(Scen06-Scen10). For problem Scenl11,the other methods tried to find an assgnment

that satisfied the cnstraints and therefore no comparison can be made with GLS

which went further trying to minimise the number of different values used. In terms of

run times GLS was between 6 and 56times faster than extended GENET whil e tabu

seach required an enormous amourt of time in comparison with either extended

GENET or GLS probably because of inefficient implementation.

RLFAP | best solution found found optimum average time
Instance| GLS Ext. Tabu GLS Ext. Tabu GLS Ext. Tabu
GENET | Search GENET | Search GENET | Search
Scen01 16 16 18 30% 20% n.a.| 8.77sec 75sec 3hrs
Scen02 14 14 14 | 100% 100% 70% | 0.59sec 9sec 4Amin
Scen03 14 14 14 40% 10% 20% | 5.62sec 32sec| 34min
Scen04 46 46 n.a.| 100% 100% n.a.| 0.46sec 12sec n.a.
Scen05 792 792 n.a.| 100% 30% n.a.| 8.50sec 8min n.a.
Scen06 3,628 3,852 9,180 - - - 2min 10min| 14min
ScenQ7 427,054 435,132 6,541,695 - - - | 1.3min 18min| 46min
Scen08 294 366 1,745 - - - | 3.9min 32min 6hrs
Scen09 15,805 n.a. 16,873 - - - | 2.2min n.a.| 18min
Scenl0 31,533 n.a 31,943 - - - 5min n.a 2hrs
Scenli | 28 values 0 viol. 0 viol. 80% 60% 60% | 1.6min 25sec| 54min

Table5.5 Comparison of GLS with tabu search and extended GENET. Results for tabu search and extenc

GENET are from Boyce et al. [BDST95].

Table 5.6 provides further evidence on the superiority of GLS over extended GENET.

The solution quality of GLS is compared with that of extended GENET on the

insoluble problems (Scen06-Scen09). Results for extended GENET are from [Sch95].

RLFAP | Average Solution Cost (Average CPU Time) Percentage excess of Ext. GENET
solutions over GLS solutions
(Times faster than GENET)

Instance GLS Extended GENET

Scen06 4,333.8 (2 min 5,076 (10.2 min 17% (5 times

ScenQ7 530,641.1 (1.3 min 727,458 (18.3 min 37% (14 times

Scen08 335.7 (3.9 min 451 (31.7 min) 34% (8 times

Table5.6 GLS and extended GENET on insoluble instances. Results for extended GENET are fro

[Schos].

® For Scenl1, GLS minimizes the number of different values used while tabu search and extended GENET simply
try to find a assignment that satisfied the constraints.

121



5.8 Comparison with the CALMA Projed Algorithms

The RLFAP instances were made pubicly avail able in the framework of the European
collaborative projed CALMA (Combinatorial Algorithms for Military Applicaions).
Six reseach groups from three ourtries participated in the projed. Summary results
have been reported recently by Tiourine @ a. [THL95 on a set of algorithms,
including extended GENET and tabu seach mentioned in the last sedion, developed
by the six CALMA projed reseach groups. In Table 5.7, we compare these summary
results (from Tiourine et al. [THL95]) with the results for GLS.

Asit can beseenin Table 5.7, GLS adhieves a very good performance ompared with
the other algorithms and taking into ac@urt the values of the best known solutions. In
summary, it applies to all problems finding solutions of high quality while it is many
times faster than the other algorithms. Algorithms which produce marginally better
solutions than GLS (e.g. Genetic Algorithms-LU) were goplied to orly a subset of the
problems and require substantialy more time, fine tuning and pobably
implementation effort. On the other hand, athowh agorithms such as SA-EUT,
extended GENET-KCL and Variable Depth Seach-EUT, are gplied to most
problems and find solutions of good quality, they are between 5to 100times gower
than GLS (espedally on the insoluble instances). This canna be atributed just to the
different macdhines used in experiments. Besides, athouwgh the GA by UEA produces
goodresults for Scenarios 6 and 11,it performs badly in Scenarios 7 and 8 compared
to it, GLS is not only much faster, bu aso more @nsistent in its performance
Besgere @ al. [BFR95] also applied arc-consistency algorithms to Scenarios 3, 5, 8
and 11. Since only the satisfiability issie (not optimisation) was addressed their
results are not comparable with the rest in this sdion. To conclude, GLS is a highly
competitive, if not the best, method amongst the dgorithms developed so far for the
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problem that are known to us. It is the fastest algorithm which consistently provides
quality solutions (never much worse than the best found so far, sometimes the best).

Significantly, this is achieved almost without any tuning required.

5.9 Discusson

We ae well aware of the danger of over-generalising results obtained in competitive
tests, espedally when runnng time is compared, as Hooker pointed ou [Ho09]. In
the experiments, we have shown that GLS is cgpable of solving RLFAPs where
solutions exist, and finding solutions with top quality in insoluble RLFAPs, compared
with, and in many cases, better than, aher state-of-the-art algorithms designed for
RLFAPSs.

The running time that we present in Table 5.7 is meant for reference only. The timing
shoud na be compared seriously, espeaally when dfferent macdines have been used
and we know nothing abou the software platforms used in ather reseach projeds.
However, there is ome value in reporting the running time: it gives an idea for

evaluating algorithms.

5.10 Conclusions

In this chapter, the gplicaion d the method to Partial CSPs was dudied in the
context of ared world PCSP, namely the Radio Link Frequency Assgnment Problem
(RLFAP). Results reported on RLFAP demonstrated the dfedivenessand efficagy of
the method. The technique finds high quality solutions in very short runnng times,
outperforming alternative schemes suggested for the problem. Given the generaity
and effediveness of the goproadch, GLS can be mnsidered a promising optimisation

technique for real world constrained optimisation problems.
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Chapter 6

Workforce Scheduling

In the last chapter, we presented the gplication d GLS and FLS to a @nstrained
optimisation problem in which the main oljedive was the minimisation d constraint
violations. Constrained optimisation poblems are not aways of this type. In many
domains, partial solutions are sought which assgn values only to a subset of the
variables auch that all the problem’s constraints are satisfied. Such problems are very
useful in modelling overloaded resource dlocaion systems. In these systems, hard
resource onstraints are satisfied orly if a subset of adivities is allocaed resources or
in PCSPterms if a subset of the variables is assgned values. A penalty (or utility) is
defined for ead adivity when this adivity is not alocated (or al ocaed) resources. If
penalties are used instead of utiliti es then the optimal solution is that which minimises
the sum of pendlties for the unallocated adivities. NP-hard problems sich as the

Maximum Knapsadk [MT90], Maximum Channd Assgnment [Sim90] and
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Bandwidth Padcing [LG93, AFPRO3] are of this type. In this chapter, we ae going to
examine BT’ s Workforce Scheduling which apart from the dove daraderistics also
incorporates elements from the well-known Vehicle Routing Problem with Time
Windows (VRPTW) [Sol87]. The problem examined in here is representative of the
situations arising in the Work Manager job alocdion system of British
Teleoommunications plc. Work Manager is probably the largest automated job

allocation system in the world providing work for almost 20,000 field engineers.

6.1 BT'sWorkforce Scheduling Problem

The problem is to schedule anumber of engineeas to a set of jobs, minimising total
cost acrding to afunction which isto be explained below. Eadh job is described by

a triple:
(Loc, Dur, Type)

where Loc is the locaion d the job (depicted by its x and y co-ordinates), Dur is the
standard duation d the job and Type indicaes whether this job must be dore in the
morning, in the dternoon, as the first job d the day, as the last job d the day, or
"don't care".

Each engineer is described by a 5-tuple:

(Base, ST, ET, OT_limit, Skill)

where Base is the x and y co-ordinates at which the enginea locaes, ST and ET are
this engineg's garting and ending time, OT _limit is his’her overtime limit, and ill is
askill fador between Oand 1which indicaesthe fradion d the standard duration that
this enginee needs to acaomplish ajob. In ather words, the smaller this Sill fador,

the lesstime this enginee needs to doajob. If an enginee with skill fador 0.9isto
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serve ajobwith astandard duation (Dur) of 20 then this enginee would adually take
18 minutes to finish the job.

The cost function which is to be minimised is defined as follows:

NoT NoT NoJ ( )
Eq.6.1 TotalCost =y TG + ) OT?+ '} (Dur; + Penalty) x UF,
21572

=1

where:

NoT = number of engineers,

NoJ= number of jobs,

TG = Travelling Cost of engineér

OT,; = Overtime of engineer

Dur; = Standard duration of jgb

UF; = 1if jobj is not served; O otherwise,

Penalty = constant (which is set to 60 in the tests).

The travelling cost betweery(y:) to (X2, y2) is defined as follows:

OA
D?X +4,

£q.62 (1) 0 2)) =,
02 +A,
02— A>
H s "V

Here A, is the @solute diff erence between x; and x;, and 4y is the édsolute diff erence
between y; and y.. The greder of the x and y differences is halved before summing.
Engineas are required to start from and return to their bases everyday. An enginee

may be assigned more jobs than he/she can finish.

6.2 Local Search for Workforce Scheduling

To tadkle BT's workforce scheduling problem, we represent a candidate solution (i.e. a
possble schedule) by a permutation d the jobs. Each permutation is mapped into a

schedule using the deterministic algorithm depicteigure 6.1



procedureEvaluation (input: one particular permutation of jobs)

1 For ead job, order the quaified engineas in ascending order of the distances
between their bases and the job (such orderings only need to be computed once and
recorded for evaluating other permutations).

2. Processone job at a time, foll owing their ordering in the input permutation. For eat
job x, try to alocae it to an enginea acwrding to the ordered list of qualified
engineers:

2.1. to ched if enginee g can do job x, make x the first job d g; if that fails to
satisfy any of the constraints, make it the second job of g, and so on;

2.2. if job x can be fitted into enginea g's current tour, then try to improve g's
new tour (now with x in it): the improvement is done by a simple 2-opting
algorithm (seesedion 3.2), modified in the way that only better tours which
satisfy the relevant constraints will be accepted;

2.3. if job x cannot be fitted into enginea g's current tour, then consider the next
enginea in the ordered list of qualified engineas for x; the job is
unallocated if it cannot fit into any engineer's current tour.

3. The st of the input permutation, which is the st of the schedule thus creded, is
returned.

Figure 6.1 Algorithm for mapping job permutations into complete schedules

Given a permutation, locd seach is performed in a smple way: a pair of jobs is
examined at a time. Two jobs are swapped to generate anew permutation if the new
permutation is evaluated (using the Evaluation procedure dowe) to a lower cost than
the original permutation.

The starting point of locd seach is generated heuristicdly and deterministicdly: the
jobs are ordered by the number of qualified engineas for them. Jobs which can be
served by the fewest number of qualified enginegs are placal ealier in the

permutation.

6.3 Fast Local Search for Workforce Scheduling

So far we have defined an ordinary first improvement locd seach algorithm. Each
solutions has O(n?) neighbous, where n is the number of jobs in the workforce
scheduling problem.

To apply the fast locd seach to workforce scheduling, ead job permutation pcsition
has associated with it an adivation t, which takes binary values (0 and 1). These bits

are manipulated according to the general FLS algorithm of s&:8olm particular,
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1. all the activation bits are set to 1 (or "on") when local search starts;

2. the bit for job permutation paosition x will be switched to 0 (or "off") if every possble swap
between the job at paosition x and the other jobs under the aurrent permutation has been
considered, but no better permutation has been found,;

3. the bit for job permutation position x will be switched to 1 whenever x is involved in a swap

which has been accepted.

During locd seach, orly thase job permutation pasitions whaose adivation hts are 1
will be examined for swapping. In ather words, pasitions which have been examined
for swapping but failed to produce abetter permutation will be heuristicadly ignored.
Positions which are involved in a succesful swap recently will be examined further.
The overdl effed is that the size of neighbouhoodis grealy reduced and resources
are invested in examining swaps which are more likely to produce better

permutations.

6.4 Guided Local Search for Workforce Scheduling

To apply GLS to workforce scheduling, we need to implement a locd seach
algorithm for workforce scheduling, identify a set of feaures to be used and assgn
costs to them. In the previous sdion, we have described afast locd search algorithm
for BT's workforce scheduling problem.

Our next task is to define the solution feaures to be used and asdgn costs to them. In
the workforce scheduling problem, the inability to serve jobs incurs a @st, which
plays an important part in the objedive function which is to be minimised. Therefore,
we intendto hias locd seach to serve jobs of high importance To doso, we define a

feature for each job in the problem:



(L job, isundlocated in schedule
=463 o (schedule) =Gy oty s alloceted in schedule -
The st of this feaure is given by (Dur; + Penalty) which is equal to the st
incurred in the ast function (Eg. 6.1) when ajobis unallocated. The jobs penalised in
a locd minimum are seleded acwrding to the utility function (Eq. 2.5 which for

workforce scheduling takes the form:

Dur; + Penalty)
1+ p,

Eq.6.4 til (schedule, job, ) = 1, (schedue) 5(

Thetravelling cost is taken care of by the ordering of engineas by their distanceto the
jobs in the locd seach described in the Evaluation procedure @ove & well as
2-Opting. (If the travelling cost in this problem is foundto play arole & important as
unall ocaed jobs, we muld asociate apendty to ead passble alge @ we did for the
TSPin chapter 3 to further minimise this cost fador). Integrated into GLS, FLS will
switch on(i.e. switching from 0 to 1) the adivation hts associated with the positions
where the penalised jobs currently lie.

It may be worth nding that since the starting permutation is generated heuristicdly,
and locd seach is performed deterministicdly, the gplicaion d FLS and GLS

presented here does not involve any randomness.

6.5 Experimental Resultsand Comparison with GAs, SA and CLP.

The best results pulished so far on the workforce scheduling problem isin Azarmi &
Abdu-Hameal [AA95. Azarmi & Abdu-Hameel have looked at simulated
anneding, constraint logic programming [Hen89, LWR95] and genetic dgorithms

[Hol75, Gol89, Dav9l, WT94, ERR94]. The results are based on a benchmark test
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problem with 118engineas and 250jobs. Eadh job can be served by 28 engineas on
average, which means the search spaceis roughly 28° or 10°%°, in size. This suggests
that a complete search is very unlikely to succeed in finding the optimal solution.
Azarmi & Abdu-Hameeal [AA 95| reported results obtained by a particular genetic
algorithm (GA), two constraint logic programming (CLP) implementations, ElipSys
and CHIP, and a smulated anneding (SA) approach. Azarmi & Abdu-Hameel cited
Muller et. d. [MM S93] for the GA approach and Baker [Bak93] for the SA approad.
Results obtained by GA and CLP were "repaired” (i.e. amended by locd seach). All
the tests reported there relax the constraints in the problem by:

(@) taking first jobs as AM jobs, and last jobs as PM jobs; and

(b) allowing no overtime.

The best result (total cost) so far was 21,025 ,which was obtained by the SA approad.
No timing was reported on the tests. These results are shdvable 6.1(Group I).
To allow comparison between ou results and the publdished ores, we have made the
same relaxation to the problem. The results are reported in Groupll of Table 6.1 FLS
obtained aresult of 20,732,which is better than all the reported results. This result is
further improved by GLS. The best result obtained in this groupis 20,433,when A is
set to 100in GLS. Such results are remarkable & the best results published were
obtained by nortrivial amourt of work by prominent reseach groups in UK. (Note
that a saving of 1% could be translated to tens of thousands of pounds per day!)
In the objedive function, the overtime term is gyuared. This discourages overtime in
schedules, bu it does nat mean that a good schedule caana have overtime. We tried
to restate this constraint, bu gave eab enginee a limit in overtime. The best result,
which were found ly limiti ng overtime to 10minutes per engined, is siown in Group
Il of Table 6.1 FLSin this group oldained a result of 20,224,which was better than
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all the results in Groupll. The best result in Group I, which is 19,997 was found ly
GLS whenA was set to 20.

The A parameter is the only parameter that neels to be set in GLS (there ae relatively
more parameters to set in bah GA and SA). The aowe test results ow that the total

cost is not terribly sensitive to the setting\of

Algorithms Total cost CPU time | Travel cost| Cost over-time
(sec) (number) of | cost
unallocated
jobs
Group |: Best results reported in the literature (no overtime allowed):
GA 23,790 N.A. N.A. N.A. (67) disallow
GA + repair 22,570 N.A. N.A. N.A. (54) disallow
CLP - ElipSys + repair 21,292 N.A. 4,902 16,390 (53) | disallow
CLP - CHIP + repair 22,241 N.A. 5,269 16,972 (48) | disallow
SA 21,025 N.A. 4,390 16,660 (56) | disallow
Group II: Best results on FLS and GLS with overtime disallowed:
Fast Local Search (FLS) | 20,732 1,242 4,608 16,124 (49) | disallow
A=10 20,556 5,335 4,558 15,998 (48) | disallow
A=20 20,497 7,182 4,533 15,864 (49) | disallow
FastGLS | A =30 20,486 6,756 4,676 15,810 (50) | disallow
A =40 20,490 5,987 4,743 15,747 (48) | disallow
A =50 20,450 3,098 4,535 15,915 (49) | disallow
A =100 20,433 9,183 4,707 15,726 (48) | disallow
Group llI: Best results on FLS and GLS, with a maximum of 10 minutes overtime allowed:
Fast Local Search (FLS) | 20,224 1,244 4,651 15,448 (51) | 125
A =10 20,124 4,402 4,663 15,329 (50) | 132
A=20 19,997 4,102 4,648 15,209 (49) | 140
FastGLS | A =30 20,000 2,788 4,690 15,155 (48) | 155
A =40 20,070 4,834 4,727 15,194 (48) | 149
A =50 20,055 2,634 4,690 15,197 (49) | 168
A =100 20,132 2,962 4,779 15,152 (48) | 201
1 GA, CLP and SA results from Azarmi & Abdul-Hameed [AA95], Muller et. a. [MM S93] and
Baker [Bak93];
2. FLS and GLS are implemented in C++, all results obtained from a DEC Alpha 3000600
175MHz machine.
3. The benchmark problem, which has 118 enginea's and 250jobs, was obtained from British

Telecom Research Laboratories, UK.

Table6.1 Results obtained in BT's benchmark workforce scheduling problem.

6.6 TheRoleof FLSin BT'sWorkforce Scheduling Problem

To evaluate the role of the adivation hts in the dficiency of FLS, we compared FLS

with a best improvement locd seach agorithm which used the same moves as FLS,
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but withou using adivation hkts to reduce its neighbouhood (we refer to this
algorithm as LS). The results are showfable 6.2

When no owertimeisalowed, FLS runs 16 times faster than LS, which converged to a
slightly worse locd minimum. When a maximum of 10 minutes is alowed for
overtime, FLS runs 20 times faster than LS, though LS produced a dlightly better
result. Our conclusionisthat the adivation hts help to speed upFLS significantly and
there is no convincing evidence that quality of results has been saaificed in the

workforce scheduling problem.

Algorithms Total cost | CPU time | speedup | Travel | Cost over-
(sec) by FLS in | cost (number) of | time cost
cpu time unallocated
jobs

No overtime | FLS | 20,732 1,242 16 times | 4,608 16,124 (49) | disallow
allowed

LS 20,788 20,056 4,604 | 16,184 (50) | disallow
Max. 10 min. | FLS | 20,224 1,244 20times | 4,651 | 15,448 (51) | 125
OT allowed

LS 20,124 25,195 4,595 | 15,358 (48) | 171

Notes: Locd Seach (LS) use the same hill climbing strategy as FLS, but no adivation bits are used;
Both algorithms implemented in C++, al results obtained from a DEC Alpha 3000600 173Hz
machine.

Table6.2 Evaluation of the efficiency of FLS.

6.7 Remarks

We have dso experimented with randam starting permutations and a starting
permutation with the jobs ordered by the ratio between their duration and the number

of qualified engineers. Their results are showmable 6.3

Heuristics used in generating | Initial After FLS After Fast GLS
starting permutation Cost

cost Cpu sec cost Cpu sec
Random ordering 25,886 21,204 767 20,287 7,639
Job duration / # of qualified eng{ 23,828 20,286 903 20,187 2,468
# of qualified engineers 22,846 20,224 1,218 20,132 2,962

Notes: a maximum of 10 minutes is allowed in overtime; a maximum of 500 penalty cycles is al owed
in GLS, which uses A = 100; al programs implemented in C++; all results obtained from a DEC Alpha
3000/600 175MHz machine.

Table6.3 Ordering heuristics used in starting permutation.
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In Table 6.3, an (amost) arbitrary A value of 100 hes been chosen to give the reader
more information abou the sensitivity of GLS over this parameter (though this was
not the parameter under which the best result were generated when owertime was
allowed). Resultsin Table 6.3 show that the result of FLS can be dfeded by the initial
ordering of the jobs, though even the worst result is comparable with those reported in
the literature. However, Fast GLS is relatively insensitive to it - al the results of GLS

are better than the best result reported in the literature.

6.8 Conclusions

Red world problems are often charaderised by complex objedive functions, side
constraints and herarchicd structure. To ded effedively with them, it is metimes
necessry to develop tailor-made techniques which combine together a number of
heuristics. These heuristics may operate & different stages of the optimisation pocess
or at different levels of the problem. Using BT's workforce scheduling, we
demonstrated hov GLS and FLS can provide the foundition for such tail or-made
techniques.

GLS and FLS easlly integrate with eat ather and with the cmplex move operators
and heuristics often required. Moreover, they provide the toadls to identify the most
important cost fadors in the problem and minimise them effedively. Tuning is
relatively simple reducing the demands from the users of the scheduler. Finaly,
solutions obtained by the GLS-FLS combination are of high quality and in the cae of
BT's workforce scheduling problem better than the best results reported in the
literature. Last but not least, this chapter viewed in conjunction with the dhapter on the
RLFAP problem provides a complete guide for applying GLS and FL S to constrained

optimisation problems.
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Chapter 7

Nonconvex Optimisation

In the preceading chapters, we examined the gplicaion o Guided Locd Seach to a
number of hard combinatorial optimisation problems from the well-known TSP and
QAP to red world problems sich as the RLFAP and BT's Workforce Scheduling
problem. In this chapter, we ae going to demonstrate that the potential applicaions of
GLS are nat limited to optimisation problems of discrete nature but also to dfficult

continuous optimisation problems.

7.1 Nonconvex Optimisation and Global Optimisation Methods

Continuows optimisation poblems arise in many engineaing disciplines (such as
eledricd and mechanicd engineaing) in the mntext of analysis, design or simulation
tasks. Particularly difficult problems are thase with nonlinea multi-extremal cost
functions (that is functions with many loca minima). These problems, also known as

nonconvex optimisation poblems [HL95], are difficult to solve using deterministic
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gradient-based agorithms used extensively elsewhere in continuows optimisation.
Gradient algorithms can be eaily trapped in the many locd minima of the st
function, so failing to reach the global minimum.

Globd Optimisation (GO) methods which seek the global minimum are utili sed to
solve such problems. The most simple global optimisation algorithm is to run a
gradient algorithm many times and from different starting points in the hope that the
global minimum will be amongst the locd minima obtained ower the many runs.
Example of such agorithm is the variation d the Sequential Unconstrained
Minimisation Technique suggested in [HL95]. Many other GO agorithms exist which
make use of gradient techniques or derive diredly from general seach methods sich
as Genetic Algorithms [Hol75], Simulated Anneding [KGV83, Ing89], Function
Smoocthing [ST9(], Orthogonal Arrays with the GRG agorithm [KC93] to name but a

few.

7.2 Local Search for Continuous Optimisation Problems

Recently and mainly driven by the use of Genetic Algorithms [Hol 75, Gol98, Dav91]
in combinatorial optimisation, GO methods have been developed which ded with
nonconvex optimisation as a wmbinatorial optimisation task. The ideais to convert
the continuows problem to a discrete one by encoding the red variables of the st
function as binary strings.

In the cae of binary encoding, a binary string value is interpreted to represent an
integer in base-2 naation. The mapping of the binary string to ared variable works as
follows. The binary string value is first converted to the @rrespondng integer. This
integer is then scaded by the gpropriate wefficient to give ared value in the desired

range (i.e. damain of variable) [Dav91]. One binary string is used for ead problem
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variable and combinatorial seach is utili sed to find these binary string configurations
which after deading result in the optimal value for the red-valued cost function.
Increasing the number of bits used for representing ead variable increases the
acaragy of the solution bu aso results in an increase of the cmbinatorial seach
space.

Althowgh hinary encoding schemes were principaly developed for Genetic
Algorithms, they have dso been used in the mntext of locd seach [WZ93,BT94]. To
explain hov locd seach operates in this case, let us consider the problem with two
variablesx 0 A OO andy OB O O and afunction f(x, y) to be minimised in AxB [
02 A locd seach move flips the value of a hit in the binary string representing the
solution (comprises the binary strings of the function's variables). In the x-y plane, bit
flips trandate to “jumps’ in either the x or y diredion. The more significant the bit
changed, the larger the step o the “jump” performed. Locd seach starting from a
randam binary string examines al possble bit flips and performs that which results in
the maximum reduction in cost (minimisation case). The new solution if better
replaces the old solution and the procedure cntinues from there on urtil a solutionis
readed for which nofurther improvement is possble. As before, GLS can be used to
help locd seach escape from locd minima moreover distribute seach efforts in the

search space.

7.3 The Sine Envelope Sine Wave (F6) Function

As mentioned in sedion 7.1, norconvex optimisation refers to nonlinea
multi-extremal cost functions. An example of such a function, mentioned many times
in the literature, is the sine eavelope sine wave function also known as F6 [Dav91,

WZ93, BT94]:



.2 [ _
Eq.7.1 F6(xy) = 05+ SMAX *+Y° 0s_
[10 +0.0010(x + yz)]

minimised in the doman [-100,100x%[-100,100. F6 has been suggested as a
benchmark for Genetic Algorithms [SCED89].

A cross ®dion d the functionis $hown in Figure 7.1 The global minimum of F6 is
locaed at (0,0) where the function takes the value 0. The basin of the global minimum
is very narrow and therefore difficult to read uessalucky start is made from within
the domain of attradion d the global minimum. The many locd minima of the
function are aranged in concentric ¢ycles around the global minimum forming an
ided trap for hill -climbing based techniques. In F6, locd gradients provide limited (if
any) information onthe locaion d the global minimum. GLS may be eploited to
help locd seach to escgpe from locd minima aad moreover distribute seach effort in

the search space.
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Figure 7.1 Cross section of F6 function
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7.4 Guided Local Search for Global Optimisation

GLS is iteratively posting constraints which modify the landscagpe and guide locd
seach ou of locd minima and towards promising aress in the seach space
Constraint posting in this problem could be based oninformation gathered duing the
seach process For example, if locd seach reades a locd minimum then an
asumption can be made that the global minimum is unlikely to reside in the
surroundng area Constraints could then be introduced that exclude this area from
being searched in future iterations. These cnstraints are esentialy soft becaise we
canna be sufficiently confident that loca seach thoroughly seaches the space aound
a solution when this solution is visited.

A set of feaures is defined that allow us to constrain solutions. A fedure can be ay
solution property represented by an indicaor function (see sedion 2.4). A simple
setting for global optimisation is to dvide the domains of variables into a number of
nonroverlapping and equall y-sized intervals. Let us consider the variable x[[(a,b]. A
set of feduresfi, i=1, ...n, can be defined by the intervals (ag=a,a], (a1, &), .., (@1,
a,=b] as follows:

=g *aal

Eqg.7.2 ) .
. otherwise

Eadh feduref; is attadhed to a penalty parameter p; to allow GLS to penalise solutions
that are dharaderised by the feaure such that they can be avoided. The st functionis
augmented with penalty terms to form the augmented cost function. This function
replaces the original function and it is minimised instead. The aigmented version d

F6 is defined as follows:



n m O
g7 HGc) = o) A S 1,090R, + 3 1,0 0,

where n the number of feaures defined over the domain of X, mis the number of
fedures defined over the domain of y, and A is the parameter that controls the relative
importance of constraints with resped to the primary cost term (i.e. function to be
minimised). Initialy, all penalty parameters of fegures are set to 0(ps =0, pyj = 0,i =
1, ..., n j=1, ..m).Eadh timelocd seach settles in alocd minimum, we simply
increment by one the pendty parameters of the fedures exhibited by the locd
minimum (only two at atime). This increases by 2*A the st of al solutions that lie
in the intersedion d the zones correspondng to the penalised feaures and by A the
cost of al solutions that lie in either one of these zones (seeFigure 7.2). As a result,
locd seach will primarily avoid the redangular areawith centre the locad minimum
and also to a lesser degreethe two zones that run parallel to the w-ordinate ais as
shown in Figure 7.2 This smple technique can be used to minimise abitrary
functions. In fad, there is nothing that binds the methodto F6 which may not be used
for other functions with two o more variables. In the following, we examine the

results obtained for F6.

feature penalised

feature penalised

X

Figure 7.2 Changes in cost due to penalising the features exhibited by a local minimum
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