7.5 Experimentation with the F6 Function

Following Davis [Dav91], we used 22bits for representing ead variable. An equal
number of fedures was used to cover the domain of ead variable (n=m). The
algorithm was relatively insensitive to the parameter A and performed well for values
of A greder than 0.2.The value 0.25for A was used in the tests. Experiments were
performed for varying n (i.e. number of feaures per variable) to determine how this
parameter affeds GLS. The values tried for n were 5, 10, 15, 20, 50and 100.Fifty
runs from randam solutions (randam binary strings) were performed for eat value of
n considered with the iteration limit set to 10,000locd seach improvement cycles.
Table 7.1ill ustrates the results obtained. The best setting proved to be n=m=5. Under
this =tting, the dgorithm succeealed in finding the exad optimal solution (0,0) in

100% of 50 runs. Under all settings, the dgorithms foundthe exad optimum many

times.

No. of features n=m=5 n=m=10 n=m=15 n=m=20 n=m=50 n=m=100
Mean Cost 0.00E+00 |[4.55E-11 3.19E-10 2.73E-10 1.97E-04 3.21E-04
Best Solution 0.00E+00 |0.00E+00 |[0.00E+00 |[0.00E+00 |[0.00E+00 [0.00E+00
Worst Solution 0.00E+00 |2.28E-09 |[2.28E-09 (2.28E-09 [9.72E-03 [9.72E-03
Mean lIterations 2287.32 2566.22 2954.08 3526.9 4132.66 3738.48
Mean Time 2.823333 |3.150668 |3.634334 |4.382333 |5.188333 |(4.654
Mean Funct. Eval. |104958.6 |117778.8 135588 161878.4 |189675.6 |171578.5
Optimal Runs 50 49 43 44 31 22

Total runs 50 50 50 50 50 50

Table 7.1 GLS performance on F6 (Time in CPU seconds on a DEC Alpha 3000/600 175MH2).

This performance further improves if more time is given to the dgorithm. For
example, in the cae (n=m=100) where most fail ures occurred (28 ou of 50 runs), we
performed the same experiment but this time dlowed the dgorithm to complete
100,000locd seach iterations. The performance of GLS significantly improved and

the algorithm found the exact optimum in 50 out of 50 runs (no failures).
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The main olservation made was that GLS performance degraded as the number of
fedures used increased. More feaures meant more dfort to leave aparticular areabut
also more caeful exploration. For this particular function, dversificaion d seach to
sample the whale seach spaceproved important to find the global minimum quickly.
The distribution d poaints visited for n=m=10 duing 10,000iterations of locd seach
is drown in Figure 7.3. During the particular run that generated Figure 7.3, the optimal
solution was found ealy and after 1965 iterations. Despite that, the dgorithm was
allowed to continue until 10,000iterations were completed to get a better picture of
the solutions visited by the dgorithm. As one can seein Figure 7.3, the dgorithm
distributed its efforts over the whae of the seach space but visited mainly locd

minima. That is why points in are arranged in concentric cycles around the point (0,0).
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Figure 7.3 All the points visited during the first 10,000 iterations of local search
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Thisismore dealy demonstrated in Figure 7.4where a3-D view of the visited pants
is hown. The shape formed is exadly the bottom part of F6 which suggests that the

points are adualy locd minimain the grea majority. Note here, that GLS is exploring

100

Figure 7.4 3-D View of Figure 7.3

binary space ad nd numeric space In general, locd minima and their attradion
basins in the binary space ae different from the locd minima and their attradion
basins appeaing in the numeric space Because of the symmetricad landscepe, the
binary encoding used and the structure of the GLS fedures, the mgority of the
solutions visited by GLS in the cae of F6 have the property of being numeric locd
minima & illustrated in Figures 1.3 and 1.4.This is nat necessarily the cae for
functions with nonsymmetricad landscgpes. In these caes, grey encodings (see
[BT94] for example) andlor fedures of different structure may yield better

performance than the encoding scheme and features used in this chapter.
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7.6 Conclusions

In this chapter, we have shown that GLS has the potentia to be utilised in the
optimisation d red-valued functions with numerous locd minima, which are
considered to be difficult for gradient-based methods. The gplicaion d GLS to
optimise the F6 function, a benchmark for Genetic Algorithms, has been examined.
GLS repededly locaed the exad global optimum of the function. The dapter also
serves in demonstrating how artificial solution fegures can be aeaed when no
fedures can be deduced from the structure of the objedive function, which adds

support to our claim that GLS has wide applications.

144



Chapter 8

Summary and Conclusions

This dudy demonstrated the dfediveness and efficiency of the GLS approach to
combinatorial optimisation alone or when combined with FLS. We demonstrated that
the use of information significantly improves smple locd seach heuristics
transforming them to powerful optimisation algorithms able to compete or even
outperform state of the at spedalised methods. Furthermore, we demonstrated that
the propacsed approad is general enowgh to be gplicable to a diversity of problem
from the famous TSP and QAP to RFLAP and Workforce Scheduling and even to
continuows optimisation poblems. In this last chapter, we summarise the reseach
condwcted, conclude on GLS and FLS and also dscuss the prospeds of future

research on the subject.
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8.1 Summary of the Research Conducted

Guided locd seach isanovel approad which fadlit ates the engineaing of intelli gent
seach schemes which exploit problem and history information to guide alocd seach
algorithm in a seach space Constraints on solution feaures are introduced and
dynamicaly manipulated. The objedives of seach intensificaion and dversificaion
are unified in the single objedive of distributing the seach effort acwording to
information. Various ach dstribution pdicies can be implemented. In this gudy,
we examined the case of distributing the search eff ort acwrding to feaure asts either
predetermined or evaluated during search.

We demonstrated the dfediveness of the proposed tednique in two of the most
prominent problems in combinatorial optimisation, the TSP and the QAP.
Comparisons conducted with a total of fifteen methods for the TSP and four methods
for the QAP showed that the GLS algorithm is better than or at least very competitive
to many state of the at algorithms for the problems. Optimal or high quality solutions
were @nsistently foundin a variety of instances from the problem libraries TSALIB
and QAPLIB proving the robustness of GLS aaossthese two landmark problems in
combinatorial optimisation.

The gplication d the method to red world problems with various objedives and
constraints was also studied in the cntext of the constrained optimisation problems of
Radio Link Frequency Assgnment and Workforce Scheduling. GLS was compared
with twelve methods for the Radio Link Frequency Assgnment Problem and five
methods for the Workforce Scheduling problem. These @mparisons clealy
demonstrated the alvantages of using GLS both in terms of solution quality and
running times. Solutions foundin the benchmark instances of RLFAP and Workforce
Scheduling are anongst the best foundso far for these problems. The goplicability of
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GLS to NonConwex optimisation poblems was also demonstrated laying the
founditions for the development of new methods based on GLS for this very
important class of problems.

The technique of FLS was aso presented and the benefits from combining it with
GLS were studied in the TSP, RLFAP and Workforce Scheduling. The GLS-FLS
combination leads to highly efficient variants of GLS which are many times faster
than basic GLS without sacrificing solution quality.

Summarising the ntents of the thesis, GLS was presented along with FLS. The
method was applied to five mwmbinatorial optimisation problems and compared with
35 dgorithms including some of the best heuristic methods for these problems.
Variants of almost al the general optimisation methods mentioned in the introduction
were ompared with GLSin at least one of the problems examined. In particular, GLS
was compared with:

» Simulated Annealing on the TSP, RLFAP, and Workforce Scheduling,

» Tabu Search on the TSP, QAP, and RLFAP,

» Genetic Algorithms on the TSP, QAP, Workforce Scheduling, and RLFAP,

* lterated Local Search on the TSP,

* Repeated Local Search on the TSP and QAP,

* Neural Networks on the RLFAP.

We believe that this is one of the most extensive studies for a newly presented

combinatorial optimisation method.

8.2 Concluding Remarkson GLSand FLS

For many yeas, general heuristics for combinatorial optimisation problems with most
prominent examples the methods of Simulated Anneding and Genetic Algorithms
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heavily relied on randamness to generate good approximate solutions to dfficult
NP-Hard problems. The introduction and acceptance of Tabu Seach by the
Operations Reseach community mainly due to the dforts of Glover, Laguna, Taill ard,
de Werra, Hertz, Battiti, Tecdioli and ahers initiated an important new era for
heuristic methods where deterministic dgorithms exploiting history information

started appearing and being used in real world applications.

8.2.1 Guided Local Search

Guided locd seach proposed in this thesis follows this trend. GLS heavily exploits
information (not only the search history) to dstribute the seach effort in the various
regions of the seach space Important structural properties of solutions are catured
by solution fedures. Solutions feaures are asgned costs and locd seach is biased to
spend its efforts acording to these wsts. Penalties on feaures are utilised for that
purpose.

When locd seach settles in alocd minimum, the penalties are increased for seleded
feaures of the locd minimum. By penali sing feaures appeaing in locd minima, GLS
avoids the locad minima visited (exploiting historicd information) but aso dversifies
choices for the various dructura properties of solutions captured by the solution
fedures. Feaures of high cost are penalised more times than feaures of low cost: the
diversificaion pocess is direded and deterministic rather than undreded and
random.

Fedure sts contain urcetain information making sometimes eaulative
asumptions abou the desirability of particular structural properties of solutions.
Some of these properties could be esentia parts of good solutions despite the high

cost they may incur on the solution cost. GLS is flexible in such cases by combining
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seach intensificaion with the cntinuows diversificaion pocess caused by the

penalties on feature costs.

8.2.2 The Role of Parameter A

The task of combining diversification with intensification is acamplished by the
regularisation parameter A which controls the influence of the information on the
seach process The locd gradients are direding the seach processto good solutions
undertaking the task of intensification. The parameter A linealy combines the locd
gradients with the penalties of GLS blending the two functions of intensificaion and
diversificaion. If A is low then GLS is intensifying seach slowing down the
diversificaion process Conversely, if A is high then the feaure asts fully determine
the murse of locd seach. For values of A in the middle of these two extreme caes, an
optimal blending of intensification and dversificaion is adiieved. Intensification d
seach can aso be atieved by using penalties of limited duation (seesedion 4.4.3
or incentives implemented as negative penalties that encourage the use of spedfic
fedures rather than dscourage them as with the penalties in the basic GLS. This last
case of incentives has not been explored in ou work and it may lead to more

advanced schemes for guiding local search.

8.2.3 Fast Local Search

The seledive diversification scheme of GLS where particular feaures are penalised
and aternative solutions dructures are sought that avoid these fedures is idedly
combined with FLS which limits neighbouhood seach to particular parts of the

overall solution.
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To dlow the blending of locd gradients with penalties, GLS increases the penalties
for feaures and subsequently invokes locd seach to remove the penalised feaures
from the solution. Because of A, locd gradients can affed this dedsion by allowing or
not allowing a move to be exeauted which removes the penali sed fedures. Thisis an
esential part of the operation d GLS and enables the blending of intensificaion
(expressed by the locd gradients) and dversification (expressed by the penalties).
FLS speads up this blending allowing a quick test of the locd gradients after a penalty
increase. The moves which remove the penalised fedures are diedked and if no
improving move is found, control immediately returns to GLS which penalises
aternative feaures or the same fedaures depending on the dfort arealy invested in
these features as given by the penalties already applied to them.

In general, many penalty cycles may be required before amove is exeauted ou of the
locd minimum. This shoud na be viewed as an undesirable situation. It is caused by
the uncertainty in the information as captured by the feaure csts which makes
necessry the testing of the GLS dedsions against the locd gradients. FLS
significantly reduces the computation times required to measure the locd gradients in
alocd minimum alowing far more many penalty modification cycles to be performed

by GLS for the same amount of running time.

8.3 Future Research

This thesis offers afirst study of GLS and FLS. The methodis dill i n its infancy and
future reseach is required to further develop the method and adapt it to aher
problems. The use of incentives implemented as negative penalties which encourage
the use of spedfic solution fedures is one promising diredion to be explored. Other

potentially interesting reseach dredions include atomated tuning of the
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regularisation parameter, definition d effedive termination criteria, and dfferent
utility functions for selecting the features penalised.

GLS could also be used to dstribute the seach effort in ather tedhniques sich as
Genetic Algorithms. In particular, GLS could be invoked at spedfic intervals to deted
the presence of particular feaures in a GA popuation and subsequently diversify or
intensify genetic seach by applying pendties or incentives on particular feaures
which are aonsidered “bad” or “good’ respedively. The GA could be guided to avoid
or favour spedfic feaures ending its ach efforts acording to the information
which again can be cgtured in the form of feaure sts. The same utility function
(Eq. 2.5) could be used by simply repladang the indicator function in Eqg. 2.5 with a
measure taking values in the interval [0,1] that will refled how frequently afedureis
appearing in the solutions of the population.

Finaly, we found it very easy to adapt GLS and FLS to the different problems
examined in this thesis something which suggests that it may be possble to bult a
generic software platform for combinatorial optimisation based on GLS. Although
locd seach is problem dependent, most of the other structures of GLS and aso FLS
are problem independent. Furthermore, a step by step procedure is usually foll owed
when GLS is applied to a new problem (i.e. identify fedures, assgn costs, etc.)
something which makes easier the use of the technique by nonspedalists (e.g.

software engineers).
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Guided Local Search

Appendix A
Results on the Travelling Salesman Problem

The set of problems used in the evaluation d the Repeded Locd Seach, Guided
Locd Seach and Iterated Locd Seach (using the Doulde Bridge move) variants on
the TSPincluded 20 poblems from 48 to 1002cities al from TSALIB (seeChapter 3
for detail s on these techniques). For eat variant tested, 10runs were performed from
randam solutions and 5minutes of CPU time were dl ocaed to eat agorithm in eah
run ona DEC Alpha 3000600 (179MHz) madine. To measure the success of the
variants, we considered the percentage excess abowve the optimal solution as in EQ.
3.5. For GLS variants, the normali sed lambda parameter a was provided as inpu and
A\ was determined after the first loca minimum using Eq. 3.6. For GLS variants using
2-Opt, a was =t to a = 1/6 while the GLS variants based on 3Opt used the dlightly
lower value a = 1/8 and the LK variants the even lower value a = 1/10. Results for
GLS are shown ifableA.1.

Iterated Locd Seach was using the Doule Bridge move. No simulated anneding was
used which is roughly equivalent to the Large-Markov Chains Methods with
temperaturd set to 0. Results for Iterated Local Search are showahieA.2.
Finally, Repeaed Locd Seach was restarting from a randam solution whenever locd
seach was reading a loca minimum. Results for Repeaed Locd Seach are shown
in Table A.3. The names of the variants were formed acwrding to the following

convention:

<meta-heuristic>-<local search type>-<neighbourhood type>.

164



Guided Local Search

Problem |No.Cities Mean Excess (%) over 10 runs

GLS-FI-LK [GLS-FI-30pt [GLS-FI-20pt |GLS-FLS-LK [GLS-FLS-30pt|GLS-FLS-20pt
att48 48 0 0 0 0 0 0
eil76 76 0 0 0 0 0 0
kroA100 |100 0 0 0 0 0 0
bier127 127 0.218207 0.11658¢ 0.019694 0.206624 0.002194 0
kroA150 |150 0.029784 0.084074 0.000754 0.00150¢ 0.001131 0
ul59 159 0 0.460551 0.225284 0 0 0
kroA200 |200 0.436189% 0.526083 0.257083 0.088877 0.00681 0
gr202 (202 0.732321 0.406374 0.309517 0.25298¢ 0.011703 0
gr229 (229 0.392788 0.468191 0.381644 0.152964 0.015007 0.00430¢4
gil262 (262 0.328007 0.723297 0.428937 0.084104 0.0462571 0.0042041
lin318 |318 1.00264 1.74284 1.33884 0.583407 0.129197 0.02641
gr431 (431 1.69439 2.71862 2.34071 0.563664 0.134003 0.023914
pcb442 1442 0.966363 0.80783 1.36634 0.38816 0.038401 0.044311
att532 (532 1.04746 2.28594 2.52871 0.38611¢ 0.22466 0.089931
us74 574 1.36897 2.81263 3.66807 0.580951 0.278824 0.141444
rat575 |575 0.806142 1.77174 2.25011 0.287908 0.171264 0.098922
gr666 (666 1.66056 4.38707 6.00476 0.855251 0.497863 0.20627¢4
u724 724 1.02504 2.25101 3.03054 0.61299 0.336674 0.168218
rat783 |783 0.89711¢ 2.24052 3.36924 0.511014% 0.285033 0.161254
pr1002 1002 1.978771 3.31964 5.54336 1.04229 0.945357 0.62062¢
Average Excess 0.729235 1.356155 1.653182 0.32994 0.15622 0.079492
Table A.1 Results for GLS on the TSP.
Problem |No.Cities Mean Excess (%) over 10 runs

DB-FI-LK |DB-FI-30pt |DB-FI-20pt [DB-FLS-LK [DB-FLS-30pt |DB-FLS-20pt
att48 48 0 0 0 0 0 0
eil76 76 0 0 0 0 0 0
kroA100 (100 0 0 0 0 0 0
bier127 (127 0 0 0 0 0 0
kroA150 (150 0 0.00150¢ 0.003394 0 0 0
ul59 159 0 0 0 0 0 0
kroA200 (200 0 0.077294 0.10113 0 0.004767 0.075257
gr202 202 0.009213 0.08839¢ 0.457171 0 0.155129 0.257714
gr229 229 0.01411¢ 0.15757¢ 0.382387 0.004754 0.064114 0.124514
gil262 262 0.016821 0.20184 0.626577 0 0.075694 0.475184
lin318 318 0.25577¢ 0.719027 1.14589 0.24078¢ 0.279099 0.3519
gr431 431 0.332703 0.94403 2.13491 0.22238¢ 0.394197 0.615294
pcb442 (442 0.066367 0.368861 1.8961 0.08172¢ 0.309977 0.684744
att532 532 0.225023 1.03554 2.64971 0.081643 0.270534 0.422957
us74 574 0.11434¢ 1.20034 2.94264 0.092399 0.404824 0.553047
rat575 575 0.1373] 1.15014 3.75904 0.09744¢ 0.445884 0.64963¢
gr666 666 0.41887¢ 1.2517¢ 3.27054 0.175874 0.35952¢ 0.816484
u724 724 0.356954% 1.43617 3.94106 0.166547 0.367699 0.627534
rat783 783 0.240744 1.79764 5.00454 0.15330¢4 0.516694 0.744947
prl002 (1002 1.04747 2.05624 5.19907 0.446332 0.872044 1.05727
Average Excess 0.161784 0.624323 1.675709 0.088159 0.226009 0.372825

Table A.2 Results for Iterated Local Search on the TSP.
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Problem [No.Cities Mean Excess (%) over 10 runs

REP-FI-LK |REP-FI-30pt |REP-FI-20pt [REP-FLS-LK |REP-FLS-30pt|REP-FLS-20pt
att48 48 0 0 0 0 0 0
eil76 76 0 0 1.35689 0 0 1.48699
kroA100 (100 0 0.39564 0.222254 0 0.225543 0.215204
bier127 (127 0.030098 0.40369¢ 1.19624 0.027899% 0.37038¢ 1.29517
kroA150 (150 0.002262 0.83171 2.00917 0.002262 0.8034 2.01553
ul59 159 0 0.30038 1.62619 0 0.265447 2.05894
kroA200 (200 0.024517 1.00684 3.30764 0.004767 0.922097 3.23583
gr202 |202 0.141434 1.22959 3.58591 0.129731 1.19995 3.68352
gr229 229 0.097694 1.36774 3.40124 0.094427 1.27301 3.56443
gil262 262 0.054668 1.3709 5.12195 0.054668% 1.2864 5.77796
lin318 (318 0.629564 2.1799 4.37936 0.636703 2.022674 4.9124
grd3l |431 0.679641 2.07801 5.338771 0.665232 2.20914 5.97495
pcb442 (442 0.48525 1.77636 6.65012 0.51695¢ 1.72417 7.19544
att532  |532 0.530232 2.29033 6.28364 0.579354 2.29141 7.13899
us74 574 0.738382 2.91397 7.46674 0.703157 2.6934 8.4789
rat575 (575 0.807618% 2.69894 7.69231 0.887347 2.7078]1 8.61066
gr666 |666 0.837619 3.18254 8.14717 0.847811 2.97204 9.94096
u724 724 0.933667 2.90551 7.769043 1.0241 2.87473 8.83207
rat783 (783 1.00044 3.2864 8.46468 1.06519 3.39887 9.38797
pri002 (1002 1.5044 3.50511 8.62029 1.39134 3.59139 10.5847
Average Excess 0.424885 1.686183 4.631983 0.431549 1.64163 5.219539

Table A.3 Results for Repeated Local Search on the TSP.
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