

C C

Linear Programming (LP)

- To maximize/minimize an objective function
- Subject to a set of linear inequalities
- ♦ Example: to maximize x + y
- Subject to:

 $2x + y \le 10$

- $x + 2y \ge 12$
 - $x y \le 9$

Distance Table for an example TSI						
	А	В	С	D	Е	
А		6	7	4	7	
В	6		6	6	10	
С	7	6		3	5	
D	4	6	3		4	
Е	7	10	5	4		
Heuristic:	4	6	3	3	4	
y, 17 December 2010		10		Edward Tsang (Copyright)		

⊡ ປ

ť

Stochastic Search

◆ Incomplete search
 – i.e. even if solutions exist, they may not be found

) کا

- Evolutionary computation
 To evolve solutions thru maintaining a population
- ♦ Hill Climbing
 - To heuristically improve on the current solution
- Many more
 - Tabu search, guided local search, neural network,
 ...

Combinatorial Explosion in Car Sequencing

- Schedule 30 cars:
 - Search space: 30 factorial $\cong 10^{32}$ leaf nodes
- ♦ Generously allow:
 - Explore one in every **10¹⁰** leaf nodes!
 - Examine **10¹⁰** nodes per second!
- Problem takes over 32 thousand years to solve!!! - $10^{32} \div 10^{10} \div 10^{10} \div 60 \div 60 \div 24 \div 365 \cong 31,710$
- How to contain *combinatorial explosion*?

Solution Space

- Suppose you have 2 variables, x and y
- Then you have a <u>2-dimensional solution space</u>
- If the variables can take any real number value, then your solution space is continuous
- If x and y can only take <u>integer variables</u>, then your solution space is discrete
- If you have n variables, then you have an ndimensional space

Search Space

- Sometimes interchanged with "solution space"
- The search method defines the paths that one can take in the solution space
- For <u>example</u>, the search space in branch and bound is a tree
- Good knowledge of the search space can sometimes help solving the problem
 - E.g. <u>TSP</u>, "2-opting", "basins of attraction"

Conclusion

⊡ ව

- Problems are only hard if they have an exponential solution/search space
- Use specialized methods when available!
- Combinatorial Explosion haunts systematic search
- Stochastic Search is more practical
- There are many search methods
- Given a problem, which method to use?
 - Knowing your search space helps!