# Computational Intelligence Meets Financial Forecasting

Edward Tsang et al Forecasting Research Team











### Efficient Market Hypothesis

- Financial assets (e.g. shares) pricing:
  - All available information is fully reflected in current prices
- ♦ If EMH holds, forecasting is futile - <u>Random walk hypothesis</u>
- ♦ Assumptions:
  - Efficient markets (one can buy/sell quickly)
  - Perfect information flow
  - Rational traders

## Is the market really efficient?

- Market may be efficient in the long term
- ♦ "Fat Tail" observation:
  - big changes today often followed by big changes tomorrow (either up or down)
- How fast can one respond to new information?
  - Faster machines certainly help
  - So should faster algorithms ( $\underline{CIDER}$ )
- Credit crunch: did investors price their risks properly?

# Do fundamental values matter?

- In boom, markets are liquid but often not driven by fundamentals only (bubbles)
- In bust, markets may be driven by fundamentals only, but are not liquid
- In neither boom nor bust are markets efficient
  - Willem Buiter (LSE)

# Our Research agenda

- What would a reasonable agenda be?
- Predicting the price in 10 days would be good
- But it may be sufficient if I could turn a 50-50 game into a 60-40 game in my favour
- ♦ Question asked:
  - *"Will the price go up (or down) by at least r% within the next n days?"*



|        | Expert  | More   | Define        |
|--------|---------|--------|---------------|
| Given  | adds:   | input: | target:       |
| Daily  | 50 days | Volat- | <b>↑4% in</b> |
| losing | m.a.    | ility  | 21 days?      |
| 90     | 80      | 50     | 1             |
| 99     | 82      | 52     | 0             |
| 87     | 83      | 53     | 1             |
| 82     | 82      | 51     | 1             |
|        |         |        |               |







# Syntax of GDTs in EDDIE-2

• Richer language  $\Rightarrow$  larger search space

# Machine learning basics

What could one learn? Hypothetical observations How to summarize success/failure? Performance measures



# Hypothetical Situation

- Suppose you've discovered a good indicator R
   How can you make use of it?
- Suppose it is a fact that whenever
  - -R has a value less than 1.4 or greater than 2.7,
  - the volatility of the share prices is above 2.5, and
  - yield is above 5.7%
  - prices will rise by  $\geq 6\%$  within the next 21 days
- How can you find this rule

# Hypothetical observations

| Instance                                          | R   | Volatility | Yield | Target | Classified |    |
|---------------------------------------------------|-----|------------|-------|--------|------------|----|
|                                                   | 1.2 | 3.1        | 4.8   | False  | False      | TN |
| 2                                                 | 1.3 | 3.0        | 6.6   | True   | True       | TP |
|                                                   | 2.8 | 2.9        | 5.9   | True   | False      | FP |
| 4                                                 | 2.5 | 1.7        | 7.0   | False  | False      | TN |
| 5                                                 | 2.4 | 3.5        | 6.9   | False  | False      | TN |
|                                                   | 2.0 | 2.9        | 5.6   | False  | False      | TN |
|                                                   | 3.1 | 3.3        | 5.8   | True   | True       | TP |
| 8                                                 | 3.1 | 3.0        | 5.5   | False  | True       | FN |
| 9                                                 | 2.8 | 2.4        | 5.0   | False  | True       | FN |
| 10                                                | 2.6 | 2.5        | 5.2   | False  | False      | TN |
| 28 October 2009 All Rights Reserved, Edward Tsang |     |            |       |        |            |    |





# Performance Measures



| Actual Predictions, Example |   |   |    |  |  |
|-----------------------------|---|---|----|--|--|
|                             |   |   |    |  |  |
| _                           | 5 | 2 | 7  |  |  |
| +                           | 1 | 2 | 3  |  |  |
|                             | 6 | 4 | 10 |  |  |
| RC = (5+2) ÷10 = 70%        |   |   |    |  |  |

Precision =  $2 \div 4 = 50\%$ Recall =  $2 \div 3 = 67\%$ 









# Our EDDIE/FGP Experience

### Patterns exist

- Would they repeat themselves in the future? (EMH debated for decades)
- ♦ EDDIE has found patterns
  - Not in every series
  - (we don't need to invest in every index / share)
- EDDIE extending user's capability
  - and give its user an edge over investors of the same caliber

# Incentive to Improve Precision



### **FGP: Constrained Fitness** Constraints can help guiding the search • Fitness = $w_{re} \times RC' - w_{rme} \times RMC - w_{rf} \times RF$ • RC' = RC if P+ $\in$ [Min, Max] Jin Li FGP otherwise **Negative** Positive False True Negative Negative • One can adjust Min and Max to reflect market expectation False True (possibly from training), or risk Positive Positive preference Cautious ← Low Max







# Arbitrage Opportunities

- Futures are obligations to buy or sell at certain prices
- Options are rights to buy at a certain price
- ♦ If they are not aligned, one can make risk-free profits
- Such opportunities should not exist
- But they do in London

# A simplified scenario: Option price: £0.5 { Option right to buy: £10



# Experience in EDDIE on Arbitrage

- Arbitrage opportunities exist in London
- Naïve approach:
  - Monitor arbitrage opportunities, act when they arise; problem: speed
- Misalignments don't happen instantaneously
   Do patterns exist? If so, can we recognize them?
- EDDIE-ARB can find some opportunities
   With high confidence (precision >75%)
- Commercialisation of EDDIE-ARB
   Need to harvest more opportunities; Need capital
- Research only made possible by close collaboration between computer scientists and economists









### Where does it go from here?

- Computational finance > CI + Finance
   Research agenda beyond CI and finance experts
- Finance drives computational intelligence
   We need more techniques for chance discovery
- Being able to forecast alone is not sufficient

   If opportunity is predicted, do we invest 100%?
- Financial forecasting is growing rapidly
  - Conferences, IEEE Technical Committee, etc

AQ

# FAQ in forecasting

- Is the market predictable?
  - It doesn't have to be
  - But if you believe it is, you should code your own expertise
     Market is not efficient anyway, herding has patterns
- How can you predict exceptional events?
  - No, we can't
  - Neither can human traders
- How can you be sure that your program works?
  - No, we can't
  - Neither were we sure about Nick Leeson at Barrings
  - Codes are more auditable than humans
  - If you can improve your odds from 50-50 to 60-40 in your favour, you should be happy

### Reference

- http://www.bracil.net/finance/papers/Tsang-Forecasting-Fcsc2009.pdf
- Tsang, E.P.K., Forecasting where computational intelligence meets the stock market, <u>Frontiers of</u> <u>Computer Science in China</u>, Springer, 2009, to appear (also filed as <u>Working Paper WP026-08</u>, <u>Centre for</u> <u>Computational Finance and Economic Agents</u> <u>(CCFEA)</u>, University of Essex, revised December 2008)



