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Abstract

This paper considers genetic programming (GP) for dynamic decision
making. Standard genetic programming only uses a single decision tree
for decision making. In contrast, this paper proposes a general multiple
tree framework for dynamic decision problems, where evaluation is con-
tingent on the previous output of the program. The working hypothesis is
that “recurrent” multiple trees are superior compared to conventional sin-
gle trees for dynamic decision problems. To test this hypothesis, a single
and a dual tree representation is considered. Both representations return
Boolean values, but for the dual trees, evaluation is contingent on their pre-
vious output. Specifically, if the previous output was FALSE, the first tree is
evaluated, otherwise it is the second.

The single and dual trees are applied within two different domains. The
first domain consists of a coevolutionary predator-prey type environment
where the single and dual trees are treated as different species. The objec-
tive of a predator is to capture the phenotypic behavior of a prey. Naturally,
the objective of the prey is to evade the predator. It is found that the dual
trees have greater expressive capabilities, since they can capture the dy-
namics of the single trees when acting as predators, while evading when
acting as prey.

The second domain is closer related to finance. The single and dual
trees are used to evolve successful trading strategies on artificial financial
time series. Two different processes are constructed that exhibit some fea-
tures also found in real financial data, i.e., mean-reversion and momentum
effects. It is found that the single trees are unable to capture the dynamics
of the mean-reverting process, but the dual trees succeed. For the trending
series, both representation are capable of capturing the underlying dynam-
ics, but the single trees have better out-of-sample performance compared
to the dual trees. This is found to be a manifestation of Ockham’s razor.
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1 Introduction

Many control problems can be characterized as dynamic decision making. Con-

trol problems are often associated with mechanical systems, but the focus of this

paper is more directed towards financial applications, specifically, trading. The

majority of applications of genetic programming (GP) in trading use a single tree

to represent a single decision rule [1, 22, 4, 17]. However, it might be useful to

have different decision rules for different situations. Becker and Seshadri [2] sug-

gest to separate decision making into two trees, i.e., a dual tree structure. Their

motivation is to use mutualistic coevolution for evolving buy and sell rules sepa-

rately, but they do not provide any insights behind or justification thereof. This

paper addresses this issue, but it also goes further. It proposes a general multiple

tree framework for dynamic decision making. Instead of representing a program

as a single tree, it is represented as multiple trees. Multiple tree GP has previ-

ously been considered in the literature [18], but this paper proposes a different

setup for temporal phenomena. Specifically, the previous output of the program

determines what tree to evaluate currently. As this type of feedback is used exten-

sively in recurrent neural networks for tackling dynamic problems [20], it might

also prove beneficial in the context of GP. Consequently, the working hypothesis

is that “recurrent” multiple trees are superior compared to conventional single

trees for dynamic decision problems.

To test the hypothesis, this paper considers single and dual trees for two dif-

ferent problems. The first problem takes a general view of program representa-

tion, and a dynamic binary decision problem is constructed from basic Boolean

operators. The single and dual trees compete directly within a predator-prey type

environment, where the objective of the predator is to capture the phenotypic be-

havior of the prey. Naturally, the objective of the prey is to evade the predator.

Both predators and preys evolve. Consequently, this is an example of competitive

coevolution.

The second problem is closer related to finance. The single and dual trees are

used to evolve trading strategies on artificial financial time series. The output

of the programs dictates the market position, i.e., long or short. At this stage,

artificial data is preferred over real data for a number of reasons. The true data-

generating process of real data is unknown, and therefore exploitable patterns

need not exist. Moreover, for the sake of validation it is important to clarify

whether the methodology is capable of discovering patterns that do exist.

The remainder of the paper is outlined as follows. Section 2 introduces the

multiple tree framework and discusses various implementation issues. Section 3

gives an introduction to natural coevolution and presents the predator-prey en-

vironment. Section 4 describes the artificial market environment where trading

rules are evolved. Finally, Section 5 concludes.

2 Single and Multiple Tree Genetic Programming

Genetic programming is often described as a derivative method of genetic algo-

rithms, where individuals are computer programs instead of binary strings. InP Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Figure 1: Examples of a single (left) and a dual tree (right), constructed using

Boolean operators. The root node of the single tree is XOR, while the root nodes

for the dual tree are OR and AND.

general, an individual program is represented as a single tree structure. How-

ever, it is perfectly feasible to generalize this concept such that an individual con-

sists of multiple trees. Haynes et al. [12] have used this approach for evolving a

team within a multi agent system. Hence, each team member is represented as

a tree, and the entire team is one “individual”. This methodology is applied to

the predator-prey pursuit problem. The predator-prey pursuit problem was orig-

inally introduced by Benda et al. [3], and consists of four predators attempting to

capture, or surround, a randomly moving prey inside a grid-world. The prey can

see the predators and vice versa, but the four predators cannot communicate to

plan a capture strategy. On a slightly different note, Langdon [18] uses multiple

trees to evolve data structures such as stacks, queues and lists. In this context,

each tree supports operations associated with the data structure. For example, a

stack has the five operations; makenull, top, pop, push and empty. Finally, Becker

and Seshadri [2] use a dual tree structure for evolving trading rules. Figure 1 pro-

vides an example of a single and a dual tree constructed from Boolean operators,

i.e., the function set consists of AND, OR, XOR and NOT. For the dual tree, the “pro-

gram” dictates whether to evaluate the first or the second tree.

While this paper only considers applications of single and dual tree pro-

grams, it should be emphasized that this paper proposes a generalized multiple

tree approach for temporal decision making. Formally, an individual consists of

k trees, where each tree (i ) is a functional mapping of the information set at time

t (Ωi ,t ) to an output (bi ,t ), fi :Ωi ,t 7→ bi ,t . The output of the program is denoted

ot . Since the actual return type of a tree might not be compatible with the output

of the program, the transformation gi : bi ,t 7→ oi ,t ensures this. At each point in

time, the output of the program is simply the transformed return value from one

of the trees. The function h : {ot−1,Ω1,t , . . . ,Ωk ,t } 7→ i t ∈ {1, . . . ,k} determines what

tree (i t ) to evaluate at time t , as a function of the previous program output and

all current information sets. Since decision making is contingent on the previous

output, this can be viewed as a form of recurrent GP. Consequently, the output ofP Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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the program at time t is,

i t = h(ot−1,Ω1,t , . . . ,Ωk ,t ) (1)

ot = gi t

(

fi t
(Ωi t ,t )

)

. (2)

The following sections provide examples of different applications of this method-

ology.

Standard GP has to adhere to the closure property, i.e., every function in the

function set should be able to accept as argument, any value returned by an ele-

ment from the union between the function and terminal set. Typically, a trading

strategy consists of both numeric variables and Boolean operators, thus violating

the closure constraint. To overcome this issue, Montana [21] proposes Strongly

Typed Genetic Programming (STGP). STGP can handle an arbitrary number of

data types, provided legal function compositions are specified in advance. Since

this paper considers multiple trees in conjunction with STGP it has been nec-

essary to implement a new framework in C++, instead of relying on a standard

application. A selective description of the framework follows.

It has repeatedly been pointed out that programs in GP are represented as

tree structures. A tree can easily be represented with a pointer based structure,

where each parent node is connected to a number of children via pointers. How-

ever, in the context of GP, Keith and Martin [16] propose a more efficient linear

genome which can be thought of as a “flattened” tree. When a pointer based tree

structure is evaluated, it is traversed in a deterministic fashion. By arranging

the nodes in the linear genome by the order in which they are evaluated in the

pointer based tree structure, the pointers are made redundant. Hence, a linear

genome is simply evaluated by traversing it from the beginning to the end. Once

the genome has been implemented, it is straightforward to construct a multiple

tree as a collection of genomes.

Another implementation issue relates to STGP. When a method is declared in

an object-oriented language like C++, it can only return one data type. This poses

a problem with respect to strong typing, because the functions and terminals

return a mixture of types. To overcome this issue, the function and terminal

nodes in the genome have to return a generic variable. A function which receives

this variable, must then cast it into the type that it expects. This is the reason why

valid function compositions have to be specified in advance for STGP to work.

For example, if a Boolean function attempts to cast a numeric value, then an

error will occur and possibly terminate the program execution.

In addition to strong typing, the framework gives the possibility of providing

semantic constraints. Semantic constraints makes further restrictions to what

constitutes valid function compositions. This is important when adding prior

domain knowledge to a problem. In the context of trading rules, for example, it

is not meaningful to compare prices and volume information. On a more general

note, numeric values with different units of measures should not be compared

directly. Using semantic constraints makes the search more efficient, since com-

putational resources are not wasted on nonsensical solutions [4]. However, im-

plementing strong typing and semantic constraints is more challenging, becauseP Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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not only should valid function compositions be specified in advance, but the ge-

netic operators should also take this information into account. For example, in

the context of crossover, there is no guarantee that the selected subtree in the

first parent can be swapped with any subtree in the second parent, such that the

constraints are satisfied. Having multiple trees also raises some issues related to

crossover. With multiple trees it is no longer given what trees are permitted to

exchange genetic material, e.g., whether tree i in the first parent can crossover

with tree j in the second parent, where i 6= j . Moreover, tree i in the first parent

could crossover with tree i in the second, where i = 1, . . . ,k , such that k crossovers

are performed [12]. Following Langdon [18], the crossover algorithm employed

in this paper, uniformly selects one tree in the first parent and crossover is per-

formed with the equivalent tree in the second parent. The crossover algorithm

produces a single offspring, where most of the genetic material comes from only

one of the parents. Performing crossover between equivalent trees eliminates any

issues related to heterogenous primitives. The mutation algorithm uniformly se-

lects a single tree to mutate. Within the chosen tree, a node is randomly selected

and its subtree is replaced with a newly generated tree.

3 Predator-Prey Environment

3.1 Coevolution

The term coevolution was initially coined by Ehrlich and Raven [8] in their com-

prehensive study on foraging patterns of butterflies. It is found that various

plants have evolved different chemical compounds, which do not assist basic

metabolic processes, but serve as a defense against herbivores by reducing the

palatability of the plant in which they are produced. However, insects might

adapt to counter these new challenges, thus giving rise to an evolutionary “arms

race” against the plants. Ehrlich and Raven do not give a precise definition of co-

evolution other than being “the examination of patterns of interaction between

two major groups of organisms with a close and evident ecological relationship”.

Hence, Janzen [14] defines it as “an evolutionary change in a trait of the indi-

viduals in one population in response to a trait of the individuals in a second

population, followed by an evolutionary response by the second population to a

change in the first”. This is a fairly strict definition since it requires that the evo-

lution of a specific trait is induced by the other, and that both traits must evolve.

In practice the evolution of a trait in one species tends to occur in response to

traits from multiple species, e.g., a plant has most likely developed its defense

mechanisms to counter a range of different insects instead of just one. This is

known as diffuse coevolution. In its broadest sense coevolution is simply “recip-

rocal genetic changes that might be expected to occur in two or more ecologically

interacting species” [10, p. 3].

The insect-plant relationship mentioned previously is an example of a par-

asitic relationship, but coevolution also gives rise to mutualistic relationships,

where collaboration emerges instead of competition [24, p. 452]. An example of

mutualism is given between acacia trees and ants. The trees provide shelter andP Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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food for ant colonies, but in return the ants offer protection against herbivorous

insects [13]. Mutualistic coevolution is not only found at a macro level between

species, but it also exists on a genetic level. Dawkins [7] give an example, where

genes coevolve to express certain traits in honey bees. Both parasitic and mutu-

alistic coevolution are considered in the following.

3.2 Framework

The purpose of this paper it to examine the expressiveness of single trees versus

dual trees. Both the single and the dual trees return Boolean values. As stated in

Section 2, evaluation of the dual trees is contingent on the previous output of the

program. Specifically, let bi ,t be the truth value (0,1) of tree i at time t , then the

output of the program is given by,

ot =

{

b1,t if ot−1 = 0

b2,t otherwise
. (3)

All trees are constructed from the same primitives. The function set consists

of AND, OR, XOR and NOT. The terminal set has three binary series; S1, S2 andS3. Each of these series is a two-state Markov process where the current state

only depends on the previous one. The conditional distribution is defined by the

probabilities pm,n of moving from state m at time t −1 to state n at time t

P(st = 0|st−1 = 0)= p0,0

P(st = 1|st−1 = 0)= p0,1

P(st = 0|st−1 = 1)= p1,0

P(st = 1|st−1 = 1)= p1,1 (4)

where
∑

n pm,n = 1 for m = 0,1 and pm,n Ê 0 ∀m,n. Figure 2 depicts the three

processes used in the following experiments. Each process consists of 1000 sam-

ples and is generated using the parameters p0,0 = p1,1 = 0.95 and p0,1 = p1,0 =

0.05.

As mentioned previously, this section uses competitive coevolution to test

the working hypothesis. The existing applications of competitive coevolution in

the literature, are concerned with problems in which optimal strategies exist in

absolute terms, i.e., strategies can be found which defeat many or all possible

adversaries [11, 23, 15]. In contrast, this paper deals with the relative problem

of comparing the single and dual tree representations. More specifically, it ad-

dresses the question of whether a single tree can capture the phenotypic behavior

of a dual tree and vice versa.

To formalize this within a predator-prey context, a prey generates a binary

series which the predator seeks to imitate. If the classification accuracy of the

predator is higher than a predefined threshold σ̄, then the predator has man-

aged to capture the dynamics of the prey. Therefore, a predator can either suc-

ceed or fail in capturing a particular prey, but there exist no optimal strategies

that capture many different preys. Consequently, standard methods do not apply

and a novel coevolutionary environment must be implemented. A procedure isP Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Figure 2: Three two-state Markov processes.

proposed where the predator evolution is nested within the prey evolution, thus

coevolution is not simultaneous as usual; Algorithm 1 summarizes this concept.

The procedure requires a number of parameters: ḡpredator and ḡprey denote

the maximum number of predator and prey generations, and have related coun-

ters gpredator and gprey. Then c̄predator and c̄prey are stopping criteria related to

convergence, where cpredator and cprey are their associated counters. Finally, σ̄ is

the success criterion for capturing a prey introduced previously.

The algorithm contains three while-loops nested within each other. The outer

while-loop (ln. 2) is associated with the prey evolution. Inside is an if-statement

(ln. 3) that ensures that fitnesses have been evaluated before making genetic op-

erations. For each prey (ln. 7) a new predator population is initialized, and the

second while-loop (ln. 10) is responsible for its nested evolution. The predator

population evolves until convergence or the maximum number of generations

is reached, or until the prey is caught, i.e., the classification accuracy is higher

than the predefined threshold (σi , j Ê σ̄). The predator fitness is assigned as the

classification accuracy (ln. 18), and if a better predator has emerged the conver-

gence counter cpredator is reset (ln. 22). Having terminated the nested predator

evolution, the prey fitness is assigned as the inverse of the maximum fitness in

the predator population ( f i
prey = 1−max j (σi , j )). Finally, if the average fitness of

the prey population has increased, the counter cprey is reset.

3.3 Results

Two experiments are presented in the following. The first is where the dual tree

population is prey and the single tree population is predator, and vice versaP Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Algorithm 1 Predator Prey Coevolution

Require: ḡpredator, ḡprey, c̄predator, c̄prey and σ̄

1: initialize prey population

2: while gprey < ḡprey and cprey É c̄prey do

3: if gprey > 0 then

4: perform genetic operations on prey population

5: end if

6: evaluate forecasts of prey population

7: for each prey i do

8: initialize predator population

9: gpredator = 0, cpredator = 0

10: while gpredator < ḡpredator and cpredator É c̄predator and σi , j < σ̄ do

11: if gpredator > 0 then

12: perform genetic operations on predator population

13: end if

14: evaluate forecasts of predator population

15: j = 0

16: while j <npredators and σi , j < σ̄ do

17: assign fitness to predator j , as similarity with prey i

18: f
j

predator
=σi , j

19: increment j

20: end while

21: if new superior predator has emerged then

22: cpredator = 0

23: end if

24: increment cpredator and gpredator

25: end while

26: assign fitness to prey i

27: f i
prey = 1−max j (σi , j )

28: end for

29: if new superior prey population has emerged then

30: cprey = 0

31: end if

32: increment cprey and gprey

33: end while

P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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for the second. The populations are initialized using the ramped half-and-half

method and have a size of 250, but different maximum complexities are imposed,

i.e., 100 and 50 nodes for the single and dual tree individuals, respectively. The

stopping criteria are ḡpredator = 50, ḡprey = 20, c̄predator = 10 and c̄prey = 20. The

success criterion for capturing a prey is σ̄ = 0.95. A normal tournament selec-

tion with a size of five is used, and the crossover and mutation probabilities are

0.9 and 0.1, respectively. Moreover, the probability of selecting a function node

during reproduction is 0.9.

Figure 3 depicts the evolution of the prey fitness for each of the two exper-

iments. When the dual trees act as prey, the initial average fitness is 0.173, but

already after seven generations it has converged to 0.432 where it remains fairly

stable. At this point two-thirds of the population has attained the maximum fit-

ness of 0.494. A solution with a fitness exceeding 0.5 is not stable, which is easily

understood from a genotypic perspective. Consider the extreme scenario of a

contrarian strategy with a fitness of 1, then it only requires the introduction of aNOT-function as root-node and the fitness would be zero. Hence, 0 and 1 are dis-

tant phenotypes, but close genotypes. The optimal dual tree strategy essentially

appears random to the single trees. Despite having evolved an optimal strategy,

there are always some dual trees that get caught. This is just an artifact of the

destructive nature of the genetic operators, i.e., there is always a risk that the best

parents can have unsuccessful offsprings.

When the single trees are prey, the situation is remarkably different. In gen-

eration zero the average fitness is 0.014 and it attains a value of only 0.031 after

six generations. For all generations, at least 92% of the prey get caught, which

clearly demonstrates that the dual trees are capable of capturing single tree dy-

namics. That a fraction of the prey do escape can be ascribed to early stopping of

the predator evolution, because otherwise they would multiply within the pop-

ulation. Hence, individuals with fitnesses above 0.05 are not viable in this envi-

ronment, but during the course of evolution a larger proportion of prey emerge

which have fitnesses just below this critical value.

4 Artificial Market Environment

4.1 Framework

It has been found that financial data may exhibit momentum and mean-reversion

effects. For example, Brock et al. [5] find that a simple moving average strategy

generates excess returns on the Dow Jones Industrial Average in the period from

1897 to 1986. Dacorogna et al. [6] report significant mean-reversion effects on

high frequency foreign exchange data. Inspired by these findings, two stochastic

processes are constructed that capture these dynamics.

The first process is a mean-reverting process based on the popular Relative

Strength Index (RSI) technical indicator [26]. RSI is a standardized indicator

in the interval between 0 and 1, where low values indicate that the market is

oversold and vice versa for high values. Consequently, when the market is over-

bought (oversold) a sell (buy) order is issued – see Appendix A for details. Al-P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Figure 3: Evolution of prey fitness sorted in ascending order for each generation,

where the red surfaces are the average fitnesses.

P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Algorithm 2 RSI Process

Require: y0 > 0, tmax, σ> 0, ψ ∈ [0.5,1), β ∈ [0,0.5] and ℓ> 0

1: for t = 1 to tmax do

2: if RS I (ℓ)t−1<β then

3: st = 1

4: else if RS I (ℓ)t−1> 1−β then

5: st =−1

6: else

7: st = st−1

8: end if

9: yt = yt−1 ·
(

1+ rt + st ·Φ
−1(ψ,0,σ)

)

rt ∼ N (0,σ)

10: end for

Algorithm 3 MA Process

Require: y0 > 0, tmax, σ> 0, ψ ∈ [0.5,1) and ℓ> 0

1: for t = 1 to tmax do

2: if yt−1 > M A(ℓ)t−1 then

3: st = 1

4: else

5: st =−1

6: end if

7: yt = yt−1 ·
(

1+ rt + st ·Φ
−1(ψ,0,σ)

)

rt ∼ N (0,σ)

8: end for

P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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gorithm 2 documents the RSI process, which requires a number of parameters.

y0 is the initial price and tmax is the simulated sample size. σ and ψ ∈ [0.5,1)

control the volatility and conditional drift of the generated returns. β ∈ [0,0.5]

defines thresholds outside which the market is overbought or oversold, and ℓ is

the length parameter for the RSI indicator.

For each point in time t a state-variable st controls the regime or conditional

drift of the price process. If the RSI of the previous period is below β (above

1−β) the market is oversold (overbought) and triggers positive (negative) con-

ditional drift, i.e., st = 1 (st = −1), otherwise the current regime is unchanged

st = st−1. The price yt is generated from conditional normally distributed re-

turns with volatility σ, but the magnitude of conditional drift is dependent on

ψ in the expression st ·Φ
−1(ψ,0,σ), where Φ−1 is the inverse cumulative normal

distribution function. In the limit as ψ approaches 1, the drift tends to infinity.

Hence, the conditional drift is essentially a positive constant, but using the map-

ping of Φ−1 a more intuitive sense of the bias is obtained, since ψ−0.5 gives its

magnitude in probability terms, e.g., when ψ= 0.55 the probability of a positive

(negative) return is 0.05 for st = 1 (st =−1).

The Moving Average (MA) process is listed in Algorithm 3 and has a similar

structure to the RSI process, but instead of conditioning on the RSI indicator

it employs a moving average of the price for regime switching. It simply has a

positive (negative) conditional drift when the price is above (below) the ℓ-period

moving average.

Figure 4 depicts samples of the two verification processes, each of which is

shown with the purely random base process yt = yt−1 ·(1+rt ), i.e., the equivalent

trajectory where the conditional drift has been removed. For the first 358 samples

the random base price depreciates, while the RSI process remains fairly stable due

to the positive drift. Hereafter, the state becomes negative and the RSI process

declines and the underlying appreciates slightly. Likewise, for the MA process the

conditional drift is mostly negative, resulting in a larger depreciation compared

to its purely random base where the drift is zero.

The verification processes have several convenient statistical properties.

Firstly the return series do not contain any significant auto-correlations, as is

the case with empirical data. Hence, traditional linear time-series models are

useless in this setting. A Ljung-Box test using 20 autocorrelations cannot reject

the null hypothesis of linear independence for either of the two samples depicted

in Figure 4 [19]. The p-values are 0.27 and 0.78 for the RSI and MA processes,

respectively.

That the processes have two different regimes, with different conditional

drifts, implies that the unconditional distribution of the returns is a Gaussian

mixture. Consequently, the models could easily be expanded to accommodate

stylized facts from financial markets such as negative skewness and excess kur-

P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.



4 Artificial Market Environment 13

0 200 400 600 800 1000
60

70

80

90

100

110

120
RSI process

Pattern
Random

0 200 400 600 800 1000
−1

0

1

State

0 200 400 600 800 1000
20

40

60

80

100
MA process

Pattern
Random

0 200 400 600 800 1000
−1

0

1

State

Figure 4: RSI process (top) and MA process (bottom). Each process is plotted

together with its random equivalent with zero conditional drift, and st is depicted

below.

P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
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Function Arguments Return Type<, > (pri
e, pri
e) bool<, > (qrsi, q
onst) boolBTWN (pri
e, pri
e, pri
e) boolBTWN (qrsi, q
onst, q
onst) boolXOVER, XUNDR (pri
e, pri
e) boolXOVER, XUNDR (qrsi, q
onst) boolAND, OR, XOR (bool, bool) boolNOT (bool) bool
Table 1: Artificial market grammar.

tosis [9]. Specifically, the mean and variance of a Gaussian mixture is,

µm =

k
∑

j=1

w j ·µ j (5)

σ2
m =

k
∑

j=1

w j (σ
2
j +µ2

j )−µ2
m (6)

where k is the number of mixtures, w j is the probability of each mixture, and µ j

and σ2
j

are the mean and variance of individual component j [25]. Hence, the

expected information ratio of the true model is

I Rtrue =κ
Φ−1(ψ,0,σ)

σm
(7)

where κ is an appropriate positive scaling factor. In practice, however, only a

noisy mapping of the true state is observed, and for this reason the expected

information ratio is less than I Rtrue. Having introduced the artificial market data,

the framework for evolving the trading strategies is described in the following.

Section 3 considered a Boolean universe, where the return values of the GP

trees corresponded to the outputs of the programs. In this section trading strate-

gies are evolved that take long and short positions, where a long (short) position

corresponds to an output of +1 (−1). Consequently, the truth values of the trees

need to be transformed to valid outputs. The transformation for the single trees

is ot = 2 ·bt −1, and for the dual trees it is,

ot =

{

2 ·b1,t −1 if ot−1 =−1

−2 ·b2,t +1 otherwise
. (8)

All trees are constructed from the same grammar, which in addition to type

constraints also have sematic restrictions. The grammar is documented in Table

1. It consists of Boolean operators, numeric comparators and three special func-

tions; BTWN, XOVER and XUNDR. BTWN takes three arguments and returns TRUE if

the value of the first is between the second and third. XOVER (XUNDR) reads crosses-
over (crosses-under), and takes two numeric arguments (a,b) and returns TRUEP Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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if at−1 < bt−1 and at > bt (at−1 > bt−1 and at < bt ). The terminal set comprises

of the price and moving averages thereof (pri
e), RSI indicators (qrsi) and nu-

meric constants on the unit interval (q
onst).1 Moreover, Boolean terminals are

also provided (TRUE, FALSE). As fitness measure, the annualized information ra-

tio is used under the assumption that the artificial price series are sampled on a

daily frequency.

4.2 Results

In this section 100 series, each consisting of 10000 samples, are generated for

both the RSI and MA process. Both processes are generated using the parameters

ψ= 0.538 andσ= 0.01. Moreover, for the RSI process β= 0.3 and ℓ= 20, while for

the MA process ℓ= 50. The value of ψ is chosen such that under the assumption

of a daily sampling frequency, I Rtrue is approximately 1.5. From a practitioner’s

perspective, a strategy with an information ratio of 1.5 is considered tradable and

realistic.

The first 5000 samples of each series are used for evolving the trading rules,

while the final 5000 samples are reserved for out-of-sample testing. Both the sin-

gle and dual trees have a population size of 250, where a maximum complexity

constraint of 50 nodes is imposed on each individual. Each run has a maximum

of 50 generations, but is stopped prematurely if the best-so-far solution has re-

mained the same for 25 generations.2 Tournament selection is used where the

tournament size is five. The probabilities of crossover and mutation are 0.9 and

0.1, respectively. The maximum mutation depth is three. Moreover, the probabil-

ity of choosing a function node during crossover is 0.9.

Figure 5 provides an example of how the in-sample fitness evolves over time.

At the beginning the average information ratio is approximately zero, but this is

only natural due to the random initialization of the population. After ten gen-

erations the average fitness has reached a value around one, where it remains

fairly stable for the remainder of the run. While the majority of the population

has converged to good solutions, a significant part is clustered around zero and

some individuals even have very negative performance. That individuals tend to

be clustered around zero, is an artifact of the underlying data where the expected

return of the buy-and-hold strategy is zero. Thus, trading models with little or

no variation in their forecasts fall into this category. While it might appear that

these individuals remain the same over time, it should be noted that this is not

the case. Instead, it seems the population has reached a steady state, where the

expected number of individuals in the three different groups remain the same.

Finally, the presence of individuals with highly negative performance are sim-

ply explained as negations of good phenotypes. On a genotypic level for the

single trees, this can easily be achieved by adding a NOT function as root-node.

This example merely illustrates the inner workings of the genetic programming

1The length parameters for the moving averages are; 10, 20, 50, 100 and 200. For the RSI indi-

cators they are; 10, 20, 30, 40 and 50.
2The stopping criterion measures both fitness and complexity, such that an individual a is

preferred to b, if a has greater fitness, or equal fitness and less complexity, compared to b.P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Figure 5: In-sample information ratio as a function of generation. Each dot rep-

resents the fitness of an individual, while the solid line is the average fitness of

the population.

framework. However, it is the out-of-sample performance and not the in-sample

fitness that essentially matters.

Figure 6 depicts kernel distribution estimates of the fitness obtained across

the 100 experiments for the single and dual tree programs on both the RSI and

MA processes. In addition, the information ratio distributions of the true state

classifications are shown. According to the experiment settings, it is seen that the

average information ratios of the true models are 1.5 in each of the four panels.

For the RSI processes the average in-sample fitnesses are 1.04 and 1.25 for

the single and dual tree method, respectively. That these numbers are below

the theoretical value could suggest that inadequate computational resources have

been allocated to solving this complicated problem. As expected, the perfor-

mance deteriorates out-of-sample. The average information ratios drop to 0.23

and 0.82 for the single and dual trees, respectively. Using a standard t-test the

null of zero-mean performance is strongly rejected at all usual levels of signifi-

cance (p < 10−10). Moreover, it is found that the dual trees have significantly bet-

ter out-of-sample performance compared to the single trees. The null of equal

mean-performance against the one-sided alternative is strongly rejected using a

two-sample t-test (p < 10−10).

For the MA processes the results are quite different. The two representa-

tions have almost identical in-sample performance, where the average informa-

tion ratios are 1.64 and 1.65 for the single and dual trees, respectively. In the test

period the performances deteriorate to 1.33 and 1.18. Again, these results are

highly significant (p < 10−10). Unlike the RSI processes, the single trees fair sig-P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Figure 6: In-sample and out-of-sample fitness distributions for the RSI (top) and

MA (bottom) process . Each panel contains the kernel density estimates from

100 experiments for the single and dual tree representation, as well as the true

underlying model. The triangles mark the average fitnesses.
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Figure 7: Non-parametric estimates for the probability that the classification ac-

curacy is greater than x. The triangles mark the median classification accuracies.

nificantly better out-of-sample on the MA processes compared to the dual trees

(p = 1.45 ·10−4).

To further understand these results, it is instructive to take a closer look at the

phenotypic behaviors of the individuals. Using simulated data gives the luxury

of knowing the true states underlying the processes. By evaluating the classifi-

cation accuracies of the evolved solution, a more complete picture emerges. The

classification accuracy is the proportion of periods where the forecasts are equal

to the true regimes.

Figure 7 shows non-parametric estimates of the probabilities that the classifi-

cation accuracies are greater than x. During the training period for the RSI pro-

cesses, the median accuracy of the single trees is only 0.58, while the equivalent

number for the dual trees is 0.82. Clearly, this explains the poor generalization of

the single trees. In Section 3, a predator had successfully captured a prey when

the classification error was less than 0.05. From this perspective, none of the sin-

gle trees are capable of capturing the underlying dynamics of the RSI processes,

whereas 22% of the dual trees do.P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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Figure 8: Out-of-sample lead-lag performances of the best individuals on the RSI

data (top) and MA data (bottom). The left and the right column are the single

and dual trees, respectively.

For the MA processes the results are again different: both methods capture

the underlying dynamics well, and, according to criteria above, 48% and 30%

of the single and dual trees succeed, respectively. Moreover, the median accura-

cies are 0.95 and 0.92. During the training period the single and dual trees had

equivalent average fitnesses, but, using the classification accuracy as a measure,

it becomes clear that the dual trees have overfitted the data slightly.

So far, the focus has primarily been on general inferences across the many

experiments. However, it is instructive to consider the dynamics of individual

trading strategies in more detail. Appendix B illustrates the best single tree and

dual tree on the RSI processes, and the best single and dual tree on the MA pro-

cesses. Three of these strategies have discovered the true underlying models, but

the single tree on the RSI process has a sub-optimal classification accuracy of

0.71.

Figure 8 shows the out-of-sample lead-lag plot of the best individuals on their

respective domains. The lead-lag plot, measures the performance of a trading

strategy as the forecasts are shifted along the temporal dimension while the pre-

dictand remains fixed. It can therefore be viewed as a sensitivity analysis for the

timing of a given strategy. The three strategies that have discovered the true un-

derlying models, have information ratios around 1.5 at lag zero. As mentioned

previously, this is in line with the experimental setup.P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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As the forecasts are lagged, the performance decays. This is intuitive since

trading decisions are based on older information. However, as the forecasts are

shifted forwards in time the information ratios on MA processes improve signif-

icantly, while for the RSI processes there is a deterioration in performance. The

latter might seem counterintuitive, because using information from the future

should imply better results, ceteris paribus. An explanation is found in the mean-

reverting effects of the RSI processes. Consider the following scenario. There has

recently been a large depreciation in the price of an asset, which causes an in-

vestor to believe that the market is oversold and consequently the asset is bought.

Had the buy order been issued earlier, it would have resulted in a substantial loss

due to a long exposure during the initial depreciation.

In a trending market, which the MA process represents, the situation differs.

In this context, an investor interprets a recent depreciation as the beginning of a

downtrend and therefore a short position is taken. Had this position been taken

earlier, it would have resulted in additional gains, because the investor had a short

position whilst the market depreciated.

5 Conclusion

This paper proposes a general multiple tree approach for dynamic decision prob-

lems, in which the current evaluation is contingent on the previous output of the

program. The hypothesis is that this methodology is superior to a traditional

single tree, where evaluation is unconditional, for temporal phenomena. The hy-

pothesis is tested using single and dual trees in two different contexts.

The first problem considers a coevolutionary predator-prey type environ-

ment, where the prey generates a binary process which the predator seeks to im-

itate. In this setting there are no clear optimal strategies. Hence, a framework

is developed in which the predator evolution is nested within the prey evolution.

It is found that the dual trees have greater expressive capabilities, since they can

capture the dynamics of the single trees when acting as predators, while evad-

ing when acting as prey. Moreover, this holds despite the maximum complexity

constraint of the single trees being twice that of the dual trees.

The second problem is closer related to finance. Single and dual trees are used

to evolve trading strategies on artificial financial time series. Two types of pro-

cesses are considered. The first has a trending behavior, while the second exhibits

mean-reversion effects. Both processes are highly nonlinear, thus rendering tra-

ditional linear time series analysis useless. Both the single and the dual trees gen-

erate significant positive returns out-of-sample. However, the single trees are in-

capable of capturing the true underlying nature of the mean-reverting processes,

but the dual trees succeed. For the trending series, both representation are capa-

ble of capturing the underlying dynamics, but the single trees have significantly

better out-of-sample performance compared to the dual trees. The single tree is

nested as a special case of the dual trees, when the two trees have identical phe-

notypic behaviors. However, this is not easily achieved in a noisy environment,

which explains the discrepancy in performance.P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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In conclusion, the “recurrent” multiple trees nest the single tree as a special

case. Theoretically it is a superior framework, but in practice the added flexibility

is not always a benefit. This depends on the nature of the problem, and is basically

a manifestation of Ockham’s razor. This paper has used artificial data, but future

research will consider real financial applications.
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A Relative Strength Index

The Relative Strength Index (RSI) by Wilder [26] is a popular indicator for cap-

turing reversals. RSI is a so-called oscillator, i.e., a momentum indicator that is

standardized to lie in an interval between 0 and 1 or 0 to 100. The RSI at time t

with length parameter n is formally defined,

RS I (t ,n) = 100
RS(t ,n)

1+RS(t ,n)
(9)

RS(t ,n) =
EG(t ,n)

EL(t ,n)
(10)

where EG and EL are expected gains and losses computed from weighted aver-

ages,

EG(t ,n) =
max(Ct −Ct−1,0)+ (n −1)EG(t −1,n)

n
(11)

EL(t ,n) =
max(Ct−1−Ct ,0)+ (n −1)EL(t −1,n)

n
(12)

and C denotes the closing price. Assuming negative times prior to initialization,

it holds, at time t = 0,

EG(0,n) =
1

n

0
∑

i=−n+1

max(Ci −Ci−1,0) (13)

EL(0,n) =
1

n

0
∑

i=−n+1

max(Ci−1−Ci ,0) (14)

In its original form Wilder [26] proposed the length input n of the indicator to be

14 days, where the market is said to be overbought if RSI is above 70 and oversold

if it is below 30. Consequently, when the market is overbought (oversold) a sell

(buy) order is issued.
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B Evolved Strategies
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Figure 9: Single (top) and dual tree (bottom) with maximum in-sample classifi-

cation accuracy on RSI processes.

Figure 9 shows the single and dual tree with highest in-sample classification

accuracy on the RSI processes. The single tree has a suboptimal classification

accuracy of 0.71. It approximates the mean-reversion effects of the RSI process,

via some non-trivial combination of moving averages and RSI indicators. The

dual tree has discovered the true model and is more interpretable. A long posi-

tion is initiated when OR(XUNDR(RSI20, 0.3)), BTWN(MA10, MA20, MA20))
is TRUE, while a short position is initiated when XOVER(RSI20,0.7) is TRUE. Be-P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.
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sides being the correct solution, it provides a typical example of introns. An

intron is a non-coding region of DNA, and in genetic programming it is asso-

ciated with redundant code such as BTWN(MA10, MA20, MA20), which is essen-

tially FALSE, and therefore irrelevant in conjunction with OR.

Program

<

MA50 PRICE

Program

<

MA50 PRICE

<

PRICE MA50

Figure 10: Single (top) and dual tree (bottom) with maximum in-sample classifi-

cation accuracy on MA processes.

Figure 10 shows the single and dual tree with the highest in-sample classifi-

cation accuracy on the MA processes. Both trees have discovered the true model,

and have no excessive code. The two trees of the dual tree are identical, which

implies that evaluation is independent of the previous program output. In effect,

the dual tree is reduced to a single tree.P Saks, D Maringer, Single versus Multiple Tree Geneti
 Programming for Dynami
 De
ision Making,CCFEA WP 019-08, University of Essex 2008.


