Search Methods An Annotated Overview

Edward Tsang

Search Methods - Summary

Systematic Search

- If solutions exist, they will be found
- Specialized methods
E.g. Linear Programming
- Branch and Bound (originated from OR)
- A* (started in AI)
- Constraint satisfaction

Solution Space \& Search Space

Stochastic Search

- Sacrifice completeness
- Generate and Test

Local Search, e.g.

- Hill Climbing
- Simulated Annealing
- Tabu Search
- Guided Local Search

Artificial Neural Networks

- Evolutionary computation
- GA / GP / Ants Colony /
- EDA - statistical based

Linear Programming (LP)

Linear Programming Example

- To maximize/minimize an objective function
- Subject to a set of linear inequalities
- Example: to maximize $\mathrm{x}+\mathrm{y}$
- Subject to:

$$
2 x+y \leq 10
$$

$$
x+2 y \leq 12
$$

$2 \mathrm{x}+\mathrm{y} \leq 10$

$$
3 x-y \leq 9
$$

$x+2 y \leq 12$
$3 x-y \leq 9$

- Maximize $\mathrm{x}+\mathrm{y}$
- Subject to:
- Solution:
$\mathrm{x}=2.6667$
$y=4.6667$
$x+y=7.3333$

Simplex Method for LP

- Start with any feasible solution
- Craw along any edge to improve according to objective function
- Repeat until no improvement is available

Integer Programming

- Maximize $\mathrm{R}=8 \mathrm{x}_{1}+11 \mathrm{x}_{2}+6 \mathrm{x}_{3}+4 \mathrm{x}_{4}$
- Subject to $5 \mathrm{x}_{1}+7 \mathrm{x}_{2}+4 \mathrm{x}_{3}+3 \mathrm{x}_{4} \leq 14$
- Where $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \in\{0,1\}$
- Without integer constraint $\mathrm{x}_{1}=1, \mathrm{x}_{2}=1, \mathrm{x}_{3}=0.5, \mathrm{x}_{4}=0, \mathrm{R}=\$ 22,000$
- If we round x_{3} down to $0, \mathrm{R}=\$ 19,000$
- Better result: $x_{1}=0, x_{2}=x_{3}=x_{4}=1, R=\$ 21,000$
- Integer constraint leads to harder problem

Integer Programming Example

- Maximize $\mathrm{x}+\mathrm{y}$
- Subject to:
$2 \mathrm{x}+\mathrm{y} \leq 10$
$x+2 y \leq 12$
$3 x-y \leq 9$
- Not a solution: $\mathrm{x}=2.6, \mathrm{y}=4.7$
- Solutions

$$
x=2, y=5 ; x=3, y=4
$$

Travelling Salesman Problem (TSP)

\bigcirc A (4,10)		
$\text { B }(0,5)$		
	\bigcirc	\bigcirc
	D (6,6)	
	${ }^{\circ} \mathrm{C}(6,3)$	

- Goal: to find shortest route through all cities
- Optimization involved: minimization

Distance Table for an example TSP

	A	B	C	D	E
A	--	6	7	4	7
B	6	--	6	6	10
C	7	6	--	3	5
D	4	6	3	--	4
E	7	10	5	4	--
Heurisic:	4	6	3	3	4

Branch \& Bound (1)

HC Example: 2-opting for TSP

- Candidate tour: a round trip route
- Neighbour: exchange two edges, change directions accordingly

List reversing \gg 2-Opting

- List representation:
- A list could represent cities in sequence
- 2-Opting can be seen as sub-list reversing
- Easy to implement

\section*{| 1 | 3 | 4 | 8 | 6 | 5 | 2 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Breaking points
Edward Tsang (Copyright)

GLS: Augmented Cost Function

- Identifying solution features, e.g. Edges used
- associate costs and penalties to features
- Given cost function g to minimize
- Augmented Cost Function
λ is parameter
to GLS

Population-based Incremental Learning
(PBIL)

- Statistical approach

Related to ant-colonies, GA

- General form is EDA (Estimation of Distribution Algorithms) Build Bayesian Nets (probability dependency)

Searching

Artificial Intelligence

\approx Knowledge representation + Search
Search Space $=$ the set of all possible solutions under the given representation

[^0]Incomplete Search Use heuristics to search in promising areas for solutions

Stochastic Search

Car Sequencing Problem

- i.e. even if solutions exist, they may not be found
- Evolutionary computation
- To evolve solutions thru maintaining a population
- Hill Climbing
- To heuristically improve on the current solution
- Many more
- Tabu search, guided local search, neural network,

Combinatorial Explosion

Solution Space

in Car Sequencing

- Suppose you have 2 variables, x and y
- Then you have a 2-dimensional solution space
- If the variables can take any real number value, then your solution space is continuous
- If x and y can only take integer variables, then your solution space is discrete
- If you have n variables, then you have an ndimensional space

Search Space

Conclusion

- Sometimes interchanged with "solution space"
- The search method defines the paths that one can take in the solution space
- For example, the search space in branch and bound is a tree
- Good knowledge of the search space can sometimes help solving the problem
- E.g. TSP, "2-opting", "basins of attraction"
- Problems are only hard if they have an exponential solution/search space
- Use specialized methods when available!
- Combinatorial Explosion haunts systematic search
- Stochastic Search is more practical
- There are many search methods
- Given a problem, which method to use?
- Knowing your search space helps!

[^0]: Complete Search Systematically explore every candidate solution in the search space

