
Computational Finance and Economics, Tutorial 17/10/2011

Edward Tsang, All Rights Reserved 1

Computation:
Potentials and Limitations

Edward Tsang

Computation: Potentials and Limits

Computers are fast

How fast can we solve a problem?

 It depends on your algorithm

How to measure the speed of algorithms?

What problem-algorithms are “intractable”

What can we do about it?
– Approximations

– Heuristics

17 October 2011 All Rights Reserved, Edward Tsang

Dealing with data

Suppose you believe the following:
– Whenever the short-term moving average crosses

with the long-term moving average from below, it
signals a chance to buyg y

– How to turn that into a concrete trading rule?

17 October 2011 All Rights Reserved, Edward Tsang

FTSE 2009.08.18-2010.10.22

5300.0

5500.0

5700.0

5900.0

17 October 2011 All Rights Reserved, Edward Tsang

4500.0

4700.0

4900.0

5100.0

Price

7 Days Moving Average

14 Days Moving Average

Moving Average Rules to Find

Let
– m-MA be the m-days moving average

– n-MA be the n-days moving average

m < n– m < n

Possible rules to find:
 If the m-MA ≤ n-MA, on day d, but m-MA > n-MA on day

d+1, then buy

 If the m-MA ≥ n-MA, on day d, but m-MA < n-MA on day
d+1, then sell

17/10/2011 All Rights Reserved, Edward Tsang

Learning Moving Average Rules

To find Moving Averages (MAs)
– You need to compare m-days and n-days MA

– Where m < n

N t ll d k ith h thNot all m and n work with each other

To find a good rule, you have to try different m
and n values, one at a time

You can examine how good a particular (m, n)
is by testing it with past data

17/10/2011 All Rights Reserved, Edward Tsang

Computational Finance and Economics, Tutorial 17/10/2011

Edward Tsang, All Rights Reserved 2

Computation consideration

Suppose you decide that m is in [1, 20] and n is
in [21, 70]

You have 20 × 50 = 1,000 combinations to
evaluateevaluate

Suppose each combination takes 1 second to
evaluate

So evaluation takes 1,000 seconds
– or 17 minutes, which is acceptable

17/10/2011 All Rights Reserved, Edward Tsang

Finding more robust rules

Suppose you want to find separate m and n for
buying and selling

Now you need 1,000 seconds to find a buying
rule and another 1 000 seconds for sellingrule, and another 1,000 seconds for selling
– You need 1,000,000 seconds to find combinations

– That is 115 days

You could speed it up with multiple computers
– 115 computers will take 1 day approximately

17/10/2011 All Rights Reserved, Edward Tsang

Realistic rules are more complex

Simple rules would have been found by others

Prices will be changed to reflect rules found

Can you beat the market?

Yes, by finding more complex rules

For example, rules that relate stocks with index

17/10/2011 All Rights Reserved, Edward Tsang

Example: relating stock with index

 Let
 k-MAs be the k-days moving average for stock s

 k-MAI be the k-days moving average for index I

 Buy if crossing is found in both the stock and the y g
index graph within D days:
 m-MAs ≤ n-MAs on day d, but m-MAs > n-MAs on day d+1

 m-MAI ≤ n-MAI on day d’, but m-MAI > n-MAI on day
d’+1

 | d – d’ | ≤ D

17/10/2011 All Rights Reserved, Edward Tsang

Time needed to find the complex rule

Let D be a value between 0 to 9

To find buying rules, 1,000 pairs of m and n’s

Total evaluations required 10,000

Same number to find selling rules

This time, it may take 2 seconds per evaluation

Time required: 2 × 108 seconds to complete
– That is 63 years!

17/10/2011 All Rights Reserved, Edward Tsang

A Closer Look at Complexity

Computational Finance and Economics, Tutorial 17/10/2011

Edward Tsang, All Rights Reserved 3

Sudoku Puzzles

The task is to put one
digit into one square

Each digit should
appear once in a rowappear once in a row,
column or sub-square

Solvable by
constraint solvers
within 2 seconds

17 October 2011 All Rights Reserved, Edward Tsang

Finding the Shortest Path

 Given:
– Junctions

– Connections

– Distance per connection

(could be miles/minutes)

 Find the shortest path
from A to B

17 October 2011 All Rights Reserved, Edward Tsang

Path-finding, Graph Representation

A graph is:

(Nodes, Arcs)

Each Arc is a pair of nodes

B C

42

55

34

36

Add a distance on each arc

Assume, for simplicity:
– No multiple-paths between

two nodes

– All nodes are reachable

17 October 2011 All Rights Reserved, Edward Tsang

A

D
E

F
G

Path-finding – Dijkstra’s Algorithm
Find shortest paths from A to every other node

For each node
– Remember the current shortest distance from A

– Current parent that is links to A

Starting from A, compute one node at a time
– Pick the remaining node x that is closest to A

– Update distance/parent of every neighbours of x if
needed

Complexity: O(n2)

17 October 2011 All Rights Reserved, Edward Tsang

Dijkstra’s Algorithm Pseudo Code
For each node v in graph

parent[v] undefined; dist[v] ∞

Dist[source] 0

Q {all nodes in graph}

While Q is not empty Do

Remove x from Q s.t. dist[x] is minimum

For each of x’s neighbour y

alt dist[x] + distance[x,y]

If alt < dist[y]

dist[y] alt; parent[y] x

17 October 2011 All Rights Reserved, Edward Tsang

Travelling Salesman Problem (TSP)

A (4,10)

E (10,6)

Monday, 17 October 2011 Edward Tsang (Copyright)18

Goal: to find shortest route through all cities
Optimization involved: minimization

B (0,5)
D (6,6)

C (6,3)

Computational Finance and Economics, Tutorial 17/10/2011

Edward Tsang, All Rights Reserved 4

Distance Table for an example TSP

-- 6 7 4 7

6 -- 6 6 10

A B C D E

A

B

Monday, 17 October 2011 Edward Tsang (Copyright)19

7 6 -- 3 5

4 6 3 -- 4

7 10 5 4 --

4 6 3 3 4

C

D

E
Heuristic:

Branch & Bound (1)
A c=0 h=20

AB c=6 h=14

ABC c=12 h=11 ABD c=12 h=11 ABE c=16 h=10

AC, AD, AE to be searched

c=cost
h=lower bound

Monday, 17 October 2011 Edward Tsang (Copyright)20

ABCD c=15 h=8

ABCDEA
c=26 h=0 ABCEDA

c=25 h=0

ABCE c=17 h=7

ABDC c=15 h=8 ABDE c=16 h=7

ABDCEA
c=27 h=0

ABDECA
c=28 h=0

Pruned

Branch & Bound (2)
A c=0 h=20

AD c=4 h=17

ADC c=7 h=10 ADE c=8 h=13 ADB c=10 h=11

AB, AC, AE to be searched

c=cost
h=lower bound

Monday, 17 October 2011 Edward Tsang (Copyright)21

ADCE c=12 h=10

ADCEBA
c=28 h=0 ADCBEA

c=30 h=0

ADCB c=13 h=8

ADEC c=13 h=10 ADEB c=18 h=7

ADCBEA
c=30 h=0

ADCBEA
c=30 h=0

….

HC Example: 2-opting for TSP

Candidate tour: a round trip route

Neighbour: exchange two edges, change
directions accordingly

Monday, 17 October 2011 Edward Tsang (Copyright)22

directions accordingly

A
B

C

E D

A
B

C

E D

List reversing 2-Opting

 List representation:
– A list could represent cities in sequence

 2-Opting can be seen as sub-list reversing

Monday, 17 October 2011Edward Tsang (Copyright) 23

– Easy to implement

1 3 654 8 2 7

Breaking points

1 3 684 5 2 7

Combinatorial Explosion

1

2

3

A B C D E F G H

1 2 4 8 16 32 64 128

 Put 1 penny in square 1
 2 pennies in square 2

1500

2000

2500

Pennies

Monday, 17 October 2011 Edward Tsang (Copyright)24

4

5

6

7

8 1019

 4 pennies in square 3, etc.
 Even the world’s richest man

can’t afford it
– 1019 p = £100,000 trillion
– World GDP 2008 was US$60

trillion (£37 trillion)
0

500

1000

1500

S
qu

ar
es 1 2 3 4 5 6 7 8 9 10 11

Computational Finance and Economics, Tutorial 17/10/2011

Edward Tsang, All Rights Reserved 5

Car Sequencing Problem

Options
ABS
CD
…

Total:

Monday, 17 October 2011 Edward Tsang (Copyright)25

…

30 2030 40
Total:
120Production:

ABS area: 3/5 CD area: 2/3

Combinatorial Explosion
in Car Sequencing

 Schedule 30 cars:
– Search space: 30 factorial 1032 leaf nodes

 Generously allow:

Monday, 17 October 2011 Edward Tsang (Copyright)26

 Generously allow:
– Explore one in every 1010 leaf nodes!

– Examine 1010 nodes per second!

 Problem takes over 32 thousand years to solve!!!
– 1032 ÷ 1010 ÷ 1010 ÷ 60 ÷ 60 ÷ 24 ÷ 365 31,710

 How to contain combinatorial explosion?

Computational complexity basics

Let n measures the size of a problem

Can we express how fast an algorithm is in
term of n?

O d t t?– On average and at worst?

– Expressed as O(n2), O(log n), O(10n)

Also applied to amount of memory required

A problem that cannot be solved fast enough to
be useful is called intractable

17 October 2011 All Rights Reserved, Edward Tsang

NP Completeness in laymen terms

A concept in computer science
– It is about complexity in computation

A problem is NP-complete if finding solutions
t k ti l titake exponential time

Example: try all combinations of a password
– Assume 6 characters from a to z, A to Z, 0 to 9

– There are 626 (roughly 1010) combinations

– Trying 2 passwords per second takes 2 milleniums!

17 October 2011 All Rights Reserved, Edward Tsang

A little bit more technical on NP

NP is a concept in computational complexity
– NP: non-polynomial time complete

Let n measures the size of a problem

A problem is NP-complete if:
– Any solution can be verified in polynomial time

• E.g. n2, where n measures the size of the problem

– But it takes exponential time to find solutions
• E.g. 2n

17 October 2011 All Rights Reserved, Edward Tsang

Parallel processing for NP problems

Suppose we need to make n decisions
– Each decision has m choices, where m is constant

There are mn combinations to explore

Suppose we use 10 processors
– Assume linear speed-up, no overhead

Problem will be solved in 1/10th of time
– Getting an answer in 1 hour is better than 10 hours

– But exploring mn combinations may take 1030 years

17 October 2011 All Rights Reserved, Edward Tsang

Computational Finance and Economics, Tutorial 17/10/2011

Edward Tsang, All Rights Reserved 6

What to do with NP problems?

 Just because a problem is NP-complete doesn’t
mean that it is intractable
– Sudoku: constraint propagation

Linear programming: exploiting problem features– Linear programming: exploiting problem features

However, most NP-complete problems are
intractable in nature
– Find approximations

– Heuristics may help

17 October 2011 All Rights Reserved, Edward Tsang

Searching

Artificial Intelligence

 Knowledge representation + Search

Search Space = the set of all possible solutions
d h i iunder the given representation

17 October 2011 All Rights Reserved, Edward Tsang

Complete Search
Systematically explore
every candidate solution in
the search space

Incomplete Search
Use heuristics to search in
promising areas for
solutions

Stochastic Search
 Incomplete search

– i.e. even if solutions exist, they may not be found

Evolutionary computation
– To evolve solutions thru maintaining a population

Hill Climbing
– To heuristically improve on the current solution

Many more
– Tabu search, guided local search, neural network,

…

17 October 2011 All Rights Reserved, Edward Tsang

Conclusion

Computers are fast

Some problems can be solved very quickly

However, many problems are intractable

Computer scientists study complexity of
algorithms

This helps us decide what technique to use
– Great if optimal solutions can be found

– Apply approximation methods otherwise

17 October 2011 All Rights Reserved, Edward Tsang

