
Evolving Decision Rules to predict investment opportunities

Alma Lilia Garcia-Almanza and Edward P.K. Tsang

Abstract— This work is motivated by the interest in finding
significant movements in financial stock prices. However, when
the number of profitable opportunities is scarce the prediction
of these cases is difficult.

In a previous work, we have introduced Evolving Decision
Rules (EDR) to detect financial opportunities. The objective of
EDR is to classify the minority class (positive cases) in imbal-
anced environments. EDR provides a range of classifications in
order to find the best balance between not making mistakes
and not missing opportunities.

The goals of this paper are: 1) to show that EDR produces
a range of solutions to suit the investor’s preferences and 2)
to analyze the factors that benefit the performance of EDR. A
series of experiments was performed, EDR was tested using a
data set from the London Financial Market. In order to analyse
the EDR behaviour, another experiment was carried out using
three artificial data sets, whose solutions have different level
of complexity. Finally, an illustrative example was provided in
order to show how a bigger collection of rules is able to classify
more positive cases in imbalanced data sets.

Experimental results show that: 1) EDR offers a range of
solutions to fit the risk guidelines of different types of investors
and 2) a bigger collection of rules is able to classify more positive
cases in imbalanced environments.

I. INTRODUCTION

In a previous work we introduced an approach to generate
and evolve a set of decision rules, this is called Evolving
Decision Rules (EDR) [13]. The aims of EDR are:

1) To classify the minority class in imbalanced environ-
ments

2) To produce a range of solutions to suit different users
preferences

3) To generate comprehensive decision rules that can be
understood by the user

EDR is an evolutionary process that evolves decision rules,
this is able to generate different solutions every times it is
performed.

This paper is organized as follows: section II exposes the
motivation of this work and provides a brief explanation
about previous works done in this area, disclosing the main
differences among those works and our approach. Section III
describes the procedure of EDR. Next, section IV describes
the experiments and results to test our approach. Finally, the
conclusions are given in Section V.

II. MOTIVATION

The prediction of the minority class in imbalanced
data sets is a problem in the Machine Learning field

Alma Lilia Garcia-Almanza is with the Department of Computer Science,
University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK (phone: (44)
01206-873975; email: algarc@essex.ac.uk).

Edward P.K. Tsang is with the Department of Computer Science, Uni-
versity of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK (phone: (44)
01206-872774; email: edward@essex.ac.uk).

[18],[32],[2],[23].. Unfortunatelly many real world problems
need the detection of rare cases, for example the detection of
oil spillage [21], fraud detection [7] and illnesses prediction
[16], [31].

In order to build an application that evolves and collects
rules we propose EDR, which is an evolutionary process
that is based on selection, mutation and hill-climbing. The
aim of this method is to evolve a set of rules that holds
different patterns of the positive cases. As it was shown in
[15] and [11], some rules that classify positive cases could be
eliminated during the evolutionary process. For that reason,
we propose to collect rules in order to ensure that all the
useful patterns produced by the evolutionary process will be
included in the final solution of the problem. The result is a
set of rules that are sorted according to their precision. The
aim is to generate a range of solutions to suit different user’s
preferences. Additionally, the analysis of the pattern(s) that
are used to predict allows users to combine their knowledge,
in order to make a well-informed decision.

Evolving Decision Rules [13] is inspired by two previous
works: EDDIE [28], [22], [30], [29] and Repository Method
(RM) [9], [15], [12], [11]. EDDIE is a financial forecasting
tool based on Genetic Programming (GP) [20]. EDDIE is
trained using a set of examples to detect opportunities in
future data sets. However, when the target is to detect high
movements in stock prices the number of positive examples is
scarce and it becomes very difficult to identify those events.

On the other hand, RM analyses the solutions proposed
by a GP in order to gather rules (patterns) that classify the
minority class (positive cases) in diverse ways. The resulting
patterns are used to classify the minority class in imbalanced
data sets.

1) Previous works: This section describes some works
related to the evolution of decisin rules The majority of
the works that evolve decision rules, have used genetic
algorithms to evolve a complete set of rules (Michigan
approach [8]) or a population of set of rules (Pittsburgh
approach [26], [19]).

Our approach has some similarities to the Michigan ap-
proach because EDR evolves rules and the solution of the
problem is composed by the complete set of rules. In contrast
in the Pittsburgh approach, every individual in the population
represents a complete set of rules. Thus, every individual
holds an integral solution of the problem.

There are works, which evolve decision rules by using
a standard GP. Every decision tree classifies a single class.
Once the evolutionary process has finished the best individual
of the evolution is converted into classification rules, as [24],
[4], [5] have proposed. The corresponding authors claim that
their approaches are able to generate comprehensible rules.

However, GP tends to accumulate extra-code [20],[1], [27]
and unless the rules are simplified, these can present the
real variables and conditions that are involved in the rule.
In contrast EDR provides a simplification of rules that helps
to identify the real conditions in the rules. In addition, to
predict the minority class, especially in extreme imbalanced
environments, it is better to collect all the available patterns.
Otherwise the best tree of the evolution would contain just
patterns that may not repeat themselves in future data sets.
The example in section IV-C illustrates that situation. Finally,
non of the mentioned applications are able to provide a range
of solutions to suit different user’s preferences.

III. EVOLVING DECISION RULES PROCEDURE

This section describes the EDR procedure, it starts de-
scribing the idea behind this approach, next an overview of
EDR is provided and finally the description of each step is
explained in detailed.

EDR evolves a set of decision rules by using GP and it re-
ceives feedback from a key element that is called repository.
Let us define the repository as a structure, whose objective is
to store a set of rules. The resulting rules are used to create
a range of classifications that allows the user to choose the
best trade-off between the misclassifications and false alarms
cost. Before explaining in detail how EDR works, let us give
a general overview of the mentioned approach:

1) Creation of the initial population: creates a population
of random decision trees.

2) Extraction of rules: analyzes every decision tree in or-
der to delimit their rules and select the useful patterns.

3) Rule simplification: processes the new rule in order to
remove the redundant and vacuous conditions.

4) Adding new rules to the repository: detects new rules
by comparing the new one with the existing rules in the
repository. If the rule is different, then this is added to
the repository. If there is a similar rule in the repository
but the new one offers better performance then the old
rule is replaced by the new one.

5) Creation of a new population: creates the new pop-
ulation taking as parents the rules that are stored in
the repository. Next generation will be created using
the mutation operator and hill-climbing. The process
is repeated from step 2 until the algorithm has reached
the maximum number of generations.

6) Testing EDR: once the evolutionary process has fin-
ished, EDR is tested by using another data set.
It is evaluated by using sub-collections of rules
from the repository. Those rules are grouped ac-
cording to their precision (i.e., Precision =
{1.00, 0.95, 0.90, · · · , 0.05, 0.00}).

A general description of EDR has been introduced; in the
following sections this approach will be described in detail.

A. Initialization of Population

The objective of this procedure is to create a collection
of candidate solutions. We propose to create a population of

decision trees using the Discriminator Grammar (DG) de-
scribed in [14],[13]. We used DG for the following reasons:

1) to simplifies the delimitations of the rules in the
decision trees

2) to maintain the valid structure of the individuals
At this point a question arises, if the system evolves

decision rules why the population is composed by decision
trees? it is because a single individual (decision tree) could
contain more than one rule, thus the creation of decision
trees generates more solutions. Using disjunctions (OR) the
number of rules in the decision tree increases notably, as
a consequence the probability of finding valuable patterns
increases too.

B. Rule extraction

This part of the process analyzes every decision tree in
order to delimit its rules and select those patterns that are
useful to the classification. This process is applied to the
entire population because it was showed that many useful
rules can be obtained from the whole GP population [15]
and [10]. It was possible to discover predictive rules even in
low-fitness individuals. The main reasons to divide a decision
tree in its corresponding rules are:

1) To identify the patterns in the decision trees
2) To understand the rules easily
Let T be a decision tree, the objective of this procedure

is to find the set of rules, such as, T = {R1 ∨ R2 . . .}.
Let us define a rule Ri ∈ T , as a set of conditions that are
associated by conjunctions, ”AND”. Ri represents a minimal
set of conditions that satisfies the tree T.

Once a rule Rk ∈ T has been delimited, it is evaluated
using the training data set. If the precision of Rk achieves
a predefined Precision Threshold (PT), where PT > 0,
then Rk is considered for the next step (Rule simplification),
otherwise Rk is discarded.

C. Rule Simplification

The aim of rule simplification is to remove vacuous
and redundant conditions. A condition ci in a rule R is
redundant if there exist at least another condition ck ∈ R
such as ci implies ck. In other words, redundant conditions
are those which are repeated or report the same event e.g.
R1 = {V ar1 > 0.5 and V ar1 > 0.7} the first condition
is redundant. A condition ci is vacuous in a rule R in
relations to a data set D if under the conditions in R,
ci does not affect the decision of the rule, such as the
Performance(R) = Performance(R − ci). To simplify
rules, we have divided the conditions in hard and flexible. Let
a hard condition be the equation that compares two variables
(e.g. var1 < var2). Let a flexible condition be the equation
between a variable and a threshold (e.g. var1 < 0.8). Let
similar conditions be a group of conditions that have the same
variable and operator. For example, var1 < 3 and var1 < 2
are similar conditions. Conditions have been divided, in hard
and flexible, because the conditions that compare thresholds
could be difficult to differentiate (e.g. var1 < 0.8912 and

var1 < 0.8910). However, these can be easily simplified
(e.g. V ar1 < 0.8910).

The simplification of rules is an important process for the
following reasons:

1) To recognize the real variables and conditions that are
involved in the rule

2) To identify the duplication of rules in the repository.
This assures the existence of different rules,increasing
the variety of the solutions.

3) To remove the conditions that are not affecting the per-
formance of the tree in the training data set. It reduces
the risk of including conditions whose behavior could
be unpredictable in future data sets.

D. Adding new rules in the repository

Once a rule Rk has been simplified, we have to determine
the novelty of that rule by comparing Rk to the existing
rules in the repository. To compare rules effectively, these
have been divided in two categories: hard and flexible rules.
Let Ri be a hard rule, if it is composed exclusively of hard
conditions. Let Ri be a flexible rule if it has at least one
flexible condition. Finally, let Rk and Ri be similar rules
if these have the same hard conditions and similar flexible
conditions. The comparison of hard rules is straightforward,
but the comparison of flexible rules is more complex, because
rules contain thresholds

Let Rep be the repository of rules
µ be the maximum number of rules in Rep
Rk be a new rule such as

Thus, the following policy determines the inclusion of rule
Rk in Rep

• If Rk is a hard rule and 6 ∃ Ri ∈ Rep such as Ri =
Rk then Rep = Rep ∪ Rk, but if the cardinality of
|Rep| > µ then Rep = Rep − Rw where Rw ∈ Rep
and Fitness(Rw) ≤ Fitness(Ri) ∀ Ri ∈ Rep

• If Rk is a flexible rule and ∃ Ri ∈ Rep such as Rk and
Ri are similar rules and Fitness(Rk) > Fitness(Ri)
then Rep = (Rep−Ri) ∪Rk

• If Rk is a flexible rule and 6 ∃ Ri ∈ Rep such as Rk

and Ri are similar rules then Rep = Rep ∪ Rk, but if
the cardinality of |Rep| > µ then Rep = Rep − Rw

where Rw ∈ Rep and Fitness(Rw) ≤ Fitness(Ri) ∀
Ri ∈ Rep

Notice that the number of rules is limited by the parameter
µ and when the number of rules in Rep is bigger than µ,
then the worse rule in Rep has to be deleted. The replacement
of rules is an important part of this process because this is
applied to flexible rules (those which hold conditions with
continuous thresholds). Thus, every time a flexible rule is
replaced by a better similar rule, the thresholds are being
approximated to the ”optimal” values. In this process the
performance is measured by the geometric mean of the
product of precision times recall in order to encourage the
recall.

E. Creation of a new population

This section describes the procedure to generate a new
population of individuals. The population will be totally
replaced by a new population of decision trees created by
means of the mutation and hill-climbing of the existing
rules in the repository. The number of rules in the repository
is variable because it depends on the new patterns that
have been found. The number of rules is limited by µ,
which represents the maximum number of rules in the
repository. The creation of a new generation follows the
below guidelines:

Let Rep be the repository of rules
µ be the maximum number of rules in Rep
ϕ be the number of initial descendants per

rule in Rep
s be the current number of rules in Rep
ρ be the size of the population
β be the percentage of population created by

the rules
h be the hill-climbing probability

• If (s · ϕ ≤ ρ). At the beginning of the evolutionary
process, when the product of the current number of rules
in Rep times the number of initial descendant per rule is
less than the population size, the system will replace the
population in the following generation with ϕ offspring
per rule. If the number of new offspring is less than the
population size, then the remaining individuals will be
created randomly by the grow-method.

• If (s · ϕ > ρ). It is obvious that the repository is con-
tinuously growing and so, there is a maximum number
of rules that can be stored. Now, we have to consider
when the product of the current number of rules in Rep
multiplied by the number of initial descendant per rule
is greater than the population size (ϕ · s > ρ), then the
rules have to reproduce less and of course, the number
of offspring is limited by |ρ / s|. As the value of the
division is truncated, the number of offspring is less than
the size of the population, thus the remaining individuals
are created at random.

• If (s = µ and s > ρ) When the repository is totally full
and the number of rules is greater than the population
size, thus just a fraction of rules in Rep is allowed to
produce one descendant. The rules to produce offspring
are selected randomly without any type of elitism. How-
ever, those descendants will produce only β% of the
population. The remaining individuals will be created
at random in order to create variety. β is a parameter,
which is determined by the user.

• The hill-climbing is applied randomly using a probabil-
ity h, this will be one of the descendants of a rule, the
remaining individuals, if any, are produced by mutation.

F. Rule evaluation

Once the evolutionary process has finished, the final rules
in the repository will be used to classify the testing data set
as follows:

1) Sort the rules by precision in descending order
2) Define a set of thresholds τ = {τi} between [0,1]

separated at regular intervals for example: τ={0,.05,
· · · ,.95,1}

3) For each threshold τi, select those rules from Rep
whose precision is greater or equal to τi, then store
those rules in a sub-repository Repτi

= {Rτik
} where

Rτik
is a rule, such as, Precision(Rτik

) ≥ τi ∀
Rτik

∈ Repτi
.

4) For each example in the data set, if at least one of
the rules in the sub-repository satisfies the example,
this is classified as positive, otherwise it is considered
negative.

EDR has been designed to produce as many classifications
as much as the number of thresholds τ . Each of those
classifications can be plotted in the Receiver Operating Char-
acteristic (ROC) space [6],[25]., the result is a curve that can
be used to measure the general performance of the classifier
and to choose the best tradeoff between misclassifications
and false alarms.

IV. EXPERIMENTAL SECTION

This section describes a series of experiments to test our
approach. First, a series of experiments was performed to
compare EDR performance with a standard GP and RM
(sections IV-A). Next, an experiment to test the performance
of RM in different levels of complexity is described in section
IV-B. Finally, an example, which illustrates the role of a set
of rules is showed in section IV-C.

A. Experiment: Comparison of EDR with a standard GP and
the RM

1) Objective: The objective of this experiment is to an-
alyze the performance of EDR and to compare this with a
standard GP and the RM performance.

2) Procedure: The set of rules generated by EDR, was
used to create twenty classifications using the same number
of thresholds τ . The parameters used to run RM are listed
in Fig. IV-A.

3) Observations: Fig. 1 shows the ROC curve created
by EDR. Notice that, the classifications provided by EDR
are well-distributed over the ROC curve, thus, it is possible
to find conservative and liberal predictions. Now, let us
discuss the points that form the curve. For instance, when τ
is equal to 0.50, the recall has a high performance because
EDR was able to detect 78% of the positive examples,
this result has not sacrificed the accuracy (78%). When
the investor’s risk-guidelines is conservative, EDR offers
a range of suitable classifications, for instance, when the
threshold τ= 0.70 the system is able to classify 23% (almost
a quarter) of the positive cases with a very high accuracy
(92%). On the other hand, when τ is smaller or equal to
0.40, then the classifier’s performance tends to decrease
because the number of new positive cases that are detected
is paid with a serious decrease on the accuracy and precision.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

AUC = .81

Precision Threshold (PT)

PT = .40

PT = .70

March,1998-January,2005
Rate of return : 15%
Number of days : 10
Tendency movement : Increase

Training data set :
Training examples: 887
Positive examples: 39 (4.3%)

Testing data set
Testing examples: 831
Positive examples: 24 (2.8%)

Number of runs : 20
Precision Threshold PT : 0.08
Population size ρ : 1,000
AUC : 0.81

EDR Parameters
Precision Threshold PT : 0.08
Population size ρ : 1,000
Number of initial spring ϕ: 10
Individuals random β : 20
Max number of rules µ : 2,500
Number of generations : 25
Hill-climbing prob : 0.14

Fig. 1. Barclays parameters and results

Standard GP comparison - The result of the best indi-
vidual produced by a standard GP is Recall=.14, Precision=
0.04 and Accuracy=0.87. This result is plotted in the point
(0.10, 0.15) in the ROC space, which describes a conservative
prediction. As can be noticed, a standard GP produces a
single prediction for every data set, in contrast, EDR provides
a range of classifications, which allows the investors to
tune the prediction according to their risk guidelines. If the
requirement of the user is to detect as many positive cases as
possible, the τ has to decrease in order to move to the liberal
part in the ROC space. In contrast, if the user’s preference is
to reduce the risk, then the τ has to increase in order to move

TABLE I
EDR RESULTS USING BARCLAYS, τ IS THE MINIMUM PRECISION

THRESHOLD. (A) RECALL, (B) PRECISION, (C) ACCURACY

τ (a) (b) (c) τ (a) (b) (c)

1.00 0.01 0.09 0.97 0.50 0.78 0.10 0.78
0.95 0.01 0.09 0.97 0.45 0.83 0.08 0.72
0.90 0.02 0.11 0.97 0.40 0.85 0.07 0.64
0.85 0.05 0.10 0.96 0.35 0.86 0.05 0.55
0.80 0.08 0.10 0.95 0.30 0.90 0.04 0.41
0.75 0.18 0.11 0.93 0.25 0.94 0.04 0.25
0.70 0.23 0.11 0.92 0.20 0.98 0.03 0.14
0.65 0.34 0.11 0.90 0.15 1.00 0.03 0.06
0.60 0.51 0.11 0.87 0.10 1.00 0.03 0.06
0.55 0.61 0.11 0.84 0.05 1.00 0.03 0.06

to the conservative part in the graph. Notice that, the recall
declines when τ increases because the selection of rules
becomes stricter and fewer rules are selected, decreasing the
number and variety of the rules in the repository. Note that
all the results provided by EDR have better recall than the
recall of the best GP individual. The result of the standard GP
is plotted in (0.10, 0.15) in the ROC space which describes
a conservative prediction. The EDR predictions have been
distributed along the ROC curve. This allows investors to
choose among a range of options the most suitable prediction
for their requirements. According to the experimental results,
it was possible to detect from 23% to 78% of the positive
cases with an accuracy higher than 78%. The GP has better
accuracy than the majority of the choices in EDR because
the GP tends to predict negative classification, which has a
high chance of being correct. The experiment show that EDR
is able to pick out rules that together classify more positive
cases.

RM comparison - The result provided by RM and EDR
is a set of classifications, which are distributed in the ROC
space. Thus we use the Area Under the ROC curve AUC
to compare the performance of the classifiers. The AUC
obtained by RM is 0.77, which is outperformed by the AUC
generated by EDR (0.81).

B. Experiment to test different levels of complexity

1) Objective: The objective of this experiment is to test
EDR using two data sets with different levels of complexity
and a data set whose signal was labeled at random, which
means that it does not have any pattern.

2) Procedure: We do not have a formal definition about
rule complexity, however, for simplicity we measure the
complexity of the data sets for the number of conditions
involved in the solution. When the number of conditions in
the solution increases the solution is more complex. In order
to control the complexity of the data sets in the experiment
we created three artificial data sets. The data set Artificial1
was generated as follows:

1) A set of 1,200 records was generated, every record
holds eight independent variables with real values.
Every variable was randomly generated in a range of
[0-1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Artificial 1 AUC =0.81
Artificial 2 AUC =0.79
Artificial 3 AUC =0.43

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Training data set
Number of examples : 600
Positive examples
Artificial1: 28 (4.6%)
Artificial2: 18 (3%)
Artificial3: 18 (3%)

Testing data set
Number of examples : 600
Positive examples
Artificial1: 29
Artificial2: 17
Artificial3: 18 (3%)
Number of runs : 20
Artificial1 AUC= .81
Artificial2 AUC= .79
Artificial3 AUC= .43

EDR Parameters
Precision Threshold PT : 6%
Population size ρ : 1,000
Number of initial spring ϕ: 10
Individuals at random β : 15%
Max number of rules µ : 2,000
Number of generations : 30
Hill-climbing probability : 15%

Fig. 2. Results using three Artificial Data set (Easy, difficult and random)

2) Every record was labeled with a class (positive or
negative). The records that meet the requirements in
at least one of the rules in S1 (see Fig. 3) is labeled as
positive, otherwise the record is classified as negative.

3) The data was split in two data sets (training and testing)
holding the same number of records (600).

The second artificial data set Artificial2 was created
repeating the steps 1-3 , but using S2 instead of S1. And
the third data set (Artificial3) was created using S3 (see
Fig, 3).

Fig. 3. Set of rules used to created the artificial data sets

S1={ R1 = var1 > 0.99
R2 = var2 < 0.009
R3 = var5 < 0.898 and var5 > 0.89
R4 = var5 < 0.01
R5 = var6 > 0.88 and var6 < 0.89 }

S2={ R1 = var1 > 0.5 and var1 < 0.58 and
var2 > 0.5 and var3 < 0.7 and
var4 < var3

R2 = var3 < 0.45 and var3 > var2 and
var3 > var4 and var3 > var5 and
var3 > var6

R3 = var8 < 0.898 and var8 > 0.86 and
var5 > 0.065 and var5 < 0.35 and
var3 > var7

R4 = var1 > 0.5 and var1 < 0.58 and
var2 > 0.5 and var3 < 0.7 and
var4 < var3 and var4 < var6

R5 = var6 > 0.56 and var7 > var6 and
var8 > var6 and var8 < var1

R6 = var1 > var7 and var1 > var6 and
var6 < 0.23 and var5 < var6}

S3= Random selection

3) Observation: Before to start the analysis of the results
in the testing data sets, let us present the results obtained by
EDR in the training data set for each of the experiments.
Using Artificial1 AUC=.99, Artificial2 AUC=.90 and
Artificial3 AUC=.91. As it can be observed in all cases
EDR captured patterns from the training data sets. However,
let us analyze the results in the testing data sets:

Artificial1 - According to our definition of complexity,
Artificial1 is a data set which has a low level of complexity.
As can be observed from Fig. 2 the AUC obtained by EDR
is .81, surprisingly EDR does not offer any conservative
prediction as it can de noticed in Table II. However, EDR
found classifications that detect the 70% of the positive cases
with accuracy of 80% when τ > .85. On the other hand when
τ decreases the detection of positive cases increases steadily
as the number of false alarms.

Artificial2 - Artificial2 is more complex than the pre-
vious data set. As can be observed from Fig. 2 the AUC
obtained by EDR is .79. It means that the performance of
EDR in Artificial1 was slightly better than in Artificial2.
As can be observed in the ROC curve, EDR was unable
to classify a small part of the positive cases. Those cases
were classified just when τ was really low. Looking for an
explanation of this phenomenon the data set was analysed, it
was discovered that rule R3 ∈ S2 produces a single positive
case in the testing data set but it did not generate any positive
case in the training data set. It means that the instance was
not identified because there was not a pattern to train EDR.

Artificial3 - As it was explained previously, this data set
was labeled randomly. It means that, there are no patterns
in the training data set to identify similar cases in future
data sets. As was expected EDR gathered patterns from the

TABLE II
EDR RESULTS USING ARTIFICIAL 1 DATA SET, τ IS THE MINIMUM

PRECISION THRESHOLD. (A) RECALL, (B) PRECISION, (C) ACCURACY

τ (A) (B) (C) τ (A) (B) (C)

1.00 0.70 0.15 0.80 0.50 0.84 0.10 0.65
0.95 0.70 0.15 0.80 0.45 0.85 0.11 0.65
0.90 0.70 0.15 0.80 0.40 0.87 0.09 0.59
0.85 0.70 0.15 0.80 0.35 0.92 0.09 0.54
0.80 0.72 0.15 0.80 0.30 0.94 0.08 0.47
0.75 0.74 0.15 0.78 0.25 0.98 0.07 0.37
0.70 0.74 0.15 0.78 0.20 0.98 0.06 0.27
0.65 0.76 0.13 0.74 0.15 1.00 0.05 0.08
0.60 0.77 0.12 0.72 0.10 1.00 0.05 0.05
0.55 0.77 0.12 0.72 0.05 1.00 0.05 0.05

TABLE III
EDR RESULTS USING ARTIFICIAL 2 DATA SET, τ IS THE MINIMUM

PRECISION THRESHOLD. (A) RECALL, (B) PRECISION, (C) ACCURACY

τ (A) (B) (C) τ (A) (B) (C)

1.00 0.65 0.14 0.88 0.50 0.81 0.06 0.64
0.95 0.65 0.14 0.88 0.45 0.82 0.06 0.63
0.90 0.65 0.14 0.88 0.40 0.86 0.05 0.55
0.85 0.66 0.14 0.88 0.35 0.86 0.05 0.49
0.80 0.67 0.14 0.87 0.30 0.87 0.04 0.44
0.75 0.69 0.12 0.85 0.25 0.88 0.04 0.35
0.70 0.69 0.12 0.85 0.20 0.89 0.03 0.26
0.65 0.77 0.08 0.73 0.15 0.92 0.03 0.11
0.60 0.78 0.07 0.71 0.10 0.92 0.03 0.10
0.55 0.78 0.07 0.70 0.05 0.92 0.03 0.10

training data set, but these were not repeated in the testing
data set. Fig. 2 shows the ROC curve plotted by EDR using
Artificial3. As can be seen, the AUC obtained is .43, the
performance of EDR was very low. EDR produced a random
classification because the patterns in the training data set
were not representative of the examples in the testing data
set. The main reasons to get a low performance in a classifier
based on supervised learning can be summarized as follows:

1) The data set does not contain any patterns or the
independent variables do not describe the behavior of
the data set.

2) The signal in the data set is labeled incorrectly
3) The patterns in the training data set do not repeat in

the testing data set
The general observations of this experiment are the follow-

ing: EDR is able to discover patterns to classify rare cases in
imbalanced data sets. However, it is necessary to provide a
representative training data set in order to capture the patterns
to predict future cases. The complexity of the rules does not
seem to affect seriously the performance of EDR. However,
more research need to be done about this.

C. An illustrative example to analyze a set of decision rules
produced by EDR

1) Objective: This section analyzes a set of decision rules
that were produced by EDR, the objective of this study is to
show how a bigger collection of rules can help to detect the

TABLE IV
EDR RESULTS USING ARTIFICIAL 3 DATA SET, τ IS THE MINIMUM

PRECISION THRESHOLD

τ (A) (B) (C) τ (A) (B) (C)

1.00 0.14 0.02 0.81 0.50 0.24 0.02 0.66
0.95 0.14 0.02 0.81 0.45 0.24 0.02 0.66
0.90 0.14 0.02 0.81 0.40 0.25 0.02 0.64
0.85 0.14 0.02 0.81 0.35 0.25 0.02 0.63
0.80 0.14 0.02 0.81 0.30 0.37 0.02 0.52
0.75 0.14 0.02 0.81 0.25 0.46 0.02 0.41
0.70 0.14 0.02 0.81 0.20 0.55 0.02 0.32
0.65 0.15 0.02 0.79 0.15 0.90 0.03 0.09
0.60 0.15 0.02 0.79 0.10 0.90 0.03 0.09
0.55 0.15 0.02 0.79 0.05 0.90 0.03 0.09

minority class in imbalanced environments.
2) Procedure: The example was taken from Barclays,

where the training and the testing data sets are composed
by 400 records each. The training data set has 15 positive
examples, while the testing has 13. The set of rules for this
analysis achieved a precision of 1 in the training data set,
the set of rules is displayed in Table V. As can be seen from
Table VI, the complete set of rules classifies eight positive
instances (recall= 53%) in the training data set. As can be
observed, every rule classifies three or four instances each.
Given that the precision of the rules was 1, it means that
the rules do not classify any negative case. Obviously there
is overlapping in the classification. However, an important
question arises here: Is it useful to keep a collection of
rules that overlap their predictions?. This question is relevant
because this will support one of the main claims of this
method.

3) Observations: Let us analyze the set of rules in Table
V, as the novelty is a basic condition to be included in the
repository, notice that rules contain common conditions, but
there are not identical rules. However, there are overlapping
in the classification and even identical classification in rules
R6, R7, R8, R9 and in rules R11, R14, R15 and R17. It means
that the genotype is different, but the phenotype is similar.
Obviously we are taking as the phenotype the behavior of
rule. In the mentioned cases the rules produced the same
results, let us analyze in detail the conditions and variables
that are involved in each set of rules.

Let Sa = {R6, R7, R8, R9} be the set of rules to analyze

As was expected Sa holds a set of different rules because
EDR provides a mechanism to select different patterns,
avoiding repeating the same rules in the repository (see
section III-D. However, it is important to analyse the vari-
ables and relations that are involved in each rule in order to
determine if those rules could be correlated.

As can be seen from Table V R6 is different from the
other rules in Sa, because R6 does not have any equal
hard condition or similar condition with another rule in Sa.
On the other hand R7, R8 and R9 share the conditions:
var10 < var17 and var7 > 0.0727, as the following
paragraph shows:

R6 = var3 > var18 ∧ var11 < −0.5056

Common conditions

R7 = var4 > var15 ∧
z }| {
var10 < var17 ∧ var7 > 0.0727

R8 = var15 < var22 ∧ var10 < var17 ∧ var7 > 0.0727
R9 = var15 < var20| {z } ∧ var10 < var17 ∧ var7 > 0.0727

Different
condition

Let Rc be the rule that is formed by the common
conditions in R7, R8 and R9 thus Rc = {var10 <
var17 ∧ var7 > 0.0727}. A new evaluation was performed
using Rc, the result was TP =4, FP=15,FN=11 and TN=370.
It means that rules R7, R8 and R9 are more specialized than
Rc, because Rc classifies 15 false alarms.
Given that var15 is involved in Different condition in
R7, R8, R9 it is important to verify if the other variables
(var22 and var20) are correlated and if var4 is inversely
correlated to var22 and/or var20. As can be seen from
Table VIII, the indicators are: var4 =PTRB-50, var20=
LDNIB3MMA-50 and var22=UK01Y00MA-50. At this
point the financial and technical analysis knowledge of
the user is crucial to determine the conditions in the
rules. Now, let us to analyse the following set of rules:
Sb = {R11, R14, R15, R17}.
Obviously Sb holds a set of different rules. However, it is
important to analyse the variables and relations that are
involved in each rule in order to determine if those rules
could be correlated. As can be seen from Table V, R17

is different from the other rules in Sb. Because R17 does
not have any equal hard condition or similar condition
with another rule in Sb. On the other hand, R11, R14 and
R15 have in common the conditions: var7 < 0.0727 and
var12 > Threshold. where Threshold ∈ [−1185,−1082]

R17 = var1 < −0.072 ∧ var5 > −0.0445

Common conditions

R11 = var8 < var13 ∧
z }| {
var7 > 0.0727 ∧ var12 > −1082.

R14 = var13 < −0.16 ∧ var7 > 0.0727 ∧ var12 > −1082.
R15 = var4 < −0.213| {z } ∧ var7 > 0.0727 ∧ var12 > −1185.

Different
condition

Let Rd be the rule that is formed by the common condi-
tions in R11, R14, and R15 thus Rc = {var7 > 0.0727 ∧
var12 > −1185.}. A new evaluation was performed using
Rd, the result was TP =3, FP=11,FN=12 and TN=374. It
means that R11, R14 and R15 are more specialized than Rd

because these do not classify any false alarm as Rd does.
R11 differs because of the condition var8 < var13 where
price volatility of 50 days is bigger than moving average of
10 days of the momentum indicator of 10 days. The fact that
R11 and R14 classify the same instances in the testing data
set could suggest a correlation between them. Finally, it is
important to verify if var4 and var13 are correlated. As can
be seen in table VIII the indicators are: var4 =PTRB-50,
var12= MOM-10MA-10.

There is a great variety of decision trees that can be formed
with a subset of rules in Table V that does not classify any
positive case in the testing data set, for example:

Ta = {R2, R4, R17}
Tb = {R1, R5, R15}
Tc = {R3, R4, R11}
As can be seen in Table VII, Ta, Tb, Tc are not able to

classify any positive case in the testing data set. However, if
we evaluate the fitness of Ta, Tb, Tc using the training data
set, the performance is equal to the complete set of rules in
Table V, because every rule has precision =1. It means that
the classification in the training data set for:
Ta= Tb= Tc = {TP=8,FP=0,FN=5 and TN=387}. However,
in the testing data set, Ta, Tb, Tc do not classify any positive
example. There are many classifiers systems based on GP
which claim to evolve a sets of rules. these calculate the
fitness of the individual by measuring the result of the
classification and the ”simplicity” of the solutions, as an
instance [3], [4], [5], [17]. Other works just divide the
resulting decision tree in rules, for example [24]. In those
cases the GP is favoring the shortest solutions as Ta, Tb,
Tc instead of a bigger tree that hold more rules. On the
other hand Yin et al [33] create a set of rules using GP
discarding rules in order to find the minimal set of rules.
That procedure was implemented to reduce the bloat in the
evolutionary process.

V. CONCLUSIONS

In this paper, we have explained the Evolving Decision
Rules (EDR) approach. This method was designed to classify
the minority class in imbalanced data sets. The system’s
output is a set of decision rules, which based on a threshold
τ produces a range of classifications to suit the investor’s
preferences. For a detail analysis, we have used the Receiver
Operating Characteristic (ROC) curve, which has helped to
visualize the distribution of the classifications in the ROC
space. In the same vein, we have used the Area Under the
ROC curve (AUC) to measure the general performance of
our approach and to compare this with Repository Method
proposed in [9], [15], [10] and a standard GP.

The core of our approach is based on GP, which is
aided by a repository of rules. The aim of this repository
is to collect useful patterns that are used to produce the
following population in the evolutionary process. The main
operators of EDR are the mutation and hill-climbing, these
produce instances of the collected patterns. Furthermore a
simplification process is performed to simplify the rules in
the repository in order to produce understandable solutions.
On the other hand the removal of extra-code, allows us to
decrease the computational effort.

From experimental results in section IV-A it was observed
that EDR produces a series of classifications to adapt to the
user needs (from conservative to liberal predictions).

An illustrative example was analyzed in section IV-C to
explain how a bigger collection of rules is able to classify
more positive cases in imbalanced environments. As it can be

TABLE V
SET OF RULES FOR THE EXAMPLE 1

Rule Rule Description Detec-
tions

R1 var9 > var15 and var10 < var17 and
var7 > 0.0727

4

R2 var3 > var24 and var6 < var7 and
var21 > var24

4

R3 var3 > var20 and var13 < −527.9 4
R4 var3 > var18 and var6 > var13 and

var9 < var18 and var21 > var24

4

R5 var3 > var24 and var6 < 0.0413 4
R6 var3 > var18 and var11 < −0.5056 4
R7 var4 > var15 and var10 < var17 and

var7 > 0.0727
4

R8 var10 < var17 and var15 < var22 and
var7 > 0.0727

4

R9 var10 < var17 and var15 < var20 and
var7 > 0.0727

4

R10 var1 < var21 and var2 < var21 and
var3 > var21 and var24 < 0.0136

3

R11 var8 > var13 and var7 > 0.0727 and
var12 > −1082.

3

R12 var10 < var20 and var15 < var23 and
var7 > 0.0727

3

R13 var10 < var21 and var6 < 0.0936 and
var22 < −0.067

3

R14 var7 > 0.0727 and var12 > −1082. and
var13 < −0.160

3

R15 var4 < −0.213 and var7 > 0.0727 and
var12 > −1185.

3

R16 var10 < var20 and var15 < var20 and
var7 > 0.0727

3

R17 var1 < −0.072 and var5 > 0.0445 3

observed from this example, EDR produces comprehensible
rules that can be analyzed by the user in order to understand
the conditions and variables in the rule. Thus the users can
combine their knowledge in order to make a more informed
decision.

REFERENCES

[1] Peter Angeline, Genetic Programming and Emergent Intelligence,
Advances in Genetic Programming (Kenneth E. Kinnear, Jr., ed.), MIT
Press, 1994, pp. 75–98.

[2] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina
Monard, A study of the behavior of several methods for balancing
machine learning training data, SIGKDD Explor. Newsl. 6 (2004),
no. 1, 20–29.

[3] Celia C. Bojarczuk, Heitor S. Lopes, and Alex A. Freitas, Discovering
comprehensible classification rules by using genetic programming:
a case study in a medical domain, Proceedings of the Genetic
and Evolutionary Computation Conference (Orlando, Florida, USA)
(Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon,
Vasant Honavar, Mark Jakiela, and Robert E. Smith, eds.), vol. 2,
Morgan Kaufmann, 13-17 July 1999, pp. 953–958.

[4] Celia C Bojarczuk, Heitor S Lopes, and Alex A. Freitas, An innovative
application of a constrained-syntax genetic programming system to
the problem of predicting survival of patients., Genetic Programming:
Proc. 6th European Conference (EuroGP-2003) (C. Ryan, M. Keijzer,
R. Poli, T. Soule, E. Tsang, and E. Costa, eds.), Lecture Notes in
Computer Science, vol. 2610, Springer-Verlag, April 2003.

[5] Celia C. Bojarczuk, Heitor S. Lopes, Alex A. Freitas, and Edson L
Michalkiewicz, A constrained-syntax genetic programming system for
discovering classification rules: application to medical data sets,
Artificial Intelligence in Medicine 30 (2004), no. 1, 27–48.

TABLE VI
POSITIVE INSTANCES CLASSIFIED IN THE TRAINING DATA SET, WHERE

ei IS A POSITIVE INSTANCE CORRECTLY PREDICTED

Training data set
Rule e1 e2 e3 e4 e5 e6 e7 e8 Sum
R1 X X X X 4
R2 X X X X 4
R3 X X X X 4
R4 X X X X 4
R5 X X X X 4
R6 X X X X 4
R7 X X X X 4
R8 X X X X 4
R9 X X X X 4
R10 X X X 3
R11 X X X 3
R12 X X X 3
R13 X X X 3
R14 X X X 3
R15 X X X 3
R16 X X X 3
R17 X X X 3
Sum 4 12 14 3 5 9 9 4

TABLE VII
POSITIVE INSTANCES CLASSIFIED IN THE TESTING DATA SET, WHERE ei

IS A POSITIVE INSTANCE CORRECTLY PREDICTED

Testing data set
Rule e1 e2 e3 Sum
R1 0
R2 0
R3 0
R4 0
R5 0
R6 X 1
R7 0
R8 0
R9 0
R10 0
R11 X 1
R12 0
R13 X 1
R14 X 1
R15 0
R16 0
R17 0
Sum 2 1 1

[6] Tom Fawcett, Roc graphs: Notes and practical considerations for
researchers, Introductory paper, 2004.

[7] Tom Fawcett and Foster J. Provost, Adaptive fraud detection, Data
Mining and Knowledge Discovery 1 (1997), no. 3, 291–316.

[8] L.J. Fogel, A. J. Owens, and M.J. Walsh, Adaptation in natural and
artificial systems, pp. 131–156, MIT Press, Cambridge MA, 1975.

[9] Alma L Garcia-Almanza and Edward P.K. Tsang, The repository
method for chance discovery in financial forecasting, KES2006 10th
International Conference on Knowledge-Based and Intelligent Infor-
mation and Engineering Systems (Springer-Verlag, ed.), 2006.

[10] , Simplifying decision trees learned by genetic algorithms,
Congress on Evolutionary Computation (CEC), 2006, pp. 7906–7912.

[11] , Detection of stock price movements using chance discovery
and genetic programming, Innovation in Knowledge-Based and Intel-
ligent Engineering Systems (2007).

[12] , Repository method to suit different investment strategies,
Congress on Evolutionary Computation (CEC), 2007.

[13] Alma L Garcia-Almanza, Edward P.K. Tsang, and Edgar Galvan-
Lopez, Evolving decision rules to discover patterns in financial data
sets, Computational Methods in Financial Engineering (2007).

TABLE VIII

var1 = Price moving average 12 days
var2 = Price moving average 12 days
var3 = Price Trading breaking rule 5 days
var4 = Price Trading breaking rule 50 days
var5 = Filter rule 5 days
var6 = Filter rule 63 days
var7 = Price volatility 12 days
var8 = Price volatility 50 days
var9 = Volume moving average 10 days
var10 = Volume moving average 60 days
var11 = Momentum indicator 10 days
var12 = Momentum indicator 60 days
var13 = Momentum 10 days moving average 10 days
var14 = Momentum 60 days moving average 60 days
var15 = Generalized Momentum indicator 10 days
var16 = Generalized Momentum indicator 60 days
var17 = FOOTSIE moving average 12 days
var18 = FOOTSIE moving average 50 days
var19 = LIBOR: 3 months moving average 12 days
var20 = LIBOR: 3 months moving average 50 days
var21 = UK01Y00 moving average 12 days
var22 = UK01Y00MA moving average 50 days
var23 = UK10Y00MA moving average 12 days
var24 = UK10Y00MA moving average 50 days

[14] Alma Lilia Garcia-Almanza and Edward P.K. Tsang, Repository
method technical report.

[15] , Forecasting stock prices using genetic programming and
chance discovery, 12th International Conference On Computing In
Economics And Finance, 2006.

[16] M Greiner, D Pfeiffer, and RD. Smith, Principles and practical
application of receiver-operating characteristic analysis for diagnostic
tests, Prevent Veterinary Med 45 (2000), 23–41.

[17] Jih-Jeng Huang, Gwo-Hshiung Tzeng, and Chorng-Shyong Ong, Two-
stage genetic programming (2SGP) for the credit scoring model,
Applied Mathematics and Computation 174 (2006), no. 2, 1039–1053.

[18] Nathalie Japkowicz, The class imbalance problem: Significance and
strategies, Proceedings of the 2000 International Conference on Arti-
ficial Intelligence (IC-AI’2000), vol. 1, 2000, pp. 111–117.

[19] Kenneth A. De Jong and William M. Spears, Learning Concept
Classification Rules using Genetic Algorithms, Proceedings of the
Twelfth International Conference on Artificial Intelligence IJCAI-91,
vol. 2, 1991.

[20] John Koza, Genetic programming: On the programming of computers
by means of natural selection, The MIT Press, Cambridge, Mas-
sachusetts, 1992.

[21] Miroslav Kubat, Robert C. Holte, and Stan Matwin, Machine learning
for the detection of oil spills in satellite radar images, Machine
Learning, vol. 30, 195-215, 1998.

[22] Jin Li, A genetic programming based tool for financial forecasting,
PhD Thesis, University of Essex, Colchester CO4 3SQ, UK, 2001.

[23] Kate McCarthy, Bibi Zabar, and Gary Weiss, Does cost-sensitive
learning beat sampling for classifying rare classes?, UBDM ’05:
Proceedings of the 1st international workshop on Utility-based data
mining (New York, NY, USA), ACM Press, 2005, pp. 69–77.

[24] Ayahiko Niimi and Eiichiro Tazaki, Rule discovery technique using
genetic programming combined with apriori algorithm, Discovery
Science, Third International Conference, DS 2000, Kyoto, Japan,
December 4-6, 2000, Proceedings (Setsuo Arikawa and Shinichi Mor-
ishita, eds.), Lecture Notes in Computer Science, vol. 1967, Springer,
2000.

[25] Foster J. Provost and Tom Fawcett, Robust classification for imprecise
environments, Machine Learning, no. 3, 203–231.

[26] Stephen Smith, Flexible learning of problem solving heuristics through
adaptive search, Proceedings 8th International Joint Conference on
Artificial Intelligence, August 1983.

[27] Terence Soule, Code growth in genetic programming, PhD Thesis,

College of Graduate Studies, University of Idaho, Moscow, Idaho,
USA, 15 May 1998.

[28] Edward P.K. Tsang, Jin Li, and J.M. Butler, Eddie beats the bookies,
International Journal of Software, Practice and Experience, 10, vol. 28,
Wiley, August 1998, pp. 1033–1043.

[29] Edward P.K. Tsang, Sheri Markose, and Hakan Er, Chance discovery
in stock index option and future arbitrage, New Mathematics and
Natural Computation, World Scientific, 3, vol. 1, 2005, pp. 435–447.

[30] Edward P.K. Tsang, P. Yung, and Jin Li, Eddie-automation, a decision
support tool for financial forecasting, Journal of Decision Support
Systems, Special Issue on Data Mining for Financial Decision Making,
4, vol. 37, 2004.

[31] Giedrius Vanagas, Receiver operating characteristic curves and com-
parison of cardiac surgery risk stratification systems, Interact Cardio-
Vasc Thorac Surg 3 (2004), no. 2, 319–322.

[32] Gary M. Weiss, Mining with rarity: A unifying framework, Special
issue on learning from imbalanced datasets, vol. 6, 2004, pp. 7–19.

[33] Chuanhuan Yin, Shengfeng Tian, Houkuan Huang, and Jun He, Apply-
ing genetic programming to evolve learned rules for network anomaly
detection, Advances in Natural Computation, First International Con-
ference, ICNC 2005, Proceedings, Part III (Changsha, China) (Lipo
Wang, Ke Chen, and Yew-Soon Ong, eds.), Lecture Notes in Computer
Science, vol. 3612, Springer, 2005, pp. 323–331.

