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Computation:
Potentials and Limitations

Edward Tsang

Computation: Potentials and Limits

Computers are fast

How fast can we solve a problem?

 It depends on your algorithm

How to measure the speed of algorithms?

What problem-algorithms are “intractable”

What can we do about it?
– Approximations

– Heuristics
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Dealing with data

Suppose you believe the following:
– Whenever the short-term moving average crosses 

with the long-term moving average from below, it 
signals a chance to buyg y

– How to turn that into a concrete trading rule?
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Moving Average Rules to Find

Let
– m-MA be the m-days moving average

– n-MA be the n-days moving average

m < n– m < n

Possible rules to find:
 If the m-MA ≤ n-MA, on day d, but m-MA > n-MA on day 

d+1, then buy 

 If the m-MA ≥ n-MA, on day d, but m-MA < n-MA on day 
d+1, then sell
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Learning Moving Average Rules

To find Moving Averages (MAs)
– You need to compare m-days and n-days MA

– Where m < n

N t ll d k ith h thNot all m and n work with each other

To find a good rule, you have to try different m 
and n values, one at a time

You can examine how good a particular (m, n) 
is by testing it with past data
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Computation consideration

Suppose you decide that m is in [1, 20] and n is 
in [21, 70]

You have 20 × 50 = 1,000 combinations to 
evaluateevaluate

Suppose each combination takes 1 second to 
evaluate

So evaluation takes 1,000 seconds
– or 17 minutes, which is acceptable
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Finding more robust rules

Suppose you want to find separate m and n for 
buying and selling

Now you need 1,000 seconds to find a buying 
rule and another 1 000 seconds for sellingrule, and another 1,000 seconds for selling
– You need 1,000,000 seconds to find combinations

– That is 115 days

You could speed it up with multiple computers
– 115 computers will take 1 day approximately
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Realistic rules are more complex

Simple rules would have been found by others

Prices will be changed to reflect rules found

Can you beat the market?

Yes, by finding more complex rules

For example, rules that  relate stocks with index
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Example: relating stock with index

 Let 
 k-MAs be the k-days moving average for stock s

 k-MAI be the k-days moving average for index I

 Buy if crossing is found in both the stock and the y g
index graph within D days:
 m-MAs ≤ n-MAs on day d, but m-MAs > n-MAs on day d+1

 m-MAI ≤ n-MAI on day d’, but m-MAI > n-MAI on day 
d’+1

 | d  – d’ | ≤ D
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Time needed to find the complex rule

Let D be a value between 0 to 9

To find buying rules, 1,000 pairs of m and n’s

Total evaluations required 10,000

Same number to find selling rules

This time, it may take 2 seconds per evaluation

Time required: 2 × 108 seconds  to complete
– That is 63 years!
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A Closer Look at Complexity
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Sudoku Puzzles

The task is to put one 
digit into one square

Each digit should 
appear once in a rowappear once in a row, 
column or sub-square

Solvable by 
constraint solvers 
within 2 seconds
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Finding the Shortest Path

 Given: 
– Junctions

– Connections

– Distance per connection

(could be miles/minutes)

 Find the shortest path 
from A to B
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Path-finding, Graph Representation

A graph is:

(Nodes,  Arcs)

Each Arc is a pair of nodes

B C

42

55

34

36

Add a distance on each arc

Assume, for simplicity:
– No multiple-paths between 

two nodes

– All nodes are reachable
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Path-finding – Dijkstra’s Algorithm
Find shortest paths from A to every other node

For each node
– Remember the current shortest distance from A

– Current parent that is links to A

Starting from A, compute one node at a time
– Pick the remaining node x that is closest to A

– Update distance/parent of every neighbours of x if 
needed

Complexity: O(n2)
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Dijkstra’s Algorithm Pseudo Code
For each node v in graph

parent[v]  undefined; dist[v]  ∞

Dist[source]  0

Q {all nodes in graph}

While Q is not empty Do

Remove x from Q s.t. dist[x] is minimum

For each of x’s neighbour y

alt  dist[x] + distance[x,y]

If alt < dist[y]

dist[y]  alt; parent[y]  x
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Travelling Salesman Problem (TSP)

A (4,10)

E (10,6)
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Goal: to find shortest route through all cities
Optimization involved: minimization

B (0,5)
D (6,6)

C (6,3)
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Distance Table for an example TSP

-- 6 7 4 7

6 -- 6 6 10

A B C D E

A

B
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7 6 -- 3 5

4 6 3 -- 4

7 10 5 4 --

4 6 3 3 4

C

D

E
Heuristic:

Branch & Bound (1)
A c=0 h=20

AB c=6 h=14

ABC c=12 h=11 ABD c=12 h=11 ABE c=16 h=10

AC, AD, AE to be searched

c=cost
h=lower bound
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ABCD c=15 h=8

ABCDEA
c=26 h=0 ABCEDA

c=25 h=0

ABCE c=17 h=7

ABDC c=15 h=8 ABDE c=16 h=7

ABDCEA
c=27 h=0

ABDECA
c=28 h=0

Pruned

Branch & Bound (2)
A c=0 h=20

AD c=4 h=17

ADC c=7 h=10 ADE c=8 h=13 ADB c=10 h=11

AB, AC, AE to be searched

c=cost
h=lower bound
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ADCE c=12 h=10

ADCEBA
c=28 h=0 ADCBEA

c=30 h=0

ADCB c=13 h=8

ADEC c=13 h=10 ADEB c=18 h=7

ADCBEA
c=30 h=0

ADCBEA
c=30 h=0

….

HC Example: 2-opting for TSP

Candidate tour: a round trip route

Neighbour: exchange two edges, change 
directions accordingly
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directions accordingly

A
B

C

E D

A
B

C

E D

List reversing  2-Opting

 List representation:
– A list could represent cities in sequence

 2-Opting can be seen as sub-list reversing
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– Easy to implement

1 3 654 8 2 7

Breaking points

1 3 684 5 2 7

Combinatorial Explosion

1

2

3

A B C D E F G H

1 2 4 8 16 32 64 128

 Put 1 penny in square 1
 2 pennies in square 2

1500

2000

2500

Pennies
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4

5

6

7

8 1019

 4 pennies in square 3, etc.
 Even the world’s richest man 

can’t afford it
– 1019 p = £100,000 trillion
– World GDP 2008 was US$60 

trillion (£37 trillion)
0
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Car Sequencing Problem

Options
ABS
CD
…

  
  

Total:
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…

30 2030 40
Total:
120Production:

ABS area:  3/5 CD area:  2/3

Combinatorial Explosion 
in Car Sequencing

 Schedule 30 cars:
– Search space: 30 factorial  1032 leaf nodes

 Generously allow:
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 Generously allow:
– Explore one in every 1010 leaf nodes!

– Examine 1010 nodes per second!

 Problem takes over 32 thousand years to solve!!!
– 1032 ÷ 1010 ÷ 1010 ÷ 60 ÷ 60 ÷ 24 ÷ 365  31,710 

 How to contain combinatorial explosion?

Computational complexity basics

Let n measures the size of a problem

Can we express how fast an algorithm is in 
term of n?

O d t t?– On average and at worst?

– Expressed as O(n2), O(log n), O(10n)

Also applied to amount of memory required

A problem that cannot be solved fast enough to 
be useful is called intractable
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NP Completeness in laymen terms

A concept in computer science
– It is about complexity in computation

A problem is NP-complete if finding solutions 
t k ti l titake exponential time

Example: try all combinations of a password
– Assume 6 characters from a to z, A to Z, 0 to 9

– There are 626 (roughly 1010) combinations

– Trying 2 passwords per second takes 2 milleniums!
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A little bit more technical on NP

NP is a concept in computational complexity
– NP: non-polynomial time complete

Let n measures the size of a problem

A problem is NP-complete if:
– Any solution can be verified in polynomial time

• E.g. n2, where n measures the size of the problem

– But it takes exponential time to find solutions 
• E.g. 2n
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Parallel processing for NP problems

Suppose we need to make n decisions
– Each decision has m choices, where m is constant

There are mn combinations to explore

Suppose we use 10 processors
– Assume linear speed-up, no overhead

Problem will be solved in 1/10th of time
– Getting an answer in 1 hour is better than 10 hours

– But exploring mn combinations may take 1030 years
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What to do with NP problems?

 Just because a problem is NP-complete doesn’t 
mean that it is intractable
– Sudoku: constraint propagation

Linear programming: exploiting problem features– Linear programming: exploiting problem features

However, most NP-complete problems are 
intractable in nature
– Find approximations

– Heuristics may help
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Searching

Artificial Intelligence 

 Knowledge representation + Search

Search Space = the set of all possible solutions 
d h i iunder the given representation
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Complete Search
Systematically explore 
every candidate solution in 
the search space

Incomplete Search
Use heuristics to search in 
promising areas for 
solutions

Stochastic Search
 Incomplete search

– i.e. even if solutions exist, they may not be found

Evolutionary computation
– To evolve solutions thru maintaining a population

Hill Climbing
– To heuristically improve on the current solution

Many more
– Tabu search, guided local search, neural network, 

…
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Conclusion

Computers are fast

Some problems can be solved very quickly

However, many problems are intractable

Computer scientists study complexity of 
algorithms

This helps us decide what technique to use
– Great if optimal solutions can be found

– Apply approximation methods otherwise
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