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Abstract

This thesis is based on the concept of directional change (DC). To put simply, a

directional change is a price change event that confirmed by a pre-determined pa-

rameter – theta (θ) along with an extremum price. When the price changes, from

a extremum by θ, then there is a directional change. If the extremum is a local

minimum, then this is an upward directional change; likewise if the extremum is a

local maximum, then this is a downward directional change. And the price where the

directional change is confirmed is called the directional change confirmation point

(DCC). Following the directional change event, there is the overshoot event, which

is the price change between the DCC, and the next extremum price.

Unlike the DCs, the overshoots are not pre-determined, and as a result, the lengths

of the overshoots vary. However, the Average Overshoot Length scaling law (AOL

scaling law), which made its debut in Glattfelder et al. (2010a), states that on aver-

age, the mean absolute length of the overshoots is approximately equal to the chosen

threshold θ. Yet, this AOL scaling law is not confirmed in the stock markets.

This thesis is going to examine the Average Overshoot length scaling law (AOL

scaling law) in the stock markets. As the AOL scaling law is a functional relationship

between the threshold and the average length of the overshoots, the exponent in the

power law could be used to judge whether the two variables approximately equal, as

it is also referred as the characteristic exponent in Müller et al. (1990).

Following this, two trading strategies built based on the AOL scaling law are going

to be introduced. In order to prove that the trading strategies based on the AOL

scaling law are profitable, this thesis is going to propose two strategies as proof of

concept. This could be used as an attempt of more sophisticated ones.



As they are proof of concept, they only take long positions, and rules are going to

be introduced.

Second, trading strategies are made based on the concept of Directional Changes.

Every trade in the market is recorded. To study market movements, information of

trading (such as price) is summarised. Most analysts summarise market movements

with periodic sampling of data, such as daily closing prices. Instead of using regular

sampled methods, two trading strategies based on Directional Changes are intro-

duced: Trading Strategy 1 & 2 (TS1&2). These trading strategies is later evaluated

with stock markets’ data.

Lastly, we attempt to examine the behaviour of sub Directional Change when the

price get closer to the EXTs.
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Chapter 1

Introduction

1.1 Background

This thesis is heavily based on the concept of Directional Change (DC), therefore,

Directional Changes is going to be introduced first. A Directional Change throughout

this thesis is an event when the price changes, starting from a previous extremum,

by a certain percentage in a different direction other than its previous trend. A

Directional Change could be a upturn or a downturn Directional Change event.

For instance, if its previous extremum is a maximum, then the previous trend is

considered a upward trend, when the price changes (decreases in this case) by a

certain percentage, then there is a downturn Directional Change, and vice versa if

the extremum is a minimum. And this certain percentage is an observer-determined

parameter called the threshold or denoted as θ, which is used to determine the

number of Directional Changes in a time series.

A Directional Change is a certain percentage of price change from an extremum

determined by θ. When a Directional Change is confirmed, then the price point where
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the it is confirmed is a Directional Change confirmation point (DCC). between this

DCC, and next extremum, there is an connecting event called an Overshoot event. To

be more precise, an Overshoot is the price change between a DCC and an extremum

that starts next Directional Change.

The scaling laws are reported widely in the foreign exchange markets, of which we

believe could be utilised as a tool to build trading strategies in stock markets if it

could be also confirmed with stock data. Scaling laws are also widely considered

as the tool to understand complex systems. The scaling law is formally called the

Average Overshoot Length Scaling Law (AOL Scaling Law). The term overshoot is

part the concept of the Directional Changes.

Trading strategies are widely used among the financial markets. The Directional

Changes are believed to provide new insights towards the financial markets. There-

fore, we would like to apply the insights that provided by the Directional Changes

to the trading strategies, in order to explore what could be achieved.

The Average Overshoot Scaling law has been around for quite some time, and it

suggests that on average the price changes in an overshoot should be approximately

equal to the threshold, on which the overshoot are generated. Therefore, with this

property, it would be interesting to see if trading strategies could be built with it.

And could it potentially make profits.

And the AOL Scaling Law is originally discovered in the FX markets, however it is

not really tested with stock markets in the existing literature, therefore, it is also of

interest to see whether the explaining exponents are exact the same as in the FX

markets.

Some research suggests that Directional Changes could potentially makes useful in-

dicators of the markets, therefore, we would also attempt to make indicators with

Directional Changes.
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1.2 Motivation

As mentioned previously, this thesis is motivated the potential of Directional Changes.

As no trading strategies built on Directional Changes has been existing in the lit-

erature, we aim to attempt making trading strategies using the property discovered

by Glattfelder et al. (2010a) and test it with stock markets’ data and see whether

it could generate positive returns. Furthermore, we would like to take a closer look

at the AOL scaling law, to find out if it is the same in the stock markets as in the

FX markets. Lastly, it would be very nice if any indicators could be built that has

potential predicting power to the EXTs.

1.3 Objectives

There objectives are as following:

First, test the AOL scaling law with stock markets data to see if it shares the same

explaining exponents as in the FX markets. Second, make trading strategies using

Directional Changes, and test them using stock markets’ date to see if they produce

profits. Third, examine how the sub Directional Changes behave as the price get

close to EXTs.

1.4 Scope

First of all, applying the methods used by Müller et al. (1990), the AOL scaling laws

are tested with the stock market’s data. However, the out comes could be 1) the

explaining exponents are not significantly differ from 0, which means the scaling law

does not hold in the stock markets. 2) the explaining exponents have the explaining

power and are exact the same as in the FX markets. 3) the explaining exponents
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have the explaining power and are not exact the same as in the FX markets.

Second, we would like to build trading strategies that are able to make profits, as a

proof of concept that the trading strategies built on Directional Changes are prof-

itable. However, as the knowledge of this potential is not widely explored, potentially

the trading strategies may not generate positive returns.

Third, the indicators are built from scratch, thus, they could potentially have no

predicting power. Or the indicators together have predicting power, but it is hard

to specify which one of them have the predicting power and the empirical model is

going to be extremely complicated.

1.5 Overview

Apart from this introductory chapter this thesis has the following chapters. The

second chapter is a literature review. From the way financial markets are studied to

the concept of Directional Changes and Scaling Laws, Trading strategies. The 3rd

chapter is going to examine the AOL scaling law in the stock markets and see the

the explaining exponents also varies among different stock markets. The 4th chapter

is going to be the one introduce the trading strategies. There are mainly two of

them, which are built on Directional Changes and the 1:1 ratio of the mean price

change in an overshoot and the threshold. The 5th chapter is going to examine the

behaviours of sub Directional Changes. If there is any pattern appears, then this

could contribute to the trading strategies built on DCs.
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Chapter 2

Literature Review

2.1 Approaches to study finance in a nutshell

In general, finance is the activity of managing money. Overtime, people invent

all kinds of ways to manage their money. It perhaps all originated from human

trading activities, for convenience, human invent money as media of exchange instead

of goods exchange Jones (1976). People grow wheat worried about their selling,

people process wheat worried about their buying, then there comes derivatives. From

examples as above, finance develops and evolves.

Yet, despite the success on concluding the relations between financial variables (em-

pirical studies), it seems none of them succeeded in giving a full picture of how

financial systems work or why financial systems behave the way they behave.

Talking about laws, it is natural to think of physics, which determines behaviours in

the universe and tries to grab the laws of nature. However, it straggles to describe

financial systems analytically (Glattfelder et al. 2010b).

Galileo made a statement that laws of nature are written in the language of math-
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ematics properly three hundred years ago. Mathematics is what behind physics,

when a physicist find a connection between two quantities that resembles a well-

known mathematical connection, he jumps to the conclusion discussed in mathemat-

ics Wigner (1960). If there is not a connection in mathematics, a physicist may invent

one using same language – mathematics (for example, the innovation of calculus). It

seems like it is that mathematics makes physics work so well.

The question now becomes how mathematics works in finance. A prevailing method

is econometrics. Although it is useful to deny that variables are not related, it strag-

gles to truly prove they are related (although instrumental variables, or IVs, are

introduced to determine causal relations, it raises other questions like how to pick

IVs). Other approaches like differential equations (such as Fokker-Planck differential

equation, Langevin differential equation and Gardiner (n.d.)), are truly as incredible

as the creating of econometrics. However, it seems under certain circumstances, solv-

ing these equation are less efficient than running a dynamic simulation on computers

(Glattfelder et al. 2010b).

With recent developments in computer science, another possibility appears. To-

gether with the characteristics of a chaotic system – endogeneity, nonlinearity and

unpredictability, a financial system may be recognised as a highly complex system

(Guillaume (1995)). Since the complexity, it is hard to be analytically described, but

not hard to be simulated on a computer (Glattfelder et al. 2010b). What is more,

with a computer dynamic simulation, a complex system can be studied in a totally

different way.

2.1.1 Market Behaviour

As Hussein (2013) mentioned is her thesis, there are three main streams examining

market behaviour. They are Behavioural Approach, Empirical Microstructure Study
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and Agent Based Modelling.

Behavioural Approach

Traders’ psychology is studied by this approach. And eventually how traders’ over-

and under-reaction are related to new information release and price movement is ex-

amined by this approach Hussein (2013). Cited by Hussein (2013), Frankel (1990a,b),

Ito (1990), MacDonald & Marsh (n.d.), Menkhoff et al. (2009), Oberlechner (2001)

study traders’ heterogeneous expectations, Baber & Odean (2000), Glaser & Weber

(2007), Oberlechner & Osler (2008) examine overconfidence, loss aversion and depo-

sition effect are studied by O Connell & Teo (2009) and Shefrin & Statman (1985)

respectively, Aguirre & Saidi (1999), Bjønnes & Rime (2005), Laopodis (2005) study

feedback trading. Above are examples of human irrationality and empirical evi-

dence.

Empirical Microstructure Study

Using empirical modelling, the effect of cumulated order flowBerger et al. (2006),

Evans & Lyons (2002b, 2007), news arrival Almeida et al. (1998), Andersen et al.

(2003), Chang & Taylor (2003), Evans & Lyons (2002a, 2004), fundamentals Evans

& Lyons (2002b, 2004), feedback trading Engel & Kenneth (2004), Evans & Lyons

(2002b), Froot & Ramadorai (2005) and institutional interventions Neely (2005),

Payne & Vitale (2003) are analysed on a micro structure level Hussein (2013).

Agent-Based Modelling

Thanks to the recent development in computer science, aiming to make inferences

to the market behaviour and casualties of the emergence of the market anomalies,

agent-based modelling (ABM) has been adopted in explaining the market behaviour.
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Mimicking the real market, using artificial intelligence, the market is represented as

a group of heterogenous agents who are able to adapt to their environments by

learning from the information the obtain. These agents interact and interconnect to

each other, and as a whole, they make the market LeBaron (2001), Samanidou et al.

(n.d.).

2.1.2 Financial systems as complex systems

As mentioned previously, financial systems are highly complex systems. The basic

financial rules are simple, and are examinable (for example Tsang et al. (2012)).

However, knowing these rules of how investors interact with each other does not

explain the emergence of financial markets.

Scaling Laws

Understanding financial markets as complex systems, methods used in examining

complexity could be adopted. One of those methods is to use agent-based modelling.

Alternatively, this paper focuses on discovering scaling laws which are used to find

regularities in nature. Scaling laws are discovered in many areas (for example West

et al. (1997a), Barabasi & Albert (1999), Newman (2005)). The greatness of scaling

laws is that they establish invariance of scale and play an important role in describing

complex systems (Glattfelder et al. 2010a).

There is a scaling law reported by Guillaume et al. (1997) and other 12 scaling laws

by Glattfelder et al. (2010a). These scaling laws are crucially based on an algorithm

called Directional Changes. This event-based algorithm offers a new view of financial

markets.
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Intrinsic Time

Earth revolves the sun and earth rotates itself. By observations, civilisations discover

periodicities and invent different calendars to guide their agriculture, religions, daily

lives and etc. (Richards 1998).

A interesting fact is that there is not an universal calendar that tells you every event.

Although every event can be mapped into an ‘universal’ calendar, some are calculated

by different events. For example, the calculation of Easter (Richards 1998).

Conventionally, physical time is used when analysing financial data. Could there be

another event1 that reveals periodicities?

Using intrinsic time to summarise markets is an alternative to using physical time in

studying financial time series Mandelbrot & Taylor (1967) (cited Aloud et al. (2012)).

Intrinsic time is defined by events, here in this thesis we focus on the events called

Directional Changes.

Direcional Changes

Tsang Tsang (2011) formally defined Directional Changes (See the following section

for a more detailed definition). Briefly, a Directional Change is an event, at which

the current momentum (or direction) of price changes 2. Obviously, there are two

types of Directional Change events, “Upturn Event” and “Downturn Event” Tsang

(2011). However, not every change in directions is called a Directional Change event.

Instead, only when the price changes a certain rate in the opposite direction is

called a Directional Change event. This certain rate is pre-determined, called a

threshold.

A Directional Change Event is usually followed by an overshoot event. When the

1When physical time is used, the event is the earth revolution: around its axis and around the
Suns

2In terms of price, there are only two directions; which are up and down.
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change of price reaches the threshold, then a Directional Change Event is confirmed.

However, usually, the price would not start another Directional Change Event im-

mediately but continuously goes in the same trend until another Directional Change

Event is confirmed.

2.2 Directional Changes, Definitions

In this section, we summarise the key definitions of Directional Changes since this

thesis is heavily based on the concept of ‘Directional Changes’, following is the defi-

nitions formally presented on Tsang (2011).

A Directional Change Event can be a Downturn Event or an Upturn Event.

A Downward Run is a period between a Downturn Event and the next Upturn

Event. An Upward Run is a period between an Upturn Event and the next Down-

turn Event.

In a Downward Run, a Last Low is constantly updated to the minimum of (a) the

current price and (b) the Last Low. In an Upward Run, a Last High is constantly

updated to the maximum of (a) the current price and (b) the Last High. Last Low

and last High are called Extremum (EXT).

In a Downward Run, given a Threshold (a percentage), an Upturn Event is an

event when the price is higher than the Last Low by the Threshold. An Upturn

Event terminates a Downward Run, and starts an Upward Run.

In an Upward Run, given a Threshold (a percentage), a Downturn Directional

Change Event is an event when the price is lower than the Last High by the

Threshold. A Downturn Event terminates an Upward Run, and starts a Downward

Run.

The point when the price reaches the Threshold is called the point of Directional
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Change (DC).

The above definitions are mutual recursive. Operationally, we set both the Last High

and Last Low to the price at the beginning of the sequence, where neither downward

run nor upward run is defined.

A Downturn Event is followed by a Downward Overshoot Event, which is ended

by the next Upturn Event, which is itself followed by an Upward Overshoot Event,

which is ended by the next Downturn Event. So time is defined by sequences of event

cycles of four events, as shown below:

... → Downturn Event →

Downward Overshoot Event →

Upturn Event →

Upward Overshoot Event →

Downturn Event → ...

2.3 Summarising Data with Fixed Time Interval

Financial data is in high quality, as it is recorded at every trading. However, as a

result, the quantity of the data tends to be large. Therefore, although information of

every trading is recorded, it is not practically accessible until recent years with the

developments of computer science. For example, in foreign exchange markets, not

until the beginning of the 1990s, intra-daily data have been broadly studied, while

daily data is very much used in the 80s. The later represents only a very small subset

of information available intra-daily, and the size of the former is 100 to 1000 times

larger than daily data (Guillaume et al. 1997).

Even though, the daily data still does not use every piece of data recorded. As a

result, only tick-by-tick data contains every piece of underlying information, which
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we call raw data in the rest of this chapter. And a fact is that except tick-by-tick

data, all other data used in our daily research is somehow summarised from tick-

by-tick data. Therefore, in this sense, except using tick-by-tick data, the ways of

summarising become crucial. A good summary should reflect the information of raw

data as much as possible.

A common way to summarise raw data is to first choose a time interval, and then

sample raw data at fixed time points with the chosen interval; for example, hourly,

daily or monthly. We call data summarised this way an “interval-based summary”.

Naturally, an interval-based summary becomes a time series. In such a summary, the

time interval is the arbitrarily chosen parameter, and the amplitude of the change of

price is variable (Guillaume et al. 1997). And based on the summary, analyses can

be performed, and our established knowledge is very much built on it. For example,

one might describe the trend or volatility in the last n days (Hamilton 1994)3

A possible explanation of why interval-based summarising becomes the prevailing

way would be this: Before tick-by-tick data became available, the daily or hourly

even second-by-second quotations were the most accurate data available. Knowing

them is seen as knowing all information available. Later, as a convention, when

trading became more frequent, data are still summarised in such ways.

Although raw data is not necessary to be summarised; in finance, each trade is

recorded, this includes the price, volume and the time that a trade occurs. As a

result, the amount of data collected is potentially large. To prevent combinatorial

explosion (Krippendorff 2010), these recorded data, or raw data, are usually not

directly used, but are normally sampled into summaries. So that a comparatively

smaller number of data are used for analyses.

Guillaume et al. (1997) introduced an alternative way to summarise raw data. In

this approach, one summarises raw data by “Directional Change events”. In this

3A time series is a collection of observations indexed by the date of each observation, pp.25
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algorithm, compare to interval-based summarising, the change of price is fixed and

time is the varying parameter. Briefly, a Directional Change is an event during

which price momentum changes the direction – from upward to downward or vice

versa. In this section, we recapitulate the formal definition of DC, and evaluate its

appropriateness in capturing market dynamics.

2.4 Alternative Ways of Summarising Raw Data

Raw data can be summarised in many ways. However, in this section, we focus

on a traditional ways – the interval-based summary and an alternative event based

summary – what we called the Directional Change event-based summary or DC-based

summaries in short.

2.4.1 Interval-based Summary of Transactions

As mentioned above, financial data (See figure 1, graph a for raw data) is often

summarised using fixed time intervals. In other word, it is sampled with regular

observation frequencies (intervals are as shown in figure 1 graph d). Samples collected

this way are called interval-based summaries (see figure 1, graph b and c), i.e. time

series. For example, using 400-business-day’s daily4 (figure 1 graph a) closing price

data (from 06/07/2011 to 01/02/2013) of HSBC as raw data. With a monthly

sampling, we can have an interval-based summary of 22 observations (21 intervals,

shown in figure 1 graph d).

4Although a daily data is already an interval-based summary, for simplicity, we use daily data
as raw data to illustrate the concept.
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Figure 1. Summarising Raw Data
Interval-based summary of HSBC stock daily price (400 business days from

06/07/2011 to 01/02/2013). Blue curves is the interval-based summary of the
original price curve (the black curve, chart a). For simplicity, we use daily closing

prices as raw data, and contrast them with monthly (20 days) interval-based
summary
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2.4.2 Using Directional Change Events to Summarise Trans-

actions

Instead of summarising transactions with a chosen time interval, we can summarise

them by events. A DC-based summary is a summary of raw data sampled at each

Directional Change event. Although, there are many ways of defining events; in this

section, we focus on using one specific type of events defined by Guillaume et al.

(1997), namely Directional Changes (or DC for short).

In order to understand what a DC-based summary is, it is necessary to first introduce

the concept of ”Directional Change”.

Tsang Tsang (2011) formally defined Directional Changes. Briefly, a Directional

Change is an event, at which the current momentum (or direction) of price changes5.

Obviously, there are two types of Directional Change events, ”Upturn Event” and

”Downturn Event” Tsang (2011). However, not every change in directions is called

a Directional Change event. Instead, only when the price changes a certain rate

in the opposite direction is called a Directional Change event. This certain rate is

pre-determined, called a threshold.

A Directional Change Event is usually followed by an overshoot event. When the

change of price reaches the threshold, then a Directional Change Event is confirmed.

However, usually, the price would not start another Directional Change Event im-

mediately but continuously goes in the same trend until another Directional Change

Event is confirmed.

After understanding what a Directional Change event is, a DC-based summary is

possible to be explained. A DC-based summary of raw data is a summary resulted by

sampling raw data at each Directional Change event with a certain threshold.

A DC-based summary is depicted in figure 2, graph a shows the raw data, which is

5In terms of price, there are only two directions; which are up and down.
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the same as in figure 1. Graph b and c show the DC-based summary of the raw data,

and graph d gives the intervals defined by Directional Changes. It is also shown in

graph d (vertical lines) that the interval widths are not fixed.

In figure 2, from graph a to d, it shows how Directional Changes summarise raw data

(graph a) into a DC-based summary (graph c to d). And in graph d, blue vertical

lines represent sample points. For comparison, in figure 3, graph a and b show the

Interval-based summary and DC-based summary respectively. And in graph c, the

dramatic difference between them is shown. A more detailed analysis is shown in

next section.

2.5 The Value of DC-based Summaries

2.5.1 DC-based Summaries Focus on Periods That Matter

More

As an alternative of summarising raw data, DC-based summarising deals data in a

different way. Whenever a change of price reaches the threshold, Directional Changes

capture it. In contrast, interval-based summary records only at pre-determined (such

as hourly, daily or second-by-second etc.) time points. Therefore, using Directional

Changes means more data in periods with violently changing prices, fewer data in

calm periods. For example, price P1 starts to increase at t1. Then at t2, P2 becomes

p + ∆p, and it starts to decrease. After, when at t3, price P3 becomes p again

(becomes the same as at t1, i.e. p1 = p3). Assume that t1 and t3 are sampling time

points of an interval-based summary; the observation result would be no-change. But

if the threshold T determined is smaller than p (this means that one actually cares

changes that are bigger than T), then this move of price is definitely captured by

Directional Changes.
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Figure 2. DC-based summary of HSBC stock daily price (400 business days from
06/07/2011 to 01/02/2013, red curve), under threshold of 0.075 (20 observations).

Like figure 1, for simplicity, we use daily closing prices as raw data
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Figure 3. Comparison between interval-based and DC-based summaries (HSBC
stock daily price from 24/12/2003 to 16/02/2009, under threshold 0.22)
In this figure, red curves are DC-based summaries and blue curves are

interval-based summaries. As can be seen in the figure, extreme are missed by the
Interval-based Summary but captured by the DC-based Summary.
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Figure 4. Comparison between interval-based and DC-based summaries (HSBC
stock daily price from 24/12/2003 to 16/02/2009, under threshold 0.22)

For example, in figure 4, there are six extreme points marked as significant move —

A, B, C, D, E and F. It appears that only A’ is partly captured by the Interval-based

Summary (not exact captures the peak point, but a sub-peak). As interval-based

summaries sample at fixed points, it has a certain chance to capture peaks as A. In

other word, no matter how big the change is, Interval-based Summary has a certain

chance to miss it. As shown in figure 4, points B, C, D, E and F are completely

missed by the Interval-based Summary, in which, a dramatic move (from D to E,

and E to F) is inappropriately sampled to a much gentle decreasing trend (D’ to

F’). In a contrast, DC-based Summary captures all those significant moves except

A’.
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2.5.2 DC-based summaries Offer Longer Coastlines

Directional Changes offer a longer price coastline than Interval-based summaries.

With consideration of profitability, Directional Changes capture all events that reach

the threshold; of which is determined to find out changes in prise that concerning ones

interests. Aloud et al (2012) show that price-curve coastlines measured by intrinsic

time are longer than those measured by physical time. A longer coastline indicates

higher potential of profitability. This is because longer coastline measures a bigger

accumulative change (i.e. bigger
∑n
i=1|

pi+1−pi
pi
|).

A possible way of comparing coastlines summarised by intervals and DC (Directional

Changes) is to calculate the cumulative changes. This is because both summaries are

samples of original data, that is, the horizontal length of both summaries should be

the same (see figure 1, 2)6. Therefore, the only matter of the length of the coastline is

vertical movements, i.e. cumulative change of the price. In order to make comparison

possible, we first define a threshold so that observation number (i.e. Directional

Changes events) of a threshold is calculated. After, the interval of interval-based

summary is defined by using raw data length divided by the observation number

(DC event number). To compare the coastlines of both summaries, we test vertical

coastline under thresholds of 1%, 2%, 3% and 5% on the stock daily price of HSBC.

And the results show that the vertical DC-based summary coastlines are longer than

interval-based ones (See table 2.1).

6Usually, DC-based coastlines are, horizontally, shorter than interval based ones. This is because
that at the end of raw data, the remainder data do not confirm another Directional Change event
(see figure 2). But this is not a problem as: First, when calculating the coastline, the interval
based summary coastline is counted up to where the DC-based one ends. Second, even without
adjustment, according to later experiments DC-based ones are longer than interval-based ones. If
considering this issue, DC-based ones should be even longer than interval-based ones.
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Table 2.1: Vertical Coastline Calculation
Threshold 1% 2% 3% 5%

Observations 2403 1602 961 601
Interval based coastline 255.53 207.64 154.62 124.42
DC-based coastline 322.67 277.89 243.54 193.70

2.5.3 DC-based Summarising Skips Data Holes

A basic fact of tick-by-tick data (raw data) is that the prices is irregularly spaced

in physical time, or the transactions take place irregularly in terms of physical time

(τj). However, most statistical analyses rely upon the use of regularly spaced data

(ti). Guillaume et al. (1997)

Consequently, interval-based summaries are often used, and the price at ti can be

defined as:

p(ti,∆t)

Where ti is a sequence of the regular spaced time data, and ∆t is the time interval

(∆t = 1day, ∆t = 1hour, ∆t = 1second, etc.)

However, when summarising raw data, there is a possibility that the sample point

(ti) is laid between ticks (τj−1 < ti < τj). In other word, there are data holes in

interval-based summaries ({p(ti)|τj−1 < ti < τj} does not exist).

To fill the data holes (to obtain {p(ti)|τj−1 < ti < τj}), linear interpolation can

be adopted (Müller, 1990 Müller et al. (1990)). In this case an estimate p∗ of

{p(ti)|τj−1 < ti < τj} can be calculated as

p∗(ti) = wp(τj−1) + (1− w)p(τj)

Where

w =
τj − ti
τj − τj−1

22



An alternative method is using p(τj−1) as p∗ (Wasserfallen and Zimmermann, 1985

Wasserfallen & Zimmermann (1985)).

However, if raw data is summarised by Directional Change events, the above issue no

longer needs to be considered. Because Directional Change events always take place

at τj . By replacing ti by τj , traditional statistical analyses can still be employed

without data holes.

2.5.4 DC-based Summaries Offer a Potential New Risk Mea-

sure

The Directional Change frequency over period S can be defined Guillaume et al.

(1997):

d(S) ≡ d(∆t, n, rc) ≡
1

S
N({k|mk 6= mk−1, 1 < k ≤ n})

where

S = n∆t

and N({k})is the counting function, n∆t is the sampling period on which the count-

ing is performed. mk indicates the event type – upturn event or downturn event – of

current trend. rc is a constant threshold. d(S) calculates the frequency of Directional

Change events in the period.

DC-based summaries can be used as a new risk measure in two senses. First, like

volatility, measuring DC frequency gives an idea that how volatile the price is in a

certain period. Second, unlike volatility, the threshold is chosen by the traders, it

gives the knowledge that the price is likely to move beyond the threshold. Guillaume

et al. (1997)
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2.6 Research using DC-based summaries

2.6.1 Regularities Based on Directional Changes Have Been

Discovered

Since Guillaume et al. Guillaume et al. (1997) introduced Directional Changes,

as regularities in a complex system, scaling laws are discovered in foreign exchange

markets by Guillaume et al. (1997). A scaling law or power law is a simple polynomial

function relationship: f(x) ∝ x−a. In the study of Directional Changes, Guillaume

et al. (1997) presented the Directional-Change count scaling law:

N(∆xdc) =

(
∆xdc
C

)E

Where, N(∆xdc) is the number of directional changes measured for the threshold

∆xdc. What is more, Glattfelder et al. (2010b) introduced a scaling law relates the

length of the average overshoot segment to the directional change threshold:

〈|∆xos|〉 =

(
∆xdc
C

)E

And it turns out that the average length of overshoot ∆xos is about the same size as

the threshold: 〈|∆xos|〉 ≈ ∆xdc Glattfelder et al. (2010b). In addition, another 12

empirical scaling laws are found in high-frequency foreign exchange data Glattfelder

et al. (2010a).

These scaling laws can be seen as the law of the nature Glattfelder et al. (2010b), or

regularities of science, or patterns in financial data. Because they are regularities,

they happen under certain conditions. Therefore, trading strategies can be made

upon these laws.

For example, according to the scaling laws and what Directional Changes reveal.
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After a confirmation of a Directional Change event (a t% Directional Change), a

t% overshoot will be expected (on average). A natural decision would be taking a

long position when the price is expected to rise, and taking a short position when

the price is expected to fall. Therefore, what the strategy suggests would be buying

with all wealth at an upturn event confirmation point, as at which the lowest price is

available to an investor when price is expected to rise. And selling (or short selling

if possible) all assets at a down turn event confirmation point, as at which the price

would be the highest to an investor when the price is expected to decline.

However, it is obvious that the strategy will not work when encounters zero over-

shoot7 or when overshoot is smaller than expected. The scaling laws only apply on

average, as a result the strategy may face a possibility of losing money. A possible

solution will be selling a proportion of total assets, say (ai%, where ai decreases ex-

ponentially), whenever a small rise, say ∆t% (∆t% is smaller than t%), happens after

purchasing. The position will not be closed till next Directional Change event. And

vice versa in short selling. Doing this, when meeting zero overshoots and overshoots

that are smaller than expected, this rule will act as cut-loss strategy.

The trading strategies presented here are rather simple and more works need to be

done to make it more sophisticated. However, though it is only tested in foreign

exchange markets, these studies show that DC-based summaries hold the ability of

revealing regularities of underlying financial data. Based on which trading rules are

possible to be made.

2.6.2 Useful Market Indicators Have Been Proposed

A pioneer work for measuring the impact of major events to the markets is introduced

by Zumbach et al. and applied in foreign exchange markets Zumbach et al. (2000), it

is so called the scale of market shocks. It quantifies market movements on a tick-by-

7When there is not an overshoot period between two Directional Change events.
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tick basis. Later on, Maillet and Michel Maillet & Michel (2003) applied the scale of

market shocks to the stock market, and it is designed to detect and to compare the

severity of various crises. Inspirited by Zumbach et al. (2000), another unpublished

work by Subbotin (2008) is also mentioned in Bisig et al. (2009). This later study

proposed a probabilistic indicator for volatilities, of which seems usable for detecting

crises and regime shifts rather than quantifying impact of individual events.

Although, there is no right or wrong when choosing metric of measuring market

evolution (Bisig et al. 2009), and it shoulds like a natural choice to use volatility; Bisig

et al. (2009) claimed that using volatility fails to maximise the criteria of simplicity

and the ability of incorporating all details of the prise evolution, as aggregating

activities into a volatility measurement mingles different price scales. For example,

Bouchaud et al. Bouchaud et al. (2008) showed the dynamics of the market slowly

‘digesting’ the changes in supply and demand8 involving market order book dynamic

and market maker profits, of which is certainly interesting. However, because of

using volatility as the measurement of market dynamics, it is still not clear that

what impact a event brings to the market, as the volatility is a measure calculated

from all past prices of which from various scales.

Therefore, to quantify the trajectory of market prise evolution, Bisig et al. (2009)

proposed a frame work so called the scale of market quakes, in which the physical

time no longer exists, instead, time ticks at every confirmation of price Directional

Changes. By calculating the average Overshoot and comparing the overshoot-at-

event, a quake at a certain magnitude/scale can be calculated. Testing at major

news announcement and analysing the evolution of those scales, Bisig et al. (2009)

claim that the SMQ response to news announcements or a mismatch of demand and

supply. And the SMQ is believed to be the first step to build a global information

system Bisig et al. (2009).

8Mainly, how transactions impact the market
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2.7 Potential of Directional Changes

2.7.1 DC-based Summaries Reflect Properties of Original Raw

Data

Although financial raw data are in high quality, it seems that there is not an efficient

way to deal with the raw data but summarise them into either Interval-based or

event-based summaries. When summarising data, it loses some information of the

original data for sure. Therefore, it is important that the summary reflects the

original data’s properties/features.

When raw data are summarised as Interval-based summaries, without considering the

properties/features, data are sampled at certain time points with fix-interval lengths.

This mechanism makes the summary actually regardless to the properties/features

of original data. Although, one may claim that with smaller intervals, it has bigger

probability to capture market significant movements; still there is no guarantee (see

figure 4). What is more, with smaller intervals it faces the problem of handling

large size of data, which is one of the reasons that we summarise raw data. In other

aspects, when dealing with smaller-interval data such as high frequency data, we may

focus on more micro movements. But, the data are still time series with fixed interval

lengths. This means that even with small intervals, Interval-based summaries still

have the chance to miss significant movement at a much more micro scale (as in

figure 4).

However, with DC-based summaries, once the threshold is decided, the summary

captures these movements reaching or exceeding the threshold. Unlike Interval-based

summaries, all DC based summaries’ sampling are at extreme points, (as shown in

figure 3 and figure 4). As a result, when markets have significant move, they are

represented as a big Overshoots. And the size of the Overshoot actually reflects how
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significant a movement is. DC-based summaries work when facing high frequency

data, and all need to be done is, depending on the frequency, to use a smaller

threshold.

2.7.2 A Longer Coastline Potentially Offers More Profits

As mentioned in section 4.2, comparing to Interval-based summaries, DC-based sum-

maries have longer coastlines. Because Directional Changes are always confirmed on

extreme points (see figure 2). And Interval-based summaries can sample at po-

tentially anywhere on the original price curve (see figure 1). Horizontally, both

DC-based and Interval-based summaries pass the same path; vertically, because DC-

based summaries are always at extreme which Interval-based summaries are not,

DC-based summaries are considered more volatile than Interval-based summaries

(see figure 4). i.e. DC-based summaries’ curves are longer than Interval-based sum-

maries’.

Considering the measurement of return pt−pt−1

pt−1
, in a market allowing short selling

with proper trading strategies (as mentioned in section 4.2), higher volatility means

potentially higher profitability. Compare with Interval-based summaries, DC-based

summaries are the ones giving longer coastlines. Yet, the problem becomes how to

find a proper trading rule.

2.7.3 DC-based Summaries Prevent Distorting Raw Data

Although there are methods to fill data holes, doing it makes the data distorted.

Because, when a data hole is filed, artificial data has been added. One may claim

that a big enough observation number could eliminate the artificial data’s effects.

However, there is no guarantee that the number of artificial data is not proportional

to the observation number. While using DC-based summaries does not need to worry
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about this issue at all. By skipping data holes, DC-based summaries make sure that

all data used to run statistical analyses exist.

2.7.4 A Potential New Risk Measure

Volatility gives investors an idea that the amplitude of change of price. According to

a unrealistic assumption that the change or price is subject to normal distribution,

predictions of future volatilities can be made. However, a high volatility does not

only mean that a investor is like to have a higher chance to loose, it also indicates

that there is a chance to gain more.

While interval-based summaries fix time intervals and change of price’s amplitude is

changing; DC-based summaries choose a constant threshold while time is varying.

This means that the change of price is fixed and it gives the idea of how likely the

price is to move a certain rate in a certain direction. This is helpful to traders to

decide whether to open or close a position.

Although volatility tells us the general environment of the market, we are actually

more interested in the timing of our trades. (Dacorogna et al. (1993))

2.7.5 DC-based Summaries Reveal Regularities

Actually, there are works on regularities in DC-based summaries. As mentioned in

section 5.1, although trading strategies are not necessary to be built on regularities.

But if there are regularities found, then trading strategies can be made upon.

According to Guillaume et al. Guillaume et al. (1997), scaling laws, as regularities

in complex systems, are found in foreign exchange markets. And empirical works are

done in foreign exchange markets showing positive results Guillaume et al. (1997),

Glattfelder et al. (2010b,a). Based on the scaling laws found in DC-based summaries
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(see section 5.1), trading strategies are possible to be made.

2.7.6 DC-based Summaries as the Building Brick of Global

Economical/Financial Information System

The Scale of Market Quakes (SMQ) is introduced by Bisig et al. Bisig et al. (2009).

This system is built on DC-based summaries and it is for detecting the market

dynamics. This system detects the quake scales of market by comparing the overshoot

at event to the average overshoot to give a description of market status. Inspirited

by the work, a further development can perhaps be using the overshoot distribution

to make a value-at-risk-like risk measurement. Because this new measurement is

based on DC-based summary, it may not have the drawback that volatility has

(price activities at different scale are mingled). However, further works need to be

done.

2.8 Trading

Technical analysis is one of the most important methods which traders use, aiming

to predict the trend of the financial market. Technical analysis, which involves

making investment decisions using past prices or other past statistics. Much of

technical analysis involves pattern recognition using specific frequency (intra-day,

daily, weekly) charts that display opening, high, low, and closing prices, as well as

trading volume in some form. (Kavajecz, 2004)

Although, technical analysis has been doubted by the traders, because the technical

analysis aim to grasp the trading opportunities when the price patterns appear again.

However, it is too late to take an action when observing the similar price patterns.

Besides, the basic elements of technical analysis widely used in everyday work do

30



not behave the same way as they were described in textbooks and publications.

Difficulties arise when technical analysis is used in daily short-term trading because

of minor market fluctuations that, in essence, are just the market noise. This noise

can be compared with radio interference hindering clear reception. Unfortunately,

the amplitude of this interference is too high to be ignored in short-term trading,

and it disturbs the market harmony. (Toshchakov, 2006)

Technical analysis is very popular with the investment and financial markets, all

major brokerage firms publish technical commentary on the market and many of

the advisory services are based on technical analysis. Nowadays, the many excel-

lent traders and fund managers make profits according to technical analysis. In its

simplest form, technical analysis uses information about historical price movements,

summarized in the form of price charts, to forecast future price trends. This ap-

proach to forecasting originated with the work of Charles Dow in the late 1800s, and

is now widely used by investment professionals as input for trading decisions. (Neely,

Weller, & Dittmar, 1997). Technical analysis theory tends to become an industry in

the financial market, covering the stocks, bonds, futures, and options.

2.9 Scaling Laws

Research on the origins of power-law relations, and efforts to observe and validate

them in the real world, is an active topic of research in many fields of science,

including physics, computer science, linguistics, geophysics, neuroscience, sociology,

economics and more.

Scaling phenomena can be widely found in many systems from geophysical to bio-

logical, Mantegna & Stanley (1995) Some large-scale dynamical properties of these

systems depend on the dynamical evolution of a large number of nonlinearly coupled

subsystems.
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West et al. (1997b) conducted a study of Allometric scaling relations. It provides a

complete analysis of scaling relations for mammalian circulatory systems.

Piccinato et al. (1997) compared the behaviour of piratical trading prices and bid/ask

quote prices both with intra-day and intra-week data.

In a 2005 study Matteo et al. (2005), they showed that the scaling properties are

associated with characteristics of the markets. By examining 89 various markets

and instruments, they found that the scaling behaviours are quite universal across

financial markets. In addition, they found that emerging markets’ scaling behaviours

are more likely to be affected by the central bank decisions.

Stanley et al. (1996) argue that when a large number of microscopic elements in-

teract without a characteristic scale, scaling laws may be found independent on the

microscopic details.

Bouchaud et al. (2008) discussed different models in order to find the origin of scal-

ing laws in financial time series. Complex, collective phenomenon often generates

universal scaling laws. They are independent of the microscopic details. Scaling laws

emerge from collective action which do not exhibit in individual behaviour. Exam-

ples are phase transitions and fluid turbulence. Although much less efforts have been

devoted to understand the scaling laws on a microscopic level, the scaling laws are

also found in financial data. For pedagogical interest they illustrate how and when

scaling laws can arise.

Economy or financial systems can be seen as a many-body or a complex system.

Such as exchange markets which display scaling properties. In 1997 Galluccio et al.

studied the scaling behaviour in currency exchange rates with satisfying results. And

found it qualitatively differs from a random walk. They also claim that the Foreign

exchange markets are qualitatively different from stock exchange markets. A system

with a large amount of interaction and interconnection could exhibit a high level
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of complexity due the high amount of correlations between individuals resulting a

collective behaviour.

In the study of scaling behaviours, the early work done by Mandelbrot (1963). Later

Mantegna & Stanley (1995) studied the scaling behaviours on a stock index.

Mandelbrot (1983) gave the fractal point of view, that is analysing objects on different

scale levels.

Glattfelder et al. (2008) had discovered 17 new empirical scaling laws in FX data

across 13 currency exchange rates, which give an accurate estimation of the length

of the surprisingly long price-curve coastline. The new laws introduce more stylised

facts. The scaling law provides the invariance of scale and insights of complex sys-

tems.

Glattfelder et al. (2010a) discovered 12 independent new empirical scaling laws in

foreign exchange markets based on an event-based approach so called Directional

Changes. The Scaling Laws estimates the length of the price curve accurately. The

scaling-law relations could also identify key empirical patterns. They believe the

universal laws could potentially enhance the understanding of markets.

Although the reason that scaling laws exit is not clear (Bouchaud 2001, Barndorff-

Nielsen & Prause 2001, Farmer. & Lillo 2004, Lux 2006, Joulin et al. 2008)

The scaling invariance that proved by the scaling laws are essential in describing

complex system. The scaling laws could apply to such as risk management and

volatility modelling

The financial markets such as foreign exchange markets could be seen as complex

networks made of interacting agents, for example corporations institutional, retail

traders and brokers (Glattfelder et al. 2010a).

The Scaling Law based on Directional changes could be traced back to Müller et al.
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(1990). It is mentioned that the tested four FX series follow a scaling law measured

by the absolute mean price changes of logarithmic prices.

At fixed time intervals, the mean absolute price change is a function of the fixed time

interval selected. The line fitting is also mentioned in this chapter. It is appropriate

to be employed to my study.

|∆x| = c∆t1/E

Later in the chapter conducted by Glattfelder et. al. (2010a), the new scaling law

was discovered and clearly stated in Glattfelder et. al. (2010b):

〈
|∆x|OS

〉
≈
(

∆xdc
C

)E
(2.1)

However, it is not clear in the chapter how the scaling was tested. Therefore, we

are employing the methods used in Müller et. al. (1990), which is the line fitting

approach introduced by Mosteller and Tukey (1977).

2.10 Summary

This chapter introduces the concept of Directional Changes, and also concepts that

built on Directional Changes. First, two ways of summarising raw data were intro-

duced. Interval-based summarising and DC-based summarising. As a well known

method, interval-based summarising is not redundantly explained. Focusing on DC-

based Directional Change events are firstly introduced, as the summarising based on

Directional Change events, its uses are stated mainly included: DC-based summaries

focus on periods matters more, they offer longer price coast lines, skip data holes

and potentially can be a new risk measure telling investors the timing of closing or
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opening a position.

In addition, researches based on DC-based summaries are introduced – the discovery

of scaling laws and the Scale of Market Quakes (SMQ). Scaling laws can be seen as

regularities in the market, with which, trading strategies can be built. SMQ is a

market indicator, it shows the affects that major events bring to the market.

If the Directional Changes would bring potential trading methods, then of course it

would be necessary to test whether these methods or strategies could make profits.

Therefore, the following section introduced few works in trading strategies.

Following this, the scaling laws are found in multiple disciplines. They are considered

to provide insights of complex systems. Since financial systems are also seen as

complex systems, we would be also interested to see whether certain scaling laws

holds in certain markets. One of the pioneer work would be Müller’s scaling law,

based on which the Average Overshoot Length was also introduced.
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Chapter 3

The Average Overshoot

Length Scaling Law in the

Stock Market

3.1 Introduction

Inspired by Müller’s scaling law (Müller et al. 1990), along with other scaling laws,

Glattfelder et al. (2010a) discovered one specific scaling law1 in the foreign exchange

market – the Average Overshoot Length Scaling Law (the AOL Scaling Law).

The AOL Scaling Law is built on the concept of Directional Change. A Directional

Change is an event defined by a pre-determined price change – threshold (denoted

as θ), when the certain amount of price change (θ) from a extremum is found, then

there is a Directional Change. Following a Directional Change, there is an Overshoot,

1This is the so-called Average Overshoot Length Scaling Law, it will be referred as the AOL
scaling law in the following context
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which covers the period from the end of a Directional Change to the next start of a

Directional Change. And together, a Directional Change and an Overshoot make a

Total Movement (TM).

Glattfelder et al. (2010a) states that, with the concept of Directional Changes, in

a Total Movement (TM), the mean absolute price change in Overshoots would ap-

proximately equal to the threshold used to define the Directional Changes.

However, the AOL Scaling Law is reported in the foreign exchange markets. And

there is no existing literature reporting the same AOL Scaling Law in stock mar-

kets. Therefore, this is chapter is going to examine the AOL Scaling Law in the

stock market. This chapter splits the examining of the AOL Scaling Law into 3

parts.

First of all, if the scaling law is to hold, there must be a scaling relationship be-

tween the average Overshoot length, or AOL (denoted 〈|∆xOS |〉) and the Directional

Change threshold (denoted θ). That is, Cx,OS and Ex,OS in the assumed scaling law

relationship 〈|∆xOS |〉 =
(

θ
Cx,OS

)Ex,OS

can not be 0. Therefore, this chapter is go-

ing to estimate the parameters Cx,OS and Ex,OS using linear regression applied by

(Müller et al. 1990).

Second, as the AOL Scaling Law suggests, the average Overshoot length should

be approximately equal to the threshold that defined the Directional Changes and

the Overshoots. Yet this is reported in the foreign exchange markets. Therefore,

this chapter is also going to look this property by comparing the estimated average

Overshoot lengths and the threshold.

Third, as Müller et al. (1990) suggests, the exponent Ex,OS could also be referred as

the characteristic exponent, and potentially different markets may have significant

different characteristic exponents. By comparing the exponents Ex,OS from 5 dif-

ferent markets: FTSE 100, Hang Seng, Nasdaq 100, Nikkei 225, S & P, conclusions
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could be drawn on this matter.

In order to examine the above three questions, five sets of data representing 5 stock

markets are tested with a linear regression between ln〈|∆xOS |〉 and lnθ. As a re-

sult, Ex,OS and Cx,OS are obtained, and further comparison, observations could be

conducted.

The remainder of this chapter is organised as following. The second section is one

introducing the methodology about the Müller’s scaling law, the AOL Scaling Law,

and the way this chapter is going to set-up the experiments as well as the data

that is used. The third section is going to present the results obtained from the

experiments. And these results are interpreted in section four. Lastly is a conclusion

section.

3.2 Methodology and Experiment set-up

3.2.1 Müller’s Scaling Law

Scaling laws are widely reported in many disciplines, they are seen as important tools

in studying complex systems. As financial systems are also considered as complex sys-

tems, the study of scaling laws in the financial systems are conducted by researchers

as well. Among which, Müller et al’s study (1990) was one of the pioneers.

A study of foreign exchange markets (Müller et al. 1990), based on 15 years’ foreign

exchange prices, shows that the mean absolute changes of logarithmic prices and

the time interval in which the price changes are measured follow a particular scal-

ing law. This scaling law suggests that the price changes (mean absolute changes)

have a power-law relationship with the time interval (in which the price changes are

measured). In other words, the relationship between the price change and the time

interval is reported in their paper. Müller et al. (1990) further stated that this re-
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lationship is a scaling law relationship (or power law), and it was originally denoted

in the paper (Müller et al. 1990) as:

〈|∆x|〉 = c∆t1/E

where the average operator 〈〉 indicates the mean value over the entire sample period

(in which the mean absolute changes of logarithmic prices are measured). And |∆x| is

the absolute changes of logarithmic prices. Correspondingly, ∆t is the time interval in

which the price changes are measured. In this case, ∆t is a pre-determined parameter

as series sampled in regular time periods have only one fixed time interval, and ∆t

is determined when the time interval is decided. c and E are to be determined by

a regression, which are going to describe the scaling relations between 〈|∆x|〉 and

∆t.

If we have a series of ∆xi generated by a random process with stable distributions,

refer the series as raw data. To determine this relationship, one needs to first sample

raw data with a time interval (∆t). With the time interval decided, 〈|∆x|〉 could be

calculated. With a regression, c and E are also able to be calculated and are going to

be constants. If the relationship does hold (Müller et al. 1990), E could be referred

as the characteristic exponent.

3.2.2 The Average Overshoot Length Scaling Law

Inspired by Müller’s Scaling Law, an extended study had been conducted by Glat-

tfelder et al. (2010a), in which, there are 17 scaling laws discovered. Amidst these

scaling laws, the Average Overshoot Length Scaling Law (the AOL Scaling Law) also

made its début (Glattfelder et al. 2010b).

The AOL Scaling Law is built on the concept of Directional Change. In a time
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series, a time interval, like a day or an hour in a daily series or an hourly series

respectively, is a pre-demerited number to define the whole series. Correspondingly,

instead of a time interval, the Directional Change threshold2 – θ (a percentage price

change) is the pre-determined number to define the whole DC series. A DC starts at

a extremum and ends at where the price is θ% from the extremum. Therefore, with

a θ, each DC is defined by and covers an Extreme point (EXT) and a Directional

Change Confirmation point (DCC). The DCC is where the price is θ% from the

extremum, and a DCC is also the starting point of an Overshoot. An Overshoot is

the price change from the DCC to the start of the next DC, which is going to be

an extremum (but not necessarily the next extremum is the start of the next DC

or next EXT). Hence, once DCs are found, OSs are found naturally as OSs cover

the gaps between two DCs. A Total Movement (TM) is consisted of a Directional

Change (DC) and its corresponding Overshoot (OS) that shares the same DCC. And

the price change of a DC is going to equal to θ by definition.

Furthermore, the thresholds of the Directional Changes also define a new intrinsic

time series. Unlike the fixed time interval series, the series of time are not evenly

distributed in physical time. In other word, the lengths of time periods are different,

the series of the intrinsic time is a series of different time lengths. However, this is

not the focus of this thesis.

Recall that Müller’s Scaling Law introduced a scaling law between the mean absolute

price change and the time interval. Similar to the Müller’s Scaling Law, the AOL

Scaling Law also suggests a Scaling Relationship between two variables, which are

the price change and the Directional Change threshold.

Therefore, the AOL Scaling Law uses the threshold – θ instead of a time interval

to obtain the scaling relationship. Naturally, the AOL Scaling Law describes not

the relationship between the price change and the time interval but the relationship

2could be often referred as ’the threshold’ in this thesis
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between the price change and the threshold – θ.

Scaling Laws found by Glattfelder et al. (2010a) are formally presented in their paper

as:

〈|∆x∗|〉 =

(
θ

Cx,∗

)Ex,∗

where 〈〉 is the average operator. The superscript and subscript * stands for {TM,

DC, OS}. TM, DC and OS denote Total Movement, Directional Change and Over-

shoot respectively. ∆x = (xi − xi−1)/xi−1 and xi = x(ti) is the price at time ti

(Glattfelder et al. 2010a). ∆x∗ is the price change in a period *, 〈|∆x∗|〉 is the mean

absolute price change covering all time periods *s. θ denotes the Directional Change

threshold. And parameters Cx,∗, Ex,∗ are constants to be determined; the subscripts

(x, ∗) indicate that the parameters are related to the price x and period ∗.

* denotes the period the price change takes place. For instance ∆xTM is the price

change in a TM (Total Movement); similarly ∆xDC and ∆xOS are the price changes

in a DC and a OS respectively. When * in ∆x∗ is substituted by TM , DC, or OS,

Cx,∗, Ex,∗ need to change accordingly to Cx,TM , Ex,TM , Cx,DC , Ex,DC or Cx,OS ,

Ex,OS

Substituting * with DC, we can obtain one of the scaling laws – 〈|∆xDC |〉 = θ, which

holds by definition, as it suggests the price change in a Directional Change would

equal to the threshold, since the threshold is the percentage change that determines

the price changes in the DCs.

Since the main focus is going to be examining the AOL Scaling Law, the AOL Scaling

Law is presented as:

〈|∆xOS |〉 =

(
θ

Cx,OS

)Ex,OS
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With the tested foreign exchange data in the paper (Glattfelder et al. 2010a), the

AOL scaling law suggests, on average, a Directional Change is followed by an Over-

shoot with the same magnitude. That is the average length of the Overshoots is

about the same size as the threshold (θ). To be more specific, that is, 〈|∆xOS |〉 ≈ θ.

And according to Glattfelder et al. (2010a), Cx,OS ≈ 1.06 and Ex,OS ≈ 1.04. It,

on average, makes the total movement double the size of the directional change it is

associated with. Therefore this could also be denoted as: 〈|∆xTM |〉 ≈ 2θ.

As mentioned above, Scaling laws are considered to provide insights to the underlying

complex system. The AOL scaling laws are considered to provide insights about the

mechanism of the financial markets. As stated above the AOL Scaling law was

discovered and tested within the foreign exchange market. And it is of interest to

find out if the AOL Scaling Law also holds in the stock markets. and if the average

length of the Overshoots are approximately equal to the threshold θ. Also, Müller

et al. (1990) mentioned that potentially the characteristic exponent E could be used

as a indicator to tell the difference between different markets.

3.2.3 Testing the AOL Scaling Law in the Stock Markets

To find out if the AOL Scaling Law holds in the stock market is to examine whether

〈|∆xOS |〉 =
(

θ
Cx,OS

)Ex,OS

holds with stock markets’ data. And to see if the average

Overshoot length is also about the same size of θ is to look at the parameter Ex,OS

and Cx,OS . And by comparing Ex,OS , it would be known if it differs as markets

varies.

First of all, for the scaling law to hold, variables 〈|∆xOS |〉 (the average Overshoot

length) and θ (the Directional Change threshold) need to have a scaling law rela-

tionship. That is, as the paper (Glattfelder et al. 2010a) suggests, Ex,OS and Cx,OS

should not be 0 for the them to have the relationship. Therefore, to find out if the
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AOL Scaling law holds in the stock markets is to find out whether the parameter

Ex,OS and Cx,OS (the characteristic exponent according to Müller et al. (1990)) is

significantly different from 0 with stock markets’ data.

Secondly, to know whether the average Overshoot length is also about the same

size of θ, it is necessary to know whether the characteristic exponent and parameter

Cx,OS . That is, it is needed to know if 〈|∆xOS |〉 ≈ θ with stock markets’ data.

Thirdly, the comparison of characteristic exponents for different markets also requires

obtaining Ex,OS for each markets.

Therefore, to examine the AOL Scaling Law in the stock markets, it is essentially

to examine the characteristic exponent Ex,OS and Cx,OS in the Law with the stock

markets’ data. As the methods used to justify the scaling laws are not obviously

mentioned in Glattfelder et al. (2010a). Therefore, in order to examine the AOL

Scaling Law, this chapter is going to employ the method used by Müller et al. (1990),

which is the line fitting method introduced by Mosteller & Tukey (1977).

To test the AOL Scaling Law with the linear regression method employed by Müller

et al. (1990), the Scaling Law needs to be re-arranged into a linear model ln
〈
|∆xOS |

〉
=

−Ex,OS ·lnCx,OS+Ex,OS ·lnθ. In the linear model, Ex,OS should not be zero. Other-

wise there is no relationship between the threshold and the average overshoot length.

Therefore, the null hypotheses for the test could be that Ex,OS = 0 and lnCx,OS = 0.

And alternative hypotheses are Ex,OS 6= 0 and lnCx,OS 6= 0.

The relations between 〈|∆xOS |〉 and θ could be double checked with a direct linear

regression between these two variables. In this linear model, different parameters

should be tested. For example, in linear model 〈|∆xOS |〉 = a + ex,OS · θ, if for

〈|∆xOS |〉 and θ to have a relationship, ex,OS should not be 0. Therefore, similar null

hypotheses are ex,OS = 0 and a = 0 and alternative hypotheses could be ex,OS 6= 0

and a 6= 0.
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If the AOL Scaling Law does hold in the stock markets, the it is possible to further

look at the characteristic exponent Ex,OS , to see if it is the same in the stock market

as in the foreign exchange market. That is if 〈|∆xOS |〉 is approximately equal to θ.

If this is the case, then the AOL Scaling Law would be the same as in the foreign

exchange markets. If 〈|∆xOS |〉 is not approximately equal to θ, then the AOL Scaling

Law seems to not be the same as in the foreign exchange markets. That is, the average

overshoot length is not going to be approximately equal to θ.

And if the characteristic exponent Ex,OS is significantly different among the stock

markets. Then this could potentially be used to distinguish the markets.

To sum up, by testing the regression model, we would know whether the characteristic

exponent Ex,OS and parameter Cx,OS in the AOL Scaling Law would be significantly

different from 0. And if the parameters are statistically significantly different from 0

tested by the stock markets’ data, it could also be said the AOL Scaling Law holds

is the tested stock markets. If the AOL Scaling Law tells us that 〈|∆xOS |〉 ≈ θ,

then the AOL Scaling Law is the same as in the foreign exchange market. And if

Ex,OS is approximately the same in all the tested markets, then the characteristic

exponent can not be used to tell different markets. As a result, we would be able

to answer 1) whether the AOL Scaling Law holds in the stock markets; 2) what

is the explaining exponent of the AOL Scaling Law in the stock markets; 3) if the

characteristic exponent Ex,OS is the same among the markets.

3.2.4 Experiment Set-up

In order to apply the line fitting method used by Müller et al. (1990) in testing the

hypothesis listed in the previous section. The equation of the two variables is going

to be re-arranged. The AOL Scaling Law is:
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〈
|∆xOS |

〉
=

(
θ

Cx,OS

)Ex,OS

And according to Glattfelder et al. (2010a), to establish scaling law relations from

two variables Y and X that have a linear relationship:

Y = A+BX

the scaling law relationship could be constructed:

y =
( x
C

)E
where y = eY , x = eX , E = B and C = e−A/B

Therefore, if we take the log for both sides for the AOL Scaling Law:

ln
〈
|∆xOS |

〉
= ln

[(
θ

Cx,OS

)Ex,OS
]

now the linear model could be obtained:

ln
〈
|∆xOS |

〉
= −Ex,OS · lnCx,OS + Ex,OS · lnθ

let c = −Ex,OS · lnCx,OS

it becomes the model going to be tested:

ln
〈
|∆xOS |

〉
= c+ Ex,OS · lnθ (3.1)

With the linear model, two sets of series of ∆xOS and θ are needed. In this chapter
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the tested series are going to be a series of 100 thresholds (from 0.005 to 0.1) and

100 corresponding average Overshoot lengths.

Hence, with stock markets’ data, the experiments are going to be testing the linear

model listed above as 3.1 with the:

• Null hypothesis: Ex,OS is equal to 0;

• Alternative hypothesis: Ex,OS is not equal to 0;

• Null hypothesis: c is equal to 0;

• Alternative hypothesis: c is not equal to 0.

That is, if Ex,OS = 0, there is no power-law relationship between
〈
|∆xOS |

〉
and θ.

However, c = 0 does not necessarily mean there is a power-law relationship between〈
|∆xOS |

〉
and θ.

When the regression is conducted, by observing the parameter Ex,OS , it would be

answered that whether the AOL Scaling Law stands in the stock markets and whether

it is the same as in the foreign exchange markets.

A linear model between 〈|∆xOS |〉 and θ could also be tested to confirm the relations

between the average overshoot lengths and the threshold:

〈|∆xOS |〉 = a+ ex,OS · θ (3.2)

where a and ex,OS are parameters to be determined. 〈|∆xOS |〉 is the average price

change in the Overshoots. θ is the Directional Change Threshold.

Similar hypotheses are:

• Null hypothesis: ex,OS is equal to 0;

• Alternative hypothesis: ex,OS is not equal to 0;
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• Null hypothesis: a is equal to 0;

• Alternative hypothesis: a is not equal to 0.

3.2.5 Data

As the aim is to justify whether the scaling law stands in the stock markets. It is a

necessity to use the stock markets’ data. In this chapter, 5 sets of stock indices are

going to be used testing the AOL Scaling Law. They are the FTSE 100, Hang Seng,

Nasdaq 100, Nikkei 225 and S&P 500. These data are daily closing indices (treated

as prices) starting from 02/01/09 to 01/11/13.

What is more, 100 thresholds, from 0.005 to 0.1 are selected to the law. 100 average

Overshoot lengths corresponding to the thresholds are also calculated. The increment

is calculated as : (0.1− 0.005)/99 for there are 100 intervals.

To sum up, there are 5 indices with 100 thresholds from 0.005 to 0.1 are tested with

their corresponding Average Overshoot Lengths.

3.3 Results

With the data and the models, experiments are conducted, the results are presented

in this section. As the independent variable, with five markets’ data are selected,

100 θs, and their corresponding average overshoot lengths for each market’s data set

are the dependant variable. Ex,OS and c from testing model 3.1 for each market are

obtained and listed in Table 3.1.

As can be seen in the Table 3.1, the first column lists the indices tested with the

model (3.1). And from the second column, they are Ex,OS , ∆Ex,OS , the P-value of

Ex,OS , c (where c = −Ex,OS · lnCx,OS), ∆c, the P-value of c, and the adjusted R2 for

47



Table 3.1: Linear Regression between ln
〈
|∆xOS |

〉
and lnθ from model 3.1

at 95 % Confidence Level
Index Ex,OS ∆Ex,OS P-value c ∆c P-value Adj. R2

FTSE 100 0.885 0.0379 1.92206E-68 -0.410 0.1226 1.80883E-09 0.9559
Hang Seng 0.889 0.0416 7.79264E-65 -0.284 0.1346 6.06335E-05 0.9477
Nasdaq 100 0.882 0.0408 2.5902E-65 -0.299 0.1320 1.86139E-05 0.9489
Nikkei 225 0.893 0.0252 1.05972E-91 -0.228 0.0816 2.42416E-07 0.9803
S & P 500 0.998 0.0661 4.19429E-51 0.050 0.2139 0.644568241 0.9004
Average 0.909 -0.234

the line fittings. And the P-values of Ex,OS is the probability that estimated Ex,OS

does not lie with in Ex,OS ±∆Ex,OS , the same goes for c.

Therefore, by the coefficients obtained from the above table (Table 3.1), Cx,OS is

calculated from c and listed in Table 3.2.

Table 3.2: Cx,OS calculated from c

Index Cx,OS
FTSE 100 1.589
Hang Seng 1.377
Nasdaq 100 1.404
Nikkei 225 1.291
S & P 500 1.000
Average 1.332

With the AOL Scaling Law:

〈
|∆xOS |

〉
=

(
θ

Cx,OS

)Ex,OS

scaling relations between 〈|∆xOS |〉 and θ for the each market are as following:

FTSE 100:

From the linear regression using the tested FTSE 100 data, the probability that

Ex,OS does not lie within 0.885 ± 0.0379 is 1.92206E-68. Similarly, the probability

that c lies beyond −0.410 ± 0.1226 is 1.80883E-09. Therefore, the hypotheses that

Ex,OS = 0 and c = 0 are going to be rejected in this case. And Cx,OS could be
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obtained: Cx,OS = 1.589. And the adjusted R2 for the line fitting is 0.9559. So the

AOL Scaling Law in the FTSE 100 is:

〈
|∆xOS |

〉
=

(
θ

1.589

)0.885

Hang Seng:

From the linear regression using the tested Hang Seng data, the probability that

Ex,OS does not lie within 0.889 ± 0.0416 is 7.79264E-65. Similarly, the probability

that c lies beyond −0.284 ± 0.1346 is 6.06335E-05. Therefore, the hypotheses that

Ex,OS = 0 and c = 0 are going to be rejected in this case. And Cx,OS could be

obtained: Cx,OS = 1.377. And the adjusted R2 for the line fitting is 0.9477. So the

AOL Scaling Law in the Hang Seng is:

〈
|∆xOS |

〉
=

(
θ

1.377

)0.889

Nasdaq 100:

From the linear regression using the tested Nasdaq 100 data, the probability that

Ex,OS does not lie within 0.882 ± 0.0408 is 2.5902E-65. Similarly, the probability

that c lies beyond −0.299 ± 0.1320 is 1.86139E-05. Therefore, the hypotheses that

Ex,OS = 0 and c = 0 are going to be rejected in this case. And Cx,OS could be

obtained: Cx,OS = 1.404. And the adjusted R2 for the line fitting is 0.9489. So the

AOL Scaling Law in the Nasdaq 100 is:

〈
|∆xOS |

〉
=

(
θ

1.404

)0.882

Nikkei 225:

From the linear regression using the tested Nikkei 225 data, the probability that

49



Ex,OS does not lie within 0.893 ± 0.0252 is 1.05972E-91. Similarly, the probability

that c lies beyond −0.228 ± 0.0816 is 1.80883E-09. Therefore, the hypotheses that

Ex,OS = 0 and c = 0 are going to be rejected in this case. And Cx,OS could be

obtained: Cx,OS = 1.291. And the adjusted R2 for the line fitting is 0.9559. So the

AOL Scaling Law in the Nikkei 225 is:

〈
|∆xOS |

〉
=

(
θ

1.291

)0.893

S & P:

From the linear regression using the tested S & P data, the probability that Ex,OS

does not lie within 0.998 ± 0.0661 is 4.19429E-51. Similarly, the probability that c

lies beyond 0.050± 0.2139 is 0.644568241. Therefore, the hypothesis that Ex,OS = 0

is going to be rejected in this case. However, the hypothesis c = 0 is not going to be

rejected. Therefore Cx,OS could be obtained: Cx,OS = 1. And the adjusted R2 for

the line fitting is 0.9004. So the AOL Scaling Law in the S & P is:

〈
|∆xOS |

〉
=

(
θ

1

)0.998

On average, there is:

〈
|∆xOS |

〉
=

(
θ

1.332

)0.909

The relations between
〈
|∆xOS |

〉
and θ could also be tested in a linear model be-

tween
〈
|∆xOS |

〉
and θ (model 3.2), notice this is not the linear relations between

ln
〈
|∆xOS |

〉
and lnθ (model 3.1).

As can be seen in the Table 3.3, the first column lists the indices tested with the

model (3.2). And from the second column, they are ex,OS , the P-value of ex,OS , the

50



Table 3.3: Linear Regression between
〈
|∆xOS |

〉
and θ from model 3.2

at 95 % Confidence Level
Index ex,OS P-value a P-value Adj. R2

FTSE 100 1.000 6.17149E-58 -0.003 0.074515105 0.9277
Hang Seng 1.152 6.40451E-64 -0.005 -0.008117526 0.9454
Nasdaq 100 1.116 3.5377E-56 0.002 0.140211143 0.9215
Nikkei 225 1.096 6.95119E-80 0.000 0.785616773 0.9742
S & P 500 1.474 2.9809E-40 -0.018 1.7604E-05 0.8343
Average 1.168 -0.006

a, the P-value of a, and the adjusted R2 for the line fittings.

According to the P-values shown in Table 3.3, ex,OS = 0 is rejected for all data sets.

However, it does not seem the case for a. a = 0 could be rejected for Nasdaq 100 and

Nikkei 225. And for FTSE 100, Hang Seng and S & P, a = 0 is not rejected.

Therefore, there relations between
〈
|∆xOS |

〉
and θ could also be presented as:

FTSE 100:

〈
|∆xOS |

〉
= θ

Hang Seng:

〈
|∆xOS |

〉
= −0.005 + 1.152θ

Nasdaq 100:

〈
|∆xOS |

〉
= 1.116θ

Nikkei 225:
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〈
|∆xOS |

〉
= 1.096θ

S & P:

〈
|∆xOS |

〉
= −0.018 + 1.474θ

3.4 Interpretation

This section is going to interpret the results presented in the previous section. And

this section is mainly consisted with three sub-sections. The first one is going to be an

interpretation of the whether the AOL Scaling Law holds in the stock markets. The

second sub-section is going to discuss the relations between the average Overshoot

length and the threshold. And the third sub-section is going to look at the difference

of Ex,OS among the markets tested.

3.4.1 The AOL Scaling Law

First of all, from the AOL Scaling, we know that for the AOL Scaling Law to hold

in the stock market, Ex,OS and Cx,OS can not be 0. That is, in model (3.1), Ex,OS

should not equal to 0. c is ok to be 0, as c = −Ex,OS · lnCx,OS , and c = 0 means

that in the AOL Scaling Law Cx,OS = 1, and that means the AOL Scaling Law

holds.

From Table 3.1, we know that the all P-values for the Ex,OS indicate that Ex,OS is

not equal to 0 at 95% confidence level, as the P-values are far lower from 5%, which

means that Ex,OS lies outside Ex,OS ±∆Ex,OS is lower than 5%.

P-values for c are mostly far lower than 5% which means that the probability to
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reject that c = 0 are high enough, except the P-value for S & P is roughly 0.645.

This means that c for S & P is not significantly different from 0.

With c values, we can directly calculate Cx,OS from c in Table 3.1 for each data set

except Cx,OS for S & P which is calculated as 1 as c for S & P is count as 0. They

are all listed in Table 3.2. As can be seen in the table, it is clear that all data sets

have ranged mostly from 1.291 to 1.589, except S & P has a 1.

The above relations are concluded from the linear regressions of ln
〈
|∆xOS |

〉
and

lnθ. And it seems like that the AOL Scaling Law does hold in these five tested stock

markets, as all Ex,OS shown in Table 3.1 are significantly different from 0. This

means that the exponent Ex,OS does have explaining power over 〈|∆x|OS〉 and there

is a scaling relationship between 〈|∆x|OS〉 and θ.

3.4.2 The Relations Between the Average Overshoot Length

and the Threshold

As we know that in the foreign exchange markets, the average Overshoot length is

about the same size of its Directional Change threshold. A number of thresholds and

their corresponding estimated AOL are listed in the Table 3.4.

Table 3.4: Estimated AOLs obtained from model 3.1
θ 0.005 ... 0.024 ... 0.043 ... 0.063 ... 0.082 ... 0.1

FTSE 100

AOL

0.006 ... 0.025 ... 0.041 ... 0.057 ... 0.072 ... 0.087
Hang Seng 0.008 ... 0.028 ... 0.044 ... 0.059 ... 0.073 ... 0.085
Nasdaq 100 0.011 ... 0.032 ... 0.047 ... 0.061 ... 0.74 ... 0.085
Nikkei 225 0.014 ... 0.036 ... 0.052 ... 0.066 ... 0.77 ... 0.088
S & P 500 0.014 ... 0.037 ... 0.053 ... 0.066 ... 0.78 ... 0.088
Average 0.010 ... 0.031 ... 0.048 ... 0.062 ... 0.075 ... 0.087

From this table (3.4), at a glance, we cant see that the estimated AOLs are not very

different from their thresholds. To examine this further, we can measure the AOL

over θ ratio. That is 〈|∆x
OS |〉
θ .
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Table 3.5: Average Estimated AOL over θ (derived from model 3.1)
FTSE 100 0.958
Hang Seng 1.076
Nasdaq 100 1.074
Nikkei 225 1.106
S & P 500 1.007

Table 3.5 shows the average estimated AOL over θ ratios for each data set. This is

the mean value of 〈|∆x
OS |〉
θ , where θ = 0.005, ...0.1 for each market. That is, for each

data set, every threshold has a corresponding estimated AOL3 from the model 3.1.

And their average is what listed in the table.

And from the table, we can see that the average estimated AOL over θ is ranged

from 0.958 to 1.106, which means that the estimated AOL is roughly 0.958 to 1.106

times bigger than θ. And this could also be double checked by a linear regression

using model 3.2.

Table 3.6: Estimated AOLs obtained from model 3.2
θ 0.005 ... 0.024 ... 0.043 ... 0.063 ... 0.082 ... 0.1

FTSE 100

AOL

0.005 ... 0.024 ... 0.043 ... 0.063 ... 0.082 ... 0.100
Hang Seng 0.001 ... 0.023 ... 0.045 ... 0.067 ... 0.089 ... 0.110
Nasdaq 100 0.006 ... 0.027 ... 0.048 ... 0.070 ... 0.091 ... 0.112
Nikkei 225 0.005 ... 0.027 ... 0.048 ... 0.069 ... 0.090 ... 0.110
S & P 500 -0.010 ... 0.018 ... 0.046 ... 0.075 ... 0.103 ... 0.130
Average 0.001 ... 0.024 ... 0.046 ... 0.067 ... 0.091 ... 0.112

In Table 3.6, the estimated AOLs are derived from testing model 3.2. Results are

similar to what in Table 3.4. And Table 3.7 shows the average estimated AOL to θ

ratios for each data set derived from model 3.2.

Table 3.7: Average Estimated AOL over θ (derived from model 3.2)
FTSE 100 0.100
Hang Seng 0.996
Nasdaq 100 1.112
Nikkei 225 1.096
S & P 500 0.903

3Notice that AOL is 〈|∆xOS |〉

54



And similar results are obtained as the average estimated AOL over θ is between

0.903 and 1.112.

As mentioned above, the characteristic exponent alone cannot really tell the size of

AOL. Therefore, combining the characteristic exponent Ex,OS and the other param-

eter Cx,OS , we know that within the tested thresholds, the AOL is about the same

size as its corresponding threshold by testing model 3.1. And this 1:1 relationship

between
〈
|∆xOS |

〉
and θ is also confirmed by the test results of 3.2. This means, on

average, the Overshoot goes about the same size of the threshold, this makes a TM

(Total Movement) twice the size of the threshold θ.

3.4.3 Characteristic Exponents among Different Stock Mar-

kets

From Table 3.1, we know that the estimated Ex,OS lie within 0.885 and 0.998. How-

ever, if we exclude Ex,OS for S & P, which is 0.998. We have Ex,OS lie within 0.885

and 0.893. Therefore, not a big difference could be observed. The reason that Ex,OS

for S & P is excluded is because that c for S & P is not significantly different from

0. Therefore, it does not seem like the characteristic exponents could be used to

distinguish different markets.

3.5 Conclusion

This chapter has introduced the Scaling law discovered by Müller et al. (1990), which

states that the absolute price change of logarithmic prices follow a scaling law to the

time on which they are measured. Inspired by Müller, Glattfelder et al. (2010a)

introduced the Average Overshoot Length (AOL) Scaling Law, which is similar idea

based on the concept of Directional Changes. Instead of the time interval, this AOL
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scaling law are relations between a two price changes. One is the threshold, the other

one is the average price changes during the Overshoots.

Like Müller’s scaling law, the AOL Scaling Law is also reported in the foreign ex-

change markets, and there is no existing literature testing the AOL Scaling Law in

the stock markets. Therefore, this chapter has examined the AOL Scaling Law in

the stock markets with 5 indices.

This chapter explicitly presented the way to test the AOL Scaling Law in the stock

markets using the methods employed by Müller et al. (1990). We used 5 data sets rep-

resenting five stock markets to test two hypotheses. They are FTSE 100, Hang Seng,

Nasdaq 100, Nikkei 225 and S&P daily closing prices from 02/01/09 to 01/11/13.

As a result, the following can be concluded.

First of all, from the test results of model 3.1 shown in Table 3.1 and calculated

Cx,OS shown in 3.2, the AOL Scaling Law does hold in the stock markets with the

tested threshold. As Ex,OS for all 5 indices are significantly different from 0 at 95%

confidence level. Although c for S & P is not significantly from 0, c = 0 translates

into Cx,OS = 1 for S & P.

Second, now that we know the characteristic exponent alone can not really tell the

size of the AOL. Substituting parameters Ex,OS and Cx,OS with coefficients listed in

Table 3.1 and 3.2, we can obtain the estimated AOLs. Subsequently, estimated AOL

to θ ratio could be calculated, and they are listed in Table 3.5, which indicates the

average Overshoot length is about the same size of its corresponding threshold θ, that

is 〈|∆xOS |〉 = 1.04 · θ on average. And this is also confirmed by a linear regression

between 〈|∆xOS |〉 and θ (model 3.2), which gives us 〈|∆xOS |〉 = 1.02 · θ.

Third, the characteristic exponents Ex,OS is lying between 0.885 and 0.893, except

that Ex,OS for S & P is 0.998. And c for S & P is 0, which leads to Cx,OS = 1 for S

& P. Therefore, no significant difference can be observed among them, as a result, it
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does not seem like the characteristic exponents could be used to distinguish different

markets.
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Chapter 4

Trading Strategy Built on

Directional Changes

4.1 Introduction

This chapter is going to introduce two trading strategies – Trading Strategy 1 (TS1)

& Trading Strategy 2 (TS2), which are built based on Directional Changes. TS1 is

consisted with three rules. It opens a long position at a Directional Change confir-

mation point (DCC), and hold the position till the price either goes up by another

θ% or goes down by α%. In the former scenario, the strategy makes money. And

in the later scenario the strategy loses money. Similar to TS1, TS2 also opens a

position at an upward DCC, and hold the position till either the price goes up by

β% or goes down by α%, where β is the median of Overshoot lengths. And among

the tested data sets, medians are smaller than θ.

And the results using different defining arguments are show of TS1 and TS2 are

going to be shown to see if they generate positive outcome (making money). The
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reason of using different arguments is to see if their performance could be changed

by adjusting the arguments.

By looking into the distribution of Overshoot values. We also try to use medians

instead of AOL. And medians, in the tested data, are less than thresholds.

As Rule 3 is the one makes money, and Rule 2 is the one controls losses, this chapter

also introduces the Rule 3/Rule 2 ratio. And it is clear that the higher Rule 3/Rule

2 ratios could lead to higher returns of the trading strategies as the returns of TS1

or TS2 could be summation of all the money made by Rule 3 minus all the money

lost by Rule 2 if the price is continuous. But when it is not continuous the price

where the positions close are likely to be bigger (Rule 3) or less (Rule 2) than what

we expect. Therefore, this could be a good measure of performance of the trading

strategies, and by improve the ratio, the performance is also improved.

The correlations of the returns of the trading strategies and the Rule 3/Rule 2 are

calculated. And correlations between the returns of the trading strategies and the

overall price changes of each index is also obtained.

The remainder of the chapter is as follows: the second section introduces the concept

of Overshoot value, the Trading Strategy 1 & 2. The third section explains the

thoughts behind the experiments and the how the experiments is going to be set-up.

The fourth section lists the results obtained from the experiments. While the fifth

section interprets the results. Lastly, there is a conclusion section.

4.2 Methodology

4.2.1 OSV & OSV EXT

This chapter is going to use the concept of Overshoot Value (OSV). An Overshoot

value is a price change within the Overshoot divided by the threshold θ. It could
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be used to measure Overshoot lengths without considering the effect of θ, so that

Overshoot lengths can be compared across different thresholds. So, OSV is defined

as:

OSV ci =
P ci − PDCCi

PDCCi · θ

where PDCCi is the price where the ith Directional Change is confirmed (ith DCC). P ci

is the current price in ith Overshoot at time c, c could be any physical time between

t(PDCCi ) and t(PEXT+1
i ). And θ is the threshold used to looking for Directional

Changes. OSV ci is the Overshoot value at physical time c within ith Overshoot.

The OSV varies dynamically as the price changes within an Overshoot.

OSV reaches its maximum or minimum when the price reaches the next extremum

point – EXT, where OSV EXT is calculated. Therefore, ith OSV EXTi is shown

as:

OSV EXTi =
PEXT+1
i − PDCCi

PDCCi · θ

where PDCCi is the price where the ith Directional Change is confirmed (ith DCC).

PEXT+1
i is the price at i+ 1 EXT. And θ is the threshold used to looking for Direc-

tional Changes. OSV EXTi is the Overshoot value at physical time ith EXT.

Notice that there could be multiple OSV in an Overshoot, and if the price series is

continuous, there would be infinite OSVs in an Overshoot. However, there is always

only one OSV EXT in an Overshoot.
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4.2.2 Trading Strategy 1

As mentioned in the previous chapter, Scaling Laws may provide insights of the

underlying markets. In particular the AOL Scaling Law may provide information for

Directional Changes based trading algorithms. And Trading Strategy 1 (TS1) would

be one of the attempts.

Trading Strategy 1 (TS1) is built on DC, backed by the idea that on average the

Overshoots are approximately equal to the threshold θ that defines that Directional

Changes and Overshoots. TS1 is considered as a proof of concept (that DC based

trading algorithms could generate positive profits), for the sake of simplicity, we

make the strategy take only long positions in this chapter.

The strategy TS1 is consisted of three trading rules, one opening rule and two closing

rules. The opening rule would be: opening a long position at an upward Directional

Change Confirmation point (a DCC). When there is a position, no longer open

another one. Then hold the position until one of the following (two closing rules)

happens. First closing rule is: the price goes down by α; second closing rule is: the

price goes up by another θ.

Trading Strategy 1 could be presented as:

TS1 ≡ (θ, α)

where θ is the threshold used to find the Directional Changes and Overshoots, α is a

pre-set number to control the loss. In TS1, we make α < θ. Both α and θ are bigger

than 0.

As shown above TS1 is defined by two arguments, θ and α. To better illustrate the

rules, denote the current price as P t, the ith extreme price as PEXTi , and the price

at the ith DCC as PDCCi .
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Therefore, the above three rules could be listed below:

Rule 1. When
P t−PEXT

i

PEXT
i

≥ θ, open a long position;

Rule 2. When
P t−PDCC

i

PDCC
i

≤ −α, close the position;

Rule 3. When
P t−PDCC

i

PDCC
i

≥ θ, close the position.

The first rule is the entry rule for TS1, that is opening a long position when there is

an upward Directional Change confirmation. In other words, when the current price

P t is θ% higher than the price at an EXT (PEXTi ), take a long position.

The second rule is a closing rule. If the situation expected in rule 3 does not happen

before the next Directional Change, then it’s the time to stop losing. As the price

never go up by another θ, the strategy would hold the position till the price to go

down by α. This is when the price P t is α% lower than PDCCi

According to the AOL scaling law, on average the price is expected to increase after a

DCC by at least another θ. The third rule assumes the exact situation that the price

would go up by another θ. That is when P t is θ% higher than PDCCi . Therefore, this

rule would take the advantage and close the position if the price goes up another θ or

more, as the price may not be continuous. This is a rule trying to make profits.

These three rules make sure that a position would be opened when there is a upward

Directional Change confirmed. And this position would be closed either when the

price goes up by another θ or more, or decrease by −α. For example, if θ is set to

0.05 and α is set to 0.025. The strategy would open a long position when there is a

upward 5% Directional Change confirmed. This position would be held until one of

the follows happen: 1) the price goes down by 2.5% or more; 2) the price goes up by

another 5% or more1. In this case the price either goes up by another 5% or it hits

the 2.5% downward marker, as a result, either Rule 2 of 3 is going to be triggered

1Prices may not be continuous, the position would be closed at the closest price that makes the
price change greater or equal to 5%
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before the next upward Directional Change takes place.

4.2.3 Trading Strategy 2

The major difference between Trading Strategy 1 (TS1) and Trading Strategy 2

(TS2) is that TS1 always expect the mean value of the Overshoots – AOL. TS2 is

going to use the median of Overshoot lengths.

The rules could be shown as:

TS2 ≡ (θ, α, β)

where θ is the threshold used to find the Directional Changes and Overshoots, α and

β are pre-set numbers to cut losses and make profits respectively. In TS2, we make

α < θ, β is the median of the OSV EXT with the chosen threshold – θ. α, β, θ are

bigger than 0.

As shown above, TS2 is defined by three arguments: θ, α and β. θ is the threshold

used to find Directional Changes. α is a parameter used to stop loss. θ and α are

just like their counterparts in TS1. β, however is the argument to take profit.

TS2 is built similar to TS1, it is also consisted with 3 trading rules. They are 1) the

opening rule: opening a long position at an upward Directional Change Confirmation

point (a DCC); 2) first closing rule is: the price goes down by α; 3) second closing

rule is: the price goes up by another β. When there is a long position, TS1, TS2

no longer take another long position. Then hold the position until one of the closing

rules triggered.

Rule 1. When
P t−PEXT

i

PEXT
i

≥ θ, open a long position;

Rule 2. When
P t−PDCC

i

PDCC
i

≤ −α, close the position;
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Rule 3. When
P t−PDCC

i

PDCC
i

≥ β, close the position.

These rules allow the strategy to open a long position when a downward Directional

Change event is confirmed, it expects the median of Overshoots length – β, with a

certain tolerance (α) of down-going of the price.

By design, Trading Strategy 2 opens a long position at a upward Directional Change

confirmation point. And if the price goes down and reaches the cut-losing point where

the price P t is β% lower than PDCCi , Rule 2 will be triggered, the long position is

closed. Or it does not close the position till the price P t is β% higher than the price

at the DCC (PDCCi ), similarly.

4.3 Experiment Setup

4.3.1 Data

In this chapter, 5 sets of stock indices used in the previous chapter to test the AOL

scaling law are going to be employed to test the Trading Strategies. They are the

FTSE 100, Hang Seng, Nasdaq 100, Nikkei 225 and S&P 500. These data are daily

closing indices (treated as prices) starting from 02/01/09 to 01/11/13. Thresholds

used to calculate medians of OSV EXT are 0.05 and 0.1.

To test the Trading Strategies, there are 4 sets and 5 sets of arguments are used for

TS1 and TS2 separately:

Table 4.1: Tested Arguments of TS1
θ 0.05 0.1
α 0.02 0.025 0.02 0.05
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Table 4.2: Tested Arguments of TS2
θ 0.05 0.1
α 0.02 0.025 0.02 0.05 0.05
β 0.0361 0.0361 0.0903 0.06 0.0903

4.3.2 Evaluating the Trading Strategies

First of all, there medians of OSVEXT with threshold 0.05 and 0.1 are calculated

before testing TS2, so that β could be decided accordingly. Average daily return

of each of the data sets tested are all roughly around 1% (0.01). Therefore, we

choose the arbitrary threshold 0.05 and 0.1 so that there are a reasonable number of

transactions take place.

The evaluation on the trading strategy would essentially be calculating the rate of

returns, as the main goal of this chapter is to judge if the trading strategies are

able to make positive profits. To evaluate the trading rules, the most important

measure is the rate of return. The rate of return is the ratio of profits or losses on an

investment relative to the amount of money invested. It is all known that the rate

of return is widely used in the financial analysis. It is one of the simple but most

direct ways to measure the profits.

To test the effectiveness of the trading strategy, testing a trading strategy is to see

whether it works, that is, produces a profit (Pardo 2008). The most and foremost

goal of testing a trading strategy is to make sure it has a profit potential. Therefore,

the trading strategy TS1 and TS2 is tested using the arguments listed in Table 4.1

and 4.2 respectively.

In addition, we also calculate the ratio of Rule 3 to Rule 2 ratio. This ratios divide

the times that Rule 3 is triggered by the times that Rule 2 is triggered. As the Rule

3 in both TS1 and TS2 is the rule makes profits and the rule 2 is the one to cut

losses. According to the definition of both trading strategies there is always either
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a Rule 2 or a Rule 3 following Rule 1. This means that a long position is always

closed by a money-making Rule 3 or a stop-losing Rule 2. By calculating the Rule

3 to Rule 3 ratio, we hope that there are insights obtained from it to evaluate the

trading strategies.

Lastly, in order to find out if the performance of the trading strategies is affected by

the overall price change for the indices, the correlations between the returns obtained

from the trading strategies and the overall price changes of the markets and the the

correlations between the returns obtained from the trading strategies and the Rule

3 to Rule 2 ratios are calculated respectively. And a comparison between these two

correlations is going to be made.

4.4 Experiment Results

4.4.1 Medians of OSV at EXTs

Table 4.3 lists the medians of OSV EXT , and their equivalent medians of Overshoot

lengths in a percentage form.

Table 4.3: Medians of OSV EXT and Medians of Overshoot Lengths
Median of OSV EXT Median of OSEXT

θ = 0.05 θ = 0.1 θ = 0.05 θ = 0.1
FTSE 100 0.687 0.6193 3.44% 6.19%
Hang Seng 0.8055 0.7899 4.03% 7.90%
Nasdaq 100 0.9048 0.5977 4.52% 5.98%
Nikkei 225 0.8017 1.0305 4.01% 10.31%
S & P 500 0.4149 1.476 2.07% 14.76%
Average 0.72278 0.90268 3.61% 9.03%

The first row divides the table into two. The left half are the medians of OSV EXT

and the right half are the medians of Overshoot Lengths shown as OSEXT in the

table. The first column are the data sets going to be tested. The second the column
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are the medians of the OSV EXT with threshold 0.05 for each data set, and the

average across all data sets in listed at bottom. The third column is similar to the

second except the threshold is 0.1. The fourth column are the medians of Overshoot

lengths with threshold 0.05 shown in percentage. And the bottom is the average.

Fifth column is similar to the fourth except the threshold is 0.1.

4.4.2 Trading Strategy 1

Table 4.4 shows the rate of returns of Trading Strategy 1 with the arguments listed

in Table 4.1.

Table 4.4: Rate of Returns of TS1
Rate of Return

θ = 0.05 θ = 0.1
α = 0.02 α = 0.025 α = 0.02 α = 0.05

FTSE 100 6.91% 2.49% -14.93% 22.26%
Hang Seng 25.60% 15.11% 21.14% 24.54%
Nasdaq 100 52.36% 62.60% 3.94% 5.95%
Nikkei 225 -2.27% -9.39% 14.80% 6.94%
S & P 500 3.62% 16.42% 4.58% -0.22%
Average 17.24% 17.45% 5.91% 11.89%

The first column are the data sets tested with TS1. Apart from the first column, the

left half is tested with threshold θ = 0.05, the right half is tested with θ = 0.1. The

number 6.91% in second column is rate of return of TS1 using threshold θ = 0.05

and α = 0.02.

4.4.3 Trading Strategy 2

Similar to the previous TS1, Table 4.5 shows the rate of returns of Trading Strategy

2 with the arguments listed in Table 4.2.

Also similar to the previous Trading Strategy, Table 4.5 shows the test results using

TS2 with threshold 0.05 and 0.1, and α = 0.02, α = 0.025. However, the difference
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Table 4.5: Rate of Returns of TS2
Rate of Return

θ = 0.05 θ = 0.1
α = 0.02 α = 0.025 α = 0.02 α = 0.05 α = 0.05
β = 0.0361 β = 0.0361 β = 0.0903 β = 0.06 β = 0.0903

FTSE 100 1.66% -4.30% -14.93% 7.84% 18.88%
Hang Seng 23.58% 14.51% 20.08% 17.97% 23.45%
Nasdaq 100 44.94% 54.13% 3.47% -2.90% 4.79%
Nikkei 225 0.90% -5.68% 13.45% 17.52% 22.47%
S & P 500 1.33% 11.07% 3.33% -1.41% -1.41%
Average 14.48% 13.95% 5.08% 7.81% 13.64%

is that there is one more argument β, they are listed in row 4, right below values

of α. For example, the number 1.66% in the 5th row second column is the result of

TS2 using threshold 0.05, α = 0.02 and β = 0.0361 with data FTSE 100.

4.4.4 Rule 3 to Rule 2 Ratio & Overall Return of the Data

Sets

Table 3.7 shows the overall returns for each data set tested.

Table 4.6: Overall Returns of Each Tested Data Set
FTSE 100 47.63%
Hang Seng 54.56%
Nasdaq 100 167.45%
Nikkei 225 57.04%
S & P 500 89.06%
Average 83.15%

Table 4.7 and 4.8 are tables showing how many times Rule 2 and Rule 3 are triggered

in TS1 with threshold 0.05 and threshold 0.1 respectively. In each table α is set to

either 0.02 or half of the threshold.

Similar to the previous two tables, Table 4.9 and 4.10 are the TS2 equivalents. And

the tested threshold are 0.05 and 0.1 as well. However, what different is that the TS

expects the median instead of the mean of Overshoot lengths. And in Table 4.10,
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Table 4.7: Rules Triggered and Rule 3 to Rule 2 Ratios for TS1
with Threshold = 0.05

θ = 0.05
α = 0.02 α = 0.025

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 13 8 0.615385 12 9 0.75
Hang Seng 14 12 0.857143 14 12 0.857143
Nasdaq 100 8 12 1.5 7 13 1.857143
Nikkei 225 17 9 0.529412 17 9 0.529412
S & P 500 13 8 0.615385 10 10 1
Average 13 9.8 0.823465 12 10.6 0.998739

Table 4.8: Rules Triggered and Rule 3 to Rule 2 Ratios for TS1
with Threshold = 0.1

θ = 0.1
α = 0.02 α = 0.05

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 6 0 0 2 3 1.5
Hang Seng 4 3 0.75 3 4 1.333333
Nasdaq 100 5 2 0.4 4 3 0.75
Nikkei 225 5 3 0.6 4 3 0.75
S & P 500 2 1 0.5 2 1 0.5
Average 4.4 1.8 0.45 3 2.8 0.966667

there is an additional β tested which is the a number approximately equal to the

median of Overshoot lengths for FTSE 100.

Table 4.9: Rules Triggered and Rule 3 to Rule 2 Ratios for TS2
with Threshold = 0.05

θ = 0.05
α = 0.02 α = 0.025
β = 0.0361 β = 0.0361

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 12 9 0.75 11 10 0.90909091
Hang Seng 13 14 1.076923077 13 14 1.07692308
Nasdaq 100 6 14 2.333333333 5 15 3
Nikkei 225 16 11 0.6875 16 11 0.6875
S & P 500 12 9 0.75 9 11 1.22222222
Average 11.8 11.4 1.119551282 10.8 12.2 1.37914724
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Table 4.10: Rules Triggered and Rule 3 to Rule 2 Ratios for TS2
with Threshold = 0.1

θ = 0.1
α = 0.02 α = 0.05 α = 0.05
β = 0.0903 β = 0.06 β = 0.0903

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 6 0 0 2 3 1.5 2 3 1.5
Hang Seng 4 3 0.75 3 5 1.666667 3 4 1.333333
Nasdaq 100 5 2 0.4 4 3 0.75 4 3 0.75
Nikkei 225 5 3 0.6 4 3 0.75 3 4 1.333333
S & P 500 2 1 0.5 2 1 0.5 2 1 0.5
Average 4.4 1.8 0.45 3 3 1.033333 2.8 3 1.083333

Lastly, there are the tables of correlations between the returns obtained from the

trading strategies (TS1 and TS2) and the overall returns listed in Table 4.6, and the

correlations between the returns of the strategies and the Rule 3 to Rule 2 ratio.

They are Table 4.11 and 4.12. And in the tables, Corr. R stands for the correlations

between the overall price change of the markets and the returns generated from the

trading strategies. Similarly, Corr. 3/2 means the correlations between the Rule 3

to Rule 2 ratios and the returns generated from the trading strategies.

Table 4.11: Correlation of TS1
θ = 0.05 θ = 0.1

α = 0.02 α = 0.025 α = 0.02 α = 0.05
Corr. R 0.795141758 0.937225276 -0.098249747 -0.57295

Corr. 3/2 0.983718169 0.994143918 0.970436128 0.93395

Table 4.12: Correlation of TS2
θ = 0.05 θ = 0.1

α = 0.02 α = 0.025 α = 0.02 α = 0.05 α = 0.05
β = 0.0361 β = 0.0361 β = 0.0903 β = 0.06 β = 0.0903

Corr. R 0.778781 0.937533 -0.09468 -0.78433 -0.68685
Corr. 3/2 0.956535 0.976599 0.96525 0.81838 0.916764
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4.5 Interpretation

The previous sub-section has listed two trading strategies based on the AOL Scaling

Law introduced in the previous Chapter – TS1 and TS2. As proof of concept,

TS1 and TS2 take only long position. This way, the comparison of the returns

made by the trading strategies and the overall price change of the markets could be

conducted.

For example, if the long-position-only strategies’ return are highly correlated to the

overall price change, then maybe the strategies are not really working but simply

takes profit as the markets’ prices go up. Otherwise, we may think the strategies are

working. And when it took short positions, even the returns and the overall price

changes are not highly correlated, it is harder to tell whether it is the rising market

contributing to the trading strategies profit or they truly works, as potentially a

working trading strategy makes profits either way.

There is a difference between the trading strategies. TS1 expects the Overshoot to

approximately equal to the threshold – θ. Instead of expecting the mean of Overshoot

lengths, TS2 takes medians of OSV EXT as its profit making point. In other words,

TS2 closes a position when the price rises to a point where the Overshoot reach the

median while TS1 would take the same action at the average Overshoot length.

The main goal of this chapter is to prove that the trading strategies based on the

Scaling Law discovered by Glattfelder et al. (2010a) are able to generate positive

profits. Therefore the rate of return was used to evaluate the success of the trading

strategies.

As could be seen in Table 4.4, in most scenarios, TS1 could make a profit except

using θ = 0.05 and α = 0.02 with Nikkei 225, θ = 0.05 and α = 0.025 with Nikkei

225, θ = 0.1 and α = 0.02 with FTSE 100, θ = 0.1 and α = 0.05 with S & P. In

these cases, TS1 loses 2.27%, 9.39%, 14.93% and 0.22%. While Nasdaq 100 makes
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biggest profits as 52.36% and 62.60%, with α = 0.02 and α = 0.025. And there are

16 out 20 (80%) θ and α combinations make profits.

As for TS2, as shown in Table 4.5, there are six cases that it loses money, hence the

other 19 out 25 (76%) make profits. Among them, FTSE 100 and Nikkei 225 with

θ = 0.05, α = 0.025, β = 0.0361; with θ = 0.05, α = 0.025, β = 0.0361; FTSE 100

with θ = 0.1, α = 0.02, β = 0.0903; Nasdaq 100 and S & P with θ = 0.1, α = 0.05,

β = 0.06; S & P with θ = 0.1, α = 0.05, β = 0.0903 loses money. The rest all make

profits. And similar to TS1, Nasdaq 100 at θ = 5% makes most profits.

If we take the Rule 3 to Rule 2 ratios into consideration (as shown in Table 4.7

and 4.8), it is not hard to find that, in general, the higher the ratio, the higher the

returns, and vise versa. For example, Nikkei at θ = 0.05 with α = 0.02 has 13 Rule

2 triggered while there are 9 Rule 3 triggered. As the Rule 3 is the profit-making

rule, and Rule 2 is the stop-losing rule.

For both trading strategies, α uses two not very different numbers at θ = 0.05. They

are 0.02 and 0.025, but with this smell change, there are different results in Rule

3/Rule 2 ratio. And consequently there are different results in the returns. In fact,

only S & P tested using TS1 give the same Rule 3/Rule 2 ratio regardless to the small

amount change α. The same applies to Nikkei 225 using TS2. This potentially means

that by adjusting α, the return of the trading strategies could be improved.

Another noticeable point is that using 0.1 θ give far fewer transactions than using a

0.05 θ. This indicates that if the strategies were to be used practically, θ needs to

be chosen within a certain range with the overall trading time considered, so that

there are enough transactions to take place. Otherwise, a trading strategy might

be profitable over a long term, but may lose money simply due to small number of

trades it could make in a short time period.

Using the median – β is going to make less profits than using the mean value of
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Overshoot θ only with two exceptions in the listed results (Table 4.4 and 4.5). And

as shown in Table 4.2, the medians are less than θ.In the results above (Table 4.7

to 4.10), the number of trades (Rule 2 + Rule 3) are actually very similar. How-

ever, the Rule 3 in TS2 closes the position earlier than the Rule 3 in TS1. And

this might be the reason that the TS2 is making less money than TS1 when have

other arguments the same. Therefore, if we want to improve the trading strategies

performance by adjusting the Rule 3’s closing point, maybe using medians instead

of mean of Overshoot lengths is not the best solution.

On one hand, as can be seen in Table 4.11 and 4.12, the correlations of the returns

of the trading strategies to the overall price change are not uniformly positive. This

could mean that the trading strategies are not able to catch the rising price of the

underlying asset and make a profit with certain argument sets. However if we look

closer, the correlations are between 0.78 and 0.94 with θ = 0.05. And with θ = 0.1,

the results are either close to 0 or close to negative 0.5. However, this might due

to the fact that with θ = 0.1 there are only few transactions (maximum is 8) take

place.

On the other hand, the returns of TS1 and TS2 are hight correlated with the

Rule3/Rule2 ratio. If the number of triggered Rule 3 is smaller than the num-

ber of triggered Rule 2, it is expected to have a smaller return than those opposite.

And if the price is continues the returns would simply be: aR3 · θ − bR2 · α for TS1

and aR3 · β − bR2 · α for TS2, where aR3 is the count of how many times Rule 3 is

triggered, and similarly bR2 is the count of how many times Rule 2 is triggered. R3

and R2 stands for Rule 3 and Rule 2 respectively. α, β and θ are the arguments

defines the trading strategies.

As a result, it is clear that the trading strategies are able to make profits with certain

conditions. And by adjusting the input of the arguments, the performance of the

trading strategies could be modified. And if we want to achieve higher performance,
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we should always improve the Rule 3/Rule 2 ratio by adjusting the arguments, choos-

ing fitter markets or by same other yet-to-be-found ways.

4.6 Conclusion

This chapter has introduced the two trading strategies – TS1 & TS2, which are built

based on Directional Changes. TS1 is consisted with three rules. It opens a long

position at a DCC, and hold the position till the price either goes up by another θ%

or goes down by α%. In the former scenario, the strategy makes money. And in the

later scenario the strategy loses money. Similar to TS1, TS2 also opens a position

at an upward DCC, and hold the position till either the price goes up by β% or goes

down by α%, where β is the median of Overshoot lengths. And among the tested

data sets, medians are smaller than θ.

And the results show that in most cases TS1 and TS2 are able to generate positive

outcome (making money). And their performance could be changed by adjusting the

arguments we used to define both strategies.

The thoughts behind using medians instead of AOL is expecting more positive closing

Rules to be triggered. However using the median, in general, does not seems to

provide not only money making closes of the positions but also stop-losing ones.

That is, although using the median does not give more transactions. Therefore,

with a smaller money-making closing point, the trading strategies tend to make less

money.

As Rule 3 is the one makes money, and Rule 2 is the one controls losses, this chapter

also introduces the Rule 3/Rule 2 ratio. And it is clear that the higher Rule 3/Rule 2

ratios could lead to higher returns of the trading strategies. Therefore, this could be

a good measure of performance of the trading strategies, and by improve the ratio,

the performance is also improved.
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The correlations of the returns of the trading strategies and the Rule 3/Rule 2 are

calculated. And it does seem like they are highly correlated as the returns could

simply be a summation of all the money made by Rule 3 minus all the money lost

by Rule 2. Correlations between the returns of the trading strategies and the overall

price changes of each index is also obtained. And it seem like the with 0.05 threshold,

the trading strategies are correlated with the overall change of the price, while they

are not correlated when the threshold is 0.1.
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Chapter 5

Directional Changes

Indicators

5.1 Introduction

This chapter is going to sub Directional Changes to examine how the numbers of

sub DCs change as the price get closer to EXTs. As EXTs are the turning points of

a trend. If the numbers of sub DCs follow a certain pattern, then we can find a way

to know if the price is getting to an EXT. And potentially this could contribute to

the trading strategies built on Directional Changes.

The remainder of this chapter is: second, the methodology section which introduces

the methods and terms used to obtain and test the sub DCs. Third section is where

the results are presented. Fourth section is the interpretation of the results. And

finally is the conclusion.
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5.2 Methodology

5.2.1 Sub Directional Changes

In this chapter we would like to examine the properties of Directional Changes,

particularly when the price moves towards an EXT. Like DCCs are the ends of

Directional Changes, EXTs are the ends of Overshoots and Total Movements. When

the price reaches a DCC, the price is expect to go further along with its trend. Unlike

the DCCs, trends after EXTs are expected to change by definition. If somehow the

price would exhibit some property before it reaches an EXT, it would potentially

contribute to any trading strategies that built on Direction Changes.

The way we approach this is to observe the behaviour of DCCs on a smaller scale.

In order to make description in a clearer manner, with a time series at a certain

Directional Change threshold θ, we define:

• tEXTi is the time at which there is the ith extremum (EXT), where i=(1,2,...,n)1;

• tDCCi is the time at which ith Directional Change is confirmed (DCC), where

i=(1,2,...,n);

• ∆tDCi = tEXTi − tDCCi , is the time difference between the ith DCC and the

EXT;

• τ1
i = tEXTi+1 −∆tDCi , is the time point which is ∆tDCi before tEXTi+1 ;

• τ2
i = tEXTi+1 −

∆tDC
i

2 , is the time point which is half of ∆tDCi before tEXTi+1 ;

• With θ
d (d ∈ N and d > 1), we can have Directional Changes on a smaller scale,

or we call them sub Directional Changes;

• define η1
i the number of sub Directional Changes in (τ1

i , τ
2
i ];

1Assume there are n Directional Changes, and EXTn+1 is not known
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• similarly η2
i denotes the number of sub Directional Changes in (τ2

i , t
EXT
i+1 ];

• for the sake of consistency, also denote tEXTi+1 as τ3
i , therefore, η2

i is the number

of small directional changes in (τ2
i , τ

3
i ].

First of all, with any time series the time, we find the Directional Changes with

threshold θ. Time intervals between ith EXT (tEXTi ) and ith DCC (tDCCi ) are

calculated. These time intervals are not equal to each other, for the time it takes to

confirm a Directional Change varies. As a result, the a series of time intervals could

be obtained. As price change between ith EXT (EXTi) and ith DCC (DCCi) is

the ith Directional Change event, therefore we use DC as the superscript to denote

that this is the time interval of ith DC. So the time intervals could be denoted as:

∆tDCi .

Consequently, we can count from tEXTi+1 backwards by ith time interval (∆tDCi ) we can

get time point – τ1
i . Similarly count backwards by half of the ith interval (

∆tDC
i

2 )we

can get two time point – τ2
i . And if we denote tEXTi+1 as τ3

i we can obtain two time

periods – (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ]. These two time periods are two subsequent periods

leads to the EXTt+1, and the two time periods equal to each other.

Lastly, we would get sub Directional Changes, and count the numbers of them in

both (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ]. Once the two numbers of sub Directional Changes in each

of them are obtained we could run a linear regression to see whether the number of

sub Directional Changes (η2
i ) in (τ2

i , τ
3
i ] is depended on the number of sub Directional

Changes (η1
i ) in (τ1

i , τ
2
i ]. And the empirical model could be:

η2 = β0 + β1η
1

where parameters β0 and β1 are to be determined by the linear regression.
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5.2.2 Data

Although this thesis was aiming to examine the potential of Directional Changes in

the stock markets. The stock markets data at hand was only daily prices. The nature

of experiments in this chapter need a large number of sub Directional Changes in

each Directional Change event. Therefore, it is better to have high frequency data

over a long period of time.

As a result, the data sets tested are four high frequency minute-by-minute foreign

exchange data, dated from 1st January 2009 to 9th October 2014. The foreign

exchange pair are AUD/USD, GBP/USD, USD/CHF and USD/JPY.

The observations are made under threshold (θ): 0.02. And the sub Directional

Changes are looked with θ
20 . These numbers are chosen so that there are both statis-

tically enough Directional Changes and sub Directional Changes in each Directional

Change.

Table 5.1 lists the basic information about the tested data sets, such as the number

of prices, the number of DCs and the number of sub DCs.

Table 5.1: Data Size and Number of DCs and Sub DCs
θ=0.02, d=20

Price DC subDC
AUD/USD 1048575 136 27598
GBP/USD 1048575 80 20572
USD/CHF 1048575 65 18631
USD/JPY 1048575 69 17683
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5.3 Results

5.3.1 Linear Relations between η1
i and η2

i

As it is not very practical to list such large numbers of sub Directional Changes (η1
i

and η2
i ) in time periods (τ1

i , τ
2
i ] and (τ2

i , τ
3
i ] for each data set. This section is going

to list the estimated linear relations between η1
i and η2

i for each data set.

AUD/USD:

η2 = 26.70
(2.3E−08)

+ 0.42
(0.0002)

η1

where the P-values are listed in the brackets. The adjusted R2 = 0.095.

GBP/USD:

η2 = 27.39
(2.6E−07)

+ 0.60
(8.05E−08)

η1

where the P-values are listed in the brackets. The adjusted R2 = 0.304.

USD/CHF:

η2 = 34.63
(7.6E−08)

+ 0.40
(0.0003)

η1

where the P-values are listed in the brackets. The adjusted R2 = 0.181.

USD/JPY:

η2 = 20.09
(9.5E−05)

+ 0.53
(1.89E−07)

η1

where the P-values are listed in the brackets. The adjusted R2 = 0.329.
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5.3.2 Means and Medians of η1
i and η2

i

Beyond the linear regression, the means and medians of η1
i and η2

i for each data set

are listed below:

Table 5.2: Mean and Median of η1
i and η2

i at θ = 0.02
η1
i η2

i

AUD/USD
Mean 29.2963 38.91852
Median 21 27

GBP/USD
Mean 35.39241 48.46835
Median 30 36

USD/CHF
Mean 38.625 50.23438
Median 30.5 43

USD/JPY
Mean 37.51471 39.79412
Median 29 29

5.4 Interpretation

From the linear relations of η1
i and η2

i listed in 5.3.1, We know that although the

P-values suggest β0 and β1 are not likely to be 0, the adjusted R2 tells us the

estimated line is a very poor estimation to the underlying relations between η1
i and

η2
i . Therefore, it is very unlikely that there is a linear relationship between η1

i and

η2
i .

This means that as the price getting closer to a EXT, the numbers of sub Directional

Changes measured in periods (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ] are not seem to follow a noticeable

pattern.

However, if we look at Table 5.2, it is noticeable that the means of η2
i are greater

than η1
i , and they are all roughly 30% to 37% greater than the means of η1

i except for

USD/JPY which mean of η2
i is 6% greater than the mean of η1

i . Similar properties

also apply to medians. But it is not clear if this is a general phenomena across

different thresholds, as this is only obtained with θ = 0.02.

81



The reason that ∆tDCi is chosen to obtain (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ] is even if there are 0

Overshoots (OSV=0), the calculations of η1
i and η2

i are still able to process. As the

calculation count backwards from tEXTi+1 , if there is a 0 Overshoot, τ1
i would be tEXTi

and τ3
i would be tDCCi , τ2

i is always the middle point between them.

This chapter examined how the sub Directional Changes behave as the price get closer

to the EXTs. Although we find that η1
i and η2

i do not follow a noticeable pattern, this

provides a new insight on examining the potential of Directional Change – the use

of sub Directional Changes. And if we define (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ] differently, there

might be patterns to be found. for example excluding the 0 Overshoots and measure

the sub Directional Changes in the earlier half and later half in Overshoots.

5.5 Conclusion

This chapter has conducted an experiments on testing the relations between two sub

Directional Changes sets η1
i and η2

i in periods (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ] respectively. The

results of the experiments tell us that η1
i and η2

i do not seemingly follow a pattern,

and there is no linear relations among them.

However, the means and medians of η2
i are greater than those of η1

i with tested data

sets at θ = 0.02, d = 20. A more universal experiment might be necessary to tell is

this is a general property of η1
i and η2

i .
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Chapter 6

Conclusion

6.1 Summary

Directional Changes as a way of summarising information from complex systems.

For financial markets are also seen as complex systems, this thesis aims to explore

the potential of Directional Changes mainly in three ways. They are the AOL scaling

laws the Trading strategies, and the sub Directional Changes.

First of all, the Average Overshoot Scaling law has been tested in the stock markets,

which was not exist in current literature. With the results obtained in Chapter

3, we now understand that AOL Scaling Law does hold in the stock markets as

well, which means that the average Overshoot length has a scaling law relationship

with the threshold θ. And we also find out that the average Overshoot length is

approximately the same as θ, which the same property was reported in the foreign

exchange markets. And this approximation is confirmed by a linear regression as

well. Thirdly, we also found out that the characteristic exponent Ex,OS could not be

used to distinguish different markets, as the relations of AOL and θ are defined by

83



both Ex,OS and Cx,OS in the AOL Scaling Law.

Second, in Chapter 4, there were 2 trading strategies based on the AOL Scaling Law

introduced. They are TS1 and TS2, both contain 3 trading rules. TS1 is defined by

argument θ and α, where θ is the Directional Change threshold and α is an argument

used to control losses. TS2 is built similarly and defined by θ, α and β, where β is

the median of Overshoot lengths rather the mean.

In this chapter both TS1 and TS2 are able to generate positive outcomes (are able

to make money) in most cases, and by changing the inputs of the arguments, the

performance is able to be adjusted. Later in the chapter, the correlations of the

Reuters generated by the strategies and the overall price change are calculated. And

it suggest that only with certain combinations of arguments the returns are somehow

correlated to the overall price change. Similarly, the correlations of the Reuters

generated by the strategies and the Rule 3/Rule 2 ratios are also calculated. And

they are highly correlated. As a results if these strategies are to perform well, the

right combination of argument inputs are necessary.

Thirdly, we conducted a set of experiments on sub Directional Changes with high

frequency foreign exchange markets’ data. Although this was meant to be done with

stock markets’ data, there was no data suffice the task. For we statistically need

enough both Directional Changes and sub Directional Changes. As a result, we find

out that when the price get closer to an EXT, the number of sub Directional Changes

measured as η1
i and η2

i do not seem to follow a noticeable pattern.

6.2 Contributions

First of all, this thesis has explained how an Average Overshoot Scaling Law is

going to be tested explicitly. And this method could expanded to test other scaling

laws.
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Second, we have tested the AOL Scaling Law with stock markets, so that now we

know the AOL Scaling Law stands not only in foreign exchange markets but also

could be found in the stock markets.

Third, we have also found out the the average Overshoot lengths are approximately

equal to the Directional Change threshold θ across five indices with multiple thresh-

olds. And this was double checked by a linear regression between θ and AOL.

Fourth, the lengths of Overshoots are defined with both Ex,OS and Cx,OS . Ex,OS

does not exhibit big difference among different markets.

Fifth, this thesis proposes two trading strategies built on Directional Changes as proof

of concept – TS1 and TS2. Both of them are able to make profits in most tested

scenarios. And we now understand that with different inputs to the arguments that

define the trading strategies, the performance of them is able to be adjusted. And

this could be a optimisation problem.

Sixth, we found out that when the price is getting to an EXT, the sub Directional

Changes measured as η1
i and η2

i do not seem to present a certain pattern.

Seventh, although it is not tested comprehensively, with the tested θ = 0.02 and

d = 2, we know that the medians and means of η2
i are greater than η1

i ’s.

6.3 Limitations

Although The Average Overshoot Length Scaling Law is tested with multiple thresh-

olds across five different markets on the global. The tests have not been tested with

individual stocks’ data.

The trading strategies TS1 and TS2 are proof of concept. They do make money in

most tested scenarios, but obviously, they could be made more sophisticated. For

starter, taking short positions.
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Limited by the data at hand, the tests of sub Directional Changes were not able to

be tested in the stock markets. Even with the foreign exchange markets’ data. Only

limited thresholds and d values are able to generate sufficient number of Directional

Changes as well as sub Directional Changes.

6.4 Future Work

First of all, the AOL Scaling Laws could be tested with individual stock’s data to

see whether this AOL Scaling Law stands for each individual stock. And if it stands,

we can further examine if the AOL is approximately equal to the threshold for each

individual stock. What is more, although the characteristic exponent Ex,OS does

not seem to be able to tell the difference between different markets. This might not

be the case for individual stocks.

There is a lot to explore for trading strategies built on the AOL Scaling Law, using

median instead of mean was only one of the attempt. And both TS1 and TS2 are

trend following trading strategies. It is still not clear what would it be if we take

long positions at an estimated downward EXT, and close the position at an upward

DCC.

Last but no least, this thesis only tried one way on exploring the potential of sub

Directional Changes, and only one way of calculating the numbers of sub Directional

Changes. There are far more ways to define the time periods right before EXTs left

to be explored.
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