

Edward Tsang

Centre for Computational Finance and Economic Agents (<u>CCFEA</u>), University of Essex

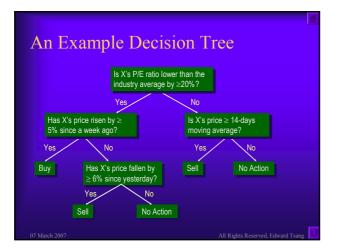
IEEE Technical Committee on Computational Finance and Economics

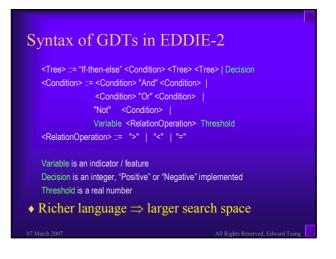
Why Computational Finance?

What can be done now:	Enabling technology:
Large scale simulation	Must faster machines
Data warehouse	Much cheaper memory
Building complex models	Agent-technology
Efficient exploration of	Evolutionary computation
models	(Multi-Obj) Optimisation
Decision support	experimental game theory, constraint satisfaction
07 March 2007	All Rights Reserved, Edward Tsang

Forecasting

Is the market predictable? What exactly is the forecasting problem?





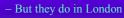
EDDIE adds value to user input

- User inputs *indicators*
 - e.g. moving average, volatility, predications
- EDDIE makes selectors

 e.g. "50 days moving average > 89.76"
- EDDIE combines selectors into *trees* – by discovering interactions between selectors
- Finding thresholds (e.g. 89.76) and interactions by human experts is laborious

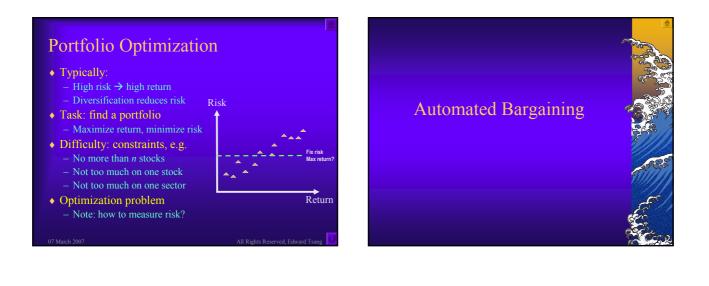
A	taste	of	user	input	

Given	Expert adds:	More input:	Define target:
Daily	50 days	Volat-	↑ 4% in
closing	m.a.	ility	21 days?
90	80	50	1
99	82	52	0
87	83	53	1
82	82	51	1

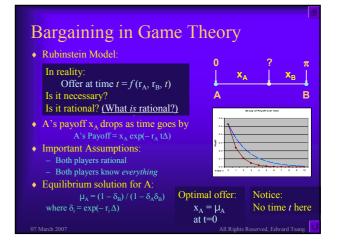

Our EDDIE/FGP Experience

♦ Patterns exist

- Would they repeat themselves in the future? (EMH debated for decades)
- EDDIE has found patterns
 - Not in every series
 - (we don't need to invest in every index / share)
- EDDIE extending user's capability
 - and give its user an edge over investors of the same caliber


Arbitrage Opportunities

- Futures are obligations to buy or sell at certain prices
- Options are rights to buy at a certain price
- If they are not aligned, one can make risk-free profits
- Such opportunities should not exist



Evolutionary Rubinstein Bargaining, Overview

- Game theorists solved Rubinstein bargaining problem
 Subgame Perfect Equilibrium (SPE)
- Slight alterations to problem lead to different solutions
- Asymmetric / inc
 Outside option
- Evolutionary computation
 - Succeeded in solving a wide range of
 - EC has found SPE in Rubinstein's problem
 - Can EC find solutions close to unknown SPI
- Co-evolution is an *alternative approximation* method to find game theoretical solutions
 - Less time for approximate SPEs
 - Less modifications for new problems

Issues Addressed in EC for Bargaining • <u>Representation</u> • Should t be in the language? • <u>One or two population</u>? • <u>How to evaluate fitness</u> • <u>Fixed or relative fitness</u>? • <u>How to contain search space</u>? • <u>Discourage irrational strategies</u>: • <u>Ask for x_A>1?</u> • <u>Ask for more over time</u>? • <u>Ask for more when δ_A is low</u>?

Representation of Strategies

- A tree represents a mathematical function g
- Terminal set: $\{1, \delta_A, \delta_B\}$
- ♦ Functional set: {+, -, ×, ÷}
- Given g, player with discount rate r plays at time t
 - $g\times (1-r)^t$
- Language can be enriched:
 Could have included e or time t to terminal set
 - Could have included power ^ to function set
- ♦ Richer language → larger search space → harder search problem

07 March 2007

Two populations – co-evolution

- We want to deal with asymmetric games
 E.g. two players may have different information
- One population for training each player's strategies
- Co-evolution, using relative fitness

- Alternative: use absolute fitness

Evolve over time

Incentive Method: Constrained Fitness Function

- No magic in evolutionary computation
 Larger search space → less chance to succeed
- Constraints are heuristics to focus a search
 Focus on space where promising solutions may lie
- Incentives for the following properties in the function returned:
 - The function returns a value in (0, 1)
 - Everything else being equal, lower $\delta_A \not \rightarrow$ smaller share
 - Everything else being equal, lower $\delta_{\rm B} \rightarrow$ larger share
 - Note: this is the key to our search effectiveness

Models with known equilibriums

Complete Information

- Rubinstein 82 model:
- Alternative offering, both A and B know δ_A & δ_B
- Evolved solutions approximates theoretical
- Working on a model with outside option
- Incomplete Information
- Rubinstein 85 model:
 - B knows $\delta_A \& \delta_B$
- A knows δ_A^{γ} and δ_B^{weak} & δ_B^{strong} with probability Ω_{weak}
- Evolved solutions approximates theoretical

Models with unknown equilibriums

- Modified Rubinstein 85 models
- Incomplete knowledge
 - B knows δ_B but not $\delta_A;$ A knows δ_A but not δ_B
- Asymmetric knowledge
- B knows δ_{A} & $\delta_{B};$ A knows δ_{A} but not δ_{B}
- Asymmetric, limited knowledge
 - B knows $\delta_A \& \delta_B$
 - A knows δ_A and a normal distribution of δ_B
- Working on limited knowledge, outside option
- Future work: new bargaining procedures

Evolutionary Bargaining, Conclusions

- Demonstrated GP's flexibility
 - Models with known and unknown solutions
 - Outside option
 - Incomplete, asymmetric and limited information
- Co-evolution is an *alternative approximation* method
 - to find game theoretical solutions
 - Relatively quick for approximate solutions
 - Relatively easy to modify for new models
- Genetic Programming with incentive / constraints – Constraints used to focus the search in promising spaces

Evolving Agents

Should agents adapt to the environment? Co-evolution

The Red Queen Thesis

In this place it takes all the running you can do, to keep in the same place.

♦ Chen & Yeh:

- Endogenous prices
- Agents are GPs
- "Peer pressure" (relative wealth) lead to agents retraining themselves
- Retraining is done by 'visiting the business school'

Evolving Agents

Sunders, Cliff:

- Zero intelligence agents Market efficiency can be obtained by zero-intelligence agents as long as the market rules are properly set.
- This result challenges the neoclassical models regarding the utility maximization behaviour of economic agents
- Schulenburg & Ross Heterogenous agents (agents may have
 - Agents modelled by classifier systems
 - Exogenous prices
 - Beat buy-and-hold, trend follower and random walk agents

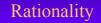
Conclusions

Computational Finance & Economics

- Computing has changed the landscape of finance and economics research
 - We can do what we couldn't in the past
- Evolutionary computation plays major roles in
 - Forecasting investment opportunities
 - Approximating subgame equilibrium in bargaining
 - Understanding markets
 - Wind-tunnel testing new market mechanism

Questions & Comments?

Edward Tsang http://www.cfea-labs.net http://cswww.essex.ac.uk/CSP/finance http://cswww.essex.ac.uk/CSP/edward


Opportunities and Challenges in CF&E

- Wide varieties of financial applications
- Different types of learning mechanism
- Different markets to simulate
- Wind-tunnel tests will become the norm
 Yet to be developed
- ♦ Challenges:
 - Large number of parameters to tune
 - What can the simulations tell us?

The Computational Finance Community

Conferences:

- IEEE International Conference on Computational Ineelligence for Financial Engineering
- Annual Workshop on Economics with Heterogenous Interacting Agents (WEHIA 2005 at Essex, Markose, Sunders, Dempster)
- International Conference on Computing in Economics and Finance
- International Joint Conference on Autonomous Agents and Multi-Agen Systems
- Useful web sites:
 - Tesfatsion's Agent-based Computational Economic
 - Chen's AI-ECON Research Centre
- IEEE Network on Computational Finance and Economic
 IEEE Technical Committee on Computational Finance and
- Economics

Rationality is the assumption behind many economic theories What does being rational mean? Are we rational? <u>The CIDER Theory</u>

What is Rationality?

- ♦ Are we all logical?
- What if *Computation* is involved?
- Does Consequential Closure hold?
 - If we know P is true and P \rightarrow Q, then we know Q is true
 - We know all the rules in Chess, but not the optimal moves
- ◆ "Rationality" depends on computation power!
 Think faster → "more rational"
 - "Bounded Rationality"

CIDER: Computational Intelligence Determines Effective Rationality (1)

- You have a product to sell.
- One customer offers £10
- Another offers £20
- Who should you sell to?
- Obvious choice for a rational seller



CIDER: Computational Intelligence Determines Effective Rationality (2)

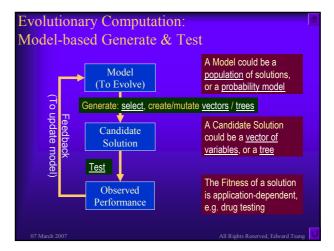
- You are offered two choices:
 to pay £100 now, or
- to pay £10 per month for 12 months
 Given cost of capital, and basic
- mathematical training

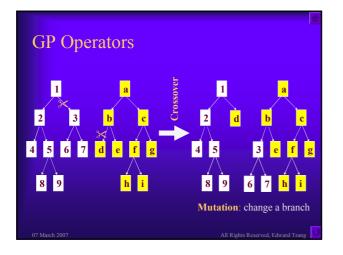
CIDER: Computational Intelligence Determines Effective Rationality (3)

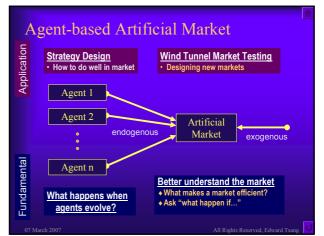
- Task:
 - You need to visit 50 customers.You want to minimize
 - travelling cost.
- Customers have different time availability.
- In what order should you visit them?

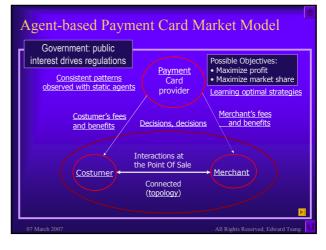
- This is a very hard problem
- Some could make wiser decisions than others

"Bounded Rationality"


- Herbert Simon:
 - Most people are only partly rational, and are in fact emotional/irrational in part of their actions
- "Boundedly" rational agents behave in a manner that is nearly as optimal with respect to its goals as its resources will allow
 - Resources include processing power, algorithm and time available
- Quantifiable definition needed?


Efficient Market Hypothesis


- Financial assets (e.g. shares) pricing:
 All available information is fully reflected in current prices
- If EMH holds, forecasting is impossible
- <u>Random walk hypothesis</u>
 Assumptions:
 - Efficient markets (one can buy/sell quickly)
 - Perfect information flow
 - Rational traders


Wind-tunnel tests for new markets

- <u>New markets are being</u> <u>invented</u>
- e-Bay, electricity, roads
 Model new markets to
- <u>check if they work</u> – Answer what-if questions
- Evolve agents to approximate equilibriums

