd reset it at all (Restart-
GLS). A smple way to work around the problem is to introduce asemnd set of
feaures identicd to the first feaure set. This fedure set is to undertake the task of

93

long term diversificaion by exploiting seach history information that is the locd
minima visited.

Penalties for this soondset are neither reset nor deaeased but only increased as in the
basic GLS providing the long-term memory neeled to drive seach to new regions.
Moreover, fedures costs are considered constant and equal to 1.0such that the search
effort is uniformly distributed amongst the features in the set.

GLS works on the two fedure sets independently and in paralel. This merely means
that in a locd minimum both sets are examined and the fegures with the highest
utility value in ead set are penadised. Additiondly, two dfferent regularisation
parameters A; and A, are used, ore for eat feaure set to all ow appropriate balancing
of short-term and long-term penalti es. In implementation terms, two parameters a; and
a, are fed as inpus to the dgorithm and the cdculation d A; and A, takes place dter
the first local minimum usingq.4.3.

In the penalty incrementation procedure of GLS for the second set (i.e. long-term
penalties), ties amongst feaures are frequent espedaly at the beginning of seach
because of the equal fedure asts. In arder to avoid penalising too many fedures, ties
are broken deterministicaly and the first feaure foundto maximise the utility function
is penalised. Experimentation with randam tie-bre&king strategies owed no
improvement in performance.

Summarising, the multiple feaure sets grategy uses two identicd fedure sets but with
different feaure sts and with penalties of different duration to acemplish the
objedives of intensification and dversificaion d seach. The first set with variable
feadure wsts is utilised to impose short-term penalties for the purposes of
intensification. The second set with constant feaure sts is utilised to impaose

long-term penalties for the purposes of diversificaion. Two independent GLS

94

processes working on these sets are used which, when combined, achieve the overall
goa of the distribution o seach effort acording to promise. The separation d
intensification and dversificdion kecane necessry in this case becaise the
information wsed to achieve eab of these two sub-goalsis valid for different periods

of time. In the following, we will refer to this GLS variantMsitiple-GLS

4.5 Experimental Evaluation of Basic GL Sand its Variants

We @nducted many experiments in order to develop the basic GLS and the various
strategies for resolving the problem with the variable feaure sts. Problems included
in QAPLIB [BKR91] were used in the experiments. A typicd value for a which
worked well for most problems tested and all variantswasa = 0.5(a; = 0.5in the cae
of Multiple-GLS). In addition to that, we found that the a, parameter used orly in
Multiple-GLS for the second feaure set needed to be smaller than the a; used for the
first feature set. A valua, = 0.25 combined very well with the valag= 0.5.

For the t parameter required by all three GLS variants, multi ples of the problem size n
were tried. For Reset-GLS and Restart-GLS large values performed better. In
particular, a value t = 200n performed well for Reset-GLS while the value t = 100n
was a good choice for Restart-GLS. Multiple-GLS required much lower values for t.
This is because the parameter serves a different purpose in this case (i.e. sets the
duration d the short-term penalties). A range of vaues for t which resulted in good
performancefor Multiple-GLSwas n <t <10n. The valuet = 4n was used to generate
all the results reported in this chapter.

The results presented in this ®dion refer to a set of ten QAP instances of sizes from
15to 40,al from QAPLIB. The set is a mixture of problems of different nature and

Size intended to test the basic GLS and its variants on dfferent types of flow and

95

distance matrices. For ead agorithm, ten runs were performed on ead instance
starting from randam solutions. The dgorithms were dlowed to run for 100,000
iterations (i.e. full neighbowhoodseaches) or urtil a solution with cost equal or less
than the best known solution® was found.Repeaed locd seach was also implemented
to give apoint of reference for measuring the success of agorithms. This last
algorithm was simply restarting local search after a local minimum.

A run was charaderised as siccesdul if it resulted in the best known solution. The
solution quality was measured in per cent excessabowve the best known solution (see

Eq. 3.5. Table 4.1lillustrates the results obtained.

Problem | best Basic GLS Reset-GLS Restart-GLS Multiple-GLS Repeated
Name known a=0.5 a=0.5, a=0.5, a,=0.5, Local Search
solution t=200n t=100n a = 0.25,
t=4n.

successful runs | successful runs | successful runs | successful runs | successful runs

(Mean Excess) | (Mean Excess) | (Mean Excess) | (Mean Excess) | (Mean Excess)
nugl15 1150 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
nug20 2570 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
rou20 725522 5 (0.022) 8 (0.002) 7 (0.015) 10 (0) 4 (0.055)
nug30 6124 10 (0) 10 (0) 9 (0.007) 10 (0) 2 (0.31)
tho30 149936 9 (0.004) 10 (0) 8 (0.046) 10 (0) 1 (0.355)
kra30a 88900 10 (0) 10 (0) 10 (0) 10 (0) 3 (0.966)
kra30b 91420 4 (0.056) 7 (0.023) 5 (0.049) 8 (0.015) 0 (0.163)
ste36a 9526 7 (0.069) 6 (0.086) 5 (0.206) 9 (0.01) 0(1.148)
ste36b 15852 1(1.156) 4 (2.324) 8 (0.343) 10 (0) 3 (0.574)
tho40 240516 0 (0.169) 0 (0.076) 0(0.142) 0 (0.051) 0 (0.849)
Total successes 66/100 75/100 72/100 87/100 33/100
Mean solution quality] 0.1476% 0.2511% 0.0808% 0.0076% 0.442%

Table 4.1 Comparison of GLSvariants for the QAP.

The results clealy demonstrate that basic GLS is better than repeded locd seach.
The dgorithm finds the best known solution in 66% of the runs, twice the successrate
of locd seach withou GLS. The strategies for resolving the problem of variable
feaure wsts had a varied success Reset-GLS, athough improved ower basic GLS in

terms of succesul runs, had a worse mean solution quality. This can be atributed to

® Exact methods generally find it difficult to solve QAP problems of size greater than 20. QAPLIB includes many
instances with size greater than 20 and therefore out of range for exact methods. These problems have been

96

the inferior diversification strategy because of the penalties being reset. On the other
hand, Restart-GLS had fewer succesul runs than Reset-GLS, though significantly
improved over basic GLS’s mean solution quality.

The sophsticated Multiple-GLS strategy paid df finding the best known solution in
87% of the runs. Moreover, the Multiple-GLS strategy achieved a remarkable mean
excess of 0.0078% unmatched by any of the other algorithms tested. Much of this
success can be dtributed to the seaond feaure set of Multiple-GLS resporsible for
diversificaion. In fad, we performed experiments with noshort-term penalties (i.e. a;
= 0). For a; = 0.5, the dgorithm was 4gill able to show a very good performance,
finding the optimal solution in 824 of the runs with a mean excess of 0.0308%.
Lower and hgher values for a, resulted in slightly worse performance This siggests
ancother strategy for overcoming the problem of fedgures with variable fegure csts
that isto set all fedure asts to the same value (i.e. use only the second fedure set of
Multiple-GLS). However, this drategy could be improved further by using short-term
penalties based on \ariable @sts to play the aucial refinement role needed in order

for the algorithm to reach a performance such as that presentedies.1

4.6 Efficient Heuristic Methodsfor the QAP

Efficient heuristic methods for the QAP are based ontabu search. Two very successul
tabu seach methods for the QAP are Robust Taboo Seach (Ro-TS) due to Talllard
[Tai91] and Readive Tabu Seach (RTS) due to Battiti and Tecdiolli [BT94]. Other
works applying tabu seach to the QAP not examined here include Skorin-Kapon

[Sko9(and Chakrapani and Skorin-Kapov [CS93] to name but two. Moreover, the

tackled in the past by many approximation methods and very good solutions are already known for them.
Whether these solutions are also optimal is an open question.

97

Genetic Hybrids (GH) method duwe to Fleurent and Ferland [FF94] which found the
best known solutions for many of the large problems in QAPLIB is based onRo-TS.
In this case, Ro-TS is used as the mutation operator which improves slutions
produced by GH’s crossover operator.

We compared GLS with Ro-TS and RTS and also GH. Before procealing to examine
these results. We briefly describe Ro-TS and RTS. For a description d GH the reader
can refer to the original paper by Fleurent and Ferland [FFO4] or to Taillard's
excdlent review and comparison d Ro-TS, RTS and GH on bdh symmetric and

asymmetric QAPs [Tai95].

4.6.1 Robust Taboo Search

Robust Taboo Seach uses the same locd seach procedure & GLS (seesedion 4.2).
Additionally, tabu restrictions are impased which exclude speafic moves from being
seleded. A move is non admisgble (i.e. tabu) if at least one of the following
condtions is stisfied (u and t are the parameters of the dgorithm) [Tai91, GTW93,

Taio5]:

» if during the last u iterations, a solution hed fadlity i placel at locaion r and
fadlity j placed at locaion s then a move which places bath i at locaionr andj at
locations again is forbidden (unless this move results in a new best solution).

* if the number of iterations performed is greaer than t and fadlity i has never been
at locaionr during the last t iterations then a move which dces not placefadlity i

at locationr is forbidden.

98

The parameter u changes during seach taking randam values in the range 0.9n < u <
1.1n. This leals to a dynamic tabu list strategy [GTW93, GL93]. A good range of
values for parameteiis 2n’ <t < 5n°[Tai95].

The short-term tabu restrictions based on @rameter u prevent the reversal of moves
previously exeauted, enabling the dgorithm to escgpe from locd minima and at the
same time intensify search in the “good’ areas of the seach space On the other hand,
tabu restrictions using parameter t am to dversify seach in the long term forcing it to
enter new regions of the seach space This is adiieved by incorporating in the
solution, locaion-fadlity combinations not visited in the nea past. The two oljedives
of the dgorithm are the same & the objedives of Multiple-GLS, thowgh dfferent
means are used to accomplish them.

For our experiments, we implemented Ro-TS in C++. The parameter u was
dynamicaly changing as described above whil e the parameter t was =t to 3.5n° which

is in the middle of the range suggested by the author.

4.6.2 Reactive Tabu Search

Readive Tabu Seach uses the same short-term memory as Ro-TS though the dhoice
of parameter u is different. The parameter u is dynamicdly controlled using a simple
feedbadk medianism. In perticular, if the search returns to a solution arealy visited
then the value of u isincreased to forcelocd seach ou of the domain of attradion o
the aurrent locd minimum. On the other hand, if u is not changed for a number of
iterations then it is decreased.

On the diversification front, if solutions are often visited then a number of random
exchanges is made to forcelocd seach to explore new regions. All randam exchanges

exeauted are made tabu to prevent a return. For our experiments, we obtained and

99

used the original source ®de in C of Battiti and Tecdiolli [BT94]. The default

parameters provided by the authors were used in our experiments.

4.7 Comparison of GLSwith Efficient QAP Heuristic Methods

In this :dion, we mmpare Multiple-GLS, foundto be the best GLS variant, with
Ro-TS, RTS and also GH on problems of different size and reture. We first compare
GLSwith Ro-TS and RTS on the set of small to medium used for comparing the GLS
variants. This problem set represents a good mixture of red-world and randamly
generated problems. Following that, we report results for GLS on a set of randam
large QAP instances with sizes up to 100 generated by Skorin-Kapov [Sko9(and
compare our results with those reported by Talliard [Tai95] for Ro-TS, RTS and GH
on the same set of problems.

Before procealing with the cmparisons, we would like to clarify some issues relating
to the computation times required by Multiple-GLS. In particular, Multiple-GLS,
Ro-TS and RTS nedal around the same time to complete an iteration (i.e. complete
seach o the neighbouhood. The dominant computation is the evaluation d the
O(n?) moves in the neighbourhood. This computation is conducted in almost exadly
the same way for all three methods. Actually, GLS is performing fewer moves than
the other two methods if alowed to run for the same the number of iterations. Thisis
because to escgpe from a locd minimum GLS may perform more than ore iteration
(i.e. neighbowhood searches) withou exeauting a move. In between these iterations,
ead penalty modification cycle requires O(n?) time to compute the feaure wsts and
utiliti es for the first feaure set and O(n) time for the secondfedure set. Although, ore
may think that GLS requires more time than tabu seaches to complete the same

number of iterations because of the intervening penalty modificaion cycles that is not

100

the cae. The reason is that the iteration following a penalty modificaion cycle
requires less time for GLS than an iteration for tabu seach since no move value
updates are made during this iteration. In addition, evaluating tabu restrictions on
moves requires in general more time than the @rrespondng cdculation d penalty
differencesin GLS. In fad, ou implementation o Multiple-GLS proved to need less
time to complete the same number of iterations than ou correspondng
implementation d Ro-TS' for all but very large problems (e.g. n =100) and even in
that case, RO-TS was lessthan half seaond per minute faster than Multiple-GLS. In
general, Multiple-GLS, Ro-TS and RTS can be ansidered to require roughly the same
amourt of time to complete the same number of iterations. This is very important
sinceit alows us to make afair comparison d these techniques based onthe number

of iterations they perform.

4.7.1 Small To Medium Size QAPs

We @mmpared Multiple-GLS with Ro-TS and RTS on the set of small to medium size
QAP instances used for the cmparison d the GLS variantsin sedion 4.5. Ro-TS and
RTS were dlowed to run for 100,000iterations on ead problem and the results from
10runs were averaged. The performance of Ro-TS and RTS was measured in terms of
the number of succesdul runs (i.e. runs that resulted in the best known solution) and
also solution quality (i.e. per cent excessabowve the best known solution). Given that
Ro-TS and RTS required roughly the same time to complete 100,000iterations as

Multiple-GLS, results for Ro-TS and RTS can be diredly compared with ead ather

" The implementations of Multiple-GLS and Ro-TS were both in C++ and they were sharing large parts of the
code. We tried to optimise as much as possible the non-shared parts of both methods.

101

and with those for Multiple-GLS reported in Table 4.1 This comparison is made in

Table4.2
Problem | best Multiple-GLS Robust Tabu Search | Reactive Tabu Search
Name known a;= 0.5, 2a=0.25, (Ro-TS) (Re-TS)
solution | t=4n.
successful | solution | successful | solution | successful | solution
runs quality runs quality runs quality
nugl5 1150 10 0 10 0 10 0
nug20 2570 10 0 10 0 2 0.506
rou20 725522 10 0 10 0 10 0
nug30 6124 10 0 10 0 1 0.441
tho30 149936 10 0 10 0 10 0
kra30a 88900 10 0 10 0 9 0.134
kra30b 91420 8 0.015 10 0 7 0.039
ste36a 9526 9 0.01 7 0.019 0 1.094
ste36b 15852 10 0 10 0 9 0.025
tho40 240516 0 0.051 1 0.041 3 0.024
Total Successes 87/100| 0.0076% 88/100| 0.006% 61/100| 0.2263%

Table 4.2 Comparison of Multiple-GLSwith Robust Tabu Search and Reactive Tabu Search.

In this table, we seethat GLS is highly competitive with Ro-TS and bdh methods are
much better than Re-TS. Ro-TS had just one more successul run than GLS while in
terms of solution quality, Ro-TS was better than GLS by just 0.0016%. This result is
so close that neither of these techniques can be said to be better than the other on this
set of problems.

RTS lagged behind bdh Re-TS and Multiple-GLS. This can be partly attributed to the
faa that the default parameters were used for Re-TS and partly to the cae that the

method may not be suitable for these types of problems.

4.7.2 Large QAPs

Multiple-GLS uses the long-term penalties to dstribute the seach effort over the
whole of the seach space Long-term pendties are suppated by the short-term
penalties which intensify seach as the dgorithm progresses into new regions. One
would exped, that for larger problems this may be an advantageous grategy to foll ow,

because of the systematic exploration strategy introduced by the long-term penalties.

102

To investigate the benefits of using Multiple-GLS on large problems, we tested
Multiple-GLS onaset of 12 large QAP instances from QAPLIB with sizes from 49 to

100 which have been randomly generated by Skorin-Kapov (see [Sko90] for details).
Talliard [Tai95] reports results for these instances for Ro-TS, RTS, and aso GH. In

the competiti ve tests which Taill ard performed onthese problems, he dlocaes 100h
iterations for the tabu seaches and a roughly equivalent amourt of time to the GH
method. We dlowed Multiple-GLS to run for the same number of iterations. The
results from ten runs were averaged in each instance.

In Table 4.3, we compare the solution quality (i.e. mean exces9 of Multiple-GLS with

thase reported by Taillard for Ro-TS, RTS, and GH. The results are averaged when

several problems of the same size and type are solved.

Praoblem Multiple-GLS | Ro-TS ReTS GH Best known Solution
Sko49 0.068 0.096 0.068 0.120 23386
Sko56 0.104 0.090 0.145 0.181 34458
Sko64 0.098 0.063 0.125 0.174 48498
Sko72 0.147 0.181 0.110 0.200 66256
Sko81 0.117 0.088 0.110 0.250 90998
Sko90 0.158 0.179 0.164 0.314 115534
Sko100a-f 0.118 0.162 0.141 0.264 150252.7
Mean Solution Quality 0.117 0.139 0.131 0.235

Table 4.3 Comparison of Multiple-GLSwith Ro-TS, Re-TSand GH on large QAPSs.

In this table, we see that Multiple-GLS adhieves the best solution quality with RTS
sewnd, Ro-TS third and GH the worst method amongst the four. As Taillard pdnts
out, the GH neals long computation times to be @mpetitive on these problems. In
general, GH performs better on structured rather than randam problems. However, the
comparison clealy indicates that GLS is competitive with all these state of the at
QAP methods and able to ouperform them at least on the these particular problems
with the particular limit on the number of iterations. One passhble explanation for this

is that using the long-term penalties, GLS more systematicdly diversifies sach in

103

large seach spaces than the other methods whil e the intensificaion strategy adopted

by Multiple-GLS enables the algorithm to produce good solutions is short time.

4.8 Conclusions

In this chapter, we dealy demonstrated the gplicability of the GLS algorithm to the
famous Quadratic Assgnment Problem. The structure of the problem provided an
ided candidate for examining the problem of variable feaure asts and allowed us to
propose various drategies to resolve it. Retrading the dfeds of GLS dedsions, when
the information they were based on lecomesinvalid, proved to be the best strategy for
resolving the problem. The use of parallel GLS processes aimed separately at the
intensification and dversificaion o seach was also proposed in this context. The
final GLS variant adopting these modificaions was compared to state of the at
techniques for the QAP. GLS proved to be highly competiti ve with these methods in
the experiments caried ou, even ouperforming them in large QAPs when time

resources are limited.

104

Chapter 5

Radio Link Frequency Assignment
Problem

In the last two chapters, we focused on two challenging but noretheless smple
problems in terms of objedives and constraints. Modern applications frequently
require solving more complex problems than the TSP and QAP. Some of these
problems are not pure optimisation poblems but also invove some apeds of
constraint satisfadion. In such cases, we sometimes ek solutions which violate the
minimum number of constraints. In more redistic settings, constraint violations incur
different costs and solutions are sought that minimise the total cost from constraint
violations and pcssbly other criteria. In this chapter, we examine how Guided Locd
Seach and Fast Locd Seach can be gplied to such problems often referred to as
Partial Constraint Satisfadion Problems (PCSPs) or constrained opimisation
problems. The Radio Link Frequency Assgnment Problem (RLFAP) is examined as a

representative problem in this class RLFAP stems from red-world situations in

105

military telecommunications. The dfedivenessand efficiency of the GLS technique is
demonstrated on pulticly avail able instances of the problem. Comparison with ather
seach tedhniques demonstrates the advantages of the GLS method ower alternative

approaches to PCSPs.

5.1 Partial Constraint Satisfaction Problem

The Partia Constraint Satisfadion Problem can model a variety of constraint
satisfadion problems with various forms of optimisation. In the dassc CSP, ore is
trying to assgn values to finite domain variables sich that a set of linea and/or
nonlinea constraints on these variables are satisfied. In PCSP, the satisfadion o
constraints beames the subjed of optimisation and solutions that minimise the
number of constraint violations or more @mplex optimisation criteria ae sought.
Before formally defining the PCSP, we introduce some terminology used in the CSP
related literature.

The assgnment of avalue to avariableis cdled alabel. The label which involves the
assgnment of avalue v to the variable x (where v isin the domain of x) is dencted by
the pair <x,v>. A simultaneous assgnment of values to a set of variablesis cdled a
compound label and is represented as a set of labels, denoted by
(SX1,V1>,<X2,v2>,...,.<XK,VK>). A complete compound label is a cmpound label
which assgns a value to every variable in the CSP. The goal in CSPisto find ore or
all complete compound labels that satisfy the constraints.

A Partial Constraint Satisfaction Problem (PCSP is a Constraint Satisfadion
Problem in which ore is prepared to settle for partial solutions [0 solutions which
may violate some @nstraints or assgnments of values to some, bu nat all variables
[0 when solutions do nd exist (or, in some caes, cannd be found [FW92, Tsa93].

106

Thiskind d situation dten occursin applicaions like industrial scheduling where the
available resources are not enowgh to cover the requirements. Under these
circumstances, partial solutions are accetable and a problem solver has to find the
one that minimises an objective function.

The objedive function is domain-dependent and may take various forms. In ore of its
smplest forms, the optimisation criterion may be the number of the nstraint
violations. For more redi stic settings, some @nstraints may be daraderised as "hard
constraints’ and they must be satisfied whilst others, which are referred to as "soft
constraints’, may be violated if necessary. Moreover, constraints may be asgned
violation costs which refled their relative importance Partly foll owing Tsang [Tsa93],

we define the Partial Constraint Satisfaction Problem formally as follows:

Definition 5.1:
A partial constraint satisfaction problem (PCSP) is a quadruple:

(z,D,C,9)
where
e Z= {xl,xz,...,xn} is a finite set of variables,
. D= {Dxl, (DN Dxn} is a set of finite domains for the variables in Z,

. C:{cl,cz,...,cm} is afinite set of constraints on an arbitrary subset of variablesin
Z,

- g is the objective function which maps every compound label to a numerical value.
The goal in a PCSPisto find a ammpoundlabel (partial or complete) which ogimises
(minimises or maximises) the objedive function g. Given the @owe definition,
standard CSPs and Constraint Satisfaction Optimisation Problems (CSOPs) (where

optimal solutions are required in CSPs, see[Tsa93]) can bah be cat as PCSPs. Under

107

the Partial CSPformulation, all compoundlabels (partial or complete) are candidate
solutions since constraint violations are part of the cost function.

Versions of branch and boundand aher complete methods have been suggested for
tackling PCSPs [FW92, WF93, JFM96]. But complete dgorithms are inevitably
limited by the combinatorial explosion poblem. A heuristic method for the related
MAX-SAT problem has aso been recantly proposed by Jiang, Kautz, and Selman
[JKS95]. The methodis adired descendant of GSAT [SLM92] and wses randam walk
for escgping locd minima. To use the method for PCSPs, the PCSP problem has to be
converted to MAX-SAT. This conwversion is not always sraightforward and namally
result in a MAX-SAT problem with an even bigger seach spacethan the origind
PCSP. Also, Wallace ad Freuder [WF96] have tested restart, randam walk and tabu
seach variants of the min-conflicts heuristic [MJPL92] on randam PCSFs of sizes up
to 100 variables minimising the number of constraint violations.

Genera heuristic methods such as Genetic Algorithms, Tabu Seach and Simulated
Anneding have dso been tried on PCSPs and in particular on the RLFAP problem.

The performance of these techniques is going to be examined later in this chapter.

5.2 TheRadio Link Frequency Assignment Problem

The Radio Link Frequency Assignment Problem was abstraded from the red life
applicaion d assgning frequencies (values) to radio links (variables). Eleven
instances of the problem, which involve various optimisation criteria, were made

pubicly avail able by the French Centre d'Eledronique I'Armament [RLFAP94]. The

8 In fact, a PCSP with variables each with domain sizewill have a search spam?. The equivalent MAX-SAT
problem will have 2" which in normally bigger tham” (becausen < 2" whenm= 1).

108

problem is NP-Hard and it is avariant of the T-graph colouring problem as introduced

by Hale [Hal80]. Two different types of binary constraints are involved in the RLFAP:

. The asolute difference between two frequencies must be greaer than a given
numberk (i.e. for two frequencieX andy, [X - Y| > k);
. The @solute difference between two frequencies must be exadly equal to a

given numbek (i.e. for two frequencieX andy, X - Y| =K).
The &owve onstraints are ather hard or soft constraints. A problem spedfies the
variables which are subjed to these nstraints and the @nstraint graph is not
complete (i.e. na every variable is constrained by every other variable). If all the

constraints can be satisfied then either:

. (C1) the solution which asdgns the fewest number of different values to the
variables,
. (C2) or the solution where the largest assigned value is minimal

is preferred. For insoluble problems, violation costs are defined for the constraints.
Furthermore, for some insoluble problems, default values are defined for some of the
variables. If any of the default values is not used in the solution returned, then a
predetermined mobility cost applies. Table 5.1 depicts the dcaraderistics of the

RLFAP instances.

RLFAP No. No. Soluble | Minimise

Instance | Variables | Constraints

Scen01 916 5,548 Yes number of different values used (C1)

Scen02 200 1,235 Yes number of different values used (C1)

Scen03 400 2,760 Yes number of different values used (C1)

Scen04 680 3,968 Yes number of different values used (C1)

Scen05 400 2,598 Yes number of different values used (C1)

Scen06 200 1,322 No maximum value used (C2)

Scen07 400 2,865 No weighted constraint violations

Scen08 916 2,744 No weighted constraint violations

Scen09 680 4,103 No weighted constraint violations + mobility costs
Scenl0 680 4,103 No weighted constraint violations + mobility costs
Scenll 680 4,103 Yes number of different values used (C1)

Table 5.1 Characteristics of RLFAP instances. The domains of variables consist of 6-44 integer values.

The deven RLFAPs are ided for testing the dfedivenessof GLS in PCSPs becaise
they contain bah soluble and insoluble problems and nontrivial optimisation criteria

109

are defined for both soluble and insoluble problems. Besides, results from other
reseach exists, which could be used to measure the success of GLS. In RLFAP,
complete compoundlabels are sought. For PCSPs where partial compoundlabels are
sought, the reader can refer to chapter 6 where GLS is used to takle ared world

workforce scheduling problem in this last category.

5.3 Local Search for Partial PCSPs

A locd seach procedure for Partial CSPs can be based onthe min-conflicts heuristic
of Minton et al. [MJPL92] and the computational model of the GENET network
[WT91, Tsa93, DTWZ94]. An l-optima type move can be used which changes the
value of one variable & a time. Starting from a randam and complete asggnment,
variables are examined in an arbitrary static order. Each time avariable is examined,
the aurrent value of the variable dhanges to the value which yields the minimum value
for the ast function. Ties are randamly resolved allowing moves which transit to
solutions with equal cost. These moves, often cdled sideways moves [SLM92],
enable locd seach to examine plateau of states occurring in the landscapes of many
CSPs and Partial CSPs. One problem with sideways moves is that of deteding locd
minima. This problem can be overcome using the limited sideways scheme described
in [VT94] and aso [Dav97]. In particular, we daraderise a solution as a locd
minimum when all variables have been examined and nochange occurred in the value
of the st function. Although we dlow sideways moves to occur locdly, if these
moves do nd result in a better solution after al variables have been examined then a

local minimum is concluded.

110

procedure LocalSearch(Z, D, g,i%
begin
S §;
repeat
Ipefore — 9(S);
for each variable x in Zdo
begin
SS- {<x,vi>};
for each value v in Dxdo
Oy < 9(S +{<xv>});
BestSet set of values with minimumg
Vj+1 < random value in BestSet; (* sideways moves *)
S « S+{<xXMs1>);
end
Yafter = 9(S);
until (9after= Yoefore (* local minimum is concluded *)

Si+1 <~ S
return Syq.
end

Figure 5.1 Local Search for PCSPsin pseudocode

The pseudaocode in Figure 5.1 depicts a basic locd seach procedure for PCSPs. The

procedure starts with a solution S; (which is a ampoundlabel as described in sedion

5.1) and returns a local minimum solution S

5.4 Guided Local Search for Partial CSPs

Applying guided locd seach to a problem simply requires the eistence of a locd
seach procedure, preferably a version d fast locd seach, and also a set of feaures
which will be used to bias locd seach. Both prerequisites are domain dependent
alowing the GLS adgorithm to adapt to perticular combinatorial optimisation
problems. A locd seach procedure for PCSPs has been described in the last sedion.
Fast locd seach for PCSPs will be explained later in this chapter. For the moment,
we focus our attention onthe feaures to be used in PCSFs. In particular, we examine
the feaures used in the RLFAP instances. The same or similar fegures can be used in

many other problems in the PCSP class.

111

5.4.1 Constraints

The main cost fador in PCSPs is constraint violation costs (sometimes described as
relaxation costs). In asimple setting, al the problem’s constraints have violation costs
defined (high for hard constraints) which denote their relative importance The st of
a solution is given by the sum of violation costs for the @nstraints violated by the
solution. To define abasic cost function for the problem, ead constraint ¢; in the

problem is represented by an indicator functionl which takes the value 1 (if the

constraint is violated) or the value O (if the mnstraint is stisfied). This indicaor

function has the following form:

(9 [, if Sviolates constraint c;

Eq.5.1 = : L .

a § %) if Ssatisfies constraint c,

whereSis a compound label as described in sediidn

A cost function accounting only for constraint violations can be defined as follows:

Eq. 5.2 g(s) = i . (S) W/iolationCost(c,)

Eil
whereViolationCost is a function which maps each constraint to its violation cost.
A basic set of feaures can be defined for this cost function by considering the

representation d constraints as indicator functions. Each constraint in the problem is

interpreted as a feaure with an indicaor function as given by Eqg. 5.1 and a feaure

cost as given by the violation cost of the cnstraint. The aigmented cost function for

Eq.5.2 has the following form:

Eq. 5.3 h(S) = i |, (S) WiolationCost(c,) + A L} 1, (S)Ch, -

1=1 1=1

112

Esentialy, the ébove aigmented cost function introduces an extra penalty parameter

p, for eat constraint ¢; in the problem. The role of these extra penalty parameters is

to enable GLS to guide locd seach towards the satisfadion d al or particular
constraints. Note here, that feaure asts athough equal to the violation costs are not
incorporated for a secondtime in the augmented cost function. They are solely used to
determine which fedures (i.e. constraints) are to be further penaised in a locd
minimum. In the cae of PCSPs, the utility function d GLS (see Eq. 2.5) takes the

following form:

_ ViolationCost(c,
Eq. 5.4 util(s,c) =1, (9)3 Lo p, ()

GENET s leaning scheme is esentialy a version d the @ove penalty modificaion
mechanism WherEJtiI(S,c,) =1, (S) and thus all violated constraints are penalised.

Let us consider now the RLFAP. In the RLFAP, a set of constraints is given for ead
instance. Apart from relaxing ead constraint and including its violation cost in the
cost function wsing an indicator function, ead constraint defines a feaure which is
used to guide locd seach. Fedure msts are set equal to the wrrespondng violation
costs and the @st function is augmented with a set of modifiable penalty parameters
one for eat constraint (seeEq. 5.3). Initialy, the penalty parameters are set to 0 and
eadt constraint (if violated) acournts only for its violation cost. Each time locd seach
settles in a locd minimum, the penalties for some of the @nstraints violated (the
correspondng feaures are exhibited) are incressed acarding to the general scheme
described in sedion 2.6 using the utility function Eg. 5.4 Constraints with high
violation costs are penali sed more frequently than those with low costs becaise of Eq.

5.4. In the short term, locd search escgpes from the locd minimum while in the long

113

term, it is biased to spend more time on solutions that satisfy high cost constraints

rather than low cost constraints.

5.4.2 Assignment Costs.

Some of the insoluble RLFAP instances (Scen09 and Scen10) involve assgnment
costs. In particular, a st is incurred when a variable is assgned a value which is
different from a default value provided. These sts are cdled mobility costs and
apply to oy some of the variables. RLFAP mohility costs are cmparable to
constraint violation costs and are linealy combined with constraint violation costs to
form the objective function.

The locd seach o Figure 5.1 remains unchanged for these problems. If GLS were
also to remain urchanged then the distribution d the seach effort would orly be
determined by the constraint violation costs ignoring the extra mohility costs to be
minimised. This will not result to the best possble performance Extra information
pertaining to mohility costs may be exploited to affed the distribution d the search
effort. The set of fedures based on constraints is augmented with extra fegures that
deted assgnments of particular values to variables which incur mohility costs. The
costs of these new fedures are set equal to the crrespondng mobility costs. GLS
operates on the mmbined set of feaures which nonv contains both constraints and

assignments.

5.4.3 Minimisethe Number of Different Values Used

In resource dlocaion poblems, the main concern is the dficient utilisation o
resources. In many cases, this trangates into satisfying all requests using the minimum

number of resources passble. Frequencies are the resources in RLFAP. As mentioned

114

in sedion 5.2 some of the RLFAP instances are soluble (Scen01-05 and Scenll). For
these instances, solutions are sought that satisfy all constraints and also use & few
frequencies as possble. In ather words, the goal is to find a solution which satisfies all
constraints and also minimises the number of different values used. The problem is
similar to finding the minimum number of colours (i.e. chromatic number) needed to
colour a graph.

One possbility is to include this criterion in the @st function as it is described for
graph colouring by Johrson et al. [JAMS91]. The dternative goproach examined here
isnat to include this criterion in the objedive function bu instead to hias locd seach
using penalties such that this criterionis minimised. In particular, a feaure is defined
for eat value in the union d the domains. This fedure is exhibited orly when the
correspondng value is assgned to at least one of the variables. By penalising the
fedure, we can dscourage the asciated value from being assgned to any of the
variables. The asts of these feaures sioud be such that we prefer to penali se values
that are assgned to orly afew of the variables. The motivation is that values that are
assgned to ony afew of the variables could be swapped for values that are assgned
to many of the variables, so deaeasing the total number of values used. The fewer the
number of variables that are assgned a value the higher shoud be the st of the
related fedure. For avalue v in the union d domains the st of the assciated fedure

fyis given by:

tota number of variables

Eq.5.5 cds,f)=
a () (number of variablesassgned vauevins,) + 1

where s is the locd minimum solution in the mntext of which the feadure st is

evaluated. The aowve feaure msts are naot constant like thase in sedions 5.4.1 and

5.4.2 Thisis becaise we caana be sure which value can be avoided urlessa solution

115

has been found that satisfies all the @nstraints. If the solution violates sme of the
constraints, these cnstraints are penalised first, taking precelence over the value
fedures in the penalty modificaion scheme. This leads to a feaure set hierarchy
where fedure sets at the lower levels of the hierarchy are only penalised if no feaures

of higher levels are exhibited.

5.4.4 Minimise Maximum Value Used

This last criterion is invaved in only one of the RLFAP instances (Scen05). The
approad taken for this criterion was to penaise @nstraints first and if these were

satisfied to penali se the maximum value used withou considering the utility function

(Eq.2.5).

5.5 Fast Local Search for Partial CSPs

A gredaly locd seach for PCSPs evaluates all possble 1-optimal moves over all
variables before seleding and performing the best move. The locd seach procedure
described in sedion 5.3 is drealy a faster aternative to greedy locd seach since the
neighbouhood is confined to the values of ead variable. In spite of that, further
improvements may be introduced in the dgorithm of Figure 5.1 using the adivation
bits technique of Fast Local Search described in se2it®n

In the cae of PCSHs, a bit is attadhed to ead problem variable. If the bit of avariable
is 1 then the variable is cdled active and it is examined for improving moves
otherwise it is cdled inactive and it isignored by locd seach. Whenever avariableis
examined and a move is performed the adivation bt of the variable remains st to 1
otherwise it turns to O and the variable is not examined in future iterations.

Additionally, if amove is performed, adivation spreads to ather variables which have

116

their bits st to 1.1n particular, we set to 1the bit of variables where improving moves
may occur as aresult of the move just performed. In general, such variables are those
that are wnreded via a onstraint to the variable where the airrent move was
performed. Three main schemes for the spreading of adivation may be used. The
schemes determine which variables are to be adivated when the value of a variable
changes and they are the following:

S1. Activate all variables connected via a constraint to the variable which changed value.
S2. Activate only variables that are connected via a constraint which is violated.

S3. Activate only variables that are cmnreded via a onstraint that changed state (i.e. violated

- satisfied or satisfied- violated) as a result of the move.

S2 and S3 are the more gproximate schemes among the threg adivating fewer
variables than S1.

The overal procedure starts with all the bits st to 1. The variables are mntinuowsly
scanned from first to last. Only variables with the bit set to 1 are being searched. Each
time avariable is ®ached and its value is changed, the variable remains adive and
also adivation spreals to aher related variables acording to ore of the adivation
schemes (S1, S2, a S3). On the other hand, if the value of the variable is not changed
the variable becomes inadive (i.e. the bit is st to 0). The process $ops under the
same @ndtions that apply to locd search withou adivation kts depicted in sedion
5.3

Eadh time locd seach settles in a locd minimum, GLS pendises sme of the
fedures. A limited number of variables are adivated and a fresh fast locd seach cycle
starts. Depending on the feaures penalised, we adivate variables relating to these
feaures sich that moves examined aim at removing the penalised feaures from the
solution. Table 5.2 gives the relation between fedures penaised and variables

activated.

117

Feature penalised Activate

Constraint Variables associated with the constraint
Assignment Variable the assignment refers to

Value Variables assigned the value

Table 5.2 Associations between features penalised and variabl es activated.

Next, we give results indicative of the performance of GLS on the RLFAP instances.

Some of these results were up to recently the best known solutions for these instances.

5.6 Performance of Guided Local Search on the RLFAP Instances

To evaluate the performance of GLS, we gply it to the deven instances of RLFAPsin
the puldic domain [RLFAP94]. The objedive is to evaluate the @ove mentioned
different adivation schemes for GLS, find ou whether GLS could passble find
solutions in all soluble problems, and find good quality solutions in all the problems.
Experiments performed on the RLFAP using ead o the three ativation schemes
showed that all schemes perform equally well in terms of solution quality with S3
having a dlight advantage in run times over scheme S2 and being much faster than
scheme S1. The results reported here give the average performance of the dgorithm
using the activation scheme S3.

Ten runs were performed on ead instance starting from randam initial solutions. In
ead run, the dgorithm was allowed to complete 100,000 enalty cycles (i.e. GLS
iterations asin Figure 2.2) before being stopped. Hard constraintsin all i nstances were
assgned a high violation cost of 1,000,000.The regularisation parameter A was aso
set to this value though values of A in the range [2x10°, 2x10°] also performed well.
Table 5.3 presents the results obtained. Experiments were performed ona DEC Alpha

3000/600 (175 MHz) with GLS implemented in C++.

118

RLFAP Best Average Cost (Std. Dev{\Vorst Solution |Average Average Time
Instance |Solution Iterations |(CPU sec.)
Scen01 |16 18.6 (2.3) 22 1,895 8.77
Scen02 |14 14 (0.0) 14 233 0.59
Scen03 |14 15.4 (1.3) 18 1,626 5.62
Scen04 |46 46 (0.0) 46 60 0.46
Scen05 [792 792 (0.0) 792 1,584 8.50
Scen06 (3,628 4,333.8 (766.0) 6,042 34,365 120.87
Scen07 |427,054 530,641.1 (79,666.7) |700,685 20,412 78.79
Scen08 (294 335.7 (34.7) 377 50,626 232.88
Scen09 15,805 15,999.7 (194.7) 16,340 31,150 129.4
Scenl10 |31,533 31,686.6 (146.1) 31,942 64,258 297.29
Scenll (28 not applicable Not solved 21,577 93.97

Table 5.3 Average performance of GLS on the RLFAP instances.

RLFAP Instance Best solutions
found by GLS

Scen01 16

Scen02 14

Scen03 14

Scen04 46

Scen05 792

Scen06 3,570

Scen07 374,705

Scen08 282

Scen09 15,680

Scenl0 31,517

Scenll 28

Table 5.4 Best solutions for RLFAP found by GLS.

The tunrelling agorithm, a predecessor of GLS, significantly improved the best

known solutions on the RLFAP that accompanied the initia relesse of the instances

(see[VT94]). GLS with fast locd search foundeven better solutions, improving over

the tunrelling algorithm in many instances. Table 5.4 summarises the best solutions

found ly GLS for the RLFAP instances. Note here that solutions for Scen02-Scen05

have been proven optimal by complete search techniques [THL95].

119

5.7 Comparison with Extended GENET and a Tabu Search Variant.

Independently from this work ancother method aso based on the GENET neurd
network has been developed for the RLFAP by G. vom Scheidt [Sch95. The method
islike GENET aneura network architedure and is described in the paper by Boyce &
al. [BDST95] where it is compared with a tabu seach variant. For convenience, we
snal cdl this method extended GENET. Extended GENET in pue dgorithm terms
(after removing the neural network element) has many similarities as well as
differences with GENET [WT91, DTWZ95] and GLS. Although it uses an augmented
cost function (minimised by the NN), it pendises al constraint violations by
increasing penalti es propartionaly to the wnstraint violation costs. No schemeis used
for distributing the search effort (no memory of past adions) though asimilar effed is
attempted by varying penalty increments amongst constraints. Minimisation d the
number of different values used is achieved by incorporating an additional cost term
to the st function weighted by an appropriate cefficient. The dgorithm has not
been applied to instances involving mohility costs (Scen09 and Scen10). Extended
GENET makes use of afast locd seach procedure using an adivation scheme similar
to S1 but does not consider sideways moves.

Table 5.5 contrasts the results reported in Boyce &. a [BDST95] for tabu seach and
extended GENET with those reported for GLS in Table 5.3 Experiments in
[BDST95] were dso performed on DEC Alpha madines with the dgorithms
implemented in C++ and therefore arelatively fair comparison in runnng times can
be made. As one can seein Table 5.5, GLS outperforms both extended GENET and
the tabu seach variant. For problems (Scen01-Scen05), GL S succealed more timesin
finding the optimum than either tabu seach o extended GENET. Moreover, GLS
found letter solutions than these two methods in all the insoluble instances

120

