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Evolutionary Computation:
Model-based Generate & Test

Model 
(To Evolve)

Candidate 
Solution

Observed 
Performance

Test

Feedback
(To update model)

A Candidate Solution
could be a vector of 
variables, or a tree

A Model could be a 
population of solutions, 
or a probability model

The Fitness of a solution 
is application-dependent, 
e.g. drug testing 

Generate: select, create/mutate vectors / trees
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Motivation
• Idea from natural selection
• To contain combinatorial explosion

– E.g. the travelling salesman problem
• To evolve quality solutions

– E.g. to find hardware configurations
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Terminology in GA

• Example of a candidate solution
• in binary representation (vs real coding)
• A population is maintained

1 0 0 0 1 1 0 Chromosome 
with Genes
with alleles

String with
Building blocks
with values

fitness

evaluation

edward
Typewritten Text
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Example Problem For GA

� maximize f(x) = 100 + 28x ñ x2

ñ optimal solution: x = 14   (f(x) = 296)
� Use 5 bits representation

ñ e.g. binary 01101 = decimal 13
ñ f(x) = 295

� Note: representation issue can be tricky
� Choice of representation is crucial
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Example Initial Population

No. String Decim. f(x) weight Accum

1 01010 10 280 28 28
2 01101 13 295 29 57
3 11000 24 196 19 76
4 10101 21 247 24 100

Accum
averg

1,018
254.5

To maximize f(x) = 100 + 28x ñ x2
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Selection in Evolutionary Computation

� Roulette wheel 
method
ñ The fitter a string, 

the more chance it 
has to be selected

24%
10101 28%

01010

29%
01101

19%
11000
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Claimed advantages of GA
• Simple to program
• General -- wide range of applicability
• Efficient -- finding solutions fast
• Effective -- finding good solutions
• Robust -- finding solutions consistently
�Are these claims justified?
�Different people have different opinions

EpistasisEpistasis
(interaction between Genes)(interaction between Genes)

Constraints
Penalties, Repair

Guided Genetic Algorithm
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Constraints
• Task: find optimal solution in constrained 

satisfaction
• Difficulties: 

– Before one can attempt to optimization, one 
needs to find legal solutions

– Crossover may generate illegal solutions
– Sometimes satisfying constraints alone is hard

• When problem is tightly constrained
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Epistasis, Example in TSP
• Travelling 

Salesman Problem
• After crossover, 

offspring may not 
be legal tours
– some cities may be 

visited twice, 
others missing

1 3 684 5 2 7

6 8 514 2 7 3

1 3 684

6 8 514

2 7 3
5 2 7

crossover

�
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Penalty Method
• If a string violates certain constraints
• Then a penalty is deducted from the fitness

– E.g. in TSP, if penalties are high, GA may 
attempt to satisfy constraints before finding 
short tours

• Problem with tightly constrained problems:
– most strings are illegal
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Repair Method
• If a string violates certain constraints
• Then attempt to repair it

– E.g. in TSP, replace duplicated cities with 
missing cities

– possibly with complete search or heuristics
• Make sure that a population only contains 

legal candidate solutions
– One can then focus on optimization
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GA for Machine LearningGA for Machine Learning

Classifiers
Bucket Brigade
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Production System Architecture
Working MemoryProduction Rules

Scheduler

Retrieve data

Change data
( firing )

Conditions → Actions
Conditions → Actions

Conditions → Actions
…..

Facts
Sensor inputs
Internal states

…..
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Classifier System Components
• Classifiers: Condition-Action rules

– Special type of production system
• A Credit System

– Allocating rewards to fired rules
• Genetic Algorithm

– for evolving classifiers
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Classifier System Example
Message List

0111
0000
1100

Classifiers
01##:0000
00#0:1100

….

Detectors
0
1
1
1

Effectors
1
1
0
0

Info

Payoff

Action

Classifiers bid to fire
Classifiers have 

fixed length 
conditions and 

actions
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Apportionment of Credit
• The set of classifiers work as one system

– They react to the environment
– The system as a whole gets feedback

• How much to credit each classifier?
– E.g. Bucket Brigade method

• Each classifier i has a strength Si
– which form the basis for credit apportionment
– as well as fitness for evolution
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Bucket Brigade, Basics
• A classifier may make a bid to fire

Bi = Si * Cbid
– where Cbid is the bid coefficient

• Effective bid:  EBi = Si * Cbid + N(σbid)
– where N(σbid) is a noise function 
– with standard deviation σbid

• Winner of an auction pays the bid value to 
source of the activating message
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Classifiers In Action

Cbid = 0.1
Ctax = 0

S3
220
218
180
162
20

Msg

1000
0001

B3

16

S4
220
218
196
146
20

Msg

0001

B4 R4

50

Classifiers
01##:0000
00#0:1100
11##:1000
##00:0001

Environment

S0
200
200
200
200
0

Msg

0111

B0
20

S1
180
200
200
200
20

Msg
0000

B1

20

20

S2
220
180
200
180
20

Msg

1100

0001

B2

20
18

S5
220
218
196
196
20
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More on Bucket Brigade
• Each classifier is “taxed”
• Si(t+1) = Si(t) - CbidSi(t) - CtaxSi(t) + Ri(t)

– where Si(t) is strength of classifier i at time t
– CbidSi(t) is the bid accepted
– Ctax is tax
– Ri(t) is payoff

• For stability, the bid value should be 
comparable to receipts from environment
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Classifiers: Genetic Algorithms
• Tga = # of steps between GA calls

– GA called once every Tga cycles; or
– GA called with probability reflecting Tga

• A proportion of the population is replaced
• Selection: roulette wheel

– weighted by strength Si
• Mutation: 0 → {1,#}, 1 → {0,#}, # → {0,1}
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Genetic ProgrammingGenetic Programming

Building decision trees
GP for Machine Learning
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Genetic Programming, Overview
• Young field

– Koza: Genetic Programming, 1992
– Langdon & Poli: Foundations of GP, 2001

• Diverse definitions
– Must use trees? May use lists? 

• Must one evolve programs?
– Suitable for LISP

• Machine learning: evolving trees
– dynamic data structure
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Terminals and Functions
• Terminal set:

– Inputs to the program
– Constants

• Function set:
– Statements, e.g. IF-THEN-ELSE, WHILE-DO
– Functions, e.g. AND, OR, +, :=
– Arity sensitive
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Functions: Statements (e.g. IF-THEN-ELSE) or functions (e.g. AND, OR, +, −−−−)

Terminals: Input to the program or constants

GP: Example Tree (1)

Last race time

Won last time

If-then-else

Not-winWin

If-then-else

Win

5 min

<
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GP Application
• A tree can be anything, e.g.:

– a program
– a decision tree

• Choice of terminals and functions is crucial
– Domain knowledge helps
– Larger grammar ⇒

larger search space ⇒
harder to search
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GP: Example Tree (2)

Win Not-winWin

Last raced 3 months ago

Same Jockey

Not-winWin

Won last time

Same Stable

Boolean decisions only
(limited functions)

Terminals: input to the program or constants

Functions: Statements (e.g. IF-THEN-ELSE) or functions (e.g. AND, OR, +, −−−−)
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GP Operators
1

4

32

765

98

a

d cb

gfe

ih

1

4 3

2

76

5

98

a

d

cb

gfe

ih

�

�

Cr
oss

ov
er

Mutation: change a branch
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Fitness in GP
• Generating Programs

– How well does the program meet the 
specification?

• Machine Learning: 
– How well can the tree predict the outcome?

• Function Fitting:
– How great/small the error is 
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Generational GP Algorithm
• Initialize population
• Evaluate individuals
• Repeat

– Repeat
� Select parents, crossover, mutation

– Until enough offspring have been generated
• Until termination condition fulfilled
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Steady-state GP Algorithm
• Initialize population P
• Repeat

– Pick random subset of P for tournament
– Select winners in tournament
– Crossover on winners, mutation
– Replace loser(s) with new offspring in P

• Until termination condition fulfilled

Estimation of Distribution Algorithms Estimation of Distribution Algorithms 
((EDAsEDAs))

Population-based Incremental Learning 
(PBIL)

Building Bayesian networks
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Population-based Incremental Learning 
(PBIL)

• Statistical approach 
• Related to ant-colonies, GA

Model M: 
x = v1 (0.5)
x = v2 (0.5)
y = v3 (0.5)
y = v4 (0.5)

Sample from M 
solution X, eg
<x,v1><y,v4> Evaluation X

Modify the probabilities

0.6
0.4

0.6
0.4




