
Applying Dependency Injection to Agent-Based Modeling: the

JABM Toolkit

Steve Phelps

Centre for Computational Finance and Economic Agents (CCFEA)

sphelps@essex.ac.uk

August 31, 2012

Abstract

In many areas of science, agent-based models have become increasingly important. These models are

often sufficiently complex that deriving closed-form solutions for quantitative aspects of their macroscopic

behaviour is often impractical if not impossible. Thus these models are often analysed using Monte-Carlo

simulation. Object-oriented programming languages are naturally suited to implementing such models.

However, Monte-Carlo methods impose some subtle requirements: we must run the same program very

many times with randomly-drawn values of variables in the simulation being drawn from probability

distributions, taking great care to ensure that each run is not contaminated with state from previous

runs. Typically these problems are tackled by model-specific application code residing in the objects

representing individuals in the model. However, this approach is not declarative and leads to cross-

contamination between code representing experiments or treatments and code representing the model

itself. In this paper we give an overview of agent-based modelling with an emphasis on its application to

multi-agent systems research, and show how a design pattern called “dependency injection” can be used

to implement highly configurable simulation models which are able to incorporate various assumptions

about agents’ rationality and learning.

1 Introduction

In this paper we describe practical aspects of developing agent-based simulation models with particular

emphasis on agent-based computational economics and work carried out within the trading-agent design

1

and analysis community. We introduce a new software framework for building agent-based models — the

Java Agent Based Modeling (JABM) toolkit1. Work on JABM arose out of an earlier project — Java

Auction Simulator API (JASA)2 — which was designed as a toolkit for performing experiments in Agent-

based Computational Economics (ACE)3 and was subsequently used as the basis of the JCAT software used

to run the CAT tournament which is part of the Trading Agent Competition (Cai et al, 2009).

JABM is an attempt to build a library of software components that can be used for more general agent-

based models, and now serves as the underlying framework used in the implementation of JASA. One

of the challenges in building this framework is that, even within the trading-agent research community,

there are many different approaches to modelling and analysing agents’ decision making; for example all

of the following approaches are currently used: (i) game-theoretic approximation based on the empirical

game-theory methodology (Wellman, 2006), (ii) individual and multi-agent reinforcement learning, and (iii)

adaptation through (co)-evolutionary processes. A unique aspect of JABM is that it synthesises all of these

approaches under a common framework, allowing agent-based models that are developed using JABM to be

analysed under a wide variety of assumptions regarding agent rationality.

JABM attempts to uphold the principle that entities in our simulation model should be represented

using objects, and avoids introducing additional language constructs over and above those that are naturally

available in Object-Oriented (OO) languages such as Java. In the jargon of modern software engineering,

where possible we prefer to use Plain Old Java Objects (POJOs)4 to represent agents, events and any other

entities in our simulation model. Moreover, because of its object-oriented design, simulations in JABM can

be reconfigured to use different learning mechanisms without rewriting any of the code representing the

underlying model or the agents themselves. This design philosophy is also applied to other aspects of the

framework, particularly to the modelling of free parameters; JABM uses an object-oriented design pattern

called dependency-injection (Fowler, 2004) to allow the underlying model to be executed very many times

with different randomly-drawn values for free parameters. By using dependency-injection we are able to

express the configuration of the model, including its statistical properties, declaratively. This allows us

to run the same model under different assumptions regarding, e.g. initial conditions and free parameter

distributions without making any modifications to the code representing the model itself.

In this paper we give an overview of the JABM framework and how it has been applied to several areas

of research in the field of multi-agent systems. The remainder of the paper is outlined as follows. In the

1Phelps (2011a)
2Phelps (2011b)
3Tesfatsion (2002)
4Parsons et al (2000)

2

next section we give an overview of related software toolkits. In Section 3 we discuss the role of simulation

modelling in multi-agent systems research. In Section 3 we review work on simulation-modelling of economic

scenarios, that is agent-based computational economics. In Sections 4 and 5 we discuss different models of

agent interaction and rationality and how they are implemented in JABM. In Section 6.3 we take a step back

and give a high-level overview of the design of the JABM by walking through an example model. Finally we

conclude in Section 7.

2 Related work

Software for implementing agent-based models has been evolving across several decades and across several

disciplines, and many toolkits take an object-oriented approach to modeling. Indeed one of the earliest

frameworks, the Swarm system (Minar et al, 1996), was developed in an early object-oriented programming

language (Objective-C). One of the disadvantages, however, of Swarm is that Objective-C is no longer

widely supported outside of Apple’s proprietary operating systems. As a result there have been several

frameworks inspired by Swarm that attempt to provide similar object-oriented libraries for implementing

agent-based simulations using more modern and widely supported languages. In particular, many have

chosen the Java language which provides a unique combination of features which are particular attractive

to simulation modellers, viz.: type safety, garbage collection, libraries for numerical methods and high

throughput performance (Moreira et al, 2000).

One approach to implementing agent-based models using the Java language is to provide a base toolkit

which is extensible through custom scripting environments. This is the approach taken by the popular

NetLogo toolkit (Wilensky and Rand, 2011). The scripting approach has many advantages, particularly

when using agent-based modeling as an educational tool or for cross-discplinary work where the modelers

may not be computer scientists. However, there are also several drawbacks with this approach. Firstly,

interpreted scripting languages are not as fast as models implemented directly in Java. Secondly, it is difficult

to straightforwardly make use of the many open-source third-party libraries5 written in Java. Finally, we

lose the many advantages of object-oriented modeling when implementing simulations in a non OO scripting

language.

One of the most mature Java-based frameworks which takes an object-oriented approach to modeling

is the Repast toolkit (North and Macal, 2005; Dubitzky et al, 2011). Repast models, however, are not

5e.g. there are many Java libraries implementing neural networks or heuristic optimization algorithms or other numerical
methods.

3

implemented straightforwardly using POJOs. In contrast, toolkits such as MASON (Luke, 2005) adhere

more closely to the ideal of implementing agent models using simple objects, and JABM shares much in

common with its design philosophy.

Chmieliauskas et al (2012) recently introduced a framework called AgentSpring which is a highly modular

and powerful framework for building agent-based models using object-oriented design principles, and also

makes extensive use of dependency injection. In AgentSpring, dependency injection is used to promote

seperation of concerns between visualisation and persistence functionality, and one of the key innovations of

AgentSpring is the use of a graph database (Vicknair et al, 2010) which is used both for persistence, and

also allows agents within the simulation to gather data from their environment by running graph-database

queries on the attributes of the simulation itself.

Where JABM differs from all of these frameworks is in the unique application of dependency-injection in

order to overcome several design problems inherent in executing object-models as if they are Monte-Carlo

simulations, with independent realisations of the model being executed with different randomly-drawn values.

We will return to this discussion in Section 6.2.

3 Agent-based models in Multi-Agent Systems Research

Multi-agent Systems typically comprise very many autonomous agents with their own local goals or utility

functions. Engineering of such systems entails careful reasoning about the collective behaviour of such agents:

that is, the macroscopic behaviour of the system as a whole. This is especially difficult since typically the

behaviours of individual agents are neither deterministic nor can be entirely pre-specified in advance. This

is exactly the problem faced in understanding many problems in socio-economic systems, thus research in

multi-agent systems has drawn heavily on theoretical models from economics and game-theory (Shoham

and Leyton-brown, 2010), in which we assume that agents are rational expected-utility maximisers whose

expectations about the future are model-consistent (the assumption of rational expectations).

Despite the many successes of these theoretical models, it is widely known that they sometimes fail to

explain and predict phenomena that occur in real-world systems. For example, with the advent of algorithmic

trading financial exchanges have become some of the largest and most mission critical multi-agent systems

in existence. However, the recent financial crisis highlights the limitations of relying solely on theoretical

models to understand these systems without validating them thoroughly against actual empirical behaviour,

and it is now acknowledged that widely adopted theoretical models, such as the random walk model of

4

geometric Brownian motion, are not consistent with the data from real-world financial exchanges (Lo and

MacKinlay, 2001).

This had led to a resurgent interest in alternatives to models based on rational expectations models and

the efficient markets hypothesis; Lo (2005) proposes the “adaptive markets hypothesis” as an alternative

paradigm. The adaptive markets hypothesis posits that incremental learning processes may be able to explain

phenomena that cannot be explained if we assume that agents instantaneously adopt a rational solution,

and is inspired by models such as the El Farol Bar Problem (Arthur, 1994) in which it is not clear that a

rational expectations solution is coherent.

Agent-based models address these issues by modelling the system in a bottom-up fashion; in a typical

agent-based model we simulate the behaviour of the agents in the market, and equip them with simple

adaptive behaviours. Within the context of economic and financial models, agent-based modelling can be

used to simulate markets with a sufficient level of detail to capture realistic trading behaviour and the nuances

of the detailed microstructural operation of the market: for example, the operation of the underlying auction

mechanism used to match orders in the exchange (Lebaron, 2006).

The move to electronic trading in today’s markets has provided researchers with a vast quantity of data

which can be used to study the behaviour of real-world systems comprised of heterogenous autonomous agents

interacting with each other, and thus a recent area of research within the multi-agent systems community

(Rayner et al, 2011, 2012; Palit and Phelps, 2012; Cassell and Wellman, 2012) attempts to take to a reverse-

engineering approach in which we build agent-based models of markets that are able to replicate the statistical

properties that are universally observed in real-world data sets across different markets and periods of time

— the so called “stylized facts” of the system under consideration (Cont, 2001).

A key issue for research in this area is that the way that agents interact and learn can be critical in

explaining certain phenomena. For example, LeBaron and Yamomoto (2007) introduce a model of financial

markets which demonstrates that certain long-memory characteristics of financial time series data can only

be replicated when agents imitate each others’ strategies. When their model is analysed under a treatment

in which learning does not occur, the corresponding long-memory properties disappear. Performing such

analyses requires that we are able to easily reconfigure the way in which agents interact and learn. In the

following section we catalog some commonly-used interaction models, and in Section 5 we review models of

learning. We return to these topics in Section 6.4, and describe how they can be modelled using OO design,

and configured using dependency-injection.

5

4 Models of agent interaction

A typical agent-based simulation model consists of a population of agents interacting with each other in

discrete time. At any given discrete time period, some subset of the population is chosen to interact, during

which time each agent can choose a course of action conditional on its observations of the environment

and/or other agents depending on the constraints imposed by the model. Each time period is alternatively

called a “tick”, or a “round”, and we will use the former convention in this paper. Ticks represent units of

time in the sense that any interactions resulting in state changes to the model that occur within the same

tick are considered to have occurred simultaneously.

This basic framework allows for many variants. For example, we might pick randomly chosen pairs of

agents from the population to interact with each other during each round in a model akin to evolutionary

game theory (Weibull, 1997). Alternatively, we might pick a single randomly-chosen agent on every tick,

or allow for a random arrival model in which agents arrive at the simulation with a certain probability as

described by a Bernoulli process (that is, a discrete-time approximation of a Poisson process), allow every

agent to interact with every other agent simultaneously on each tick, or impose some additional structure

on the population so that only certain agents are able to interact with each other.

In this section we attempt to sysmatically catalog different commonly-used conceptual frameworks for

representing how and when agents interact with other. We will then turn to models of agent learning and

adaptation in Section 5.

4.1 Random pairwise interactions

The simplest framework for modelling interaction between agents assumes that agents do not actively select

partners with which to interact, but rather interactions occur due to chance encounters with other agents.

This framework is extremely simple — in the simplest case, agents have an equal probability of interacting

with any other agent — and its simplicity lends itself to analytic tractability. Hence this is the approach

adopted by many mathematical models, the archetypal example being evolutionary game-theory which is

used in the field of evolutionary biology to explain coevolutionary adaptations, as pioneered by Maynard-

Smith (1973) with the hawk-dove game.

In an evolutionary game-theoretic model, pairs of agents are chosen at random from an idealised infinite

population. By assuming an infinite population and no mutation we can specify the dynamics of the system

using a simple ordinary differential equation. The standard approach is to use the replicator dynamics

6

equation (Weibull, 1997) to model how the frequency of each strategy in the larger population changes over

time in response to the within-group payoffs:

ṁi = [u(ei,m)− u(m, ~m)]mi (1)

where m is a mixed-strategy vector, u(m,m) is the mean payoff when all players play m, and u(ei,m) is the

average payoff to pure strategy i when all players play m, and ṁi is the first derivative of mi with respect to

time. Strategies that gain above-average payoff become more likely to be played, and this equation models

a simple co-evolutionary process of adaptation.

In most models which use the replicator dynamics framework, the payoff function u() is expressed as a

simple linear equation, typically of the form u(x,y) = xPy where P is the payoff matrix of the underlying

game. However, in more complicated models it may not be possible to derive closed-form expressions for

this function, and instead we may have to estimate expected payoffs by simulating the interactions between

agents and using the average observed payoff as an estimator of the expected value. This methodology is

known as empirical game-theory, which we will discuss in further detail in Section 5.3.

4.2 Network models

Although the random pairwise framework discussed in the previous section has the virtue of simplicity, it is

well known that many agent interactions in reality are highly structured; particular pairs of agents are more

likely to interact than others, and in the extreme case this may be a hard constraint such that only certain

pairs of agents are able to interact at all.

Mathematically we can express this as a graph structure which specifies the connectivity between agents.

Formally a graph is specified by a pair (V,E) where V is a set of vertices and E is a set of edges which

connect the edges. Graphs may be either directed or undirected. In the case of a directed graph the edges

are ordered pairs of the form e = (x, y) where e ∈ E, x ∈ V, y ∈ V. The edge e = (x, y) specifies that vertex

x is connected to vertex y but not vice versa. In the case of an undirected graph edges are unordered sets

of the form e = {x, y} denoting that the vertices x and y are connected to each other. In the context of

an agent-based model the vertices represent agents, and the presence of edges typically represents that the

corresponding agents can interact with each other.

The importance of network structure has been explored in many disciplines, not only within the multi-

agent systems community, but also in economics (Cont and Bouchaud, 2000; Jackson, 2007; Alfrano and

7

Milakovic, 2009) and biology. An full exposition of the field of network science is outside of the scope of this

paper, however see Newman (2010) for a comprehensive recent overview.

The statistical properties of the network structure underlying agent interactions can have dramatic con-

sequences for the behaviour of the system as a whole. One of the most studied properties of networks is

the so-called small-world property in which the shortest path distance between randomly chosen pairs of

vertices in the network is proportional to the logarithm of the total number of vertices in the network. The

prevalence of this property in real-world networks is particularly surprising given that empirically studied

networks are also highly clustered ; if i and j are connected to each other and also x and y, then we have a

high chance of also observing that j and y are connected.

The importance of network topology is most notably demonstrated in models of cooperative behaviour

which study the conditions under which cooperative outcomes can be sustained by communities of agents

who attempt to maximise local objectives. These models are particularly important because they have

implications across all many discplines. Santos et al (2006) showed that whether or not cooperation prevails

depends on the topology of the network and that small-world networks lead to much greater cooperation.

Ohtsuki et al (2006) generalised this result showing that natural selection favours cooperation if the benefit

of the altruistic act divided by the cost exceeds the average number of neighbours on the network.

An important consideration in agent-based models which use networked interactions is how to generate

the underlying interaction graph. There are several commonly-used graph generation algorithms which yield

networks with different statistical properties. The most important of these are the model of Watts and

Strogatz (1998), which generates networks that are simultaneously highly-clustered and also have the small-

world property, and the algorithm of Albert and Barabasi (2002) which generates graphs with power-law

degree distributions.

4.2.1 Adaptive networks

One of the key aspects of many agent-based models is that agents are not merely passive components which

update their state unconditionally; rather they are active decision makers and can choose how to interact

with the environment, including the other agents present therein. Within the field of evolutionary biology

this is called partner selection (Noë and Hammerstein, 1995). Once we allow partner selection, the network

interactions discussed in the previous section are no longer exogenous static structures, but rather agents

can manipulate the network structure in order to maximise their own utility or fitness, leading to potential

co-evolution between network structure and agents’ strategies (Zimmermann et al, 2000). This has been

8

explored in several recent models of cooperative behaviour (Do et al, 2010; Phelps, 2012), which show

feedback between network structure and agents’ strategies plays an important role in determining outcomes.

4.3 Temporal aspects

The previous section discussed different modes of interaction between agents but not when they interact. In

this section we give an overview of several commonly used frameworks for modelling the progression of time

in agent-based modelling.

Agent-based models typically execute a program which represents how the state of some real-world

system evolves over a duration of time. However, typically our model will execute more quickly than

the corresponding real-world system. We thus need to distinguish between two separate notions of time:

simulation-time verses real-time, also known as “wall-clock” time. The former represents the time value

available to agents within the simulation, and thus software implementing an agent-based model needs to

be able to track the progression of simulation-time and make the simulation clock available to agents whose

decisions may depend on time.

Simulation models running on digital computers fall naturally within the discrete event framework (Banks

and Carson, 1984) for representing time. In discrete-event simulations we have a countable set of discrete

events, each of which has an associated time value which represents the time at which the event is scheduled

to occur. Although we have a countable and finite set of events, the time values associated with these events

can be real valued numbers; that is, it is important to note that “discrete-event” simulation refers to the set

of events rather than time itself, and we can represent continuous time values within such a model.

4.3.1 Arrival process

In the simplest agent-based models an event occurs on every tick of the simulation. However, this does not

capture the “bursty” behaviour of real systems in which we typically see many events clustered together in

time followed by longer periods of quiescence, along with stochastic variation in the time elapsed between

events — the inter-arrival times. A more realistic model is the Poisson process (Grimmett and Stirzaker,

2001) in which the inter-arrival times between events are drawn i.i.d. from an exponential distribution whose

probability densitity function is given by f(x) = λe−λx, where λ is the average arrival-rate of events per unit

time. This can be easily implemented in a discrete-event simulation framework by advancing the simulation

clock by the randomly drawn inter-arrival time each time an event is scheduled.

The corresponding discrete process is a Bernoulli process in which an event is scheduled to happen on

9

any particular simulation tick with a specified probability p. In the limit as the total number of ticks

tends to infinity, the Bernoulli process is equivalent to a Poisson process. However, the Bernoulli process

is often simpler to implement in software and thus forms the basis of many popular agent-based models in

which heterogenous spacing between events is important, e.g. see Iori and Chiarella (2002). We can think

of a Bernoulli process as a generalisation of the simplest models in which events occur at every tick with

probability p = 1; in a Bernoulli model we allow p < 1 resulting in stochastic, but discrete, inter-arrival

times.

4.3.2 Simultaneous interactions

Continuous-time models based on an arrival process such as those described in the previous section are able

to capture statistical features of arrival times that are important for many applications but this realism

comes with a price. We often want to view agent interactions as a game of imperfect information in which

agents are not necessarily able to observe the actions chosen by the other agents in the model prior to

choosing their own action. This can be difficult to capture in an arrival-process model since, by necessity,

every event corresponding to an action taken by an agent occurs in a linear sequence, and thus we would

have to impose additional constraints on the model in order to prevent agents arriving later than others from

observing actions chosen earlier (e.g. because of response-time latencies); in the terminology of game-theory

the information-set for each agent remains ambiguous.

What we require in such a scenario is the ability to specify that agents choose their actions simultaneously

in a manner akin to a repeated normal-form game such as the iterated prisonor’s dilemma (Axelrod, 1997).

We can implement this within the framework described at the beginning of this section by specifying that

an entire set of agents interact with other during a given simulation tick. For example, this set might consist

of the entire population of agents — e.g. see Phelps (2012) — or the neighbouring vertices of a particular

agent on a network. We can either specify that these simultaneous interactions occur homogenously in time

by scheduling them to occur on every tick, or alternatively we can combine this approach with an arrival

process model by scheduling the interactions stochastically.

5 Evolution and learning in agent-based modelling

In a typical agent-based model different agents of the same type may be configured with heterogenous be-

haviours, and a single agent can switch between several different behaviours during the course of a simulation.

10

Since the outcome of following a specific behaviour can depend on the actions of other agents we use the

term strategy from game-theory to refer to behaviours, however we do not dictate that agents use game-

theoretic algorithms to choose their strategy since we often want to explore the implications of models in

which behaviours are evolved or learnt heuristically. In this section we catalog some of the commonly-used

models of learning and adaptation that are used in agent-based models.

5.1 Individual learning

In the simplest type of adaptive agent-based model, agents use a simple reinforcement learning algorithm,

such as Q-learning (Watkins and Dayan, 1992), in order to select between their strategies. The central idea is

that each agent attempts to estimate the expected payoff through an inductive sampling process in which the

agent tries out different strategies and uses the payoff values thus obtained to estimate the expected payoff

of each, and hence determine the strategy which will give the best long-term reward – the so-called greedy

strategy. Such models have been widely adopted in modelling the behaviour that is empirically observed in

strategic environments (Erev and Roth, 1998).

One of the problems with this simple approach that is particularly acute within the context of multi-agent

systems and agent-based modelling, is that learning is only guaranteed to converge to the optimal policy

provided that the environment is stationary; that is, provided that the expected payoffs do not change over

time, and that they do not change in response to the behaviour of the agent. This is patently untrue in the

case of a multi-agent system, since the environment consists of other agents who are adapting their choice

of strategy in response to each other.

This has led to the development of algorithms designed specifically for multi-agent learning. In a multi-

agent context, the notion of an optimal policy is more complicated because the appropriate choice of strategy

depends on the behaviour of other agents, who may also be learning. If we consider agents who do not learn,

then the appropriate solution concept for such multi-agent interactions is Nash equilibrium (Nash, 1950), in

which every agent adopts a best-response strategy to the strategies chosen by other agents who in turn adopt

their own best-response strategies. However, if our agent is interacting with agents who are learning then the

Nash strategy may not be appropriate; for example, in a non-zero-sum game if our opponents are adopting

non-equilibrium strategies then we may be able to exploit these agents by adopting a non-equilibrium best-

response to their off-equilibrium play.

This has led to refinement of the desiderata for reinforcement algorithms in multi-agent contexts (Shoham

and Leyton-brown, 2010, ch. 7). A learning algorithm is safe if it is able to guarantee the security value of

11

the game (the minimum payoff that can be obtained regardless of the strategies chosen by other agents). A

learning algorithm is rational if it converges to a best-response when its opponents(s) adopt static strategies.

Finally the property of no-regret specifies that the learning-algorithm is able to gain a superior expected

payoff compared with what could have obtained by following any one of its pure strategies.

The development of multi-agent learning algorithms that satisfy one or more of these criteria is an active

field of research within the agents community (Bowling, 2005; Busoniu et al, 2008; Kaisers and Tuyls, 2010).

However, it is somewhat surprising that these algorithms have not been more widely adopted in the context

of agent-based modelling, given the importance that the latter community places on adaptive agents. This

may be because many of these learning algorithms assume that payoffs for every strategy profile are already

known, which is not true in the general case. Instead we may need to estimate or learn the payoffs themselves,

as discussed in the following sections.

5.2 Social learning and co-evolution

Heuristic approaches are often used when faced with tractability issues such as these. In particular, heuristic

optimisation algorithms, such as genetic algorithms, are often used to model adaptation in biological settings

where the fitness of a particular allele depends on the frequency with which other alleles are present in the

population — that is, in co-evolutionary settings (Bullock, 1997).

Such models can be implemented using a Co-evolutionary algorithm (Hillis, 1992; Miller, 1996). In a co-

evolutionary optimisation, the fitness of individuals in the population is evaluated relative to one another in

joint interactions (similarly to payoffs in a strategic game), and it is suggested that in certain circumstances

the converged population is an approximate Nash solution to the underlying game; that is, the stable states,

or equilibria, of the co-evolutionary process are related to the evolutionary stable strategies (ESS) of the

corresponding game.

Co-evolutionary algorithms can also be interpreted as models of social learning (Vriend, 2000) in which

agents have a probability of switching to another agent’s strategy if it is observed to a higher payoff than their

current strategy. In such models the operators of the evolutionary algorithm can be interpreted as represent-

ing a form of imitation learning; behaviour is learnt through observation resulting in copying (reproduction)

with error (mutation). The effect of social learning has been explored in several recent agent-based models

of trading behaviour in financial markets (LeBaron and Yamomoto, 2007; Rayner et al, 2012).

However, there are many caveats to interpreting the equilibrium states of standard co-evolutionary al-

gorithms as approximations of game-theoretic equilibria, as discussed in detail by Ficici and Pollack (1998,

12

2000); Ficici et al (2005). This can sometimes be problematic because, firstly, the equilibria of any given game

are invariant under different learning dynamics, and secondly if equilibrium strategy profiles are adopted

by learning agents they remain stationary under a wide range of strategy dynamics. Therefore the lack of

game-theoretic underpinnings to co-evolutionary models can sometimes call into question the robustness of

these models, since results can be highly sensitive to small changes in the learning model and the correspond-

ing dynamics of strategy adjustment. On the other hand, deriving closed-form solutions for the equilibria

of any non-trivial agent-based model is intractable in the general case. This has led to the development of

methodologies for estimating the equilibria of multi-agent systems using hybrid techniques which combine

agent-based simulation, numerical methods and game-theory, which we discuss in the next section.

5.3 Empirical Game Theory

In order to address the issues discussed in the previous section, many researchers adopt a methodology called

empirical game-theory (Walsh et al, 2002; Wellman, 2006; Phelps et al, 2010), which uses a combination of

agent-based simulation and rigorous game-theoretic analysis. The empirical game-theory method uses a

heuristic payoff matrix, which gives the estimated expected payoff to each player adopting a particular pure

strategy as a function of the strategies adopted by other players. The methodology is called empirical game-

theory because we use empirical methods to derive the payoffs; the payoff estimates are obtained by sampling

very many realisations of a corresponding agent-based model in which agents are configured with strategy

profiles corresponding to the payoff matrix, and we use standard Monte-Carlo methods to derive estimates of

the expected payoffs from the sample mean and reduce the variance thereof in order to obtain more accurate

comparisons between different payoff values.

The payoff matrix is said to be heuristic because several simplifying assumptions are made in the interests

of tractability. We can make one important simplification by assuming that the game is symmetric, and

therefore that the payoff to a given strategy depends only on the number of agents within the group adopting

each strategy. Thus for a game with j strategies, we represent entries in the payoff matrix as vectors of the

form p = (p1, . . . , pj) where pi specifies the number of agents who are playing the ith strategy. Each entry

p ∈ P is mapped onto an outcome vector q ∈ Q of the form q = (q1, . . . , qj) where qi specifies the expected

payoff to the ith strategy.

For a game with n agents, the number of entries in the payoff matrix is given by s = (n+j−1)!
n!(j−1)! . Although

it is still intractable to estimate the heuristic payoff in the general case, for small numbers of agents and

strategies — for example, for n = 10 agents and j = 5 strategies, we have a payoff matrix with s = 1001

13

entries — we can obtain heuristic payoff matrices that are sufficiently precise to give insights into many

strategic interactions that occur in multi-agent systems (Jordan et al, 2007; Phelps et al, 2009; Cassell and

Wellman, 2012).

6 Object-oriented agent-based modelling

The underlying design philosophy of JABM is that object-oriented programming languages provide a natural

way of expressing all of these different conceptual frameworks for modelling agents, their interactions and

how they learn or evolve. For example, agents can be represented as instances of objects6, heterogeneous

populations can be represented by different classes of object, and the properties of agents correspond directly

with class attributes. Temporal aspects of the model can be represented within a discrete-event simulation

framework (Banks and Carson, 1984) and once again events can be modelled as objects with different types

of event being represented by different classes. Describing agent-based simulation models in terms of objects

is highly intuitive and leads to natural implementation in object-oriented programming languages. By

representing entities such as agents, events and even the simulation itself as objects we automatically grant

these entities status as “first-class citizens” (Burstall, 2000) within whatever OO programming language we

use.

JABM uses objects to model the different approaches to agent interaction and learning described in

Sections 4 and 5. The modular design allows the modeller to reconfigure experiments to use these different

approaches to interaction and learning without making any changes to the code representing the agents

themselves.

In the following section we describe the basic object-oriented architecture for implementing discrete-event

simulation. In Section 6.2 we proceed to give an overview of the dependency injection design pattern, and

show how it can be used for Monte-Carlo simulation. In Section 6.3 we give an overview of the design of the

JABM toolkit. Finally, in Section 6.4 we describe how learning and evolution are modelled using objects.

6.1 Discrete-event simulation using object-oriented programming

Discrete-event simulation models are naturally implemented using techniques from object-oriented program-

ming (Garrido, 2001). Most object-oriented frameworks for agent-based modeling represent individual agents

6Note that the focus of our work is the use of agent-based simulations to model complex systems. This entails fundamentally
different design requirements from software designed to implement agent systems or multi-agent systems (Chevaleyre et al,
2006); agent-oriented software engineering is outside of the scope of this paper and in the remainder of the discussion we shall
focus on agent-based modeling.

14

as object instances whose attributes correspond to the properties of the agents in the model. Heterogeneous

populations in which we have different types of agents can then be easily modelled by using different classes of

object, and base “skeleton” or “default” code required to implement agents can be provided by inheritance,

for example in the form of abstract classes.

Discrete-event processing is naturally implemented using the Observer or Model/View/Controller design

patterns (Gamma et al, 1995) in which events are themselves modelled as objects, and different types of

event are represented by different classes of object. Each event has an attribute corresponding to a time-

stamp (that is, the tick number at which the event was generated), as well as any other state information

pertinent to the particular class of event. Various entities in the simulation can then listen or “subscribe”

to the particular events that they are interested in and respond accordingly. For example, in a simulation of

an electronic marketplace such as an open-outcry ascending auction, an agent might subscribe to the class

of event that represents being outbid, and respond to this event by raising its own bid where appropriate.

These design patterns lead to a highly modular and flexible design which has three principal benefits, as

detailed below.

Firstly, reporting, analysis and visualisation functionality can be cleanly separated from code representing

the agent model itself. This allows re-use of these components across different models (for example, a View

component showing a histogram of the proportion of different types of agent in the simulation at any given

moment in time can be deployed in any agent-based model), and also allows the modeller to deploy various

levels of visualisation or reporting depending on the trade-off required between CPU time and the amount

of data required for analysis (for example, visualisation can easily be turned off in order to speed up the

simulation). Reporting functionality also becomes straightforward to implement: a report is itself an object

which listens to events, and can then calculate statistics to be logged to a file or database – for example, the

average price of a bid during each auction can be calculated by listening for bid events and then calculating

the average price using the price attribute of the event.

Secondly, these design patterns encourage the simulation modeller to use object-oriented programming

in the manner in which it was originally conceived, viz. to use classes to encapsulate the properties and

behaviour of entities that exist in the problem domain. For example, in a non-simulation context we might

create a class called Book to represent an actual real book in a electronic library catalogue system, which

attributes such as title, author etc., and methods such as checkOut, checkIn etc. The object-oriented

approach to designing software systems is to treat the software application as a model of real-world entities,

and hence this style of programming is naturally suited to agent-based modeling. For example, in an

15

agent-based model of an auction we might create a class called BiddingAgent with attributes such as name,

utilityFunction, valuation and methods such as placeBid.

Finally, the loose coupling between originators of events and receivers of events allows us to “rewire”

the basic underlying components of our simulation in different ways depending on the specific agent model

we are trying to implement. For example, returning to our auction model, the Auctioneer agent might

listen for occurrences of BidPlacedEvent in order to update the auction state. However, we might we might

then reconfigure the model by allowing BiddingAgent objects to also listen to BidPlacedEvent in order to

implement a bidding strategy which is conditional on the behaviour of other agents in the market.

Often we would like to be able to rewire the model in this way very easily in order to perform experiments

under different treatment conditions: for example a sealed bid auction in which only the auctioneer has access

to bids verses an open outcry auction (Krishna, 2002) in which the bids of all agents are publicly available.

Ideally we would like to perform this configuration without having to change any of the code representing the

entities in our model, since we are simply changing the structure of the dependencies between these entities

as opposed to the entities themselves. This can be achieved using the Dependency Injection design pattern

(Fowler, 2004; Prasanna, 2009), in which the dependencies between objects are expressed declaratively and

are then “injected” into our model by a separate third-party container: a form of Inversion of Control (IoC).

We discuss this design pattern in detail in the next section, and show how it is particularly useful for

simulation models.

6.2 Dependency Injection

This section describes how several design problems that arise in implementing agent-based models in the

form of simulation software are naturally solved by a software engineering design pattern (Gamma et al,

1995) called “dependency injection” (Fowler, 2004; Prasanna, 2009) which promotes “separation of concerns”

between the configuration of an object model and the implementation thereof.

As discussed in the previous section, the underlying design philosophy of JABM is that object-oriented

programming languages provide many of the primitives necessary for agent-based modeling.

However, some aspects of agent-based models are difficult to encapsulate directly in an OO framework. In

particular, any non-trivial agent-based simulation model will be stochastic in nature: many of the attributes

of the objects in our model will be random variables which take on different values each time the simulation is

executed. Alternatively, we might configure these same attributes as independent variables to be controlled

in a “parameter sweep”; again this results in certain object attributes taking on different values each time

16

the model is executed.

The fact that agent-based models are often executed as Monte-Carlo simulations poses difficulties for

our principle that models be represented as object-oriented programs because variables in OO programming

languages are not random; random and/or independent variables are not first class citizens in most modern

programming languages. One work-around for this issue has been to simply implement code, for example in

each object’s constructor, which initialises any free parameters from various probability distributions using a

Pseudo-Random Number Generator (PRNG). We can then create new instances of the objects representing

the entities in our model on each independent run of the simulation, ensuring that new random variates

are assigned on each run whilst maintaining state that needs to persist across different runs (for example,

objects representing summary statistics) using singleton objects (Gamma et al, 1995, p. 127).

However, such an approach is not declarative and results in a situation where if we want to run different

experiments in which we use different probability distributions, or switch from using randomly-sampled

variables to controlling a variable explicitly, we have to modify the objects representing the model itself.

In contrast, the dependency-injection design pattern allows us to separate these concerns. Configuration

information specifying how the objects in our model are to be initialised and the run-time dependencies

between them are expressed declaratively, and then “injected” into the application at runtime. This allows

us to write code representing, for example, the agents in our model without having to make any assumptions

regarding how the variables representing the agent’s properties are to be initialised. Thus we can run execute

the same model under a wide variety of experimental treatments without modifying the model itself.

In the remainder of this section we describe how dependency injection has been applied in the design of

the JABM toolkit.

6.2.1 Monte-Carlo Simulation

In the previous section we discussed how agent-based models in the form of discrete-event simulations can be

naturally viewed as object models, and straightforwardly implemented in an object-oriented programming

language. However, there are some aspects of the discrete-event simulation methodology that do not have

corresponding constructs in typical object-oriented programming languages. In particular, when performing

an experiment using a simulation model we typically execute the simulation very many times in order to

account for the fact that any non-trivial model is non-deterministic, and also to examine the sensitivity of

the model to random variations in free parameter settings, or to explore the response of certain macroscopic

quantities to changes in the underlying parameters; for example, by performing a controlled experiment in

17

Listing 1: Initialisation of random variables without dependency injection

public class BiddingAgent {

/∗∗
∗ The agent ’ s p r i v a t e va l ua t i on f o r the item
∗ i t i s c u r r en t l y b i dd ing on .
∗/

double va lua t i on ;

double s tdevValuat ion = 1 ;

double meanValuation = 100 ;

public BiddingAgent (Random prng) {
this . va lua t i on = prng . nextGaussian ()

∗ s tdevValuat ion + meanValuation ;
}

}

which systematically increase an independent variable to see how it influences other dependent variables.

In order to achieve this, we might for example run the same model many times, and on each run we

initialise the values of certain parameters of the model (represented as object attributes) by drawing a value

from a pre-specified probability distribution. That is, on each run we initialise the random variables of our

model to particular randomly-drawn values (“random variates”).

One way of achieving this is to simply write code in the objects representing entities in our model; for

example we might initialise the valuation attribute of our BiddingAgent object to a random value in

its constructor as illustrated in Listing 1. However, this approach is not ideal if we want to explore the

implications of changes in the probability distribution of this variable to the outcome of the auction. For

example, we might want to set up one experimental treatment in which agents’ valuations are independently

drawn from a common distribution verses another in which the valuations of different agents are drawn from

different distributions, or to explore the sensitivity of outcomes to the type of distribution used (for example,

normal verses uniform). In order to do this, we would need to modify the Java code in Listing 1 for each

treatment. From a software-engineering perspective, this is a potential source of defects in the model since

we risk introducing bugs into the code representing an agent each time we make a modification. Ideally we

would like some way to configure each of this experimental treatments without having to change any of the

code representing the model itself.

The solution is to configure this object object by injecting its parameters, thus decoupling the configura-

18

Listing 2: A plain-old Java Object (POJO) representing an agent which will be initialised using dependency
injection

public class BiddingAgent {

/∗∗
∗ The agent ’ s p r i v a t e va l ua t i on f o r the item
∗ i t i s c u r r en t l y b i dd ing on .
∗/

double va lua t i on ;

public double getValuat ion () {
return va lua t i on ;

}

public void s e tVa luat ion (double va lua t i on) {
this . va lua t i on = va luat i on ;

}

}

tion of the model form its actual implementation. The first step is to refactor the object as a Plain Old Java

Object (POJO), which is simply an object with a zero-argument constructor which receives its configuration

passively via setter and getter methods (Parsons et al, 2000; Richardson, 2006). Listing 2 shows the POJO

corresponding to our agent.

The second step is to delegate responsibility for configuring this POJO to a separate container. In our

case, we will use the industry-standard Spring framework (Johnson et al, 2011) to configure the objects

making up the agent-based model. A full overview of Spring is outside of the scope of this paper, but the

central concept is very simple. All of the objects in our model are constructed using a separate object

factory7 provided by the Spring framework. This factory, called the “bean factory”, uses an Extensible

Markup Language (XML) file to configure the objects required by our simulation model. In Spring, each

object instance in the simulation is called a “bean” and is manufactured and configured by Spring’s bean

factory. The XML file, called the “Spring beans configuration file”, has a tag for each bean which allows us

to configure its properties, including any dependencies with other beans.

As a simple example, consider the POJO for our BiddingAgent in Listing 2. Listing 3 shows one way

we might configure this object using dependency injection. Here we specify that we want to construct a

single object instance (which we refer to as “myAgent”) of the class BiddingAgent, and we want to set its

valuation attribute to the value 10.0. When our model is initialised by the Spring framework, the bean

7(Gamma et al, 1995, p. 87)

19

Listing 3: Initialising a POJO using dependency injection and a Spring beans configuration file

<bean id="myAgent" class="BiddingAgent">

<property name="valuation" value="10.0"/>

</bean>

factory will create a new instance of BiddingAgent using the zero-argument constructor, and then proceed

to configure the valuation attribute by invoking the corresponding setter method.

Although this example is very simple, it illustrates a very important principle, viz. separation of concerns

between the configuration of the model and the model itself. The model, in our case the BiddingAgent class,

does not “know” or “care” how it is being configured, and this loose coupling allows us to configure it in a

myriad of different ways without having to change any of the code representing our model. Listing 4 illustrates

a more complex example in which we configure two separate agents to use randomly-drawn valuations

independently drawn from the same underlying uniform probability distribution. Again, this situation is

modelled straightforwardly using object-oriented principles: different types of probability distribution can

be represented as different classes8 which can themselves be configured using dependency injection.

We can then “wire up” the dependencies between the different components of our simulation, since each

bean has unique name which we can refer to from within the definition of another bean. In Listing 4 we

have two agents represented by the beans agent1 and agent2, and in contrast to the previous example we

configure the valuation attribute so that it takes on a random value. This is represented by creating a

new bean definition, valuationRandomVariate which encapsulates the concept of a random variate using an

object factory: new values are constructed from the probability distribution specified by the distribution

attribute, which in turn refers to another bean commonValuationDistribution. This bean specifies how

we construct the class representing the probability distribution, in this case a Normal distribution N(100, 1)

using the Mersenne Twister algorithm (Matsumoto and Nishimura, 1998) as the underlying PRNG.

Notice that we have performed all of this configuration without having to change any of the code rep-

resenting our agent (Listing 2). Instead, we have represented the different components of our model as

different objects, and we have specified the dependencies between these objects declaratively by using the

ref keyword in our Spring configuration file. These dependencies are then injected into our model by the

bean factory without having to hard-code them into the code representing our simulation model. This allows

us to easily re-configure the components of our model for different experiments. For example, we can easily

8In this case the classes representing different probability distributions are provided by the CERN colt library (Binko et al,
2004)

20

Listing 4: Initialising random variables using dependency injection and a Spring beans XML configuration
file

<bean id="agent1" class="BiddingAgent" scope="prototype">

<property name="valuation" ref="valuationRandomVariate" />

</bean>

<bean id="agent2" class="BiddingAgent" scope="prototype">

<property name="valuation" ref="valuationRandomVariate" />

</bean>

<!-- This bean takes different values each time it is referenced -->

<bean id="valuationRandomVariate"

class="net.sourceforge.jabm.spring.RandomDoubleFactoryBean"

scope="prototype">

<property name="distribution" ref="commonValuationDistribution"/>

</bean>

<!-- The common probability distribution used to draw agents valuations -->

<bean id="commonValuationDistribution" scope="simulation"

class="cern.jet.random.Normal">

<constructor -arg value="100.0" />

<constructor -arg value="1.0" />

<constructor -arg ref="prng" />

</bean>

<!-- The Pseudo -Random Number Generator (PRNG) used to

generate all random values in the simulation -->

<bean id="prng" scope="singleton"

class="cern.jet.random.engine.MersenneTwister64">

</bean>

run the model in an experimental treatment in which we treat agents’ valuations as an independent variable

to be explicitly controlled, as per Listing 3, and then use a different configuration file to run the same model

where we treat valuations as a random variable in a Monte-Carlo simulation as per Listing 4. It is also trivial

to modify the configuration so that different agents have different valuation distributions (thus enabling the

experimenter to explore the implications of deviating from the symmetric-independent private-valuations

assumptions of conventional auction theory).

6.2.2 Dependency-injection and multiple runs

Dependency-injection is particular attractive for experiments involving Monte-Carlo simulation because in

a typical simulation experiment we execute the model very many times, which presents some subtle design

issues. On the one hand, each run of the simulation requires that we initialise the agents in our model afresh,

drawing new values of random variables independently from previous runs. On the other hand, however, it

is important that some components of our simulation retain state across different runs: for example, we may

want to collect summary statistics on certain dependent variables in our model in order to estimate their

21

expected value, and the PRNG itself must have persistent state across runs in order to prevent spurious

correlation in random variates.

Dependency-injection and IoC provide a natural solution to these issues. All of the components of our

simulation are managed by the bean factory, and we can request new instances of these objects from the

factory on each run of the model. Beans can be configured as “prototype” beans, meaning that each time

they are referenced the container will construct a fresh instance from the factory. Alternatively, they can be

configured as “singleton” beans meaning that only a single instance of the object is created and the same

instance is returned, as per the singleton design pattern (Gamma et al, 1995, p. 127). For example, in

Listing 4, the prng bean is declared as a singleton using the scope="singleton" attribute of the bean tag.

On the other hand, the beans representing our agents and the bean valuationRandomVariate are declared

using scope="prototype", meaning that each time we request an agent from the bean factory, we will

obtain a newly-constructed BiddingAgent instance with a new random value for its valuation attribute.

Meanwhile, the PRNG used to draw this random value will persist across different runs in virtue of its

singleton scope.

The Spring framework also allows us to define custom scopes. JABM defines a new scope “simulation”

which specifies that the bean is a singleton for the duration of an individual simulation run, but should

be reinstantiated for the next run. Thus the commonValuationDistribution bean in Listing 4 will be

constructed afresh for each run of the simulation.

Much of the essence of this design could have been achieved with various singleton and factory classes

hard-coded in Java. However, by specifying the dependencies declaratively we can achieve a level of loose-

coupling between our components that allows us to easily reconfigure our simulation, and avoid some of

the intrinsic design problems inherent in the use of singletons (Rainsberger, 2001). Because configuration is

injected into our model, we can set up different experiments, making use of different random distributions

for whatever attributes of our model we like, without having to create or modify any Java code.

The ability to configure our simulation is further facilitated by additional post-processing hooks made

available from the Spring framework. The JABM framework provides the ability to configure the attribute

of any bean as a random variable using more user-friendly syntax than that provided in the raw Spring

beans configuration file. Listing 5 shows an example JABM configuration file. This configuration is used in

conjunction with a Spring beans configuration file but serves to override the values of any corresponding bean

attributes (it is applied in a post-processing step when fetching a bean from the factory). In this example,

the valuation attribute of the bean agent1 will be initialised from a uniform distribution on the interval

22

Listing 5: Configuring random variables using a properties file in JABM

Configure the valuation attribute of an agent as a random variable

drawn from a Uniform distribution.

agent1.valuation = U(50 ,100)

Listing 6: Configuring random variables and constant parameters in the same properties file

Run the simulation over 1000 independent runs

simulationController.numSimulations = 1000

Our population consists of 100 agents

population.numAgents = 100

Configure the valuation attribute of an agent as a random variable

drawn from a Uniform distribution.

agent.valuation = U(50 ,100)

(50, 100).

We can also mix constant values and random distributions in the same configuration file, as illustrated

in Listing 6. In this example the simulation will be run with a constant number of agents: 100, but we will

run the simulation 1000 times drawing agents’ valuations from a uniform distribution ∼ U(50, 100) on each

run.

Alternatively we can treat particular attributes of our model as independent variables to be analysed

under a parameter sweep. Listing 7 shows such an example in which we perform 9 × 2 = 18 independent

experiments by systematically varying both the learningRate and discountRate attributes of a bean

called qLearner which represents an implementation of the Q-Learning reinforcement-learning algorithm

(Watkins and Dayan, 1992). In this case, the Q-learning parameters will take on all combinations from the

set {0.1, 0.2, . . . , 0.9} for each independent experiment, allowing us to analyse the effect of varying these

parameters over the specified range.

The important thing to note about these examples is that this configuration is injected into our model.

Nowhere in our agent-based model do we have to write Java code to read and parse the configuration files

and then set the relevant object attributes. Nor do we have to duplicate our object model by re-declaring a

mapping between identifiers in the configuration files and attributes in our object model. Rather, we simply

Listing 7: Performing a parameter sweep

qLearner.learningRate = 0.1:0.1:0.9

qLearner.discountRate = 0.1:0.1:0.9

23

create POJOs for the entities in our model (Listing 2), and the dependency injection framework takes care

of initialising object attributes transparently behind the scenes using Java reflection. The components of our

agent based model are fully specified by their natural implementation as objects, and dependency injection

tools such as Spring and JABM allow us to wire up these components in different configurations depending

on the particular experiment we are performing. Regardless of whether we treat certain object attributes as

random variables or as independent variables in a parameter sweep, the actual code representing the agents

in our model remains the same.

6.3 Putting it all together: design overview

In this section we give a high-level overview of the design of JABM illustrating how a simple agent-based

model can be recursively configured using dependency-injection by walking through some of the key aspects

of the configuration of one of the example models which ships with the distribution, viz. the El Farol Bar

model (Arthur, 1994).

As discussed, the design philosophy of JABM is to use POJOs to represent the various entities in our

agent-based model. These POJOs are configured via dependency-injection by building on the industry

standard Spring framework (Johnson et al, 2005) which is packaged as part of the JABM distribution archive9.

These components are organised into packages as per Table 6.3, and Figure 6.3 shows the relationship between

the key classes as a Unified Modeling Language (UML) diagram. JABM allows us to “wire up” these classes

in different configurations using dependency injection as described in the previous section. In the remainder

of this section we illustrate how we can configure these components to implement the El Farol Bar model.

The top-level component of JABM is the class SpringSimulationController which represents a Monte-

Carlo experiment in which we execute one or more independent simulation runs on which we collect data.

As with any other component in our model it is configured using dependency-injection; Listing 8 shows an

example Spring beans configuration file from the JABM distribution which provides an implementation of

the El Farol Bar model introduced by Arthur (1994). In this agent-based model, a population of 100 agents

decide whether or not to attend a bar which has a capacity of 60. Each agent decides to attend if and only

9We also include several Java libraries which are useful in implementing agent-based models, and which are also widely used in
other simulation modeling toolkits: the Java Universal Network/Graph Framework (JUNG) library (O’Madadhain et al, 2011),
which is used for analysing and visualising social network models; the Apache Commons Math library (Andersen et al, 2011)
which provides functionality for calculating summary statistics, several heuristic optimisation algorithms and implementations
of many numerical methods; the CERN Colt library10 which contains an implementation of the Mersenne Twister algorithm
(Matsumoto and Nishimura, 1998) and also encapsulates various probability distributions useful in Monte-Carlo simulation; and
finally JFreeChart (Gilbert, 2000) which provides graphing functionality. These libraries are distributed with JABM without
modification, and they can be used in their distributed form independently of the JABM classes in keeping with our minimialist
philosophy.

24

net.sourceforge.jabm Classes representing the simulation itself
net.sourceforge.jabm.agent Classes representing agents, and populations thereof
net.sourceforge.jabm.strategy Classes representing the behaviour of agents
net.sourceforge.jabm.event Classes representing simulation events
net.sourceforge.jabm.learning Classes representing reinforcement-learning algorithms
net.sourceforge.jabm.evolution Classes for modelling social learning and evolution
net.sourceforge.jabm.gametheory Classes for empirical game-theory experiments
net.sourceforge.jabm.mixing Encapsulation of different agent mixing schemes
net.sourceforge.jabm.report Reporting functionality

Table 1: The main packages provided by JABM

Figure 1: UML diagram showing the key components of JABM

if they forecast they fewer than 60 agents will attend the bar in the next period. In this scenario, it is not

clear that a rational expectations equilibrium applies, thus motivating the use of inductive heuristics which

predict future attendance based on an analysis of attendance in previous periods. The emergent “adaptive

expectations” dynamic equilibrium (Lo, 2005) which arises from agents using inductive strategies which

are learnt over time gives rise to complex time series with qualitatively similar features to those found in

many empirical economic time series data. Figure 2 illustrates the attendance at the bar as a time series as

produced by JABM’s TimeSeriesChart class.

In the above example we configure three attributes of our experiment. The numSimulations property

determines the number of independent simulation runs to be executed: in this case we will run the simulation

100 times, drawing random variates independently on each run. This is achieved by repeatedly requesting a

new bean from Spring’s bean factory which represents the underlying simulation. The simulationBeanName

25

Figure 2: The number of agents attending the El Farol Bar as a time series chart, produced using the
TimeSeriesChart object in the JABM toolkit. This class allows the modeler to produce interactive charts
of statistics produced during simulation runs using the Model/View/Controller design pattern with the view
being provided by the JFreeChart library (Gilbert, 2000), and the model provided by any simulation object
which implements JABM’s ReportVariables interface.

Listing 8: Configuring a simulation experiment

<bean id="simulationController"

class="net.sourceforge.jabm.SpringSimulationController">

<!-- Run the underlying simulation 100 times -->

<property name="numSimulations" value="100" />

<!-- This is the name of the bean representing the simulation .

If we run the simulation more than once the bean will be

reinstantiated on each simulation run. -->

<property name="simulationBeanName">

<idref local="repeatedSimulation" />

</property >

<!-- Report objects collect data on the simulation runs.

Reports persist across simulation runs and are

singleton in scope allowing them to collect summary

statistics across different simulations . -->

<property name="reports">

<list>

<!-- The barTender tracks current

and historical statistics on attendance -->

<ref bean="barTender"/>

<!-- Log attendance to CSV files -->

<ref bean="attendanceCSVReport"/>

<!-- More reports can be configured

here as required -->

</list>

</property >

</bean>

26

Listing 9: Configuring the underlying simulation

<!-- The El Farol Bar will be run as a repeated game with 1000 rounds ,

each round representing a week in simulation time.

Note that this bean is defined as a prototype so that

when the simulation is run many times , we get a freshly

constructed simulation object on each run. -->

<bean id="repeatedSimulation" scope="prototype"

class="net.sourceforge.jabm.RepeatedInteractionSimulation">

<property name="maximumRounds" value="1000" />

<property name="population" ref="population" />

<property name="agentInitialiser" ref="agentInitialiser" />

<property name="agentMixer" ref="randomRobinAgentMixer" />

<property name="simulationController" ref="simulationController" />

</bean>

attribute specifies the name of this bean (which is defined elsewhere in the configuration). When this bean

is reinstantiated by the Spring container other beans that it references will also be reinstantiated, resulting

in new values of random variates being injected into class attributes as detailed in Section 6.2.

The underlying simulation used in our experiment is represented by the bean repeatedSimulation shown

in Listing 9. Here we specify the agents in the model, how they interact and how often. The agentMixer

attribute specifies how agents interact; in this example every agent interacts with the simulation during each

tick, but the ordering of agents is randomized to eliminate any artifacts that could arise from polling agents

in a particular sequence. Once again, we can easily reconfigure our simulation to use one of the alternative

agent mixing models discussed in Section 4 by specifying a different dependency for this attribute.

The population of agents is specified by the population bean shown in Listing 10. Here the number of

agents in the population is specified by the size attribute, and in our example we configure our model to use

a population of 100 agents. Each agent is constructed from the specified prototype bean patronAgent and

here we can specify the class used to represent our agents and then configure their attributes. In our example,

we configure the barCapacity attribute, which represents the overcrowding threshold, to be the same value

60 for all agents, and we configure the behaviour of our agents by specifying the strategy attribute: here

we wire-up our agent to another bean adaptivePredictionStrategy which represents a learning-classifier

system for predicting future bar attendance by selecting amongst different strategies for making forecasts of

future attendance based on previous attendance levels (we return to a discussion of learning in JABM in the

following section).

Finally, returning to our top-level bean simulationContoller in Listing 8 we configure the reports prop-

erty which specifies the objects that will collect data on the simulation runs: in this case the barTender bean

will track current and historical attendance during an individual simulation run and the attendanceCSVReport

27

Listing 10: Configuring the population of agents and their strategies

<!-- The population consists of 100 patrons -->

<bean id="population" class="net.sourceforge.jabm.Population"

scope="prototype">

<!-- The factory used to construct agents -->

<property name="agentFactory">

<bean

class="org.springframework.beans.factory.config.ObjectFactoryCreatingFactoryBean"

>

<!-- The name the agent prototype bean -->

<property name="targetBeanName">

<idref local="patronAgent" />

</property >

</bean>

</property >

<!-- The numbner of agents in the population -->

<property name="size" value="100" />

<!-- The Pseudo -Random Number Generator (PRNG)

used to pick an agent at random

from the population -->

<property name="prng" ref="prng" />

</bean>

<!-- The prototype used to manufacture patron agents -->

<bean id="patronAgent" scope="prototype"

class="net.sourceforge.jabm.examples.elfarolbar.PatronAgent">

<property name="strategy" ref="adaptivePredictionStrategy" />

<property name="barCapacity" value="60" />

<property name="scheduler" ref="simulationController" />

</bean>

28

bean is responsible for logging the data from these runs to Comma Separated Values (CSV) files which can

then be imported into mathematical analysis tools such as R or MATLAB. Additionally, we can optionally

add other report objects to this list, for example a TimeSeriesChart to produce an interactive chart of

the attendance time series as the simulation progresses, as illustrated in Figure 2. An important feature of

JABM is that such functionality can easily be deconfigured if the model needs to be run “headless” mode,

for example on a cluster. This can be achieved simply by commenting out the relevant report from the beans

configuration file and does not require any change to the code representing the simulation model itself.

6.4 Learning and evolution in JABM

In this section we give a brief overview of how the different models of learning and evolution described in

Section 5 are implemented in JABM. As previously discussed, we use the term “strategy” to refer to a

particular behaviour of an agent. Within any agent-based model, agents may change their behaviour over

time using the various different approaches outlined in Section 5.

Because we are taking an object-oriented approach, it is natural to model the various strategies that

an agent can use as different classes implementing a common interface. JABM provides an interface called

Strategy within the package net.sourceforge.jabm.strategy, and any class which implements this in-

terface can be used to define an agent’s behaviour in a JABM simulation. For example, within the context

of the El Farol Bar problem, we define an abstract class called AbstractPredictionStrategy. The various

different types of forecasting rules described by Arthur (1994) are then implemented as different sub-classes

of AbstractPredictionStrategy. For example, we have an AutoRegressivePredictionStrategy which

makes forecasts using a linear auto-regressive model, and ConstantPredictionStrategy which makes a

constant forecast in each time period.

Now that we have defined the possible strategies for our agents, we can specify how, and if, agents

adapt these strategies in response to a changing environment. JABM provides several additional packages

containing classes that can be used to configure adaptive behaviour. The net.sourceforge.jabm.evolution

package provides functionality for implementing social learning models of the type described in Section 5.2.

We can do so by configuring our simulation with an EvolvingPopulation instead of a Population. We

then configure our EvolvingPopulation with a Breeder which specifies how the population reproduces.

One type of Breeder is a FitnessProportionateBreeder. This implements fitness proportionate selection

and can be configured with a FitnessFunction to calculate the fitness of an agent’s strategy.

Note that this learning functionality is completely decoupled from the code representing the strategies

29

themselves. This means that we can very easily reconfigure our agent-based model to use a different type

of learning. For example, we can turn off the social learning described above simply by reconfiguring

our simulation to use a Population of agents instead of an EvolvingPopulation. Moreover, dependency

injection allows us to do so without making any changes to the code representing the model itself; in our

example XML configuration file we can simply change the referent of the population attribute of the

repeatedSimulation bean so that it refers to a bean defining an EvolvingPopulation.

JABM also provides packages for implementing reinforcement-learning; the net.sourcerorge.jabm

learning package provides implementations of several commonly used reinforcement learning algorithms

which are encapsulated by the Learner interface. Agents can then be configured with a strategy RlStrategy

which in turn can be configured with a specific Learner. RlStrategy is a meta-strategy; it adheres to the

Strategy interface and can be configured with a set of underlying “pure” strategies over which it will perform

action selection according to the specified learning algorithm. Once again, we can reconfigure our model

to use a particular reinforcement learning algorithm without making any changes to our agents or the code

representing the underlying strategies.

Finally, the empirical game-theory methodology described in Section 5.3 is implemented by classes in

the net.sourceforge.jabm.gametheory package. By configuring a GameTheoreticSimulation we can

automatically set up an experiment to estimate the expected payoffs for every strategy profile in a heuristic

payoff matrix. The payoff matrix can then be exported to, e.g. MATLAB, for further analysis. This is the

approach that was used in (Phelps et al, 2009); JABM was used to conduct agent-based simulations for each

strategy profile and the resulting payoff matrix was used to iteratively solve the replicator dynamics equation

(eq. 1) using MATLAB’s ODE toolbox in order to produce phase portraits of the evolutionary dynamics of

the model.

7 Conclusion

In this paper we have given an overview of agent-based modelling, and cataloged some commonly used

frameworks for modelling agents’ learning and interaction. We have shown how these frameworks can

be modelled using an object-oriented approach, and introduced the Java Agent Based Modeling (JABM)

framework which synthesises these different approaches within a common framework.

We have given an overview of dependency-injection and Inversion of Control (IoC), and shown how it

can be used to solve several related design problems when implementing agent-based models in the form

30

of discrete-event simulation software; simulation models are naturally implemented using an object-oriented

design in which different types of entity in our model are represented by different classes of object, and

individual agents or events as instances thereof. This motivates a simple architecture using, for example,

Plain Old Java Objects (POJOs) to represent our model; a design philosophy we have followed in the

implementation of the JABM toolkit.

However, the fact that agent-based models are typically executed as Monte-Carlo simulations in which we

reinitialise the model with different random variates or control treatments on execution of the model makes it

difficult to model simulation entities using a straightforward POJO architecture. In this paper we have shown

how dependency-injection frameworks such as Spring solve this problem by separating configuration concerns

from the underlying object model. Building on Spring, JABM provides functionality for specifying which

attributes of our objects are to be treated as control parameters or random variates, and can then execute

the underlying simulation by automatically injecting random variates into the model on each run. This

prevents cross-contamination between code representing experiments or treatments and code representing

the model itself, and thus allows researchers to concentrate their effort on the latter.

References

Albert R, Barabasi A (2002) Statistical mechanics of complex networks. Reviews of modern physics 74:47–97

Alfrano S, Milakovic M (2009) Network structure and N-dependence in agent-based herding models. Journal

of Economic Dynamics and Control 33(1):78–92, DOI 10.1016/j.jedc.2008.05.003

Andersen MM, Barker B, Chou AD, Diggory M, Donkin RB, O’Brien T, Maisonobe L, Pietschmann J,

Pourbaix D, Steitz P, Worden B, Sadowski G (2011) Commons Math: The Apache Commons Mathematics

Library. URL http://commons.apache.org/math/, online; accessed 28/9/2011

Arthur WB (1994) Inductive Reasoning and Bounded Rationality. The American Economic Review

84(2):406–411, DOI 10.2307/2117868, URL http://www.jstor.org/stable/2117868

Axelrod R (1997) The Complexity of Cooperation: Agent-based Models of Competition and Collaboration.

Princeton University Press

Banks J, Carson JS (1984) Discrete-Event System Simulation. Prentice Hall

Binko P, Merlino DF, Hoschek W, Johnson T, Pfeiffer A (2004) The CERN Colt library. URL

http://acs.lbl.gov/software/colt/, online; accessed 28/9/2011

31

Bowling M (2005) Convergence and No-Regret in Multiagent Learning. In: Saul LK, Weiss Y, Bottou L

(eds) Advances in Neural Information Processing Systems 17, MIT Press, Cambridge, MA, pp 209–216

Bullock S (1997) Evolutionary Simulation Models: On Their Character, and Application to Problems Con-

cerning the Evolution of Natural Signalling Systems. Thesis (phd), University of Sussex

Burstall R (2000) Christopher Strachey: Understanding Programming Languages. Higher-Order and Sym-

bolic Computation 13:51–55

Busoniu L, Babuska R, De Schutt B (2008) A Comprehensive Survey of Multiagent. IEEE Transactions on

Systems Man and Cybernetics - Part C: Applications and Reviews 38(2):156–172

Cai K, Gerding E, McBurney P, Niu J, Parsons S, Phelps S (2009) Overview of CAT: A Market Design

Competition. Tech. rep., University of Liverpool

Cassell Ba, Wellman MP (2012) Agent-Based Analysis of Asset Pricing under Ambiguous Informa-

tion: an empirical game-theoretic analysis. Computational & Mathematical Organization Theory DOI

10.1007/s10588-012-9133-y

Chevaleyre Y, Dunne PE, Endriss U, Lang J, Lemâitre M, Maudet N, Padget J, Phelps S, Rodŕıguez-

Aguilar JA, Sousa P (2006) Issues in Multiagent Resource Allocation. Informatica 30:3–31, URL

http://www.informatica.si/PDF/30-1/01 Chevaleyre-Issues in Multiagent Resource Allocation.pdf

Chmieliauskas A, Chappin EJL, Dijkema GPJ (2012) Modeling Socio-technical Systems with AgentSpring.

In: CESUN Third International Proceedings of the Third International Engineering Systems Symposium:

Design and Governance in Engineering Systems - Roots Trunk Blossoms, Delft, Netherlands

Cont R (2001) Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance

1(2):223–236, DOI 10.1080/713665670

Cont R, Bouchaud JP (2000) Herd behavior and aggregate fluctuations in financial markets. Macroeconomic

Dynamics 4:170–196

Do AL, Rudolf L, Gross T (2010) Patterns of cooperation: fairness and coordination in networks of interacting

agents. New Journal of Physics 12(6):063,023, DOI 10.1088/1367-2630/12/6/063023

Dubitzky W, Kurowski K, Schott B (eds) (2011) Repast SC++: A Platform for Large-scale Agent-based

Modeling. Wiley, in press

32

Erev I, Roth AE (1998) Predicting How People Play Games: Reinforcement Learning in Experimental Games

with Unique, Mixed Strategy Equilibria. American Economic Review 88(4):848–881

Ficici SG, Pollack JB (1998) Challenges in coevolutionary learning: Arms-race dynamics, open-endedness,

and mediocre stable states. In: Proceedings of of ALIFE-6

Ficici SG, Pollack JB (2000) A game-theoretic approach to the simple coevolutionary algorithm. In: Marc

Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo HPS (ed)

Parallel Problem Solving from Nature — PPSN VI 6th International Conference, Springer Verlag, Paris,

France, URL citeseer.nj.nec.com/322969.html

Ficici SG, Melnik O, Pollack JB (2005) A game-theoretic and dynamical-systems analysis of selection methods

in coevolution. DOI 10.1109/TEVC.2005.856203

Fowler M (2004) Inversion of Control Containers and the Dependency Injection pattern. URL

http://martinfowler.com/articles/injection.html

Gamma E, Helm R, Johnson R, John Vlissides (1995) Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley

Garrido JM (2001) Object-oriented Discrete-event Simulation with Java: A Practical Introduction (Series

in Computer Systems). Kluwer Academic

Gilbert D (2000) JFreeChart. URL http://www.jfree.org/, online; accessed 4/10/2011

Grimmett GR, Stirzaker DR (2001) Probability and Random Processes, 3rd edn. Oxford University Press

Hillis WD (1992) Co-evolving parasites improve simulated evolution as an optimization procedure. In: et al

L (ed) Proceedings of ALIFE-2, Addison Wesley, pp 313–324

Iori G, Chiarella C (2002) A Simulation Analysis of the Microstructure of Double Auction Markets. Quan-

titative Finance 2:346–353

Jackson MO (2007) The Study of Social Networks In Economics. In: Rauch JE (ed) The Missing Links:

Formation and Decay of Economic Networks, January, Russell Sage Foundation

Johnson CR, J, Donald K, Sampaleanu C, Arendsen A, Risberg T, Davison D, Kopylenko D, Pol-

lack M, Templier T, Vervaet E, Tung P, Hale B, Colyer A, Lewis J, Fisher M, Brannen S, Laddad

33

R, Poutsma A, Beams C, Clement A, Syer D, Gierke O, Stoyanchev R (2011) Spring Framework Ref-

erence Documentation 3.1. URL http://static.springsource.org/spring/docs/3.1.0.M2/spring-framework-

reference/pdf/spring-framework-reference.pdf, online; accessed 27/11/2011

Johnson R, Hoeller J, Arendsen A, Risberg T, Sampaleanu C (2005) Professional Java Development with

the Spring Framework. Wiley

Jordan PR, Kiekintveld C, Wellman MP (2007) Empirical Game-Theoretic Analysis of the TAC Supply

Chain Game. In: Proceedings of the Sixth International Conference on Autonomous Agents and Multiagent

Systems, IFAAMAS, Honolulu, Hawaii, vol 5, pp 1188–1195

Kaisers M, Tuyls K (2010) Frequency adjusted multi-agent Q-learning. In: Van Der Hoek, Kamina,

Lespérance, Luck, Sen (eds) Proceedings of the 9th International Conference on Autonomous Agents

and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp

309–316

Krishna V (2002) Auction Theory. Harcourt Publishers Ltd.

Lebaron B (2006) Agent-based Computational Finance. In: Tesfatsion L, Judd KL (eds) Handbook of Agent-

Based Computational Economics, vol II, Elsevier

LeBaron B, Yamomoto R (2007) Long-memory in an order-driven market. Physica A: Statistical Mechanics

and its Applications 383(1):85–89, DOI 10.1016/j.physa.2007.04.090

Lo A (2005) Reconciling Efficient Markets with Behavioural Finance: The Adaptive Markets Hypothesis.

Journal of Investment Consulting 7(2):21–44

Lo AW, MacKinlay AC (2001) A Non-Random Walk Down Wall Street, new ed edn. Princeton University

Press

Luke S (2005) MASON: A Multiagent Simulation Environment. Simulation: Transactions of the society for

Modeling and Simulation International 82(7):517–527

Matsumoto M, Nishimura T (1998) Mersenne Twister: A 623-Dimensionally Equidistributed Uniform

Pseudo-Random Number Generator. ACM Transactions on Modeling and Computer Simulation 8(1):3–30

Maynard-Smith J (1973) The Logic of Animal Conflict. Nature 246:15–18

34

Miller JH (1996) The coevolution of automata in the repeated Prisoner’s Dilemma. Journal of Economic

Behavior and Organization 29(1):87–112, DOI doi:10.1016/0167-2681(95)00052-6

Minar N, Burkhart R, Langton C, Askenazi M (1996) The Swarm Simulation System: A Toolkit for Building

Multi-Agent Simulations. Tech. Rep. 96-06-042, Santa Fe Institute, Santa Fe

Moreira JE, Midkiff SP, Gupta M, Artigas PV, Snir M, Lawrence RD (2000) Java programming for high-

performance numerical computing. IBM Systems Journal 39(1):21–56

Nash J (1950) Equilibrium Points in N-Person Games. Proceedings of the National Academy of Sciences of

the United States of America 36:48–49

Newman M (2010) Networks: An Introduction. Oxford University Press

Noë R, Hammerstein P (1995) Biological markets. Trends in Ecology and Evolution 10(8):336–339

North MJ, Macal CM (2005) Escaping the Accidents of History: An Overview of Artificial Life Modeling

with Repast. In: Artificial Life Models in Software, Springer, chap 6, pp 115–141

Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on

graphs and social networks. Nature 441(7092):502–505, DOI 10.1038/nature04605

O’Madadhain J, D F, Nelson T (2011) JUNG - Java Universal Network/Graph Framework. URL

http://jung.sourceforge.net, online; accessed 28/9/2011

Palit I, Phelps S (2012) Can a Zero-Intelligence Plus Model Explain the Stylized Facts of Financial Time

Series Data? In: Proceedings of the Eleventh International Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS) - Volume 2, International Foundation for Autonomous Agents and Multiagent

Systems, Valencia, Spain, pp 653–660

Parsons R, MacKenzie J, Fowler M (2000) Plain old Java Object. URL

http://www.martinfowler.com/bliki/POJO.html, online; accessed 27/11/2011

Phelps S (2011a) JABM - Java Agent Based Modeling toolkit. URL http://jabm.sourceforge.net, online;

accessed 28/9/2011

Phelps S (2011b) JASA - Java Auction Simulator API. URL http://jasa.sourceforge.net, online; accessed

28/9/2011

35

Phelps S (2012) Emergence of social networks via direct and indirect reciprocity. Journal of Autonomous

Agents and Multi-Agent Systems (forthcoming) DOI 10.1007/s10458-012-9207-8

Phelps S, Nevarez G, Howes A (2009) The effect of group size and frequency of encounter on the evolution

of cooperation. In: LNCS, Volume 5778, ECAL 2009, Advances in Artificial Life: Darwin meets Von

Neumann, Springer, Budapest, pp 37–44, DOI 10.1007/978-3-642-21314-4 5

Phelps S, McBurney P, Parsons S (2010) A Novel Method for Strategy Acquisition and its application to a

double-action market game. IEEE Transactions on Systems, Man, and Cybernetics: Part B 40(3):668–674

Prasanna DR (2009) Dependency Injection: With Examples in Java, Ruby, and C#, 1st edn. Manning

Publications

Rainsberger JB (2001) Use your singletons wisely

. URL http://www.ibm.com/developerworks/webservices/library/co-single/, online; accessed 27/9/2011

Rayner N, Phelps S, Constantinou N (2011) Testing adaptive expectations models of a double auction market

against empirical facts. In: Lecture Notes on Business Information Processing: Agent-Mediated Electronic

Commerce and Trading Agent Design, Springer (in press), Barcelona

Rayner N, Phelps S, Constantinou N (2012) Learning is Neither Sufficient Nor Necessary: An Agent-Based

Model of Long Memory in Financial Markets. AI Communications (forthcoming)

Richardson C (2006) Untangling Enterprise Java. Queue - Component Technologies 4(5):36–44, DOI

http://doi.acm.org/10.1145/1142031.1142045

Santos F, Rodrigues J, Pacheco J (2006) Graph topology plays a determinant role in the evolution of coopera-

tion. Proceedings of the Royal Society B: Biological Sciences 273(1582):51–55, DOI 10.1098/rspb.2005.3272

Shoham Y, Leyton-brown K (2010) Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foun-

dations, version 1. edn. URL http://www.masfoundations.org/mas.pdf

Tesfatsion L (2002) Agent-based computational economics: growing economies from the bottom up. Artificial

Life 8(1):55–82

Vicknair C, Macias M, Zhao Z, Nan X, Chen Y, Wilkins D (2010) A comparison of a graph database and a

relational database: a data provenance perspective. In: Proceedings of the 48th Annual Southeast Regional

Conference, ACM, New York, NY, USA, ACM SE ’10, pp 42:1—-42:6, DOI 10.1145/1900008.1900067

36

Vriend NJ (2000) An illustration of the essential difference between individual and social learning, and its

consequences for computational analyses. Journal of Economic Dynamics and Control 24:1–19

Walsh WE, Das R, Tesauro G, Kephart JO (2002) Analyzing complex strategic interactions in multi-agent

games. In: AAAI-02 Workshop on Game Theoretic and Decision Theoretic Agents

Watkins JCH, Dayan P (1992) Q-learning. Machine Learning 8:279–292

Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

Weibull JW (1997) Evolutionary Game Theory, First MIT edn. MIT Press

Wellman MP (2006) Methods for empirical game-theoretic analysis. In: Proceedings of the Twenty First

National Conference on Artificial Intelligence (AAAI-06), pp 1152–1155

Wilensky U, Rand W (2011) An introduction to agent-based modeling: Modeling natural, social and engi-

neered complex systems with NetLogo. MIT Press, Cambridge, MA, in press

Zimmermann MG, Egúıluz VM, Miguel MS, Spadaro A (2000) Cooperation in an Adaptive Network. Ad-

vances in Complex Systems 3(1-4):283–297, DOI 10.1142/S0219525900000212

37

