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A B S T R A C T

This paper presents an evolutionary algorithms based constrain-guided method (CGM) that is capable of

handling both hard and soft constraints in optimization problems. While searching for constraint-

satisfied solutions, the method differentiates candidate solutions by assigning them with different

fitness values, enabling favorite solutions to be distinguished more likely and more effectively from

unfavored ones.

We illustrate the use of CGM in solving two economic problems with optimization involved: (1)

searching equilibriums for bargaining problems; (2) reducing the rate of failure in financial prediction

problems. The efficacy of the proposed CGM is analyzed and compared with some other computational

techniques, including a repair method and a penalty method for the problem (1), a linear classifier and

three neural networks for the problem (2), respectively. Our studies here suggest that the evolutionary

algorithms based CGM compares favorably against those computational approaches.
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1. Introduction

Many economic problems, such as bargaining, financial
investment, supply-chain management, vehicle routing and time-
tabling can be treated as optimization problems with certain
constraints associated. Optimization entails attempting to find the
‘‘best solution’’ among all possible solutions, where the ‘‘best’’ is
always subject to various problem-specific conditions. For
example, a delivery company would always like to minimize its
overall costs by reducing the total travelling distance and the total
delivery time, given a number of customer delivery jobs, a number
of vehicles, and a number of driver. To find good solutions to this
problem in reality, those constraints mentioned above have to be
met. Optimization problems with constraint satisfaction are
computationally demanding by nature. To find the best solutions
to the problems within an acceptable time is often beyond the
capacity of the current computer power. To fill in the gap, along
with developing more powerful computers, research attempts to
develop and employ faster algorithms to meet this demand.

Many economic problems involve both hard and soft con-
straints. Hard constraints describe feasibility of solutions [1,2].
Hard constraints must be satisfied. When several hard constraints
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exist, a feasible solution should satisfy all of them. Soft constraints

describe levels of preferences, probability, cost, certainty and many
other criteria [3]. A soft constraint can be violated. A soft constraint
expresses a preference of one group of solutions (for example,
having a lower investment risk) over another group of solutions
(having a higher investment risk). Solutions can be partially
ordered by soft constraints [4]. Some techniques for handling hard
constraints are adapted to handle soft constraints [3–5]. The
simultaneous existence of both hard and soft constraints
complicates problem solving, because a constraint violation is
potentially allowed. Thus such a problem becomes a combinatorial
constrained optimization problem, rather than a simple constraint
satisfaction problem [6].

Evolutionary algorithms are acknowledged as good solvers for
economic problems [7–9]. Penalty methods [10–12,15] and repair
methods [11,13–15] are among the most popular constraint
handling techniques used with evolutionary algorithms. Penalty
methods and repair methods were designed to satisfy hard
constraints. However, constraints in many economic problems are
complicated in that soft constraints can be sacrificed for hard
constraints or for other soft constraints. Such features are
captured by neither penalty methods nor repair methods. Thus,
potential problems arise when it is difficult or inefficient to define
a penalty function or to repair solutions to satisfy all hard
constraints, while still to take soft constraints into consideration.
These two methods cannot decide which constraint can be
sacrificed for another. To our best knowledge, little research has
thod with evolutionary algorithms for economic problems, Appl.
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Fig. 1. An example of a search space which has two feasible, infeasible and two

preferable spaces. Two soft constraints map the two preferable spaces. The black

diamond is a feasible solution inside both preferable search spaces.

1 An informal example helps understand the idea of hard and soft constraints. The

objective is to have a drink. The hard constraint is that ‘‘I only take diet drinks’’; the

soft constraint is ‘‘I prefer Coke to Pepsi’’. Coke is a preferred choice but a non-diet

Coke is unacceptable as it violates the hard constraint. In this simple case, (a) ‘‘a diet

Coke’’ is the best choice which meet the objective and satisfies all constraints; (b) ‘‘a

diet Pepsi’’ is the second order choice which satisfies the hard constraint but is not a

soft constraint; (c) ‘‘no diet drink is available’’ or ‘‘no drink at all’’ is the worst as I can

not achieve the goal of having a drink.
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been done into simultaneously handling both soft and hard
constraints while employing population-based metaheuristic
optimization algorithms such as genetic programming (GP) and
genetic algorithms (GAs).

This paper presents a constraint-guided method (CGM) that
is capable of effectively handling two types of constraints
aforementioned in solving optimization problems. This method
is currently applied with population-based evolutionary algo-
rithms. Its central idea is based on the fact that candidate
solutions to an optimization problem with both hard and soft
constraints can be categorized into three qualitatively different
sets: the infeasible, the feasible and the preferable. Solutions in
an infeasible set do not satisfy all hard solutions. In contrast,
solutions in a feasible set do satisfy all hard constraints, as well
as some soft constraints if not all. The solutions in the preferable
set are usually considered as best candidate solutions. Within
the feasible set, there are some preferable solutions that satisfy
some soft constraints with higher priorities. An ideal search
approach should be capable of not only identifying the feasible
set among all possible solutions, but also distinguishing a
preferable set from the feasible sets more easily. This is the
motivation under the development of CGM. CGM enables
evolutionary algorithms to be a successful optimization
approach to find a preferable set within a huge solution space.
We achieve this goal by using a carefully designed fitness
function, which incorporates problem-specific knowledge about
hard and soft constraints directly, without treating them
separately.

We demonstrate the efficacy of CGM through testing it on two
economic optimization problems: bargaining problems and
financial prediction problems. We apply CGM with genetic
programming to these two problems. For a classic bargaining
problem, we compare the solutions provided by CGM, by a penalty
method, by a repair method and by using no constraint handling
technique respectively against the benchmark solutions: the
game-theoretic equilibriums. For the financial prediction problem,
we compare the performance of financial trading rules generated
by using CGM against those generated by neural networks and a
linear classifier [16]. Both case studies here suggest that the
evolutionary algorithms based CGM compares favorably against
those computational approaches.

This paper is organized as follows: Section 2 details a generic
CGM. Section 3 applies CGM to bargaining problems. We describe
our developing process towards the solution representation, GP set-
up and a CGM-based fitness function. We compare the experimental
results from using CGM against two well known methods of
constraint handling techniques. Section 4 details the application of
CGM to achieve a low rate of failure in financial prediction problems.
We compare the performance of CGM with genetic programming
against that of the linear classifier and against that of Time Delay
Neural Networks, Recurrent Neural Networks and Probabilistic
Neural Networks. Finally, Section 5 concludes.

2. Constraint-guided method

An optimization problem with constraint satisfaction is defined
as ðX;D;C; f Þ. X is a finite set of variables, xi 2X and i ¼ 1; . . . ;n. n is
the number of solutions. D is a finite set of domains where xi 2X

takes its value from the corresponding domain dxi
2D.

C is a finite set of solution sets. Each constraint i maps ci, ci 2C. A
constraint may take the form of a set (of legal or illegal assignment
combinations) or a function. Hard constraint(s) defines feasibility
of solutions. huðu ¼ 1; . . . ; jÞ is a set of solutions which satisfies the
hard constraint u, hu ¼ cu. H ¼ h1 \h2 � � � \h j. A feasible solution x

must satisfy all hard constraints and is in the set H: x2H.
A soft constraint defines preference properties in solutions.
Please cite this article in press as: N. Jin, et al., A constraint-guided me
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svðv ¼ jþ 1; . . . ; lÞ is a set of solutions which satisfies the soft
constraint v, sv ¼ cv. Variables u; v; i and j are positive integers.
A preferable solution does not need to satisfy all soft constraints.
If a solution x satisfies all soft constraints, then x2 S where
S ¼ s j \ s jþ1 � � � \ sl. Please note that a preferable solution set sv is
not necessary a subset of the feasible set H1. Fig. 1 illustrates an
example of the relationship among feasible, infeasible and
preferable solution sets in the search space.

The function f maps a solution x to an objective value. If T is the
set of solution tuples of ðX;D;CÞ, then f : T! r, r is a real value. The
task is to find the solution tuple with the optimal f value with
regard to the application-dependent optimization max f ðxÞ.

CGM is a generic method, applicable to population-based
metaheuristic optimization algorithms. We apply an evolutionary
algorithm, in particular GP as the search tool to the following
economic problems. As known, the genetic operators mutation and
crossover are ‘blind’ to constraints [17], so the selection becomes
the major way to guide search into feasible and preferable spaces.
CGM utilizes the selection via adjusting fitness values according to
a solution’s satisfaction to constraints.

The pseudo-code of CGM is

Here f is the function to be optimized. Selection methods
(such as fitness proportional selection, rank based selection and
tournament selection) and their implementation influence the
selection pressures. It is beyond the scope of this paper but we
recommend using selection methods which maintain relatively
small selective pressures.
thod with evolutionary algorithms for economic problems, Appl.
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Definition 1. Fitness function of CGM:

RðxÞ ¼

f ðxÞ þ f 0 if x2H^ x2 S
f ðxÞ þ k if x2H^ x =2 S^ x2 s jþ1

f ðxÞ þ k0 if x2H^ x =2 S^ x2 s jþ2

f ðxÞ þ k00 if x2H^ x =2 S
^ x2 s jþ1 ^ x2 s jþ2

� � �
hðxÞ if x =2H

8>>>>>>>><
>>>>>>>>:

(1)

The fitness function of CGM is RðxÞ. The optimality of RðxÞ
implies that all constraints are satisfied. f 0; k; k0 and k00 can be a
function or a constant, where f 0 �0 ( f 0 is not strictly necessary
but is included so that k, k0, k00 and h do not have to return
negative values to meet the above conditions). For a specific
problem, RðxÞ is accomplished by instantiating f 0, k, k0, k00 and
hðxÞ. The effective definitions of f 0, k, k0, k00 and hðxÞ can channel
problem-dependent knowledge about constraints into the search
via fitness functions.

The conditions in Eq. (1) separate solutions sets in order.
Firstly, a solution x that satisfies all hard and soft constraints is
better than any solution x0 that violates at least one constraint,
even when f ðxÞ equals f ðx0Þ. So in RðxÞ, we have
f ðxÞ þ k< f ðxÞ þ f 0, f ðxÞ þ k0< f ðxÞ þ f 0, f ðxÞ þ k00< f ðxÞ þ f 0

and hðxÞ< f ðxÞ þ f 0. Secondly, any feasible solution is better than
any infeasible solution: f ðxÞ þ f 0>hðxÞ, f ðxÞ þ k>hðxÞ, f ðxÞ þ
k0>hðxÞ and f ðxÞ þ k00>hðxÞ. Thirdly, how to order the importance
of soft constraints and combinations of soft constraints is
problem-dependent. In general, for feasible solutions, the more
soft constraints they satisfy, the higher their fitness: f ðxÞ þ
k< f ðxÞ þ k00 and f ðxÞ þ k0< f ðxÞ þ k00. Some times, soft con-
straints may not be strictly ordered. For example, feasible
solutions which satisfy only one soft constraint s jþ1 or s jþ2, can
have different fitness values: f ðx1Þ þ k or f ðx2Þ þ k0 when
f ðx1Þ ¼ f ðx2Þ. Finally, infeasible solutions are given fitness values

so that CGM does not prevent a search from considering infeasible
spaces. This is because infeasible solutions may contain valuable
genetic materials that are needed for finding globally optimal
solutions. However, CGM discourages infeasible solutions to
produce offsprings through selection. Thus, under the ordering
mechanism described above, evolution is expected to guide
search into more promising spaces where the fitness values are
higher.

We summarize the major features of CGM:

(1) Firstly CGM can tackle both hard and soft constraints.
(2) Secondly, instead of giving penalty or repairing infeasible

solutions, CGM differentially awards fitness values to encou-
rage feasible and preferable solutions.

(3) Thirdly, instead of using information about solutions and
search space (for example the distance of an infeasible
solutions to a feasible region), CGM exploits problem-specific
information about constraints and directly ‘‘translates’’ such
information into the fitness function.

In the following sections, we will demonstrate how to apply
CGM to two problems: (1) searching equilibriums of bargaining
problems and (2) reducing the rate of failure in financial prediction
problems.

3. Constraint-guided method for bargaining problems

In this section, we will apply the constraint-guided method,
CGM to bargaining problems which contain both hard and soft
constraints. We will compare the performance of CGM against two
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other ways of handling constraints which are also used together
with genetic programming.

Bargaining situations are ubiquitous in social and economic
activities, such as political parties’ coalitions for elections, threats
of nuclear war and reaching new international trade agreements.
Bargaining is a process of achieving an agreement on how to divide
a common interest between (among) players [18]. Clearly all
parities involving into a bargaining attempt to maximize their
profits via this process. Very often, bargaining parties are
constrained by time, resources and initiative [19] and such
constraints are always hard to deal with.

3.1. Bargaining problem and its constraints

A classic bargaining problem is modelled by Rubinstein [20]. It
describes a bargaining scenario (game) wherein two player P1 and
P2 make offers and counter-offers alternately until an offer or a
counter-offer is accepted by the other. Both P1 and P2 try to
maximize their payoffs. For convenience, we denote an offer xi

which is proposed by player i for himself and the rest of cake
x j ¼ 1� xi for the other. An offer takes the form of a percentage of
the cake, which is a number between 0 and 1. A payoff deteriorates
over time, which motivates players to make agreements as soon as
possible. A share of cake is worth more in round t than in round
t þ 1, than in round t þ 2, etc. Player i’s discount factor di 2 ð0;1Þ is
his bargaining cost per time interval, measuring the cost of time.
di ¼ e�ri where ri is the player i’s discount rate. If an agreement is
reached at time t, the payoff pi gained by player i whose share is xi

from this agreement is, pi ¼ xid
t
i . In the game-theoretic equili-

brium, P1 obtains:

x�1 ¼
1� d2

1� d1d2
(2)

and P2 obtains the rest of cake: 1� x�1. This solution is called the
Perfect Equilibrium Partition (PEP). Game-theoretic analysis and
proof can be found in [20,18]. This bargaining problem is simple
yet is precise enough to allow for rigorous examination of CGM.

As both players try to optimize their payoffs while are
constrained by their time cost di, this problem can be classified
as an optimization problem with constraints. Obviously this
bargaining problem has a hard constraint C1:

C1. Any share xi of cake should not be larger than the size of
cake: xi 2 ð0;1�. Any share that does not satisfy this constraint is
infeasible. This constraint must be satisfied.

From the definition of the discount factor, we derive two soft
constraints:

C2. Everything else being equal, the higher discount factor a
player i has, the larger share xi that player i obtains.
C3. Everything else being equal, the higher discount factor the
other player j has, the smaller share xi player i gets.

In this problem, C2 and C3 are equally important.

3.2. Genetic programming set-up

We design an evolutionary system to tackle this bargaining
problem, trying to find good bargaining strategies. In this system,
each player has a set (or population) of candidate solutions. Each
player has his own solution set because P1 may have a first-
move advantage [18] and therefore they may apply different
strategies.
thod with evolutionary algorithms for economic problems, Appl.
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Table 1
Summary of the genetic programming parameters and operators.

GP parameters Values

Terminal set fd1; d2;1;�1g
Functional set fþ;�;�; �g (� is Protected)

Population size 100

Number of generations 300

Initial max depth 5

Maximum nodes of a GP program 50

Initialization method Grow

Selection method Three-member tournament

Crossover method [9]

Crossover rate (0, 0.1)

Mutation method Sub-tree mutation

Mutation rate (0.01, 0.3)

N. Jin et al. / Applied Soft Computing xxx (2009) xxx–xxx4

G Model

ASOC-554; No of Pages 12
The evolutionary system works as follows: candidate
solutions in a population independently undergo selection
based on their performance (fitness). Better performed candi-
date solutions obtain higher probability to be taken as ‘‘raw
materials’’ which will be genetically modified in order to breed
new solutions of the forthcoming generation. Newly created
candidate solutions will be assessed against the candidate
solutions of another population that has gone through a similar
evolutionary process. Note that the same genetic operators
(selection, crossover and mutation) are employed for both
populations.

3.2.1. Solution representation

As the game-theoretic solution PEP is represented by a function
and we plan to evolve solutions which include variables d1 and d2,
we use GP for its convenience of coping with function-based
representations [9].

In this bargaining scenario, time is an important element. The
cost of time is measured by discount factors. When time elapses,
players decrease their shares of cake while offering or counter-
offering, in order to strike a deal soon. We construct a bidding
function in which player i bids bi at time t:

bi ¼ gi � ð1� riÞt (3)

where gi is a candidate solution in the form of a genetic program. gi

is constructed with the function set fþ;�;� and� ðprotectedÞg
and the terminal set f1;�1; di; d jg. Fig. 2 illustrates an example
genetic program representing a candidate solution 1=d1 þ d2. In
Eq. (3), ð1� riÞt is the basic formula of using discount rate ri to
describe the ‘‘time value of money’’. The use of ð1� riÞt guarantees
that bi decreases over time.

A bargaining strategy determines what action (acceptance or
making a counter-offer) a player takes at time t. The following
equation describes how player i accepts or rejects a partition ð1�
x j; x jÞ at time t:

sðgiÞ ¼
accept : xi ¼ 1� xj if ð1� xjÞd

t
i �biðtþ1Þdtþ1

i

counter-offer atðtþ1Þ: xi ¼ biðtþ1Þ otherwise:

(

(4)

When player i (he) with strategy sðgiÞ receives an offer ð1� x jÞ
from player j (she) who asks x j for herself, i compares the
payoff ð1� x jÞd

t
i from this offer versus the payoff that he will

get if his counter-offer biðt þ 1Þ is accepted at t þ 1. If his
payoff from accepting now, ð1� x jÞd

t
i is not smaller than

his payoff from counter-offering biðt þ 1Þdtþ1
i , he accepts this

offer now.

3.2.2. Parameters of GP

Table 1 summarizes the operators and parameters, and their
values of this GP system. We use ‘‘grow’’ initialization method,
three-member tournament selection, sub-tree crossover and sub-
tree mutation [9]. The methods and values of genetic operators of
any evolutionary algorithm can affect the performance of the
Fig. 2. A genetic program 1=d1 þ d2.
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algorithm in a significant way [21]. As many researchers do, we
choose parameters and operators through experimentation. We
try the values of GP operators suggested by [9,22], and test them on
the bargaining problem.

A range of crossover and mutation rates have been tested to
reduce their bias on experimental results. Our system is relatively
stable with a crossover rate in the range 0–0.1 and a mutation rate
in the range 0.01–0.3.

We plan to test 25 pairs of game settings (game parameters)
in total. Each pair of game setting is in the format of (d1; d2),
where d1; d2 2f0:1;0:3;0:5;0:7;0:9g. The combinations of
selected d1 and d2 are evenly distributed over the space
d1 � d2. In an experimental run, the fitness of candidate
solutions in two populations tends to be stabilized before the
200th generation. To ensure stabilization and not to overuse
computational resources, we terminate runs at the 300th

generation. Each population has 100 genetic programs. 100
runs were conducted for every pair (d1, d2), a sufficient number
for statistical purpose. We denote x1 as player P1’s share from
the agreement made by the two best-of-generation (highest
fitness) genetic programs g1 and g2, g1 from player P1’s
population and g2 from player P2’s population, at the 300th

generation. x̄1 is the average of 100 x1 from 100 runs for a (d1,
d2), each run starting with different random sequences. The
results x̄2 are not reported here, because they are merely the
complement of x̄1.

3.3. CGM fitness function

Success of evolutionary algorithms relies on appropriate
fitness measures. We will show how to encode these three
constraints into the CGM fitness function by instantiating f 0, k, k0,
k00 and hðxÞ in Eq. (1).

3.3.1. Sensibility measure and evaluation of attribution

We start with handling the soft constraints. Consider a
Sensibility Measure (SM) that measures whether a genetic program
gi satisfies the soft constraints C2 and/or C3. p and q are real
numbers, p, q2 ð0;1Þ. Let giðp; qÞ be an instantiation of gi with di

being substituted by p, and d j being substituted by q � a2 ð0;1Þ is
an arbitrary real number.

Definition 2. Sensibility measure of a genetic program gi

SMiðdi;d j;aÞ ¼
�

giðdi;d jÞ � giðdi � ð1þaÞ;d jÞ
giðdi;d jÞ

if di � ð1þaÞ<1

giðdi;d jÞ � giðdi � ð1�aÞ;d jÞ
giðdi;d jÞ

otherwise:

8>>><
>>>:

(5)
thod with evolutionary algorithms for economic problems, Appl.
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SM jðdi; d j;aÞ ¼

giðdi; d jÞ � giðdi; d j � ð1þ aÞÞ
giðdi; d jÞ

if d j � ð1þ aÞ<1

�
giðdi; d jÞ � giðdi; d j � ð1� aÞÞ

giðdi; d jÞ
otherwise:

8>>><
>>>:

(6)

SM describes soft constraints C2 and C3 in a mathematic
manner. According to C2, when player i’s discount factor increases
from di to ðdi � ð1þ aÞÞ 2 ð0;1Þ, the genetic program gi should
positively correlate. If a is too large to make ðdi � ð1þ aÞÞ 2 ð0;1Þ,
we decrease di to di � ð1� aÞ and then giðdi; d jÞ should be larger
than giðdi � ð1� aÞ; d jÞ as shown in Eq. (5). The soft constraint C3

implies that the genetic program gi should negatively correlate to
player j’s discount factor d j, shown in Eq. (6). That SMiðdi; d j;aÞ or
SM jðdi; d j;aÞ returns a positive value is desirable, because this
means that this genetic program gi satisfies the constraints C2 or C3

respectively. Next will show how to treat genetic programs that
satisfy a soft constraint.

Definition 3. Evaluation of attribution ðATTÞ defines the value to
be rewarded to a genetic program gi whose sensibility measures
are SMi and SM j. An ATT quantifies gi’s satisfaction to a soft con-
straint C2 or C3.

ATTðiÞ ¼ 1 if SMiðdi; d j;aÞ�0

�eð1=ðSMiðdi ;d j ;aÞÞÞ otherwise:

�
(7)

ATTð jÞ ¼ 1 if SM jðdi; d j;aÞ�0

�eð1=ðSM jðdi ;d j ;aÞÞÞ otherwise:

�
(8)

When SMi or SM j returns a positive value, meaning that gi

satisfies a soft constraint, ATTðiÞ or ATTð jÞ is given the highest value
1. When SMi or SM j returns a negative value, ATT gives a value less
than 0. The exact value given depends on how close SMi or SM j is to
0. The closer SMi or SM j to 0, the higher value is rewarded by ATTðiÞ
or ATTð jÞ. Here we adopt the function �e1=SM to control this
rewarding algorithm. For a negative value of SM, ATT is always
negative in the range ð�1;0Þ. For SM!0�, ATT quickly approaches
0. For SM< � 1 and SM! �1, ATT quickly approaches �1. The
function �e1=SM is certainly not the only way to implement this
idea. It is chosen for its simple structure.

3.3.2. CGM-embedded fitness function

A genetic program gi that satisfies the hard constraint C1 pair-
wisely plays bargaining games with those genetic pro-
grams g j that satisfy C1 in player j’s population. A subset of j’s
population consisting of all genetic programs that satisfy C1 is
named as P0j.

Definition 4. Game fitness GFðsðgiÞÞ of sðgiÞ is the average payoff
that gi gains from bargaining with every genetic program in P0j. The
size of P0j is n, where the non-negative integer n is an experimental
parameter.

GFðsðgiÞÞ ¼

P
j2 P0

j
psðgiÞ! sðg jÞ

n
(9)

where psðgiÞ! sðg jÞ is the payoff obtained by sðgiÞ from the
agreement with sðg jÞ. GFðsðgiÞÞ indicates the bargaining compe-
tence of gi in its population.

Definition 5. Fitness function using CGM, FðgiÞ determines the
fitness of gi whose corresponding strategy is sðgiÞ, whose sensi-

N. Jin et al. / Applied Soft C
Please cite this article in press as: N. Jin, et al., A constraint-guided me
Soft Comput. J. (2009), doi:10.1016/j.asoc.2008.11.006
bility measures are SMi and SM j, and whose evaluation of attribu-
tion are ATTðiÞ and ATTð jÞ.

FðgiÞ ¼

GFðsðgiÞÞ þ 3

if gi 2 ð0;1� \ SMi >0\ SM j >0

GFðsðgiÞÞ þ ATTðiÞ þ ATTð jÞ
if gi 2 ð0;1�ðSMi < ¼ 0[ SM j < ¼ 0Þ

ATTðiÞ þ ATTð jÞ � eð�1=jgi jÞ otherwise:

8>>>>>><
>>>>>>:

(10)

FðgiÞ is applied to all genetic programs (candidate solutions) in
both populations. Having mentioned earlier in RðxÞ, we now set
GFðsðgiÞÞ þ 3 > GFðsðgiÞÞ þ ATTðiÞ þ ATTð jÞ>ATTðiÞ þ ATTð jÞ � e

ð�1=jgijÞ. As shown in Eq. (10), we add an extra constant 3 into the
fitness of genetic programs that satisfy all three constraints and
whose game fitness is GFðsðgiÞÞ. This ensures that they dominate
the rest which fail to meet all constraints and then encourages
desired genetic programs to propagate. Genetic programs that
satisfy the hard constraint C1, but not C2 and/or C3, are still eligible
for playing bargaining games. Their fitness are the game fitness
GFðsðgiÞÞ plus ðATTðiÞ þ ATTð jÞÞ. ðATTðiÞ þ ATTð jÞÞ reflects how
close they meet the two soft constraints. For those genetic
programs that violate the hard constraint C1, it is meaningless to
use them to play bargaining games at all. Therefore, they are
allocated a fitness solely based on their SM and ATT. Their fitness is
definitely lower than any genetic programs that satisfies at least,
the constraint C1.

3.4. Comparative study with other constraint handling techniques

In this section, we compare the empirical data generated by
CGM against those by two well-applied constraint handling
techniques, penalty methods and repair methods, and against
those by the no constraint handling setting, to justify the
performance and applicability of CGM.

Penalty methods penalize infeasible solutions in evolutionary
systems. They either give a penalty to an infeasible solution or
define a cost for repairing such a solution for making it feasible. In
general, a penalty method transforms a constrained optimization
problem: max f ðxÞ subject to wðxÞ 	 C, to an unconstrained
problem max YðxÞ ¼ f ðxÞ � PenaltyðxÞ by defining the penalty
function PenaltyðxÞ. Although conceptually the penalty method is
simple, the freedom in implementing PenaltyðxÞ is vast. A slight
change in the implementation could have significant impacts on
the effectiveness and efficiency of the algorithm. Given the same
value of f ðxÞ � PenaltyðxÞ, YðxÞ can not differ x1 which returns a
high value of f ðx1Þ and a high value of Penaltyðx1Þ from x2 which
returns a low value of f ðx2Þ and a low value of Penaltyðx2Þ. Thus x1

and x2 are treated equally by the penalty method. It is especially
critical if feasible solutions x1 and x2 should be differentiated
according to soft constraints. Another important constraint
handling technique used with evolutionary algorithms is the
repair method. Repair methods have successfully been used for
solving combinatorial optimization problems [13,14,11,15]. Repair
methods use repair procedures to modify infeasible solutions to
feasible ones. The repair procedures are not reflected in the fitness
functions. Appropriate repair operators may not be derived
directly from problem-specific knowledge. It requires extensive
knowledge about solutions and about search spaces, however such
knowledge are often unavailable directly from the problem.

3.4.1. Measurements

Before presenting the experimental results, we define two
variations to measure the difference between the benchmark
game-theoretic solution x�1 and experimentally observed x̄1.
thod with evolutionary algorithms for economic problems, Appl.
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Table 5
Relative variation by penalty method.

d2 Penalty method (jx�1 � x̄1j=x�1)

d1 ¼ 0:1 0.3 0.5 0.7 0.9

0.1 0.1000 0.0778 0.0556 0.0333 0.0111

0.3 0.3857 0.3000 0.2143 0.1286 0.0429

0.5 0.3088 0.1676 0.0087 0.1057 0.1710

0.7 0.0203 0.0627 0.2221 0.4005 0.1055

0.9 0.6965 0.1340 0.2516 0.0079 0.0479

Table 3
Relative variations by CGM.

d2 CGM: (jx�1 � x̄1j=x�1)

d1 ¼ 0:1 0.3 0.5 0.7 0.9

0.1 0.0149 0.0771 0.0549 0.0318 0.0100

0.3 0.3845 0.3000 0.2114 0.1213 0.0387

0.5 0.3051 0.1638 0.0131 0.1094 0.1807

0.7 0.0007 0.0679 0.2201 0.3889 0.1562

0.9 0.7472 0.2045 0.4292 0.0004 0.0232

Table 4
Absolute variations by the penalty method.

d2 Penalty method (jx�1 � x̄1j)

d1 ¼ 0:1 0.3 0.5 0.7 0.9

0.1 0.0909 0.0722 0.0526 0.0323 0.0110

0.3 0.2784 0.2308 0.1765 0.1139 0.0411

0.5 0.1625 0.0986 0.0058 0.0813 0.1555

0.7 0.0066 0.0238 0.1025 0.2356 0.0855

0.9 0.0765 0.0184 0.0458 0.0021 0.0252
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Definition 6. Absolute variation (av) is an unsigned difference
between PEP x�1 and experimentally observed x̄1 for a given (d1, d2).

av ¼ jx�1 � x̄1j (11)

Definition 7. Relative variation (rv) is an unsigned relative incre-
ment of x̄1 over x�1.

rv ¼ jx
�
1 � x̄1j

x�1
¼ av

x�1
(12)

The reasons that we adopt both variation measures are (i) for an
absolute variation, jx�1 � x̄1j ¼ jx�2 � x̄2j is true. For a relative
variation, ðjx�1 � x̄1jÞ=ðx�1Þ ¼ ðjx�2 � x̄2jÞ=ðx�2Þ does not hold. There-
fore, a relative variation very likely produces two different results
for one bargaining game, which is not ideal for the measurement;
(ii) absolute variation alone is not enough to express the variation
on the base of x�1. For example, two sets of results
(x�1 ¼ 0:05; x̄1 ¼ 0:06) and (x�1 ¼ 0:95; x̄1 ¼ 0:96), both have the
same absolute variation av ¼ 0:01, but the former set has a 0:17
increment based on x�1 and the latter set has only a 0.01 increment
based on x�1. In this sense, the relative variation is more informative
and indicative. As a result, we use both variation measures.

3.4.2. Experimental results from using CGM

The absolute variations of experimental results by CGM are
given in Table 2. The relative variations by CGM are in Table 3.

Our investigation is motivated by three key questions. These
questions are: (1) Does CGM outperform a repair method? (2) Does
CGM outperform a penalty method? (3) Does CGM produce better
results than having no constraint handling at all? To answer these
questions, we carried out three extra series of experiments. Each
series of experiments is intended to obtain empirical data to be
compared against the results of using CGM.

3.4.3. Compare against the results from a repair method

In an attempt to address the first question, we have tried to use
a repair method to make an infeasible genetic program feasible.
We have to change one or more nodes of a genetic tree and then
do testing, until it becomes feasible. This procedure is as time-
consuming as to create new feasible solutions. From the
experimental results, the repair procedure itself does not
contribute to the improvement of quality of feasible solutions.
Meanwhile, CGM saves a great amount of computational time
without doing this repairing procedure. Obviously CGM beats the
repair method on its efficiency.

3.4.4. Compare against the results from a penalty method

The second series of experiments is intended to answer the
second question. For this series of control experiments, we design a
penalty method. The fitness function of using a penalty method,
FðgiÞ

0 is defined below. Infeasible genetic programs are penalized. To
be fairly comparable to the CGM fitness function FðgiÞ, the penalty
function for infeasible genetic programs is ATTðiÞþATTð jÞ � eð�1=jgi jÞ,
which is the same function for infeasible genetic programs in FðgiÞ.
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Table 2
Absolute variations by CGM.

d2 CGM (jx�1 � x̄1j)

d1 ¼ 0:1 0.3 0.5 0.7 0.9

0.1 0.0135 0.0715 0.0520 0.0308 0.0098

0.3 0.2775 0.2308 0.1741 0.1075 0.0371

0.5 0.1606 0.0963 0.0087 0.0841 0.1643

0.7 0.0002 0.0258 0.1016 0.2287 0.1266

0.9 0.0821 0.0280 0.0780 0.0001 0.0122
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Definition 8. Fitness function incorporated with a penalty method

FðgiÞ
0
¼ GFðsðgiÞÞ þ ATTðiÞ þ ATTð jÞ if gi 2 ð0;1�

ATTðiÞ þ ATTð jÞ � eð�1=jgi jÞ otherwise:

�
(13)

We use the same sequence of random seeds, the same genetic
operators, the same sets of game settings and the same number of
runs as those used in the series of experiments for CGM (as in
Section 3.2 and 3.3). Absolute variations of the experimental
results from the penalty method are shown in Table 4 and relative
variations are in Table 5.

Table 6 compares the average absolute variations by CGM
versus those by the penalty method, categorized into three ranges:
av<0:15, av<0:10 and av<0:05. For example, in Table 6, the
average av of x̄1 s from using CGM is 0.0509 whilst that of using the
penalty method is 0.0519 in the same range 0 	 av<0:15. It shows,
in average, for the game settings whose 0 	 av<0:15, CGM’s
solutions have smaller absolute variations to the game-theoretic
solutions, therefore it provides better solutions than the penalty
method. m and m0 in Table 6 are the numbers of s in a specified
range. Table 7 lists the average relative variations by CGM and
those by the penalty method, categorized into three ranges:
rv<0:15, rv<0:10 and rv<0:05. n and n0 are the numbers of
relative variations in a specified range.

In Table 6 and 7, a clear pattern is observed: with no exception,
CGM has smaller values with respect to both average absolute
variations and average relative variations in all three ranges. In
other words, x̄1 found by CGM approach noticeably closer to PEP x�1
than those found by the penalty method. This pattern provides the
evidence that CGM yields smaller variations to game-theoretic
solutions than the penalty method. Therefore, as the answer to the
second question, CGM outperforms the penalty method.
thod with evolutionary algorithms for economic problems, Appl.

http://dx.doi.org/10.1016/j.asoc.2008.11.006


Table 6
Average of absolute variations (av in Eq. (11)) of three ranges.

Method Average of absolute

variations
P

av

mð0Þ

when 0 	 av<0:15

Average of absolute

variations
P

av

mð0Þ

when 0 	 av<0:10

Average of absolute

variations
P

av

mð0Þ

when 0 	 av<0:05

CGM 0.0509 0.0394 0.0166

m 19 16 10

Penalty method 0.0519 0.0453 0.0212

m’ 19 16 10

m and m0 are the number of av in the specified range, amongst the 25 game settings.

Table 7
Average of relative variations (rv in Eq. (12)) of three ranges.

Method Average of relative

variations
P

rv

nð0Þ

when 0 	 rv<0:15

Average of relative

variations
P

rv

nð0Þ

when 0 	 rv<0:10

Average of relative

variations
P

rv

nð0Þ

when 0 	 rv<0:05

CGM 0.0433 0.0302 0.0166

n 13 11 8

Penalty method 0.0628 0.0426 0.0246

n’ 15 11 7

n and n0 are the numbers of rv in the specified range, amongst the 25 game settings.

Table 8
The number of game settings which CGM outperforms the penalty method,

amongst the 25 game settings.

Absolute variations CGM better Tie Penalty method better

Number of game settings 16 1 8

Relative variations CGM better Tie Penalty method better
Number of game settings 16 1 8
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Moreover, Table 8 counts the numbers of game settings in three
cases: CGM is better; the penalty method is better; or both are
equally good. We find that on both absolute and relative variations,
CGM works better on 16 out of 25 game settings ðd1; d2Þ while the
penalty method only performs better on 8 game settings. In other
words, CGM outperforms on the vast majority of game settings.

3.4.5. Compare against the results of imposing no constraint

To answer the third question, we further do a series of
experiments whose fitness functions control none of the three
mentioned constraints C1, C2 and C3. In this series of experiments, a
genetic program’s fitness function is simply its game fitness GFðgiÞ.
All genetic programs in both populations play the bargaining game.
Under this non-constrained fitness function GFðgiÞ, experimental
results show that for a given game setting ðd1; d2Þ, the majority of the
100 runs end up with x1 that are within the cake size, i.e. satisfying
the hard constraint. However, their average value x̄1 can be out of the
range 0 to 1. When a few runs finish with x1 which are exceptionally
large or negative, x̄1 deviates far away from the PEP x�1. For example,
in one 100-run of experiments on game setting ð0:9;0:1Þ, 83 out of
100 x1 satisfy 0< x1 	 1 but the rest 17 x1 get x1 >1. The largest x1

even equals 8� 1014. This is probably because the search had no
chance to enter the space (0, 1]. As a result, the average of this 100-
run, x̄1 thus does not even meet the hard constraint xi 2 ð0;1�. From
the above experimental results, we conclude that the performance of
imposing no constraint into the fitness function is hardly compar-
able to that of CGM.

3.5. CGM to other bargaining problems

We have applied CGM to two other types of bargaining
problems, namely incomplete information bargaining problems
[23] and an outside-option bargaining problem [24]. These two
Please cite this article in press as: N. Jin, et al., A constraint-guided me
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problems are also constrained by hard and soft constraints, which
make such problems game-theoretically challenging. CGM used
with genetic programming also exhibits its superiority with
respect to the variations to the game-theoretic solutions.

4. Constraint-guided method for financial prediction

Financial prediction is also considered as an optimization
problem involved with constraints. Investors generally would like
to make maximal profit with minimal risk under some financial
conditions. In this section, we demonstrate the effectiveness of the
CGM approach for predicting financial market trends. We show
how the CGM approach could be applied to find some preferable
predictive rules which tend to have the low rate of failure (i.e., high
positive predictivity). The rules with low rate of failure are more
likely linked with lower risks.

4.1. Genetic programming for financial forecasting

Tsang et al. have developed Evolutionary Dynamic Data

Investment Evaluator [25,26]. It is an interactive financial fore-
casting tool. This tool is implemented by genetic programming. A
set of trading rules is represented as a genetic decision tree (GDT).

The basic elements of GDTs are rules and forecast values. A single
rule is consisted of one useful indicator for prediction, one
relational operator such as ‘‘greater than’’, or ‘‘less than’’, etc,
and a threshold (real value). Such a single rule interacts with other
rules in one GDT through logic operators such as ‘‘Or’’, ‘‘And’’,
‘‘Not’’, and ‘‘If-Then-Else’’. Forecast values are either a positive

position (i.e. r% return within n days can be achievable) or negative

position (i.e. r% return within n days can not be achievable).
We follow our earlier work by adopting the indictors that were

derived from finance literature [27–30]. They include three types
of technical analysis rules (i.e. moving average rules, filter rules,
trade range break rules) as follows: (1) MV12 ¼ Today’s price - the
average price of the previous 12 trading days; (2) MV50 ¼ Today’s
price – the average price of the previous 50 trading days; (3)
Filter5 ¼ Today’s price - the minimum price of the previous 5
trading days; (4) Filter63 ¼ Today’s price – the minimum price of
the previous 63 trading days; (5) TRB5 ¼ Today’s price – the
maximum price of the previous 5 trading days (based on the
Trading Range Breakout rule [29]); (6) TRB50 ¼ Today’s price – the
thod with evolutionary algorithms for economic problems, Appl.
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maximum price of the previous 50 trading days. Below shows an
example of a simple GDT built by using the above grammar. It is a
simplistic GDT concerning the prediction of 2.2% return within one
month. A useful GDT in the real world could be a lot more
sophisticated than this.

This example GDT suggests that if today’s price is more than
18.45 below the average price of last 50 days, then today is very
likely a positive position (i.e., one could achieve a return of 2:2% or
more within the next one month); otherwise one should make
decisions depending on the values of TRB5 and Filter63. If today’s
price is no more than 19.48 above the maximum price of the
previous 5 trading days or today’s price is more than 36.24 above
the minimum price in the last 63 days, then it is also an alternative
good opportunity to make a buy decision. The generated GDTs are
used to predict whether or not the price will rise a required r% (for
example, r ¼ 2:2) or more within a user-specified period n (for
example, 21 days).

4.1.1. Parameters for running GP

A GP system for evolving GDTs uses standard GP operators. In
this section, all the experiments were carried out on a Pentium PC
(200 MHz) using a population size of 1200. The termination
condition was 50 generations or maximum of 2 h running,
whichever reached. For each independent run, when it terminates
we chose a best-so-far GDT in terms of fitness value over training
data. Then, we apply it to test data for prediction. All results
reported in this section are performances over test data. Major
parameters are displayed in Table 9.

4.1.2. A linear measure of investment performance

Our earlier work [26] and [25] has shown that forecasting
accuracy could be improved by using genetic programming
technique. However, in financial prediction domain, prediction
accuracy is not a sole concerned issue. The performance of any
decision is usually justified in terms of user’s preferences. Such
Table 9
Summary of the genetic programming parameters and operators.

GP parameters Values

Input terminals MV12, MV50, Filter5, Filter63, TRB5

and TRB50; real values as thresholds

Prediction terminals f0;1g: 1 represents ‘‘Positive’’;

0 represents ‘‘Negative’’.

Non-terminals If-then-else, And, Or, Not, >,

� , <, 	, =.

Crossover rate 0.9

Mutation rate 0.01

Population size 1200

Maximum no. of generations 50

Termination criterion 2-h running time.

Selection method Tournament selection, size ¼ 4.

Max depth of individual programs 17

Max depth of initial individual

programs

4

Run times (h) Max 2-h

Hardware and operating system Pentium PC 200 MHz Windows

95 with 64M RAM

Software Borland C þþ (version 4.5).
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preferences are often constrained by key issues such as prediction
accuracy, time, budget, cost and risk. For example, apart from
prediction accuracy (or the Rate of Correctness (RC)), one may be
more concerned with grasping every possible opportunity by
reducing the Rate of Missing Chances (RMC), or with making each
forecasting more reliable by reducing the Rate of Failure (RF). In
practice, one of the most concerned factors is to reduce risk of
forecasting through achieving a low rate of failure. A low rate of
failure means any positive position generated by the system turns
out to be reliable with a higher possibility. Mistaking an actual
negative position for a positive position (a false positive position) is
much more costly than the opposite of mistaking an actual positive
position for a negative position (a false negative position), because
the latter error only means missing a chance, no loss at all in
respect of investment. Another reason for us to focus on achieving
a low rate of failure is that higher prediction accuracy is not
available or even impossible in some cases of financial forecasting.
Therefore, it would be of great value to reduce RF without affecting
an overall prediction accuracy.

In financial investment, the key performance measures are RC,
RMC and RF. Thus we proposed a linear measure as follows:

f 0 ¼ wRC � RC �wRMC � RMC �wRF � RF (14)

where 0 	 wRC ;wRMC , and wRF 	 1. The task is to optimize f 0.
It involves three performance values, i.e. RC, RMC and RF, each of

which is assigned a different weight: wRC , wRMC or wRF . These three
weights quantify the relative importance among RC, RMC and RF to
a particular user. Obviously, the goodness of a GDT is assessed by a
synthetical value, which is the weighted sum of its three
performance values. By appropriately adjusting sizes of three
weights, we are able to place more emphasis on one performance
than on the others. f 0 returns the raw fitness of a GDT without
adding any constraint in.

In order to achieve a low RF, for example, one possible way is:

(1) to assign wRC a higher value (e.g. wRC ¼ 1) to highly award the
GDT that has a good RC performance;

(2) to set wRF a higher value to heavily penalize the GDT that has a
poor RF performance;

(3) to assign wRMC a smaller value or even zero, to slightly penalize
GDT that has a poor performance of RMC or even not to penalize
it at all.

Thus, we conjectured that f 0 with appropriate weights should
work and lead the GP system to search for GDTs with lower RFs.
However, our substantial trials showed that it did not work as we
expected. To a certain extent, f 0 does allow us to reduce RF. But, it
has two drawbacks: (a) the sizes of three weights are too sensitive
to choose; (b) results are unstable.

From experiments, it is clear that the measure f 0 is not able to
guide the GP system effectively to search for good solutions in
terms of the performance of RF. We need to provide a mechanism
in the fitness function that is able to lead GP to effectively and
efficiently seek for better solutions. In the following subsection, we
shall demonstrate that a CGM constraint handling is capable of
taking this role.

4.2. Embedding CGM into fitness function

To resolve the above undesirable predicaments of the linear
fitness function f 0, we introduce a constraint into f 0. This c

onstraint is the expected range of ratios of the number of positive
positions predicted to the total number of training data cases. We
denote the constraint with R, which consists of two elements
thod with evolutionary algorithms for economic problems, Appl.
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represented by percentage. The range of the constraint R is
determined by Cmin , the minimum and Cmax , the maximum.

R ¼ ½Cmin ;Cmax �

where Cmin ¼ ðPmin =NtrÞ � 100%, Cmax ¼ ðPmax =NtrÞ � 100%, and
0 	 Cmin 	 Cmax 	 100%;

Ntr is the total number of training data cases; Pmin is the
minimum of expected number of positive positions predicted; and
Pmax is the maximum of expected number of positive positions
predicted.

Since ranges of R s chosen are mutually exclusive for all our
experiments, we introduce a comparison notion for constraints,
R s. A constraint R is said to be smaller than another R0 ¼
½C0min ;C

0
max �, R<R0 if and only if 0<Cmin <Cmax 	 C0min <C0max .

We now integrate the constraint into the linear performance
measure f 0. We call the constraint-guided fitness function f CGM:

f CGM ¼ w0RC � RC �wRMC � RMC �wRF � RF (15)

where 0 	 wRMC , and wRF 	 1. The task is to optimize f CGM .
The fitness value from f CGM is still a composite value that takes

all three performances into account with corresponding weights.
However, w0RC , the weight for RC, does not only take a constant like
wRC in f 0, more importantly, it could also possibly take the value of
zero on conditions of the size of Cþ and the constraint R. w0RC is
defined by

w0RC ¼
wRC if Cþ 2R½Cmin ;Cmax �
0 otherwise

�
(16)

where 0 	 wRC 	 1. Note that Cþ is the percentage of the number of
positive positions predicted by a GDT based on training data to the
total number of training data cases, given by Cþ ¼ Nþ=Ntr � 100%,
where Nþ is the number of positive positions predicted by the GDT.
For simplicity, a positive position predicted is also called a signal in
the following context. The size of R is specified with setting up two
elements: Cmin and Cmax by the user beforehand. The hard
constraint is that Cþ, the percentage of the number of positive
positions predicted by a GDT must be within a specified range:
Cþ 2R½Cmin ;Cmax �. Users can further breakdown this range into
subranges to which they could prefer differently. Such differences
can be again integrated into the CGM fitness function.

With the constraint R embedded into the fitness function, only
GDTs which can satisfy the constraint, are awarded to a great
extent. In contrast, those GDTs which cannot satisfy the constraint,
are heavily disfavored by being assigned negative fitness values,
and consequently would be extinct during evolving. Notably, f CGM

has a more generalized form compared to f 0. f 0 can be treated as a
specific case of f CGM , where R is taken as ½0%;100%�, which makes
w0RC equal to wRC as any GDT satisfies the constraint. We denote the
GP system using f CGM as CGM-GP.

4.3. Comparative study with NNs and a linear classifier

In order to evaluate CGM-GP against existing other approaches,
we have reviewed literature and fortunately found a similar research
study that aims to achieve low false alarm while addressing an
identical prediction problem. Saad and his colleagues deliberately
developed three Neural Networks (NNs), i.e., Time Delay Neural
Networks (TDNN), Recurrent Neural Networks (RNN) and Probabil-
istic Neural Networks (PNN) and a linear classifier to tackle the
financial prediction problem with respect to 10 American individual
stock daily closing prices [16]. In their work, TDNN used are designed
as ‘‘feed-forward multi-layer perceptrons, in which the internal
weights are replaced by finite impulse response filters’’ to predict
trends but not prices; PNN approximate the Bayesian decision rules;
RNN is ‘‘a type of discrete-time recurrent multi-layer perceptrons’’.
The linear classifier used is the Fisher linear classifier [31]. We
Please cite this article in press as: N. Jin, et al., A constraint-guided me
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evaluate CGM-GP against the three NNs and the linear classifier
based on a specific prediction problem: to predict whether or not the
price will rise 2% or more within 22 days.

4.3.1. Training and test data

We requested 10 stocks closing data from the author, Mr. Saad.
The 10 stocks cover a larger variety of categories:


 Apple (AAPL), IBM (IBM), Motorola (MOT) and Microsoft (MSFT)
represent the technology group which generally has high
volatility.

 American Express (AXP) and Well Fargo (WFC) represent the

banks.

 Walt Disney Co. (DIS) and McDonald (MCD) represent the

consumer stocks.

 Public Svc New Mexico (PNM) and Energras (V.EEG) are cyclical

stocks.

Following what was done in [16], for each stock, the last 100
days were chosen as the test data. All data series were ended at 06/
03/1997, but with different starting dates.

4.3.2. Experiments

In experiments, for each data set, we run CGM-GP 10 times. For
each run, we took 500 trading data just before 100 test data as
training data, and took a constraint R ¼ ½20%;30%� for most data
set except for AAPL, PNM and V.EEG, for which we took a constraint
R0 ¼ ½10%;20%�. The three weights in the CGM fitness function
f CGM are wRC ¼ wRF ¼ 1 and wRMC ¼ 0.

Here, for each stock data set, we report both the mean and
the standard deviation (STD) of GDTs’ results over 10 runs on the
test data. Results reported here focus on RF and the number of
signals (Nþ) as they were selected as the performance indicators
in [16]. Note that an ideal method should be capable of
achieving a lower RF and meanwhile setting off a larger number
of signals (Nþ). In order to compare fairly, we selected the best
GDT from 10 runs in terms of the performance of RF and
reported its results. This strategy follows the one in [16] in
which only the best result of three NNs were reported for each
stock data.

4.3.3. Comparative results

Table 10 lists all performance results of three different NNs, a
linear classifier and CGM-GP on 10 stocks with respect to RF and
the number of signals (Nþ). The ‘‘Total’’ column summarises the
total number of signals on all 10 stocks for each method. The last
column, ‘‘Ave.’’ column reports the average rate of failure over 10
stocks.

Like NNs., CGM-GP out-performs the linear classifier for most
stocks. 10 best GDTs set off 373 signals totally, which is slightly
more than 372, set off by the linear classifier. However, the average
RF of the 10 best GDTs (5.08%) is much better than 18.62%, of the
linear classifier.

The best results of GDTs are either as good as or better than
those of NNs in terms of the number of ‘‘zero’’ prediction failure
over the total 10 stocks. The best of the above 10 GDTs, achieved 8
zero-RF, in contrast, PNN only got 4 zero-RF; RNN, 5 zero-RF, and
TDNN, 8 zero-RF. Although both the best GDT and TDNN achieve
equally 8 zero-RF, the total number of signals set off by the best
GDT over all 10 stocks is more than twice as large as that by TDNN
(i.e. 385 versus 186). In terms of the average RF, the best GDT,
which achieves a mean RF of 1.29% over 10 data sets, out-performs
each of three types of NNs, which achieve average RF s of 3.05%,
3.61% and 7.56%, respectively.
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Table 10
Performance comparisons among NNs, a linear classifier and CGM-GP in terms of RF and Nþ (the total number of positive positions predicted).

Stocks Total Ave.

AAPL IBM MOT MSFT AXP WFC DIS MCD PNM V.EEG

Profit opp. (r ¼ 2%; n ¼ 22) 62 72 81 87 92 85 74 73 50 70 746 74.6

PNN

Total Nþ 51 25 48 49 20 45 19 4 63 14 338

RF (%) 7.84 4.00 18.75 4.08 0.00 4.44 0.00 0.00 36.50 0.00 7.56

TDNN

Total Nþ 10 9 27 61 17 19 7 6 22 8 186

RF (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.00 12.50 3.05

RNN

Total Nþ 16 22 33 46 49 29 48 53 35 37 368

RF (%) 0.00 0.00 3.03 2.17 0.00 0.00 0.00 5.66 17.14 8.11 3.61

The linear classifier

Total Nþ 82 24 87 17 10 22 2 32 20 76 372

RF (%) 31.71 20.83 18.39 0.00 0.00 13.64 0.00 21.88 60.00 19.74 18.62

CGM-GP (10 GDTs)

Total Nþ mean 18.5 68.7 20.7 26.8 38.3 66.6 20.1 40.2 23.4 49.4 373

Total Nþ STD 9.9 3.9 5.1 6.2 9.9 11.1 3.1 1.8 5.9 9.6

RF (%) mean 9.16 10.15 1.33 3.10 3.72 8.20 0.40 0.00 13.07 4.83 5.08

RF (%) STD 5.66 1.13 2.82 2.47 3.10 2.33 1.30 0.00 12.30 3.90

The best GDT from the above 10

Total Nþ 4 70 28 33 39 69 22 43 28 49 385

RF (%) 0.00 8.57 0.00 0.00 0.00 4.35 0.00 0.00 0.00 0.00 1.29

The prediction is for r ¼ 2% return within n ¼ 22 days.
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Our conclusion, based on Table 10, is that CGM-GP performs
significantly better than the linear classifier and favorably
compares against each of three NNs.

Results presented here are merely based on one set of better
solutions that are chosen by us. The solutions we think, have a good
trade-off between the performance of RF and the quantity of
signals. Numeric potential solutions are still available if different
constraints were applied to the task. By adjusting the size of
constraint in the CGM fitness function, either a further lower RF is
still available at the price of reducing the number of signals or a
further higher RF is still achievable with the consequence of
increasing the number of signals. This provides more options to the
users with different preferences.

4.4. Related work

The specific task addressed here is closely related to cost-
sensitive learning, a subject in machine learning [32]. More
specifically, the target that the novel constraint-guided fitness
function is intended to attack is similar to misclassification-cost
classification.

Machine learning approaches to misclassification-cost classi-
fication generally fall into three main categories based on data
processing stages: (1) pre-processing: re-sampling training data
[33]; (2) during processing: varieties of biases applied in the
process of building decision trees [34]; (3) post-processing:
adjustment of threshold or ordering rules generated [35]. In
general, those approaches show superiority to their corresponding
systems without considering misclassification cost. However, none
of them could reduce misclassification errors under certain
controls. In contrast, the constraint embedded in the fitness
function f CGM , enable the misclassification errors to be reduced
(i.e., the rate of failure) progressively. The smaller the constraint is
chosen, the lower rate of failure is achievable.

There are also several papers that address classification
problems using genetic programming (e.g., [36,37]. However,
none of the approaches could address cost-sensitive classification
problems.
Please cite this article in press as: N. Jin, et al., A constraint-guided me
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To our best knowledge, ICET [32] is the only evolutionary
algorithms based system that could handle misclassification costs.
But ICET uses genetic algorithm as a supplementary means of
finding a set of better parameters for a decision tree induction
algorithm. The fittest tree is constructed directly through decision
tree induction algorithms, rather than genetic algorithms. In
contrast, our CGM approach allows genetic programming to act
directly as a main technique to attack cost-sensitive classification
problems. Besides, like other cost-sensitive methods in learning
system, ICET cannot provide no means of finding varied potential
solutions either.

We argue that novelty of CGM in handling misclassification cost
is to provide users with a means to effectively identify various
solutions. Some solutions are more favorable to others depending
on user’s preferences. This study shows that varying the
constraints, embedded in fitness function, could easily lead to
different GDTs with varied RF s accordingly. Investors tend to
choose the GDTs that likely reflect their risk preferences.

5. Conclusion

This research is motivated by the need to cope with the
difficulties caused by various constraints in many economic
problems. We introduce a constraint-guided method, CGM as a
constraint handling technique used with evolutionary algorithms.
A CGM is especially suitable for optimization problems that have
both hard and soft constraints. CGM categorizes solutions into
different groups by the nature of constraints. It defines the
relevance of each type of constraint into the quality of a solution.
Thus all candidate solutions can be categorized into partially
ordered sets. The set of solutions that violates hard constraints is
definitely less favorable to the set of solutions that only violates
some soft constraints, which is in turn less favorable to solutions
that violate no constraint. The importance of constraints is thus
translated into the fitness function of evolutionary algorithms. This
technique helps guide the evolutionary search by allocating more
effort into more promising spaces in which solutions are given
higher fitness, without totally denying access to other areas.
thod with evolutionary algorithms for economic problems, Appl.
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Applications of CGM to two economic optimization problems
having both hard and soft constraints are reported to evaluate the
usefulness of CGM. For the bargaining problems, we have
developed GP systems that incorporate CGM to explore bargaining
strategies. The novelty of CGM in this application lies in a crucial
constraint-handling mechanism embedded into the fitness func-
tion. We have demonstrated that CGM successfully produces
solutions with less variations to the game-theoretic solutions than
a comparable penalty function, a repair method and a no-
constraint-handling setting. These findings also apply to two
other types of bargaining problems, namely incomplete informa-
tion bargaining problems and outside option bargaining problems.

For the financial prediction problem, CGM has been embedded
into GP system to handle constraints. Illustration is given by a
comparative study, together with analysis in detail. CGM-GP is
compared against three NNs and a linear classifier system [16]
with respect to the same prediction task over several individual
American share prices available to us. Results show that CGM-GP
beats a linear classifier and compares favorably against NNs. We
have reviewed most closely related work in machine learning,
particularly in cost-sensitive learning as well as work using
classification-oriented evolutionary algorithms. We conclude that
the CGM principle is effective for achieving the goal of reducing the
rate of failure to make each forecasting more reliable in financial
prediction problems. This enables users to make cautious
investments, which is particularly relevant in finance. By turning
size of a constraint, CGM-GP is capable of achieving different levels
of rate of failure. This makes CGM-GP more attractive. It provides
the users multiple options, which may reflect the users’ different
investment preferences.

Although this study presents and demonstrates the constraint-
guided method in bargaining problems and financial forecasting,
the ideas we introduce are general and the phenomena we have
observed here do not seem to depend on any special properties of
bargaining problems or financial forecasting. CGM can be applied
to other optimization problems with constraints as well. More
importantly, we argue that the concepts of guiding and embedding
constraints into the processes of decision tree generation could
potentially be applicable to other problem domains in machine
learning, in particular, when misclassification costs need to be
taken into account.

So far, our consistent and encouraging results have demon-
strated that CGM is a promising constraint handling technique
used with genetic programming that is worth further investiga-
tion and development. We have been exploring the potential of
incorporating constraint satisfaction techniques [6] into GP to
further improve its capability. We believe that such a combina-
tion is of value for several reasons: first, in practice, constraints
ubiquitously exist in real economic problems and financial
markets, for example, time window, transaction costs, risk of
investment and capital adequacy, etc. Second, different users
may have different preferences. Such preferences are preferably
to be reflected in decision-making. Third, suitable constraints
define reasonable search spaces that could facilitate genetic
programming technique to work efficiently and effectively.
Fourth, any little improvement by using such techniques would
mean a lot.
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