
Edward Tsang (all rights reserved) 1

10 November, 2009 Copyright Edward Tsang 2

Evolutionary Computation:
Model-based Generate & Test

Model
(To Evolve)

Candidate
Solution

Observed
Performance

Test

Feedback
(To update model)

A Candidate Solution
could be a vector of
variables, or a tree

A Model could be a
population of solutions,
or a probability model

The Fitness of a solution
is application-dependent,
e.g. drug testing

Generate: select, create/mutate vectors / trees

10 November, 2009 Copyright Edward Tsang 3

Motivation
• Idea from natural selection
• To contain combinatorial explosion

– E.g. the travelling salesman problem
• To evolve quality solutions

– E.g. to find hardware configurations

10 November, 2009 Copyright Edward Tsang 4

Terminology in GA

• Example of a candidate solution
• in binary representation (vs real coding)
• A population is maintained

1 0 0 0 1 1 0 Chromosome
with Genes
with alleles

String with
Building blocks
with values

fitness

evaluation

edward
Typewritten Text

Edward Tsang (all rights reserved) 2

10 November, 2009 Copyright Edward Tsang 5

Example Problem For GA

� maximize f(x) = 100 + 28x ñ x2

ñ optimal solution: x = 14 (f(x) = 296)
� Use 5 bits representation

ñ e.g. binary 01101 = decimal 13
ñ f(x) = 295

� Note: representation issue can be tricky
� Choice of representation is crucial

10 November, 2009 Copyright Edward Tsang 6

Example Initial Population

No. String Decim. f(x) weight Accum

1 01010 10 280 28 28
2 01101 13 295 29 57
3 11000 24 196 19 76
4 10101 21 247 24 100

Accum
averg

1,018
254.5

To maximize f(x) = 100 + 28x ñ x2

10 November, 2009 Copyright Edward Tsang 7

Selection in Evolutionary Computation

� Roulette wheel
method
ñ The fitter a string,

the more chance it
has to be selected

24%
10101 28%

01010

29%
01101

19%
11000

Edward Tsang (all rights reserved) 4

10 November, 2009 Copyright Edward Tsang 11

Claimed advantages of GA
• Simple to program
• General -- wide range of applicability
• Efficient -- finding solutions fast
• Effective -- finding good solutions
• Robust -- finding solutions consistently
�Are these claims justified?
�Different people have different opinions

EpistasisEpistasis
(interaction between Genes)(interaction between Genes)

Constraints
Penalties, Repair

Guided Genetic Algorithm

10 November, 2009 Copyright Edward Tsang 23

Constraints
• Task: find optimal solution in constrained

satisfaction
• Difficulties:

– Before one can attempt to optimization, one
needs to find legal solutions

– Crossover may generate illegal solutions
– Sometimes satisfying constraints alone is hard

• When problem is tightly constrained

Edward Tsang (all rights reserved) 5

10 November, 2009 Copyright Edward Tsang 24

Epistasis, Example in TSP
• Travelling

Salesman Problem
• After crossover,

offspring may not
be legal tours
– some cities may be

visited twice,
others missing

1 3 684 5 2 7

6 8 514 2 7 3

1 3 684

6 8 514

2 7 3
5 2 7

crossover

�

10 November, 2009 Copyright Edward Tsang 25

Penalty Method
• If a string violates certain constraints
• Then a penalty is deducted from the fitness

– E.g. in TSP, if penalties are high, GA may
attempt to satisfy constraints before finding
short tours

• Problem with tightly constrained problems:
– most strings are illegal

10 November, 2009 Copyright Edward Tsang 26

Repair Method
• If a string violates certain constraints
• Then attempt to repair it

– E.g. in TSP, replace duplicated cities with
missing cities

– possibly with complete search or heuristics
• Make sure that a population only contains

legal candidate solutions
– One can then focus on optimization

Edward Tsang (all rights reserved) 6

GA for Machine LearningGA for Machine Learning

Classifiers
Bucket Brigade

10 November, 2009 Copyright Edward Tsang 31

Production System Architecture
Working MemoryProduction Rules

Scheduler

Retrieve data

Change data
(firing)

Conditions → Actions
Conditions → Actions

Conditions → Actions
…..

Facts
Sensor inputs
Internal states

…..

10 November, 2009 Copyright Edward Tsang 32

Classifier System Components
• Classifiers: Condition-Action rules

– Special type of production system
• A Credit System

– Allocating rewards to fired rules
• Genetic Algorithm

– for evolving classifiers

Edward Tsang (all rights reserved) 7

10 November, 2009 Copyright Edward Tsang 33

Classifier System Example
Message List

0111
0000
1100

Classifiers
01##:0000
00#0:1100

….

Detectors
0
1
1
1

Effectors
1
1
0
0

Info

Payoff

Action

Classifiers bid to fire
Classifiers have

fixed length
conditions and

actions

10 November, 2009 Copyright Edward Tsang 34

Apportionment of Credit
• The set of classifiers work as one system

– They react to the environment
– The system as a whole gets feedback

• How much to credit each classifier?
– E.g. Bucket Brigade method

• Each classifier i has a strength Si
– which form the basis for credit apportionment
– as well as fitness for evolution

10 November, 2009 Copyright Edward Tsang 35

Bucket Brigade, Basics
• A classifier may make a bid to fire

Bi = Si * Cbid
– where Cbid is the bid coefficient

• Effective bid: EBi = Si * Cbid + N(σbid)
– where N(σbid) is a noise function
– with standard deviation σbid

• Winner of an auction pays the bid value to
source of the activating message

Edward Tsang (all rights reserved) 8

10 November, 2009 Copyright Edward Tsang 36

Classifiers In Action

Cbid = 0.1
Ctax = 0

S3
220
218
180
162
20

Msg

1000
0001

B3

16

S4
220
218
196
146
20

Msg

0001

B4 R4

50

Classifiers
01##:0000
00#0:1100
11##:1000
##00:0001

Environment

S0
200
200
200
200
0

Msg

0111

B0
20

S1
180
200
200
200
20

Msg
0000

B1

20

20

S2
220
180
200
180
20

Msg

1100

0001

B2

20
18

S5
220
218
196
196
20

10 November, 2009 Copyright Edward Tsang 37

More on Bucket Brigade
• Each classifier is “taxed”
• Si(t+1) = Si(t) - CbidSi(t) - CtaxSi(t) + Ri(t)

– where Si(t) is strength of classifier i at time t
– CbidSi(t) is the bid accepted
– Ctax is tax
– Ri(t) is payoff

• For stability, the bid value should be
comparable to receipts from environment

10 November, 2009 Copyright Edward Tsang 38

Classifiers: Genetic Algorithms
• Tga = # of steps between GA calls

– GA called once every Tga cycles; or
– GA called with probability reflecting Tga

• A proportion of the population is replaced
• Selection: roulette wheel

– weighted by strength Si
• Mutation: 0 → {1,#}, 1 → {0,#}, # → {0,1}

Edward Tsang (all rights reserved) 9

Genetic ProgrammingGenetic Programming

Building decision trees
GP for Machine Learning

10 November, 2009 Copyright Edward Tsang 40

Genetic Programming, Overview
• Young field

– Koza: Genetic Programming, 1992
– Langdon & Poli: Foundations of GP, 2001

• Diverse definitions
– Must use trees? May use lists?

• Must one evolve programs?
– Suitable for LISP

• Machine learning: evolving trees
– dynamic data structure

10 November, 2009 Copyright Edward Tsang 41

Terminals and Functions
• Terminal set:

– Inputs to the program
– Constants

• Function set:
– Statements, e.g. IF-THEN-ELSE, WHILE-DO
– Functions, e.g. AND, OR, +, :=
– Arity sensitive

Edward Tsang (all rights reserved) 10

10 November, 2009 Copyright Edward Tsang 42

Functions: Statements (e.g. IF-THEN-ELSE) or functions (e.g. AND, OR, +, −−−−)

Terminals: Input to the program or constants

GP: Example Tree (1)

Last race time

Won last time

If-then-else

Not-winWin

If-then-else

Win

5 min

<

10 November, 2009 Copyright Edward Tsang 43

GP Application
• A tree can be anything, e.g.:

– a program
– a decision tree

• Choice of terminals and functions is crucial
– Domain knowledge helps
– Larger grammar ⇒

larger search space ⇒
harder to search

10 November, 2009 Copyright Edward Tsang 44

GP: Example Tree (2)

Win Not-winWin

Last raced 3 months ago

Same Jockey

Not-winWin

Won last time

Same Stable

Boolean decisions only
(limited functions)

Terminals: input to the program or constants

Functions: Statements (e.g. IF-THEN-ELSE) or functions (e.g. AND, OR, +, −−−−)

Edward Tsang (all rights reserved) 11

10 November, 2009 Copyright Edward Tsang 45

GP Operators
1

4

32

765

98

a

d cb

gfe

ih

1

4 3

2

76

5

98

a

d

cb

gfe

ih

�

�

Cr
oss

ov
er

Mutation: change a branch

10 November, 2009 Copyright Edward Tsang 46

Fitness in GP
• Generating Programs

– How well does the program meet the
specification?

• Machine Learning:
– How well can the tree predict the outcome?

• Function Fitting:
– How great/small the error is

10 November, 2009 Copyright Edward Tsang 47

Generational GP Algorithm
• Initialize population
• Evaluate individuals
• Repeat

– Repeat
� Select parents, crossover, mutation

– Until enough offspring have been generated
• Until termination condition fulfilled

Edward Tsang (all rights reserved) 12

10 November, 2009 Copyright Edward Tsang 48

Steady-state GP Algorithm
• Initialize population P
• Repeat

– Pick random subset of P for tournament
– Select winners in tournament
– Crossover on winners, mutation
– Replace loser(s) with new offspring in P

• Until termination condition fulfilled

Estimation of Distribution Algorithms Estimation of Distribution Algorithms
((EDAsEDAs))

Population-based Incremental Learning
(PBIL)

Building Bayesian networks

10 November, 2009 Copyright Edward Tsang 51

Population-based Incremental Learning
(PBIL)

• Statistical approach
• Related to ant-colonies, GA

Model M:
x = v1 (0.5)
x = v2 (0.5)
y = v3 (0.5)
y = v4 (0.5)

Sample from M
solution X, eg
<x,v1><y,v4> Evaluation X

Modify the probabilities

0.6
0.4

0.6
0.4

