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Abstract 
Rationality is a fundamental concept in economics. Most researchers will accept that 
human beings are not fully rational. Herbert Simon suggested that we are “bounded 
rational”. However, it is very difficult to quantify “bounded rationality”, and therefore 
it is difficult to pinpoint its impact to all those economic theories that depend on the 
assumption of full rationality. Ariel Rubinstein proposed to model bounded rationality 
by explicitly specifying the decision makers’ decision making procedures. This paper 
takes a computational point of view to Rubinstein’s approach. From a computational 
point of view, decision procedures can be encoded in algorithms and heuristics. We 
argue that, everything else being equal, the effective rationality of an agent is 
determined by its computational power – we refer to this as the CIDER Theory (short 
for the title of this paper). This is not an attempt to propose a unifying definition of 
bounded rationality. It is merely a proposal of a computational point of view of 
bounded rationality. This way of interpreting bounded rationality enables us to 
(computationally) reason about economic systems when the full rationality 
assumption is relaxed.  
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1. Introduction: what is rationality 
Many economic theories are built upon the assumption that decision makers (people 
or institutes) are perfectly rational. Being rational means being able to maximize 
one’s utility, given all the available information. (Here we assume that utilities can be 
quantified; whether this is true or not does not affect the argument in this paper.)  
 
Suppose a merchant receives two offers to buy one of his commodities: one offers £10 
and the other £20. With everything being equal, the merchant, being "rational", will 
sell it for £20.  
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Full rationality is an assumption behind all major economic theories. For example, the 
efficient market hypothesis states that security prices always fully reflect the 
information available [6]. Should this hypothesis hold, no investor can consistently 
beat the market; this means that no investor can expect to consistently get a return on 
its investment higher than the return that the market can offer. This hypothesis has 
many consequences in financial analysis, and therefore is very important in 
economics. For a market to be “efficient”, among other assumptions, a sufficient 
number of the investors in the market must be rational. In recent years, the efficient 
market hypothesis is under serious scrutiny, both theoretically (e.g. see [4][15]) and 
empirically (e.g. see [31]). The rationality assumption is seriously questioned by 
researchers in behavioural finance, which studies the cognitive and emotional biases 
on investors and their impact on investment decisions [32]. In the rest of the paper, we 
examine what rationality really means, with focus on the computation aspect of 
decision making. 
 

2. Rationality involves computation 
It is easy to choose between selling an item for £10 or £20, everything being equal. 
Suppose a merchant is offered the choice between (a) receiving a payment of £100 
today, and (b) receiving a payment of £10 per month over 12 months. Which option 
should he take? With basic mathematical and finance training, and the knowledge of 
his cost of capital, a "rational" merchant should have no problem choosing between 
the two offers.  
 
The above example highlights the fact that knowledge is required in making certain 
"rational" decisions. In fact, "being rational" requires more than basic knowledge. It 
also requires computation. In the above example, the calculation is relatively simple; 
it can be performed on a simple calculator.  
 
Let us turn to another scenario. Supposed a merchant has to visit his customers, who 
are located far apart. Travelling from one customer to another involves a cost, which 
may vary depending on the time and distance to travel. Some customers may not be 
available at all times. Suppose the merchant wants to plan an itinerary that visits all 
his 100 customers, with the objective to minimize travelling costs and satisfying all 
the customers' availability constraints.  
 
A "rational" merchant would attempt to find the optimal itinerary in the above 
problem. The amount of computation required to find the optimal itinerary in this 
problem is nontrivial. This is a complicated version of a problem known as the 
"travelling salesman problem", which has been studied extensively in operations 
research and computer science [18]. 
 
Clever heuristics have been invented to tackle the travelling salesman problem (e.g. 
see [19][36]), but they typically involve serious computation. The problem is in nature 
NP-hard, which means that the time required to find the optimal solution grows 
exponentially as (in our example) the number of customers increases. Given a fixed 
amount of planning time, one may not be able to find the optimal itinerary (i.e. an 
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itinerary with the minimal travelling cost). In that case, one would have to settle for 
the best itinerary found within the given time.  
 
It is also worth noting that computation itself involves a cost. Knowledge acquisition 
(e.g. to find out the travelling costs between two cities) could also involve costs. A 
rational agent should not only minimize travelling cost. It should attempt to minimize 
the travelling cost plus the cost of computation and knowledge acquisition.  
 

3. Bounded rationality 
But then what does "being rational" mean? One is not perfectly rational if one cannot 
find the optimal itinerary. Herbert Simon pointed out that most people are only 
partially rational. He suggested to describe human as "bounded rational", which 
means they can only make the best decisions within their knowledge and resources 
[33]. Although most economists would accept that perfect rationality is not a realistic 
assumption, it is not clear how most of the economic theories should be revised to 
reflect bounded rationality. Concretely quantifying what bounded rationality means 
remains a grand challenge to the research community.  
 
Many have attempted to study the interpretation or implication of bounded rationality. 
Some investigate the psychological aspect of rationality (e.g. see [7]). To enable one 
to quantify an agent’s rationality, it would be useful if one could provide a 
mathematical definition of bounded rationality; for example, “agent A is 86% 
bounded rational". Then one may be able to revise economics theories to reflect the 
level of bounded rationality. Unfortunately, no such definition has been widely 
accepted.  
 
As decision makers have to make decisions about how and when to take what actions, 
Ariel Rubinstein proposed to model bounded rationality by explicitly specifying 
decision making procedures [28]. This is an attractive approach, as it enables one to 
study the consequences of bounded rationality. Rubinstein’s proposal puts the study 
of decision procedures on the research agenda. This is the view that we shall follow in 
this paper. 

4. A computational point of view in bounded rationality 

From a computational point of view, decision procedures can be encoded in 
algorithms and heuristics. One way to study the impact of relaxing the full rationality 
assumption is to study the impact of adopting different algorithms and heuristics in 
the agents. One important impact that one can study is the equilibrium of a situation 
when the algorithms and heuristics are specified for the players. One can also attempt 
to study the equilibrium of a market given a model of the agents’ algorithms and 
heuristics. It is worth noting that these studies are nontrivial and not always feasible. 
The studies themselves may involve computational intelligence too. We shall look at 
some case studies later in the paper.  
 
So far, we have argued that specifying the algorithms and heuristics enables one to 
studying the equilibrium in the market. It is important to point out that the search for 
algorithms and heuristics itself is interesting: it is interesting from an individual’s 
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point of view, if one wants to find out what algorithms and heuristics will succeed in a 
given market situation.  
 
Due to combinatorial explosion, finding the optimal algorithms and heuristics is out 
of reach in most realistic problems. When optimal solutions are out of one’s reach, 
one’s knowledge of algorithms, heuristics and our computational power determine 
effectively how good a solution one can find. For example, in the travelling salesman 
problem, some algorithms and heuristics find better solutions than others.   
 
If one defines full rationality as “being able to find the optimal decisions in every 
situation”, then it is reasonable to say that the “level of optimality” that one achieves 
defines one’s effective rationality. Thus designing better algorithms and heuristics 
helps to extend the rationality boundary. In other words, Computational Intelligence 
Determines one's Effective Rationality – we refer to it as the CIDER Theory. 

5. Where do decision procedures come from? 
So far, we have not asked the question where decision procedures come from. 
Procedures can be designed, as it is the case in many disciplines of computational 
intelligence. They can also be evolved, as it is the case in evolutionary computation. 
In this section, we shall briefly outline some of the relevant disciplines in 
computational intelligence.  
 
The General Problem Solver (GPS) was an early attempt in artificial intelligence to 
mimic human intelligence [24]. The idea is to separate domain-specific knowledge 
from the reasoning mechanism. GPS is designed as a general reasoning mechanism. 
GPS opened the field of artificial intelligence planning, which is still an on-going 
research area in artificial intelligence [24][29]. Planning involves knowledge 
representation (how to represent beliefs, actions and their effects), causal reasoning 
(reasoning about actions and their consequences) and resources allocation (primarily 
time resources, i.e. when to perform which action). 
 
Rationality is often studied in the context of decision problems. Finite choice decision 
problems are tackled in constraint satisfaction, a discipline that brings together 
research in artificial intelligence, logic programming and operations research [26][34]. 
Constraint satisfaction is a general problem which appears in practical problems such 
as industrial scheduling. Search algorithms have been designed to use constraints to 
find solutions efficiently. Procedures implementing these algorithms could be used to 
model rationality. 
 
Human beings find strategies by iterative improvements. Starting from their current 
situations, they look at possible changes or experiment with them. They change their 
strategies in response to the anticipated or actual changes. Research that fall into this 
pattern are called local search [5][13]. It would be reasonable to model human 
rationality by local search procedures. 
 
Human beings learn from their experiences. Therefore, it would be reasonable to 
model rationality with dynamic (as opposed to static) procedures. Evolutionary 
algorithms (including Estimation of Distribution Algorithms [17]) attempt to evolve 
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solutions instead of designing them [8][12]. It would be a reasonable idea to model 
human reinforcement learning with evolutionary computation procedures, or 
procedures generated by evolutionary computation.  

6. Case study: evolutionary computation in game theory 
In this section, we present a case study to demonstrate that bounded rationality can be 
reasoned when procedures are specified. This case study is the two-player alternating-
offers bargaining scenario in the field of game theory [27]. In this scenario, the 
players make alternative offers on how much (in terms of percentage of the overall 
resources) they demand on the resources. Both players have incentive to compromise 
as their utilities drop over time.  
 
The traditional approach to game theory is to derive subgame equilibrium 
mathematically [23]. Perfect rationality is assumed in such derivations. Jin and Tsang 
[14] relax this assumption, and attach procedures to the players (as suggested by 
Rubinstein [28], Section 3). This enables them to study subgame equilibrium under 
the given procedures [14]. 
 
The procedures used by Jin and Tsang are constraint-directed genetic programming 
procedures (a branch of evolutionary computation). Constraint-directed GP is novel in 
its own right, but in this paper, we focus on the fact that the constraints that Jin and 
Tsang used implement “common sense” that one would expect a human player to use. 
Examples of these constraints are: (a) one does not ask for more than 100% of the 
resources; and (b) the faster one’s utility drops, the less aggressive one would be in 
bargaining [35]. Another aspect of Jin and Tsang’s work is that the players co-evolve 
[14][35]. Co-evolution implements reinforcement learning or arm-races, which is 
quite common in the human society. 
 
In many game models where mathematical results have been derived, subgame 
equilibrium produced by the evolutionary approach produced very similar results 
[10][14][35]. This means, at least for these simple game models, the perfect 
rationality assumption has not made any difference to the equilibrium. It would be 
interesting to see whether this is still the case in more complex game models.  
 
This case study support’s Rubinstein’s proposal: it demonstrates that once the 
decision procedure is specified, one can study the subgame equilibrium without 
assuming perfect rationality. In this case, the decision procedure and the constraints 
that were adopted implement realistic behaviour in human societies.  
 

7. Case study: computational intelligence determines agent performance 
In this section, we use a few examples to demonstrate that market equilibrium can be 
studied through procedural attachments. Besides, we demonstrate that procedures can 
be learned. Furthermore, the algorithm that an agent uses determines how successful it 
could be.  
 
Selten pointed out that quantitative reasoning is typically infeasible. In order to better 
understand bounded rationality, Selten proposed to better understand the "structure" 
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used by business and public administration [30]. He promoted the use of qualitative 
reasoning. Special attention was paid to causal reasoning, in the form of causal 
diagrams, which are directed graphs with edge labels. 
 
Alexandrova et al modelled the card payment market in both the structure and the 
quantitative implications [1][2]. An agent-based approach is used to study the card 
payment market. The agents have their decision process defined. This allows 
Alexandrova to study market equilibrium. In this case, the decision procedure is 
evolutionary computation using an extended population based incremental learning 
(PBIL) [3][16]. 
 
Alexandrova also studied the market equilibrium when the agents do and do not 
evolve. Results showed that, unsurprisingly, agents that evolve out-perform those who 
do not [2]. This supports the argument that computational intelligence determines 
effective rationality (under our definition in Section 4 that optimality is a measure of 
rationality). 
 
Alexandrova’s results are also echoed by related research. Gosling and Tsang 
modelled middlemen strategies in a supply chain. They demonstrated that effective 
middlemen strategies could be evolved [9][10]. Martinez and Tsang modelled agents 
in a stock market. By specifying procedures in different agents (some of which being 
stationary and some evolutionary), one is in a position to study the market behaviour 
[20][21]. This enables one to identify conditions under which the market behaviour 
resembles real financial markets. Martinez and Tsang also show that trading strategies 
can be evolved to beat naïve strategies, which supports the CIDER Theory.  
 

8. Remarks: constraint satisfaction 
Rubinstein pointed out that, in reality, agents do not necessarily try to find optimal 
decision [28]. An agent’s task often involves picking from a finite set of options a 
decision that satisfies all the constraints. In an enterprise, an agent’s action will 
restrict the actions that others can take. In a centralized decision problem, the 
coordinator has to decide for all its agents their choices of decision, satisfying all the 
constraints. This is known as a constraint satisfaction problem in the literature [34]. 
 
The task of “finding any set of decisions that satisfies all the constraints” is typically 
easier than “finding the optimal set of decisions”, especially when many solutions 
exist. This may have significant impact to the computation procedures (see [26] for a 
catalogue of constraint satisfaction tools). However, it has no fundamental impact to 
the analysis above: the problem is still NP-hard, which means computationally 
expensive. Given a particular problem, some algorithms are more efficient than others 
in finding solutions – sometimes by several orders of magnitude in terms of solving 
time. Knowledge of what algorithms to use under what situations could make all the 
difference (as pointed out in Section 2). Thus, the CIDER Theory still applies. 
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9. Concluding summary 
Rationality is a fundamental assumption in economics. With the full rationality 
assumption relaxed, many economic theories must be revised. The applicability of 
many economic theories to the society must be scrutinized. Unfortunately, we are not 
in a position to revise and scrutinize these theories, as we do not know how to assess 
the impact of relaxing this assumption. Modelling bounded rationality by procedures 
is one way forward. It allows one to study the impact of different procedures. While 
one’s model of individuals’ procedure may not be perfect, modelling allows one to 
scientifically study the impact of different procedures. By adjusting the procedures, 
one may attempt to model the underlying mechanism that drives the economy – a 
methodology similar to that used in physics. In this paper, we have given concrete 
examples on how bounded rationality could be modelled by evolutionary procedures, 
which are basically reinforcement learning procedures. It is reasonable to believe that 
reinforcement learning is what ordinary people use in daily life decision making. We 
have also argued that computational intelligence determines an agent’s effective 
rationality.  
 
To summarize, attaching procedures to decision making is a practical way forward in 
advancing bounded rationality research. High on the research agenda is how to design 
or evolve these procedures and how to evaluate their impact. Computational 
intelligence could play a big part in answering these questions. 
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