Evolutionary Bargaining
Game theory: Two players alternative offering game
Subgame perfect equilibrium found
Player A What is my share?? $\xrightarrow{\text { Player B }}$
Slight game modification $\rightarrow \quad$ Technical details (non-trivial)
Laborious work on new solutions Co-evolution
Perfect rationality assumption Incentive methods invented

- Proposal: EC for approximating solutions on new games

Two players alternative offering game
Player 1: How about 70% for me 30% for you? $t=0$, Player 1's pay off is 70%

Player 1: No, how about 50-50?
$\mathrm{t}=2$, Player l's pay off is $50 \% \times \mathrm{e}^{-0.1 \times 2}=41 \%$ \qquad

- If neither players have any incentive to compromise, this can go on for ever
\qquad
- Payoff drops over time - incentive to compromise
- A's Payoff $=\mathrm{x}_{\mathrm{A}} \exp \left(-\mathrm{r}_{\mathrm{A}} \mathrm{t} \Delta\right) \quad$ Let r_{1} be $0.1, \Delta$ be 1

25 Norember 2009
All Rights Reserved. Edward Tasne

Payoff decreases over time

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bargaining in Game Theory

n........ani..
In reality:

Offer at time $t=f\left(\mathrm{r}_{\mathrm{A}}, \mathrm{r}_{\mathrm{B}}, t\right)$
Is it necessary?
Is it rational? (What is rational?)
$\mathrm{t}=\#$ of rounds, at time Δ per round

- A's payoff x_{A} drops as time goes
by
A's Payoff $=x_{A} \exp \left(-r_{A} t \Delta\right)$
- Important Assumptions:

Both players rational
Both players know everything

- Equilibrium solution for A :
$\mu_{\mathrm{A}}=\left(1-\delta_{\mathrm{B}}\right) /\left(1-\delta_{\mathrm{A}} \delta_{\mathrm{B}}\right)$
where $\delta_{i}=\exp \left(-\mathrm{r}_{\mathrm{i}} \Delta\right)$
Optimal offer:
Notice:
$\mathrm{x}_{\mathrm{A}}=\mu_{\mathrm{A}} \quad$ No time t here at $\mathrm{t}=0$
?)

Optimal offer:
$x_{\mathrm{A}}=\mu_{\mathrm{A}}$
at $\mathrm{t}=0$

All Rights Reserved, Edward Tsang

Evolutionary Computation for Bargaining

Technical Details

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Issues Addressed in EC for Bargaining

- Representation

Should t be in the language?

- One or two population?
- How to evaluate fitness
-Fixed or relative fitness?
- How to contain search space?
- Discourage irrational strategies:
- Ask for $\mathrm{x}_{\mathrm{A}}>1$?
- Ask for more over time?

- Ask for more when δ_{A} is low?

A run through \qquad

Two populations - co-evolution

- We want to deal with asymmetric games
- E.g. two players may have different information
- One population for training each player's strategies
- Co-evolution, using relative fitness
- Alternative: use absolute fitness

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Representation of Strategies

- A tree represents a mathematical function g \qquad
- Terminal set: $\left\{1, \delta_{A}, \delta_{B}\right\}$
- Functional set: $\{+,-, \times, \div\}$
- Given g, player with discount rate r plays at time t

$$
\mathrm{g} \times(1-\mathrm{r})^{\mathrm{t}}
$$

\qquad

- Language can be enriched:
- Could have included e or time t to terminal set
- Could have included power \wedge to function set
- Richer language \rightarrow larger search space \rightarrow harder search problem
\qquad

Incentive Method:
Constrained Fitness Function

- No magic in evolutionary computation \qquad
Larger search space \rightarrow less chance to succeed
- Constraints are heuristics to focus a search
- Focus on space where promising solutions may lie
- Incentives for the following properties in the function returned:
- The function returns a value in $(0,1)$
- Everything else being equal, lower $\delta_{\Lambda} \rightarrow$ smaller share
- Everything else being equal, lower $\delta_{\underline{B}} \rightarrow$ larger share

Note: this is the key to our search effectiveness

Incentives for Bargaining

- $\mathrm{F}\left(\mathrm{g}_{\mathrm{i}}\right)=$

$\frac{\operatorname{GF}\left(\mathrm{s}\left(\mathrm{~g}_{\mathrm{i}}\right)\right)}{\mathrm{B} \geq 3 \text { (toumament selection is used) }}$	$\begin{aligned} & \text { If } \mathrm{g}_{\mathrm{i}} \text { in }(0,1] \& \\ & \mathrm{SM}_{\mathrm{i}}>0 \& \mathrm{SM}_{\mathrm{i}}>0 \end{aligned}$
	$\begin{aligned} & \text { If }_{\mathrm{i}} \text { in }(0,1] \& \\ & \left(\mathrm{SM}_{\mathrm{i}} \leq 0 \text { or } \mathrm{SM}_{\mathrm{i}} \leq 0\right) \end{aligned}$
	If g_{i} NOT in (0,1]

- GF($\left.\mathrm{s}\left(\mathrm{g}_{\mathrm{i}}\right)\right)$ is the game fitness (GF) of a strategy (s) based on the function $g_{i v}$, which is generated by genetic programming
- When g_{i} is outside $(0,1$], the strategy does not enter the games

C1: Incentive for Feasible Solutions

- The function returns a value in $(0,1]$
- The function participates in game plays
- The game fitness (GF) is measured
- A bonus (B) incentive is added to GF
-B is set to 3
- Since tournament is used in selection, the absolute value of B does not matter (as long as $\mathrm{B}>3$)

C 2 : Incentive for Rational δ_{A}

- Everything else being equal, lower $\delta_{\mathrm{A}} \rightarrow$ smaller share for A
Given a function g_{i} :
- The sensitive measure SM $_{i}\left(\delta_{i j} \delta_{i}, \alpha\right)$ measures how much g_{i} decreases when δ_{i} increases by α

Attribute $\operatorname{ATT}(\mathrm{i})=$| 1 | If $^{1} \mathrm{SM}_{\mathrm{i}}\left(\delta_{\mathrm{i}}, \delta_{\mathrm{j}}, \alpha\right)>1$ |
| :--- | :--- |
| $-\mathrm{e}^{(1 / \text { SMi }(\delta \mathrm{i}, \mathrm{jj}, \alpha))}$ | $\operatorname{If~}^{\operatorname{SM}} \mathrm{SM}_{\mathrm{i}}\left(\delta_{\mathrm{i}}, \delta_{\mathrm{j}}, \alpha\right) \leq 1$ |

$0<\operatorname{ATT}($ i $) \leq 1$

C3: Incentive for Rational δ_{B}

- Everything else being equal, lower $\delta_{\mathrm{B}} \rightarrow$ larger share for A
\qquad
Given a function g_{i} :
- The sensitive measure SM $_{(}\left(\delta_{j 2} \delta_{j}, \alpha\right)$ measures how much g_{i} increases when δ_{j} increases by α

\qquad
\qquad
$0<\operatorname{ATT}(\mathrm{j}) \leq 1$
\qquad

Sensitivity Measure (SM) for δ_{i}

- $\mathrm{SM}_{\mathrm{i}}\left(\delta_{\mathrm{i}}, \delta_{\mathrm{j}}, \alpha\right)=$ \qquad

$\left[g_{i}\left(\delta_{i} \times(1+\alpha), \delta_{j}\right)-g_{i}\left(\delta_{i}, \delta_{j}\right)\right]$	If $\delta_{i} \times(1+\alpha)<1$
$\div g_{i}\left(\delta_{i}, \delta_{j}\right)$	
$\left[g_{i}\left(\delta_{i}, \delta_{j}\right)-g_{i}\left(\delta_{i} \times(1-\alpha), \delta_{j}\right)\right]$	If $\delta_{i} \times(1+\alpha) \geq 1$
$\div g_{i}\left(\delta_{i}, \delta_{j}\right)$	

- SM_{i} measures how much g_{i} decreases when δ_{i} increases by α
(g_{i} is the function which fitness is to be measured)
\qquad

Sensitivity Measure (SM) for δ_{j}

- $\operatorname{SM}_{\mathrm{j}}\left(\delta_{\mathrm{i}}, \delta_{\mathrm{j}}, \alpha\right)=$

$\left[g_{i}\left(\delta_{i}, \delta_{j}\right)-g_{i}\left(\delta_{i}, \delta_{j} \times(1+\alpha)\right)\right]$	If $\delta_{j} \times(1+\alpha)<1$
$\div g_{i}\left(\delta_{i}, \delta_{j}\right)$	
$\left[g_{i}\left(\delta_{i j} \delta_{j} \times(1-\alpha)\right)-g_{i}\left(\delta_{i}, \delta_{j}\right)\right]$	If $\delta_{j} \times(1+\alpha) \geq 1$
$\div g_{i}\left(\delta_{i}, \delta_{j}\right)$	

- SM_{j} measures how much g_{i} increases when δ_{j} increases by α
(g_{i} is the function which fitness is to be measured)

Bargaining Models Tackled

$\begin{gathered} \text { Determin } \\ \text { ants } \end{gathered}$	Complete Information	Uncertainty	
		1-sided	2-sided
Discount Factors	* Rubinstein 82	* Rubinstein 85 x Imprecise info Ignorance	x Bilateral ignorance
+ Outside Options	* Binmore 85	x Uncertainty + Outside Options	More could be done easily

* = Game theoretical solutions known
$\mathrm{x}=$ game theoretic solutions unknown

Models with known equilibriums

Complete Information

- Rubinstein 82 model:

Alternative offering, both A and B know $\delta_{\mathrm{A}} \& \delta_{\mathrm{B}}$

- Binmore 85 model, outside options:

As above, but each player has an outside offer, w_{A} and w_{B}
Incomplete Information

- Rubinstein 85 model:
- B knows $\delta_{\mathrm{A}} \& \delta_{\mathrm{B}}$
- A knows δ_{A}
- A knows δ_{B} is δ_{w} with probability $\mathrm{w}_{0}, \delta_{\mathrm{s}}\left(>\delta_{\mathrm{w}}\right)$ otherwise
\qquad

Models with unknown equilibriums

Modified Rubinstein 85 / Binmore 85 models: \qquad

- 1 -sided Imprecise information
-B knows $\delta_{\mathrm{A}} \& \delta_{\mathrm{B}} ; \mathrm{A}$ knows δ_{A} and a normal distribution of δ_{B}
- 1-sided Ignorance \qquad
-B knows both δ_{A} and $\delta_{\mathrm{B}} ; \mathrm{A}$ knows δ_{A} but not δ_{B}
- 2-sided Ignorance
- B knows δ_{B} but not $\delta_{\mathrm{A}} ; \mathrm{A}$ knows δ_{A} but not δ_{B}
- Rubinstein $85+1$-sided outside option
\qquad
\qquad
\qquad
\qquad

Equilibrium with Outside Option

x_{A}^{*}	Conditions	
$\underline{\mu}_{\mathrm{A}}$	$w_{\mathrm{A}} \leq \delta_{\mathrm{A}} \mu_{\mathrm{A}}$	$w_{\mathrm{B}} \leq \delta_{\mathrm{B}} \mu_{\mathrm{B}}$
$1-w_{\mathrm{B}}$	$w_{\mathrm{A}} \leq \delta_{\mathrm{A}}\left(1-w_{\mathrm{B}}\right)$	$w_{\mathrm{B}}>\delta_{\mathrm{B}} \mu_{\mathrm{B}}$
$\delta_{\mathrm{B}} w_{\mathrm{A}}+\left(1-\delta_{\mathrm{B}}\right)$	$w_{\mathrm{A}}>\delta_{\mathrm{A}} \mu_{\mathrm{A}}$	$w_{\mathrm{B}} \leq \delta_{\mathrm{B}}\left(1-w_{\mathrm{A}}\right)$
$1-w_{\mathrm{B}}$	$w_{\mathrm{A}}>\delta_{\mathrm{A}}\left(1-w_{\mathrm{B}}\right)$	$w_{\mathrm{B}}>\delta_{\mathrm{B}}\left(1-w_{\mathrm{A}}\right)$
w_{A}	$w_{\mathrm{A}}+w_{\mathrm{A}}>1$	-

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Equilibrium in Uncertainty - Rub85

$V_{s}=\frac{1-\delta_{s}}{1-\delta_{1} \delta_{s}}$	$\delta_{2}=\delta_{\mathrm{w}}$		$\delta_{2}=\delta_{\mathrm{s}}$	
	x_{1}^{*}	t^{*}	x_{1}^{*}	t^{*}
$\mathrm{~W}_{0}<\mathrm{w}^{*}$	$\mathrm{~V}_{\mathrm{s}}$	0	$\mathrm{~V}_{\mathrm{s}}$	0
$\mathrm{~W}_{0}>\mathrm{w}^{*}$	$x^{\mathrm{w} 0}$	0	$1-((1-$ $\left.\left.\mathrm{x}^{\mathrm{w} 0}\right) / \delta_{\mathrm{w}}\right)$	1

$w^{*}=\frac{V_{s}-\delta_{1}^{2} V_{s}}{1-\delta_{w}+\delta_{1} V_{s}\left(\delta_{w}-\delta_{1}\right)} \quad x^{w_{0}}=\frac{\left(1-\delta_{w}\right)\left(1-\delta_{1}^{2}\left(1-w_{0}\right)\right)}{1-\delta_{1}^{2}\left(1-w_{0}\right)-\delta_{1} \delta_{w} w_{0}}$
\qquad

Evolutionary Bargaining Conclusions

- Demonstrated GP's flexibility

Models with known and unknown solutions
Outside option
Incomplete, asymmetric and limited information

- Co-evolution is an alternative approximation method
to find game theoretical solutions
- Perfect rationality assumption relaxed

Relatively quick for approximate solutions
Relatively easy to modify for new models

- Genetic Programming with incentive / constraints

Constraints helped to focus the search in promising spaces

- Lots remain to be done.

Running GP in Bargaining

Representation, Evaluation
Selection, Crossover, Mutation

Representation
\bullet Given δ_{A} and δ_{B}, every tree represents a \qquad
constant

\qquad

Population Dynamics

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evaluation

- Given the discount factors, each tree is \qquad translated into a constant X
- It represents the demand represented by the tree. \qquad
- All trees where $\mathrm{x}<0$ or $\mathrm{x}>1$ are evaluated using rules defined by the incentive method
\qquad
- All trees where $0 \leq x \leq 1$ enter game playing
- Every tree for Player 1 is played against every tree for Player 2

Evaluation Through Bargaining

Demands by Player 2's strategies						

- Incentive method ignored here for simplicity
Selection

Rule (Demand)	Fitness	Normalized	Accumulated
R1 (0.75)	0.75	0.19	0.19
R2 (0.96)	0.96	0.24	0.43
R3 (1.08)	1.08	0.27	0.70
R4 (1.18)	1.18	0.30	1.00
Sum:	3.97	1	

- A random number r between 0 and 1 is generated
- If, say, $\mathrm{r}=0.48$ (which is >0.43), then rule R3 is selected
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

