

Computation: Potentials and Limits

- Computers are fast
- How fast can we solve a problem?
- It depends on your algorithm
-How to measure the speed of algorithms?
- What problem-algorithms are "intractable"
- What can we do about it?
- Approximations
- Heuristics

Dealing with data

Moving Average Rules to Find

- Let
- m-MA be the m-days moving average
- n -MA be the n -days moving average
$-\mathrm{m}<\mathrm{n}$
- Possible rules to find:
- If the m-MA $\leq \mathrm{n}-\mathrm{MA}$, on day d , but $\mathrm{m}-\mathrm{MA}>\mathrm{n}-\mathrm{MA}$ on day $\mathrm{d}+1$, then buy
- If the $\mathrm{m}-\mathrm{MA} \geq \mathrm{n}-\mathrm{MA}$, on day d , but $\mathrm{m}-\mathrm{MA}<\mathrm{n}-\mathrm{MA}$ on day $\mathrm{d}+1$, then sell

Learning Moving Average Rules

- To find Moving Averages (MAs)
- You need to compare m-days and n-days MA
- Where m < n
- Not all m and n work with each other
- To find a good rule, you have to try different m and n values, one at a time
- You can examine how good a particular (m, n) is by testing it with past data

Computation consideration

- Suppose you decide that m is in $[1,20]$ and n is in [21, 70]
- You have $20 \times 50=1,000$ combinations to evaluate
- Suppose each combination takes 1 second to evaluate
- So evaluation takes 1,000 seconds
- or 17 minutes, which is acceptable

Finding more robust rules

- Suppose you want to find separate m and n for buying and selling
- Now you need 1,000 seconds to find a buying rule, and another 1,000 seconds for selling
- You need $1,000,000$ seconds to find combinations
- That is 115 days
- You could speed it up with multiple computers - 115 computers will take 1 day approximately

Realistic rules are more complex

Example: relating stock with index

- Simple rules would have been found by others
- Prices will be changed to reflect rules found
- Can you beat the market?
- Yes, by finding more complex rules
- For example, rules that relate stocks with index
- Let
- $\mathrm{k}-\mathrm{MA}_{\mathrm{s}}$ be the k -days moving average for stock s
- $\mathrm{k}-\mathrm{MA}_{\mathrm{I}}$ be the k -days moving average for index I
- Buy if crossing is found in both the stock and the index graph within D days:

- $\mathrm{m}-\mathrm{MA}_{\mathrm{I}} \leq \mathrm{n}-\mathrm{MA}_{\mathrm{I}}$ on day d^{\prime}, but $m-\mathrm{MA}_{\mathrm{I}}>\mathrm{n}-\mathrm{MA}_{\mathrm{I}}$ on day d'+1
- $\left|\mathrm{d}-\mathrm{d}^{\prime}\right| \leq \mathrm{D}$

Time needed to find the complex rule

Sudoku Puzzles

- The task is to put one digit into one square
- Each digit should appear once in a row, column or sub-square
- Solvable by constraint solvers within 2 seconds

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Path-finding, Graph Representation

- A graph is:
(Nodes, Arcs)
- Each Arc is a pair of nodes
- Add a distance on each arc
- Assume, for simplicity:
- No multiple-paths between two nodes
- All nodes are reachable

Dijkstra's Algorithm Pseudo Code
For each node v in graph
parent[v] \leftarrow undefined; $\operatorname{dist[v]~} \leftarrow \infty$
Dist[source] $\leftarrow 0$
$\mathrm{Q} \leftarrow$ \{all nodes in graph $\}$
While Q is not empty Do
Remove x from Q s.t. $\operatorname{dist}[\mathrm{x}]$ is minimum
For each of x 's neighbour y

$$
\begin{aligned}
& \text { alt } \leftarrow \operatorname{dist}[\mathrm{x}]+\operatorname{distance}[\mathrm{x}, \mathrm{y}] \\
& \text { If alt }<\operatorname{dist}[\mathrm{y}] \\
& \qquad \operatorname{dist}[\mathrm{y}] \leftarrow \operatorname{alt} ; \text { parent }[\mathrm{y}] \leftarrow \mathrm{x}
\end{aligned}
$$

Finding the Shortest Path

- Given:
- Junctions
- Connections
- Distance per connection (could be miles/minutes)
- Find the shortest path from A to B

Path-finding - Dijkstra's Algorithm

- Find shortest paths from A to every other node
- For each node
- Remember the current shortest distance from A
- Current parent that is links to A
- Starting from A, compute one node at a time
- Pick the remaining node x that is closest to A
- Update distance/parent of every neighbours of x if needed
- Complexity: O(n²)

Travelling Salesman Problem (TSP)

- Goal: to find shortest route through all cities
- Optimization involved: minimization

Distance Table for an example TSP

	A	B	C	D	E
A	--	6	7	4	7
B	6	--	6	6	10
C	7	6	--	3	5
D	4	6	3	--	4
E	7	10	5	4	--
Heuristic:	4	6	3	3	4

Branch \& Bound (1)

HC Example: 2-opting for TSP

- Candidate tour: a round trip route
- Neighbour: exchange two edges, change directions accordingly

List reversing \gg 2-Opting

- List representation:
- A list could represent cities in sequence
- 2-Opting can be seen as sub-list reversing
- Easy to implement

\section*{| 1 | 3 | 4 | 8 | 6 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Edward Tsngy (Copyright)

Breaking points

\section*{| 1 | 3 | 4 |
| :--- | :--- | :--- |
 2 7}

(cont
Ionday, 17 October 2011

Combinatorial Explosion

 in Car Sequencing- Schedule 30 cars:
- Search space: 30 factorial $\cong 10^{32}$ leaf nodes
- Generously allow:
- Explore one in every 10^{10} leaf nodes!
- Examine 10^{10} nodes per second!
- Problem takes over 32 thousand years to solve!!!
$-10^{32} \div 10^{10} \div 10^{10} \div 60 \div 60 \div 24 \div 365 \cong 31,710$
- How to contain combinatorial explosion?

Computational complexity basics

NP Completeness in laymen terms

- Let n measures the size of a problem
- Can we express how fast an algorithm is in term of n ?
- On average and at worst?
- Expressed as $\mathrm{O}\left(n^{2}\right), \mathrm{O}(\log n), \mathrm{O}\left(10^{n}\right)$
- Also applied to amount of memory required
- A problem that cannot be solved fast enough to be useful is called intractable
- A concept in computer science
- It is about complexity in computation
- A problem is NP-complete if finding solutions take exponential time
- Example: try all combinations of a password
- Assume 6 characters from a to z, A to $\mathrm{Z}, 0$ to 9
- There are $62^{6}\left(\right.$ roughly $\left.10^{10}\right)$ combinations
- Trying 2 passwords per second takes 2 milleniums!

A little bit more technical on NP

- NP is a concept in computational complexity
- NP: non-polynomial time complete
- Let n measures the size of a problem
- A problem is NP-complete if:
- Any solution can be verified in polynomial time
- E.g. n^{2}, where n measures the size of the problem
- But it takes exponential time to find solutions
- E.g. $2^{\text {n }}$

Parallel processing for NP problems

- Suppose we need to make n decisions
- Each decision has m choices, where m is constant
- There are m^{n} combinations to explore
- Suppose we use 10 processors
- Assume linear speed-up, no overhead
- Problem will be solved in $1 / 10^{\text {th }}$ of time
- Getting an answer in 1 hour is better than 10 hours
- But exploring m^{n} combinations may take 10^{30} years

What to do with NP problems?

- Just because a problem is NP-complete doesn't mean that it is intractable
- Sudoku: constraint propagation
- Linear programming: exploiting problem features
- However, most NP-complete problems are intractable in nature
- Find approximations
- Heuristics may help

Searching

Artificial Intelligence
\approx Knowledge representation + Search
Search Space $=$ the set of all possible solutions under the given representation

> | Complete Search |
| :--- |
| Systematically explore |
| every candidate solution in |
| the search space |

Incomplete Search

 Use heuristics to search in promising areas for solutions
Stochastic Search

- Incomplete search
- i.e. even if solutions exist, they may not be found
- Evolutionary computation
- To evolve solutions thru maintaining a population
- Hill Climbing
- To heuristically improve on the current solution
- Many more
- Tabu search, guided local search, neural network,

Conclusion

- Computers are fast
- Some problems can be solved very quickly
- However, many problems are intractable
- Computer scientists study complexity of algorithms
- This helps us decide what technique to use
- Great if optimal solutions can be found
- Apply approximation methods otherwise

