




#### Contents of today's talk

- Forecasting
- Financial forecasting
  - What is it? Is it possible?
  - Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting

  - How it works
    Research on EDDIE 7 and EDDIE 8 Latest research

· Forecast price movement of stock/market

**Financial Forecasting** 

- Forecast opportunities (buy, not-buy, sell, arbitrage)
- Forecast threats Forecast scarce opportunities

#### Data used for forecasting

- Daily (daily closing prices)
- Intraday (high frequency)
- Volume

#### Contents of today's talk

- Forecasting
- Financial forecasting
  - What is it Is it possible?
  - Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting

  - How it worksResearch on EDDIE 7 and EDDIE 8
  - Latest research

University of Kent

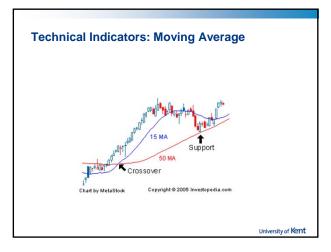
#### Is it possible?

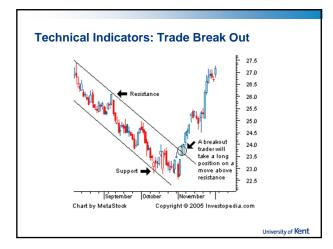
- Lots of debates!
- Efficient Market Hypothesis (EMH)
  - Prices fully reflect the available information that relates to the financial asset being traded
  - If EMH holds, then no point of forecasting
  - Lot of works examining the EMH from both theoretical and empirical perspective • Evidence both in favor of and against EMH
  - "Successful" financial forecasting attempts FX market, bond market, volatility forecasting, stock market crash, ...

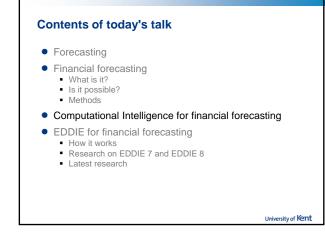
University of Kent

#### Contents of today's talk

#### Forecasting


- Financial forecasting
  - What is it? Is it possible?
  - Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting
  - How it worksResearch on EDDIE 7 and EDDIE 8
  - Latest research


University of Kent


University of Kent



- Fundamental analysis
  - · Examine a company's financial statements and balance sheets in order to predict future trends of their shares
  - Depends on statistics, past records of assets, earnings, dividends, interest rates, sales, products, management, markets
- Technical analysis
  - Use historical data in order to predict future events
  - Belief that there are patterns in the stock prices and that these patterns repeat themselves
  - Technical indicators
    - Moving Average, Filter, Trade Break Out

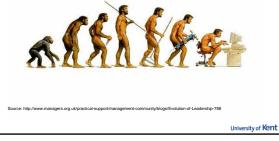


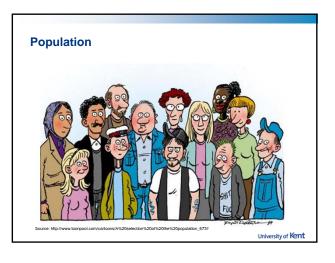




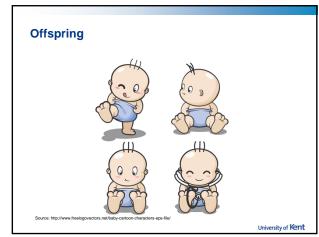
# Computational Intelligence for financial forecasting

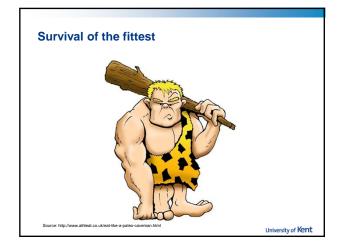
- Artificial Neural Networks
- Genetic Algorithms
- Genetic Programming
- Grammatical Evolution
- Support Vector Machines
- Learning Classifier Systems
- Genetic Network Programming
- Differential Evolution


University of Kent


## Computational Intelligence for financial forecasting

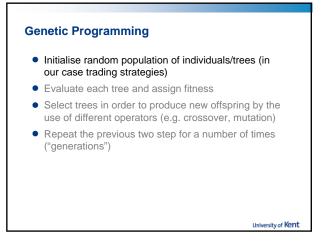

- Artificial Neural Networks
- Genetic Algorithms
- Genetic Programming
- Grammatical Evolution
- Support Vector Machines
- Learning Classifier Systems
- Genetic Network Programming
- Differential Evolution

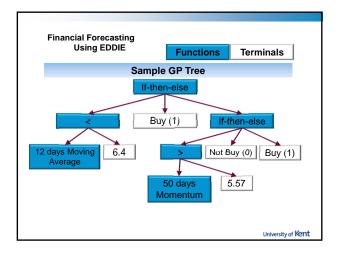

#### **Evolution**


"Evolution is the change in the inherited characteristics of biological populations over successive generations".-*Wikipedia, Article on Biological Evolution* 










#### **Genetic Programming**

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")





#### **Genetic Programming**

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")

University of Kent

University of Kent

#### **Fitness function**

- A function to measure how well a candidate solution/individual fits the data
- More about this later

University of Kent

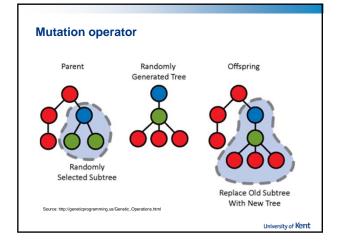
#### **Genetic Programming**

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")

<section-header><complex-block>

 Father
 Mother
 Offspring

 Father
 Mother
 Offspring


 Opposed
 Offspring
 Offspring

 Bradomly
 Opposed
 Opposed

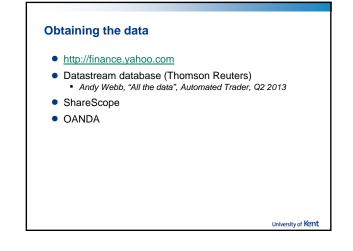
 Bradomly
 Defended buttee
 Opposed

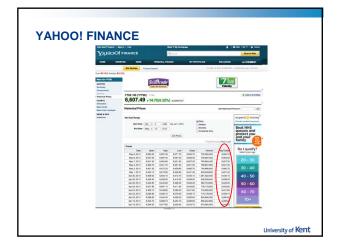
 Bradomly
 Defended buttee
 Opposed

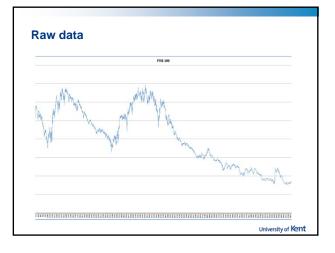
 Bradomly
 Defended buttee
 Defended buttee

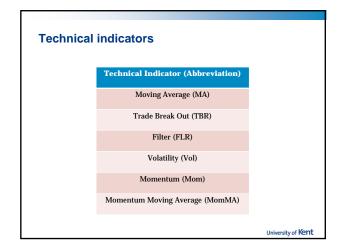


#### **Genetic Programming**

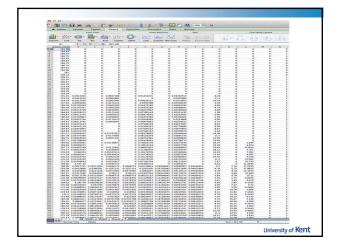

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")



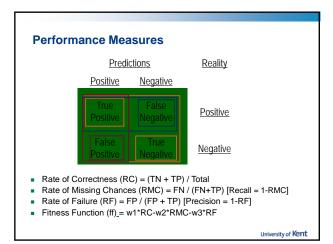


#### EDDIE's goal


- EDDIE is a GP tool that attempts to answer the following question:
   "Will the price of the X stock go up by r% within the next n
  - days"?Users specify X, r, and n

How EDDIE works Raw Data 1. Suggestion of indicators Financial Expert 5. Approval / rejection Testing Data 4. Apply Training Data 3. Evaluate University of Kent








|         | Europet. | Mana    | Define        |
|---------|----------|---------|---------------|
| Given   | Expert   | More    | Define        |
| Given   | adds:    | input:  | target:       |
| Daily   | 50 days  | 12 days | <b></b> 4% in |
| closing | M.A.     | Vol     | 20 days?      |
| 90      | 80       | 50      | 1             |
| 99      | 82       | 52      | 0             |
| 87      | 83       | 53      | 1             |
| 82      | 82       | 51      | 1             |
|         |          |         |               |







| < 81<br>(0) | 96:                              |                                                         |
|-------------|----------------------------------|---------------------------------------------------------|
| Prediction  | Target (Reality)                 | Classification                                          |
| ?           | 0                                | ?                                                       |
| ?           | 1                                | ?                                                       |
| ?           | 1                                | ?                                                       |
| ?           | 0                                | ?                                                       |
|             | (0)<br>Prediction<br>?<br>?<br>? | (0)<br>Prediction Target (Reality)<br>? 0<br>? 1<br>? 1 |

| < 81       |                  |                                                                                    |
|------------|------------------|------------------------------------------------------------------------------------|
| Prediction | Target (Reality) | Classification                                                                     |
| 1          | 0                | ?                                                                                  |
| ?          | 1                | ?                                                                                  |
| ?          | 1                | ?                                                                                  |
| ?          | 0                | ?                                                                                  |
|            | 1<br>?<br>?      | Target (Reality)           1         0           ?         1           ?         1 |

| lf<br>MA_12               | a trading strategy/ti<br>< 81 | ee:              |                |  |
|---------------------------|-------------------------------|------------------|----------------|--|
| Then<br>Buy (1)<br>Else   |                               |                  |                |  |
| Not-Bu                    | y (0)                         |                  |                |  |
| 12 days Moving<br>Average | Prediction                    | Target (Reality) | Classification |  |
|                           |                               |                  | FD             |  |
| 80                        | 1                             | 0                | FP             |  |
| 80<br>82                  | 1<br>?                        | 1                | ?              |  |
|                           |                               |                  |                |  |
| 82                        | ?                             | 1                | ?              |  |

| Assume I have a<br>If<br>Then<br>Buy (1)<br>Else<br>Not-Bu | )          | ee:              |                |
|------------------------------------------------------------|------------|------------------|----------------|
| 12 days Moving<br>Average                                  | Prediction | Target (Reality) | Classification |
| 80                                                         | 1          | 0                | FP             |
| 82                                                         | 0          | 1                | ?              |
| 79                                                         | ?          | 1                | ?              |
|                                                            |            |                  | ?              |

| Exam | ple |
|------|-----|
|      |     |

Assume I have a trading strategy/tree:

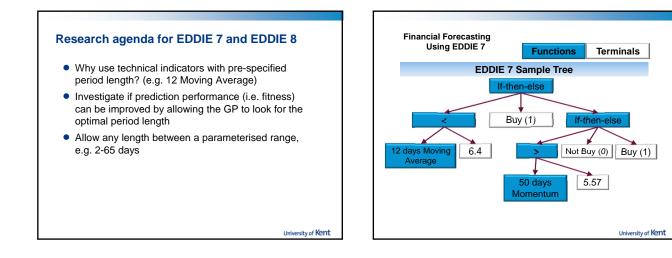
MA\_12 < 81 MA\_12 < 0. Then Buy (1) Else Not-Buy (0)

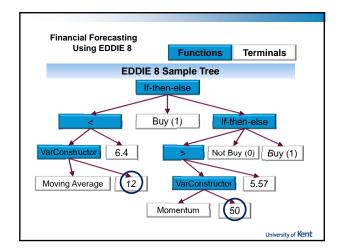
| 12 days Moving<br>Average | Prediction | Target (Reality) | Classification |
|---------------------------|------------|------------------|----------------|
| 30                        | 1          | 0                | FP             |
| 32                        | 0          | 1                | FN             |
| 79                        | ?          | 1                | ?              |
| 83                        | ?          | 0                | ?              |

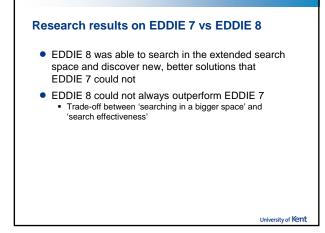
| lf MA_<br>Then Buy (<br>Else | e a trading strateg <u>;</u><br>12 < 81<br>(1)<br>3uy (0) | y/tree:          |                |  |
|------------------------------|-----------------------------------------------------------|------------------|----------------|--|
| 12 days Movin                | g Prediction                                              | Target (Reality) | Classification |  |
| Average                      |                                                           |                  |                |  |
|                              | 1                                                         | 0                | FP             |  |
| Average                      | 1<br>0                                                    | 0                | FP<br>FN       |  |
| Average<br>80                |                                                           |                  |                |  |

| Example                                                              |            |                  |                |  |
|----------------------------------------------------------------------|------------|------------------|----------------|--|
| Assume I have a<br>If<br>MA_12<br>Then<br>Buy (1)<br>Else<br>Not-Buy |            | ee:              |                |  |
| 12 days Moving<br>Average                                            | Prediction | Target (Reality) | Classification |  |
| 80                                                                   | 1          | 0                | FP             |  |
| 82                                                                   | 0          | 1                | FN             |  |
| 79                                                                   | 1          | 1                | TP             |  |
| 83                                                                   | ?          | 0                | ?              |  |
|                                                                      |            |                  |                |  |

| Assume I have a trading strategy/tree:<br>If<br>MA_12 < 81<br>Then<br>Buy (1)<br>Else<br>Not-Buy (0) |            |                  |                |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|------------------|----------------|--|--|--|
| 12 days Moving<br>Average                                                                            | Prediction | Target (Reality) | Classification |  |  |  |
| 80                                                                                                   | 1          | 0                | FP             |  |  |  |
|                                                                                                      |            |                  | -              |  |  |  |
| 82                                                                                                   | 0          | 1                | FN             |  |  |  |
| 82<br>79                                                                                             | 0          | 1                | FN<br>TP       |  |  |  |
|                                                                                                      | •          |                  |                |  |  |  |


| Example                                                                                              |            |                  |                |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|------------------|----------------|--|--|--|
| Assume I have a trading strategy/tree:<br>If<br>MA_12 < 81<br>Then<br>Buy (1)<br>Else<br>Not-Buy (0) |            |                  |                |  |  |  |
| 12 days Moving<br>Average                                                                            | Prediction | Target (Reality) | Classification |  |  |  |
| Average                                                                                              |            |                  |                |  |  |  |
| 80                                                                                                   | 1          | 0                | FP             |  |  |  |
|                                                                                                      | 1<br>0     | 0                | FP<br>FN       |  |  |  |
| 80                                                                                                   | -          |                  |                |  |  |  |
| 80<br>82                                                                                             | 0          | 1                | FN             |  |  |  |


| ample                 |         |                                 |                                        |                         |
|-----------------------|---------|---------------------------------|----------------------------------------|-------------------------|
|                       | Fitness | Rate of<br>Correctnes<br>s (RC) | Rate of<br>Missing<br>Chances<br>(RMC) | Rate of<br>Failure (RF) |
| Tree 1                | 0.24    | 0.62                            | 0.30                                   | 0.33                    |
| Tree 2                | 0.235   | 0.61                            | 0.41                                   | 0.30                    |
| Tree 3                | 0.26    | 0.65                            | 0.25                                   | 0.35                    |
| Tree 4                | 0.05    | 0.50                            | 0.70                                   | 0.60                    |
| Tree 5                | 0.42    | 0.75                            | 0.15                                   | 0.05                    |
|                       |         |                                 |                                        |                         |
| Average               | 0.24    | 0.626                           | 0.362                                  | 0.326                   |
| Standard<br>Deviation | 0.13    | 0.08                            | 0.21                                   | 0.195                   |
| Max                   | 0.42    | 0.75                            | 0.7                                    | 0.6                     |
| Min                   | 0.05    | 0.5                             | 0.15                                   | 0.05                    |
|                       |         |                                 |                                        |                         |
|                       |         |                                 |                                        | University              |


#### Contents of today's talk

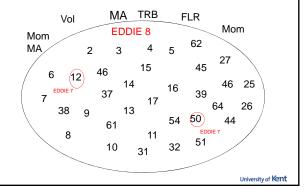
#### • Forecasting

- Financial forecasting
  - What is it?Is it possible?Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting
- How it worksResearch on EDDIE 7 and EDDIE 8
  - Latest research








#### **Further Discussion**

- Results are affected by the patterns in the datasets
   If results come from EDDIE 8's search space, then EDDIE 8 is able to outperform EDDIE 7
  - If results come from EDDIE 7's search space, then EDDIE 8 is having difficulties in finding as good solutions as EDDIE 7 does
  - Solutions are still in EDDIE 8's search space, but they come from a very small area of it (EDDIE 7's space), and thus it is very hard for EDDIE 8 to search effectively in such a small space

University of Kent

University of Kent

## A look at search spaces...

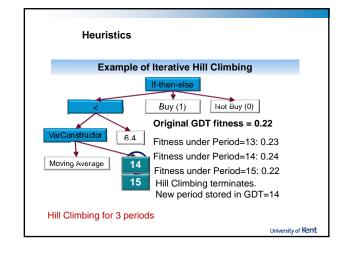


# ForecastingFinancial forecasting

Contents of today's talk

- What is it?
- Is it possible?Methods
- Computational Intelligence for financial forecasting

#### • EDDIE for financial forecasting


- How it worksResearch on EDDIE 7 and EDDIE 8
- Latest research

Meta-heuristics and hyper-heuristics for EDDIE
Use different meta-heuristics to search in the space of the technical indicators and their periods
Hill climbing, Simulated Annealing, Tabu Search, Guided Local Search, .....
Use EDDIE 8 with any of the above meta-heuristics
Combine successful meta-heuristics into different frameworks: hyper-heuristics

10



- Use different meta-heuristics to search in the space of the technical indicators and their periods Hill climbing, Simulated Annealing, Tabu Search, Guided
  - Local Search. ... Use EDDIE 8 with any of the above meta-heuristics
- Combine successful meta-heuristics into different frameworks: hyper-heuristics



| Simulated Annealing        |           |         | Results<br>Significantly improved: 27<br>Significantly worsened: 7 |        |        |
|----------------------------|-----------|---------|--------------------------------------------------------------------|--------|--------|
| Dataset                    | Heuristic | Fitness | RC                                                                 | RMC    | RF     |
| Barclays                   | Original  | 0.3633  | 0.7100                                                             | 0.2449 | 0.0411 |
|                            | S.A.      | 0.4350  | 0.8167                                                             | 0      | 0.0541 |
| BAT                        | Original  | 0.3303  | 0.6667                                                             | 0.2780 | 0.1083 |
| BAI                        | S.A       | 0.3690  | 0.7433                                                             | 0      | 0      |
| Carlburg                   | Original  | 0.3685  | 0.7533                                                             | 0.1341 | 0.2131 |
| Cadbury                    | S.A.      | 0.3733  | 0.7600                                                             | 0      | 0.2179 |
| Imp Tob                    | Original  | 0.2802  | 0.6367                                                             | 0.3946 | 0      |
| Imp Tob                    | S.A.      | 0.2929  | 0.6533                                                             | 0      | 0      |
| Cabrodoro                  | Original  | 0.2369  | 0.6100                                                             | 0.2333 | 0.2456 |
| Schroders                  | S.A       | 0.3054  | 0.6800                                                             | 0      | 0.1780 |
| Sky                        | Original  | 0.2066  | 0.6800                                                             | 0.5922 | 0.4222 |
|                            | S.A.      | 0.3059  | 0.6967                                                             | 0      | 0      |
| Sample BEST Results for SA |           |         |                                                                    |        |        |

| Tabu Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         | Results<br>Significantly improved: 31<br>Significantly worsened: 4 |        |        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------------------------------------------------------------------|--------|--------|--|
| Dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heuristic | Fitness | RC                                                                 | RMC    | RF     |  |
| Barclays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Original  | 0.3633  | 0.7100                                                             | 0.2449 | 0.0411 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.S.      | 0.4350  | 0.8167                                                             | 0      | 0.0392 |  |
| BAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Original  | 0.3303  | 0.6667                                                             | 0.2780 | 0.1083 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.S.      | 0.3323  | 0.6900                                                             | 0.2287 | 0      |  |
| Cadbury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Original  | 0.3685  | 0.7533                                                             | 0.1341 | 0.2131 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.S.      | 0.3817  | 0.7700                                                             | 0      | 0.1928 |  |
| Imp Tob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Original  | 0.2802  | 0.6367                                                             | 0.3946 | 0      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.S.      | 0.2989  | 0.6567                                                             | 0.0541 | 0      |  |
| Schroders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Original  | 0.2369  | 0.6100                                                             | 0.2333 | 0.2456 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.S.      | 0.2815  | 0.6567                                                             | 0.0444 | 0.2429 |  |
| Sky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Original  | 0.2066  | 0.6800                                                             | 0.5922 | 0.4222 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.S.      | 0.3207  | 0.7000                                                             | 0.1165 | 0      |  |
| Sample BEST Results for TS University of Uni |           |         |                                                                    |        |        |  |

| Guided Local Search         |           |         | Results<br>Significantly improved: 35<br>Significantly worsened: 3 |        |           |
|-----------------------------|-----------|---------|--------------------------------------------------------------------|--------|-----------|
| Dataset                     | Heuristic | Fitness | RC                                                                 | RMC    | RF        |
| Barclays                    | Original  | 0.3633  | 0.7100                                                             | 0.2449 | 0.0411    |
|                             | GLS       | 0.4350  | 0.8167                                                             | 0      | 0.0260    |
| BAT                         | Original  | 0.3303  | 0.6667                                                             | 0.2780 | 0.1083    |
|                             | GLS       | 0.3690  | 0.7433                                                             | 0      | 0         |
| Cadbury                     | Original  | 0.3685  | 0.7533                                                             | 0.1341 | 0.2131    |
|                             | GLS       | 0.4153  | 0.8067                                                             | 0      | 0.1897    |
| Imp Tob                     | Original  | 0.2802  | 0.6367                                                             | 0.3946 | 0         |
|                             | GLS       | 0.3197  | 0.6767                                                             | 0      | 0         |
| Schroders                   | Original  | 0.2369  | 0.6100                                                             | 0.2333 | 0.2456    |
|                             | GLS       | 0.2909  | 0.6700                                                             | 0      | 0         |
| Sky                         | Original  | 0.2066  | 0.6800                                                             | 0.5922 | 0.4222    |
|                             | GLS       | 0.2214  | 0.6733                                                             | 0      | 0.4706    |
| Sample BEST Results for GLS |           |         |                                                                    | BET    | TER WORSE |

#### **Overall results**

- Meta-heuristics made the search more effective
- Seem to have good generalization, as they introduced improvements to all datasets
- GLS was the most effective meta-heuristic from the ones tested (Smonou, 2012) Trade-off: slowed down the runtime of the algorithm
- Improvements in the GLS performance (Shao,
  - 2013)
  - Improved the predictive performance of the algorithm
     Implemented Fast Local Search, which made the GLS 80% faster

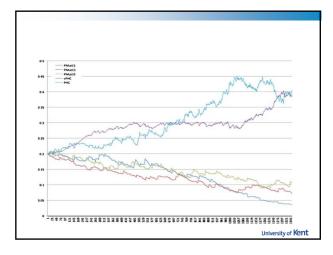
#### Meta-heuristics and hyper-heuristics for EDDIE

- Use different meta-heuristics to search in the space of the technical indicators and their periods
  - Hill climbing, Simulated Annealing, Tabu Search, Guided Local Search. Use EDDIE 8 with any of the above meta-heuristics
- Combine successful meta-heuristics into different frameworks: hyper-heuristics

#### Hyper-heuristics for EDDIE 8

- Combine many meta-heuristics into a hyperheuristics framework
- Other ways of selecting the heuristics exist A lot of research in looking for 'good' hyper-heuristic frameworks

#### Best-so-far framework:


- Select which meta-heuristic to use based on:
  - How well a given heuristic has performed individually
    How well a given heuristic has performed as a successor of a previously invoked heuristic

  - The elapsed time since the heuristic was called
- The above method is called the Choice Function

University of Kent

### **Results on hyper-heuristics** • Overall improvement of the algorithm's predictive PMut11 PMut13 PMut15 performance Hyper-heuristics had the ability to decide which meta-heuristic is more effective at a given time, and apply it to the trees of the population • Hyper-heuristics would select different metaheuristics based on the dataset being used University of Kent University of Kent

University of Kent





Hyper-heuristics with Choice Function made EDDIE 8 the most successfully algorithm of the EDDIE series (Aluko, 2013)

University of Kent

#### Conclusion

- Financial forecasting
- EDDIE
- Results on EDDIE 8
- Meta- and hyper-heuristics for EDDIE 8

#### Where to next?

- Directional changes
- Research on parallelization, e.g. GPU (Graphics Processing Unit) cards

#### EDDIE available to download

• ZIP file available at http://www.kampouridis.net/teaching/cf963/

#### Thank you!

Questions?

University of Kent