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Abstract 

Directional change (DC) is a new concept in sampling financial market data. Instead of 

recording the transaction prices at fixed time intervals, as is done in time series, DC lets 

the data alone decide when to record a transaction. In DC, a data point is recorded when 

the price has risen or dropped against the current trend by a significant percentage, 

which is known as the threshold. The magnitude of the threshold is determined by the 

analyst. Previous studies on DC mainly focus on analysing single price sequences of 

one market. This thesis focuses on a new path; working on the DC comparative analysis 

between two markets. We propose a novel data-driven approach to combine the 

observed DC series of two markets into a single data sequence, which we call the DC 

combined sequence. This allows us to conduct a comparative analysis between two 

markets under DC. Based on this approach, we propose a novel indicator that measures 

the relative volatility between two markets. In addition, we define jumps under DC. 

Under this measure, we can pinpoint the size, direction, and quantity of DC jumps in a 

market. Lastly, under the DC comparative analysis, we build a new DC approach to 

identify co-jumps between two markets. 
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Chapter 1. Introduction 

1.1 Background  

The research subject of this thesis is the development of relative volatility and co-jump 

measures relating two markets under the DC framework. We shall introduce the 

definition of the relative volatility, jumps, and co-jumps, and then proceed to study the 

behavior of the price changes through the empirical and data-driven approach of DC. 

 

The concept of “directional change” (DC) was first published by Guillaume et al. (1997), 

where they presented an algorithm to sample the DC market data. DC is an alternative 

way to record the price movements compared with data sampling under a fixed time 

interval as in time series (TS); details of DC will be introduced in Chapter 2. In TS, 

transactions are sampled under a regular time interval. In contrast, DC samples the 

transactions based on the significant price changes, so the time stamp of the DC data is 

passively determined by the price changes. This passivity leads to the greater emphasis, 

in the data collected, of time periods where there are more significant events, which 

allows more potential analysis of these regions that would otherwise have to be actively 

studied through more extensive sampling in a traditional TS setting. One disadvantage 

of DC, considering the irregular time interval, is that TS data allows easy and direct 

real-time comparative analysis, e.g. observers can directly compare the returns of two 

markets at every 1-minute interval. Because the DC data sequence is not sampled at a 

regular timescale, there is no direct way to implement this type of analysis with DC 
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data, i.e., it is not suitable without processing for real-time direct comparative analysis, 

especially in high-frequency data1. 

 

Under the DC comparative analysis, this research focuses on relating two markets in 

their volatility and co-jumps. In DC, researchers worked on measuring the volatility of 

the price movement in a single market (Tsang et al., (2017)). In Chapter 3, we work on 

a new path to measure the volatilities in two related markets (we named it relative 

volatility) through a data-driven approach. This study aims to develop an indicator to 

measure the relative volatility, which could be useful in real-time analysis.  

 

In financial markets, jumps are events usually related to unexpected information; for 

example, surprising economic data or a major historical event (e.g., COVID-19) may 

lead to uncommon trading behaviors from the traders; and these trading transactions 

may cause price jumps. In time series, researchers consider jumps based on the asset 

pricing model; a jump is a different source of risk compared to the risk of continuous 

volatility (Lee and Mykland (2008)) such that the jump is identified through the 

module-based method (details see section 2.3.1). In DC, there is an absence of  

published references focusing on jumps. This research aims to establish the definition 

of a DC jump, which is then used to implement the back-testing of detecting jumps in 

DC; we will present the details of the DC jumps in Chapter 4.  

 

Compared to past decades, along with more unexpected incidents (such as financial 

crises, natural disasters, geopolitical uncertainty, etc.), financial markets are more 

 
1 High-frequency data has been of interest since the late 1980s when the ability to collect data with the 

aid of new and improved technology arose (Dacorogna et al. (2001)). 
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fragile than before; the events of flash crashes across multiple assets have become more 

frequent, and this is a concern of researchers and related institutions2. The risk of co-

jumps has been emphasized by the researchers in the TS analysis (Barndorff-Nielsen 

and Shephard (2006), Jacod and Todorov (2009), and Bollerslev et al. (2008)); for 

instance, observers have been focusing on identifying co-jumps and measuring their 

risks to the markets (for details see Section 2.3). Based on the work on DC jumps, we 

propose a definition of co-jumps in DC (named DC co-jumps) related to two markets 

and develop an indicator to detect co-jumps. This allows us to investigate the 

relationship between certain historical events and the presence of DC co-jumps (for 

details see Chapter 5). 

 

1.2 Research motivations and objectives 

The focus of this research is the analysis of the relationship between two markets. This 

research is conducted under the directional change (DC) framework (Tsang et al. 

(2017)); specifically, in terms of the relative volatility and co-jump characteristics (as 

introduced in Section 1.1). The motivation and ambitions arising from the usage and 

resulting extension of the DC framework include: 

 

1. When performing comparative analysis, the classical time series method examines 

the volatility in two related markets by comparing the volatility of returns of the two 

markets during a pre-determined time interval. As previously discussed, in DC, 

researchers have focused on the measure of volatility in a single market. In this thesis 

we want to propose an approach to measure the volatilities in two related markets such 

 
2 For example, the Reserve Bank of Australia studied the flash crash (appreciation) of the Japanese Yen 

against several currencies (including the Australian dollar); 

https://www.rba.gov.au/publications/smp/2019/feb/box-b-the-recent-japanese-yen-flash-event.html 
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that the approach is better suited to be applied to high-frequency data or to the market 

micro-structure; in this research, the micro-structure indicates the tick data which the 

timescale is under the milliseconds. Would the approach allow better examination of 

the market micro-structure during periods of extreme fluctuation? In Chapter 3, we will 

present the DC approach of measuring relative volatility and discuss its benefits through 

historical studies. 

 

2. In the financial markets, a jump is an event which is usually caused by unexpected 

information. Past empirical studies have proved that jumps have substantial impact on 

risk management and asset pricing (Liu et al. (2003) and Johannes (2004)). In time 

series analysis (TS), the jump is a different source of risk in addition to the risk of 

continuous volatility in the asset pricing model (details about jumps in TS will be 

introduced in Section 2.3). In DC, there is no research in the field of jumps. Therefore, 

this thesis aims to define jumps under DC; based on this, we detect jumps through a 

data-driven approach. This leads us to pose the question of how the presence of TS and 

DC jumps are related? We then investigate this question in the form of a comparison of 

the detected jumps from both approaches in Forex data. Fundamentally, detecting 

jumps in TS is different from detecting jumps in DC; in TS a jump is identified by a 

model-based method, while in DC, we detect jumps through a data-driven approach.  

 

3. The identification of co-jumps has been a topic of interest over decades. Researchers 

emphasised that some macroeconomic news has a major impact on joint jumps 

spanning different assets. In portfolio risk management, it is important to accurately 

understand the resulting tail co-jumps and hedge against them. In TS, co-jump 

identification has been widely studied. Dungey and Hvozdyk (2012) introduced co-
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jumps as the occurrence of contemporaneous discontinuities in two price series, 

although there is no formal test procedure for the exact timing of identifying them. In 

this thesis, we consider how to define DC co-jumps, and then develop an indicator to 

identify them. Based on this, we study whether jumps between two markets happen 

together. Is there a relationship between certain historical events and DC co-jumps? We 

will give the details about the study of DC co-jumps in Chapter 5. Fundamentally, the 

concept of co-jumps in DC is different to the concept in TS. Under the DC framework, 

considering two markets’ price sequences, the co-jump is the event such that a jump in 

one market is followed by a jump in another market. A formal definition of the DC co-

jump and how it may be detected is given in Chapter 5.  

 

1.3 Thesis structure 

The thesis structure is based on the objectives discussed in the previous section. It 

begins with an overview of the data analysis between time series and DC in Chapter 2, 

describing the previous studies researchers have done in financial market data analysis. 

It then explains the concept of DC, jumps and co-jumps. Chapter 3 introduces the 

methodology of 𝑚𝑅𝑉 with the application of measuring 𝑚𝑅𝑉 between GBPUSD and 

EURUSD during the Brexit referendum event. Chapter 4 introduce the definition of DC 

jump; we will show a comparative analysis of the detected DC jumps and TS jumps 

and discuss the relationship between the historical events and DC jumps. Chapter 5 

introduce the approach of detecting DC co-jumps; we will study which historical events 

have more influence in causing DC co-jumps. In Chapter 6, we give a conclusion. 
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Chapter 2. Literature survey 

This chapter will introduce the research literature concerning Directional Change (DC). 

Some past works about DC volatility will be discussed, which is our fundamental for 

establishing DC micro-market relative volatility (𝑚𝑅𝑉). We first give a short overview 

of the early research in forex markets in time series analysis ( in low frequency data) 

and then review the studies in high-frequence data under the analysis of TS and DC. 

We then introduce the concept of DC and the mechanism of DC data sampling. We 

shall give an overview about the DC volatility measurement for a single price sequence. 

After that, we will introduce the background of jumps and co-jumps in the financial 

markets.  

 

2.1 Early research in forex markets in low frequency data 

With the breakdown of the Bretton Woods system in 1971, researchers were attracted 

to the study of floating exchange rates using time series data (weekly and monthly), 

especially in the statistical analysis of the FX price changes. Boothe and Glassman 

(1987) stressed that the distribution of the exchange rate changes is essential for 

examining the uncertainty of the price movements (referred to as volatility). Early 

studies focused on finding a proper distribution to summarise the exchange rate changes 

in low-frequency data (i.e., weekly and daily). Westerfield (1977) indicated that the 

exchange rate changes were Paretian stable3. Rogalski and Vinson (1978) used the same 

data as Westerfield, and they suggested that the floating exchange rates were better 

described by the Student distribution. McFarland et al. (1982) examined the logarithmic 

 
3 Paretian stable refers to the fact that the exchange rates changes follow the stable distribution (Fama 

1963). 
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daily exchange rates and concluded that the logarithmic daily exchange rates followed 

a stable Paretian distribution (also called a stable distribution). Boothe and Glassman 

(1987) proved that the exchange rate changes were not following a normal distribution 

and noted that the data was sharp leptokurtic and more fat-tailed than the normal 

distribution. Glassman (1987) compared the bid-ask spreads with the volatility and 

concluded that the size of the spread is related to the exchange rate volatility.  

 

2.2 Overview of the data analysis between time series (TS) and DC 

Since the late 1980s, high-frequency data has been of interest when the ability to collect 

data with the aid of new and improved technology arose (Dacorogna et al. (2001)). 

Nowadays, the advanced technology of big data collection and storage gives more 

opportunity for comprehensive analysis of financial data especially in high-frequency 

data. Frankel and Rose (1995) noted that while the theoretical coherence of the 

structural models at the time was attractive, their forecasting ability in practice was 

limited. Taylor (1995) concluded that further attempts to provide explanations of short-

term exchange rate movements based solely on macroeconomic fundamentals may not 

prove successful which might account for the shift towards more purely financial 

models of exchange rate movements and heightened interest in market microstructure. 

Flood and Taylor (1996) demonstrated that macroeconomic models were not 

satisfactory in their goal of exchange rate determination. Beginning from 1990s, once 

the shortcomings of the macro approach became clear (Frankel and Rose, (1995); 

Taylor, (1995); Flood and Taylor (1996)) researchers have been more focused on the 

analysis of the behaviour of price movement through a micro-view; for instance Lyons 

(2001) who examined a lot of the assumptions made in the past from the perspective of 

the market microstructure. The microstructure approach examines the behaviour and 
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interactions of individual agents in the market; for instance Lyons (1996) analysed 

microstructure data to determine how the informational content of trades was related to 

trading intensity, quote intensity and trading behaviour. The market participants have 

also become interested in high-frequency trading which has led to the development of 

many computational tools to assist in this sphere; big data being an important one (Wu 

et al. (2013); Han and Li, (2018)). The U.S. Securities Exchange Act Release No. 34-

61358, 75 FR 3594, 3606 (January 21, 2010)4 noted that estimates of high-frequency 

trading (HFT) typically exceed 50% of total volume in U.S.-listed equities and 

concluded that HFT is a dominant component of the current market structure and likely 

to affect all aspects of its performance. Observers can easily access the datasets in 

different time frames, e.g., the timescales of weekly, daily, and minutely sampling. In 

the past decade, the financial markets’ tick data (the deal transactions) have become a 

popular research project as analysts and traders endeavour to discover any valuable 

information to capture and interpret more micro-behaviour. Hence, it is essential to have 

the ability to correctly understand and interpret market data. The classical method 

studies the price movements based on a time series. A time series is a series of data 

points sampled regularly in time order. One should pre-determine the size of the time 

interval (e.g., 30 minutes), and then record the data point at the end of each time interval. 

TS data is also used in technical analysis (Pring, (2014)): people have developed many 

tools to study the price movements like Relative Strength Index (RSI) (Wilder, (1978)), 

Bollinger Bands (Bollinger, (2001)), Moving Average Convergence Divergence (Appel, 

(1985)) and Stochastic Momentum Index (Blau, (1993)). However, as discussed in 

section 1.1, TS may not adequately summarise some situations when the markets have 

the significant volatility for short periods. This drove researchers to establish a new 

 
4 For details see the link: https://www.sec.gov/rules/concept/2010/34-61358fr.pdf 
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mechanism to record the market transactions. DC is a data driven approach for studying 

the price movements. It allows us to study the financial markets on a data-led timescale, 

which means DC lets the data dictate when to sample the data points. In other words, 

the timescale is passively defined by the significant price changes. Hence, DC data can 

give precise insights when monitoring the significant price movements especially in 

high-frequency data. Comparing with TS data, Chen and Tsang (2021) discussed how 

DC data is more suitable for tracking the market in order to detect important signals.  

 

The concept of DC was first introduced by Guillaume et al in 1997 when they proposed 

a DC approach to examine the trend-following behaviour of the price changes. In fact, 

the technique of DC data sampling had been used to plot a Zig Zag pattern on the 

technical chart (Sklarew (1980)). The Zig Zag pattern is a useful technical chart pattern 

which is used to identify the price trends. Tsang (2010) formally defined the concept of 

directional change: the price movements are defined by a series of DC uptrends and 

downtrends (the formal DC definition will be introduced in Section 2). Glattfelder et al. 

(2011) illustrated the statistical discovery of 12 scale laws based on DC in high-

frequency FX data. Tsang et al. (2015) defined the reversal points as extreme points, 

which are confirmed when the cumulative price changes reach a threshold. The 

threshold defines the size of what is termed to be a significant price change. Tsang et 

al. (2017) present a set of DC indicators capturing market information. Chronologically, 

DC records the extreme points, and this is then converted into a DC sequence. The 

previous studies in the DC method mainly focus on analysing single price sequences of 

one major market, which includes forecasting the price trend reversals, trading 

algorithm design, stock index trading strategies, using the DC scaling laws to build 

trading models, DC agent-based models, measuring regime changes under the DC 
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approach, and technical pattern (‘Head and Shoulders Pattern’) recognition (Bakhach 

et al. (2016), Bakhach et al. (2018), Glolub et al. (2017), Ma et al. (2017), Dupuis and 

Olsen (2012), Petrov et al. (2018), Tsang and Chen (2018), Li and Tsang (2017)).  

 

2.3 Directional Change 

Directional change (DC) is a data-driven process of data sampling from financial 

markets. DC data is recorded as a series of alternate upward and downward trends. For 

any trend, the reversal point is confirmed when the price has changed beyond a 

threshold (a pre-determined price distance in terms of a  percentage) from the last 

highest/lowest price of the current trend (for details see Appendix A in Chen and Tsang 

(2021)). The process of DC data sampling is based on the DC algorithm in equation 

(2.1) and (2.2) below (Tsang et al. (2017)). In time series analysis, the market data is 

collected on a pre-determined timescale. However, the mechanism of DC data sampling 

uses the significant price changes such that the market data is recorded when the price 

change has reached a certain threshold from the last peak/trough of the price. In practice, 

the analyst determines the threshold as a percentage. Hence, price changes are recorded 

as a series of alternate uptrends and downtrends, and the timestamp of each DC data 

point is determined dynamically. In an uptrend, a peak is determined as a DC extreme 

point (EP) when the current price 𝑃𝑡  is lower than the last high price 𝑃ℎ  by a fixed 

threshold (in percentage) θ: 

 

𝑃𝑡 ≤ 𝑃ℎ × (1 − 𝜃).        (2.1) 

 

In contrast, a downtrend is terminated by a DC extreme point when the current price 𝑃𝑡 

is higher than the last low price 𝑃𝑙 by a fixed threshold: 
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𝑃𝑡 ≥ 𝑃𝑙 × (1 + 𝜃),        (2.2) 

 

where the size of the threshold 𝜃 is given by the analyst. We define the current price 𝑃𝑡 

as the DC confirmation point when the DC extreme point is determined. Figure 3.1 

below is an example of a DC summary of the exchange rate of EURUSD into a sequence 

of extreme points. According to Tsang et al. (2017), a DC downtrend (uptrend) 

decomposes into two parts – a DC event and an overshoot event. The DC timescale, in 

Figure 3.1, illustrates a dynamic timescale such that the end of the current interval is 

determined when the price change has reached a threshold from the last highest or 

lowest price. Under the process of DC data sampling, for example, the last high price 

is kept updated when there is a higher high price until we determine a DC extreme point 

based on equation (2.1); in Figure 2.1, the last high price is the extreme point when the 

EP1 is confirmed. 

Figure 3. 1 

Figure 2.1 The price curve of EURUSD on 3rd May 2016. An example of a DC 

summary with a threshold (𝜽) of 0.05%. The three vertical brown lines (determined by 
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DC extreme points) separate the price curve into an uptrend and a downtrend. Under 

DC timescale, the time intervals indicate the periods of DC trends. 

 

A DC extreme point is a couple which contains a timestamp 𝐸𝑃. 𝑡 with a price 𝐸𝑃. 𝑝: 

 

𝐸𝑃 = (𝐸𝑃. 𝑡, 𝐸𝑃. 𝑝).        (2.3) 

 

A DC sequence 𝑆𝐴
𝜃  is a finite sequence which comprises the extreme points of the 

market A ordered by 𝐸𝑃. 𝑡: 

 

𝑆𝐴
𝜃  = (𝐸𝑃1, 𝐸𝑃2, … , 𝐸𝑃𝑘 … , 𝐸𝑃𝑛),      (2.4) 

 

where 𝐸𝑃𝑘 is a DC extreme point, 𝜃 is the threshold, and A is the market identify (e.g., 

market A). 

 

Figure 2.2 plots a series of 3 DC trends formed by the 4 contiguous 𝐸𝑃s from a DC 

sequence. As we see in figure 2.2, the DC trends are plotted like a zigzag pattern such 

that the directions of the adjacent DC trends are changing alternately. 

Figure 2. 1 
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Figure 2.2 An example of DC trends in EURUSD using a threshold of 0.05%. The 

chart illustrates a series of 3 DC trends formed by 4 EPs. 

 

Tsang et al. (2017) introduced the total price movement (𝑇𝑀𝑉) to measure the price 

distance between the extreme points that begin and end a DC trend.  

 

The 𝑇𝑀𝑉 from extreme point 𝐸𝑃𝑖−1 to the next extreme point 𝐸𝑃𝑖, denoted by TMVi, 

is defined by the increase in proportional terms from 𝐸𝑃𝑖−1. 𝑝 to 𝐸𝑃𝑖 . 𝑝  normalized by 

the threshold: 

 

𝑇𝑀𝑉𝑖 =
𝐸𝑃𝑖.𝑝 − 𝐸𝑃𝑖−1.𝑝

𝐸𝑃𝑖−1.𝑝 × 𝜃
,        (2.5) 

 

where 𝐸𝑃𝑖 . 𝑝 is the price of the 𝐸𝑃 at the end of the 𝑖𝑡ℎ DC trend, and 𝜃 is the threshold 

defined by the analyst.  

 

We can obtain the period of the 𝑖𝑡ℎ  DC trend, denoted by 𝑇𝑖 , as the time interval 

between 𝐸𝑃𝑖 . 𝑡 and 𝐸𝑃𝑖−1. 𝑡. 

 

The time-adjusted return of DC (we call this 𝑇𝑅 for short) is the ratio of the 𝑇𝑀𝑉𝑖 to 𝑇𝑖. 

Tsang et al. (2017) suggested that 𝑇𝑅 is a new way to evaluate the return of the DC 

trend when one considers the time taken for a DC trend. In the comparative analysis, 

𝑇𝑅 is an indicator to measure the speed of forming the DC trend when two DC trends 

have equal values in their 𝑇𝑀𝑉s.  
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The time-adjusted return of the DC trend (𝑇𝑅) measures the actual percentage of price 

change per time unit. For example, the time-adjusted return of the 𝑖𝑡ℎ DC trend, denoted 

by 𝑅𝐷𝐶𝑖
,  is calculated by: 

 

𝑅𝐷𝐶𝑖
=

|𝐸𝑃𝑖.𝑝 − 𝐸𝑃𝑖−1.𝑝|

𝐸𝑃𝑖−1.𝑝 × 𝑇𝑖
=

|𝑇𝑀𝑉𝑖| × 𝜃

𝑇𝑖
,      (2.6) 

 

where 𝜃 is the threshold defined by the analyst, 𝑇𝑖 is the period between the 𝐸𝑃𝑖 . 𝑡 and 

𝐸𝑃𝑖−1. 𝑡, i.e. 𝑇𝑖 = 𝐸𝑃𝑖 . 𝑡 − 𝐸𝑃𝑖−1. 𝑡. 

 

Throughout this thesis, we use |∗| to denote the absolute value. We set the terminal time 

of the 𝑅𝐷𝐶𝑖
 by 𝐸𝑇(𝑅𝐷𝐶𝑖

) = 𝐸𝑃𝑖 . 𝑡. This will be important for ordering the 𝑇𝑅s of two 

markets to produce a combined 𝑇𝑅 sequence of the two markets (we will introduce this 

in Chapter 5). 

 

DC measures the volatility of a single market based on the frequency of the observed 

EPs over a period (Guillaume et al. (1997)). Tsang (2017) discussed how the DC 

approach could measure market volatility. Given a period of T, the more DC trends 

observed, the indication is the more volatile the market. As explained in Figure 2.2, a 

DC trend is defined by connecting two adjacent EPs. Hence, the number of DC trends 

are quantified by the number of observed extreme points 𝑁𝐷𝐶. Over the period T, the 

higher value of 𝑁𝐷𝐶 indicates higher volatility. The idea of DC instantaneous volatility 

proposed by Petrov et al. (2019) that the equation (2.7) is developed based on the theory 

of Brownian motion for the price returns. Specicifically, Petrov et al. (2019) discussed 

that the progresses of the directional change intrinsic time has similar properties to the 
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random walk; based on equation (2.7), the volatility can be estimated for a trendless 

time series by counting the number of directional changes within the time interval: 

 

𝜎𝐷𝐶 =  𝜃√
𝑁𝐷𝐶

𝑇
,        (2.7) 

 

where 𝑁𝐷𝐶 is the number of extreme points from a market over the period 𝑇 and 𝜃 is 

the threshold which is utilised to obtain the market’s DC sequence. 

 

2.4 Jump and co-jump 

A jump is a different source of risk compared to the risk of continuous volatility. 

Empirical studies proved that jumps have a substantial impact on risk management, 

option pricing and hedging strategy (Liu et al. (2003) and Johannes (2004)). In the 

financial markets, jumps are the market reactions to unexpected information or events 

(Lahaye et al. (2011)). The initial issue of studying jump risk was identifying jump 

events and analysing the detected jumps’ behaviour. In the asset pricing model, a jump 

is considered as a discontinuous component. In time series, a number of researchers 

have worked on jump detection (Barndorff-Nielsen and Shephard (2004), Huang and 

Tauchen (2005), Andersen et al. (2007), Andersen et al. (2011), Lee and Mykland 

(2008), and Aït-Sahalia and Jacod (2009)). Barndorff-Nielsen and Shephard (2004) first 

proposed the technique to locate jumps at a daily frequency. Lee and Mykland (2008) 

built a statistical method to detect intraday jumps. 

 

2.4.1 Jump identification in time series 

In time series, the idea of detecting TS jumps based on the asset pricing model (Nielsen 

and Shephard (2004) and Lee and Mykland, (2008)); a jump (TSJ) is a different source 
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of risk compared to the risk of continuous volatility in the asset pricing model. In the 

practice, following the works of Nielsen and Shephard (2004), a jump is a component 

of the realized variance (see equation (2.13)); Lee and Mykland (2008) proposed an 

approach to detecting jump (see equation (2.15)). 

 

In the asset return process model, the continuous time log-price process, 𝑝𝑡, evolves as 

follows: 

 

 𝑑𝑝𝑡 = µ𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡,  0 ≤ 𝑡 ≤ 𝑇             (2.8) 

 

where 𝑇  is the total number of days in the sample, µ𝑡  is the drift rate, 𝜎𝑡  is the 

instantaneous volatility and 𝑑𝑊𝑡 is Brownian motion. The solution to equation (2.8) is 

generally called an Itô process. As 𝜎𝑡 is a stochastic volatility process with a sample 

path that is right continuous, it is unable to capture the discontinuous jump event. When 

we wish to include the jump phenomena, we expand equation (2.9) as follows: 

 

𝑑𝑝𝑡 = µ𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝑘𝑡𝑑𝑞𝑡,    0 ≤ 𝑡 ≤ 𝑇,             (2.9) 

 

where 𝑞𝑡 is the counting process, and 𝑘𝑡 is the jump size when 𝑑𝑞𝑡 = 1. 

 

The discrete-time returns are 

 

 𝑟𝑡 = 𝑝𝑡 − 𝑝𝑡−1,   𝑡 = 1, 2, …            (2.10) 
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where the unit time interval is usually referred to as a ‘day’. Assume that there are 𝑀 +

1 observations per day of high-frequency data, then the continuously compounded 𝑀 

intra-daily returns for day 𝑡 are denoted by  

 

 𝑟𝑡,𝑗 = 𝑝𝑡,𝑗 − 𝑝𝑡,𝑗−1,  𝑡 = 1, 2, … , 𝑇               (2.11) 

 

where 𝑝𝑡,𝑗  is the 𝑗 th intraday log-price on day  𝑡  and 𝑇  gives total number of days 

sampled. 

 

The daily realized variance is defined by: 

 

𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑗
2𝑀

𝑗=1 ,   𝑡 = 1,2, … , 𝑇,              (2.12) 

 

where 𝑗 is the intraday interval. As emphasized by Barndorff-Nielsen and Shephard 

(2004), the realized variance is decomposed into two components with increasing 

sample frequency (the size of the intraday time interval tending to zero), 𝑀 → ∞: 

 

𝑅𝑉𝑡 → ∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡−1
+ ∑ 𝑘𝑡,𝑗

2𝑁
𝑗=1 ,  𝑡 = 1,2, … , 𝑇,            (2.13) 

 

where the first term is the integrated variance for the continuous component, and the 

second term is the jump component. 

 

Barndorff-Nielsen and Shephard (2004) introduced the bipower variation to estimate 

the instantaneous volatility as: 
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𝐵𝑉𝑡 ≡ µ1
−2 (

𝑀

𝑀−1
) ∑ |𝑟𝑡,𝑗||𝑟𝑡,𝑗−1|𝑀

𝑗=2 ,  𝑡 = 1,2, … , 𝑇,            (2.14) 

 

where µ1 = √2/𝜋 and 𝑀 is the total number of intervals per day. As 𝑀 → ∞, we have: 

 

 𝐵𝑉𝑡 →𝑝 ∫ 𝜎𝑠
2𝑡

𝑡−1
𝑑𝑠,  𝑡 = 1,2, … , 𝑇.             (2.15) 

 

According to Lee and Mykland (2008), a jump is detected by the ratio: 

 

𝐽𝑢𝑚𝑝𝑡,𝑗 =
|𝑟𝑡,𝑗|

√𝐵𝑉𝑡,𝑗/𝑀
, 𝑡 = 1,2, … , 𝑇.               (2.16) 

 

Lee and Mykland (2008) infer the presence of jumps from the distribution of the 

statistic’s maximum over the sample size. Under the null hypothesis of no jump in the 

day 𝑡 and the time interval 𝑗, the sample maximum of the absolute value of a standard 

normal converges to a Gumbel distribution. We reject the null hypothesis of no jump 

if: 

 

𝐽𝑢𝑚𝑝𝑡,𝑗 > 𝐺−1(1 − 𝛼)𝑆𝑛 + 𝐶𝑛,                (2.17) 

 

where 𝐺−1(1 − 𝛼) is the 1 − 𝛼 quantile function of the standard Gumbel distribution, 

𝐶𝑛 = (2 𝑙𝑜𝑔 𝑛)0.5 −
𝑙𝑜𝑔(𝜋)+𝑙𝑜𝑔(𝑙𝑜𝑔 𝑛)

2(2 𝑙𝑜𝑔 𝑛)0.5
 and 𝑆𝑛 =

1

(2 𝑙𝑜𝑔 𝑛)0.5
, 𝑛 being the total number of 

observations (i.e., 𝑀 × 𝑇 ). According to Lee and Mykland (2008), given the 

significance level of 𝛼 = 1% , the threshold for 
|𝐽𝑢𝑚𝑝𝑡,𝑗|−𝐶𝑛

𝑆𝑛
 is 𝛽∗ , with 𝛽∗ =
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−𝑙𝑜𝑔(−𝑙𝑜𝑔(0.99)) = 4.6001.  Thus, if 
|𝐽𝑢𝑚𝑝𝑡,𝑗|−𝐶𝑛

𝑆𝑛
> 4.6001 , we reject the null 

hypothesis of no jump and establish the presence of a jump. 

 

2.4.2 co-jumps 

Barndorff-Nielsen and Shephard (2006), Jacod and Todorov (2009), and Bollerslev et 

al. (2008) define co-jumps using multivariate tests whereas Lahaye et al (2011) define 

co-jumps in a natural way using a univariate test with co-jumps as simultaneous 

significant jumps to permit straightforward estimates of co-jumps. There have even 

been alternative definitions of co-jumps using wavelets (Barunik and Vacha, 2018). A 

co-jump is defined by Lahaye et al (2011) in that they detect jumps happening  

simultaneously in two markets by using the product of the indicator functions of the 

jumps in the individual markets; the co-jump indicator function on a set of markets 𝑀𝑘𝑡 

at a period 𝑡, 𝑗: 

 

𝐶𝑂𝐽𝑢𝑚𝑝𝑡,𝑗
𝑀𝑘𝑡 =  ∏ 𝐼 (|𝐽𝑢𝑚𝑝𝑡,𝑗

𝑚𝑖|)𝑀𝑘𝑡                (2.18) 

 

where 𝐼(⋅)  is the indicator function for a positive argument and 𝐽𝑢𝑚𝑝𝑡,𝑗
𝑚𝑖  refers to 

significant jumps detected at period 𝑡, 𝑗 on market 𝑚𝑖  in the set 𝑀𝑘𝑡. For example, 

given two markets’ datasets, when jumps are determined from both two markets at 

period 𝑡, 𝑗,  𝐶𝑂𝐽𝑢𝑚𝑝𝑡,𝑗
𝑀𝑘𝑡 = 1; however, if there is a jump identified from one of two 

markets or there are no jumps at period 𝑡, 𝑗, then 𝐶𝑂𝐽𝑢𝑚𝑝𝑡,𝑗
𝑀𝑘𝑡 = 0. Lahaye et al (2011) 

detected co-jumps between EURUSD and GBPUSD, and between EURUSD and 

JPYUSD; the propotion of the determined TS co-jumps over the total observations are 

less than 1%. 
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Once adequate definitions of co-jumps were found, applications and implications of 

these definitions were sought. Barunik and Vacha (2018) investigated how co-jumps 

significantly influence correlations in currency markets. It was also found that the 

market conditions preceding jumps and co-jumps are associated with higher quote 

volume, greater illiquidity, greater jump-signed order flow (Piccotti, (2018)). The 

association of traditional time series co-jumps (defined as a jump of both assets within 

the same time interval) with macroeconomic news announcements was studied by 

Chatrath et al (2014). They conducted a co-jump regression analysis and concluded that 

positive surprises (difference between the actual value and the consensus value 

normalized by standard deviation) in U.S. macroeconomic announcements increases 

the probability of observing cojumps with a negative jump of the foreign currency (Euro, 

Sterling, Japanese Yen). In addition, it was found that a negative surprise in a U.S. 

announcement increases the probability of co-jumps with a positive jump exhibited by 

the foreign currency. Lahaye et al (2011) discussed the link between macroeconomic 

news and co-jumps from the back testing restuls based on a probit model; they 

concluded that there was a strong relation between news surprises and co-jumps. Also, 

through a regression analysis, Dungey and Hvozdyk (2012) observed that the 

probability of co-jumps presenting increased with the scheduled macroeconomic news. 

Bibinger and Winkelmann (2014) analysed on co-jumps in futures on German 

government bonds with short and long maturity; they concluded that the interest rate 

decision has a marjor impart on co-jumps presenting. Caporin et al. (2017) exaimed the 

relation between stocks co-jumps and news; they found that co-jumps associated with 

bad news increased the stock variances and the correlations, and the stock prices are 
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more likely to drop. In contrast, the goods rise the stock variances and the correlations, 

and the stock prices are likely to increase. 
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Chapter 3. Relative Volatility 

This chapter introduces a new approach in measuring relative volatility between two 

markets based on the directional change (DC) framework. DC is a data-driven approach 

for sampling financial market data such that the data is recorded when the price changes 

have reached a significant amplitude rather than recording data on a pre-determined 

timescale. Being able to measure relative volatility between two different assets helps 

analysts to monitor the relative strength of the volatility between two markets; and this 

could be an additional tool to better inform the role of risk management. In DC, the 

majority of the published references focus on the study of volatility measurement of a 

single market (Guillaume et al. (1997), Tsang (2017), and Petrov et al. (2019)) for 

instance. In measuring relative volatility of two markets, due to the varying timescale 

of the DC data, there is no direct way to measure the volatility of two markets 

simultaneously. Especially in the study of the high-frequency data, observers have to 

consider the pre-determined period to be used in order to collect the DC data of two 

markets to enable the measurement of the relative volatility. As discussed in Section 

1.1, it is suspected that it would be preferable to let the data dictate the time interval 

based on the behaviour of the two markets’ price changes. Hence, in terms of the 

contribution of this chapter, we propose the new concept of DC micro-market relative 

volatility (𝑚𝑅𝑉) to evaluate relative volatility between two markets. Unlike the time 

series method, 𝑚𝑅𝑉 dynamically redefines the timescale based on the frequency of the 

observed DC data between the two markets. As we shall show through the results of 

our studies (discussion in Section 3.5.3),  it is useful for measuring the relative volatility 

in micro-market activities (high-frequency data) both in terms of providing more data 
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during times of significant events and enabling the precise localisation of the 

measurement of volatility.  

 

The remainder of this chapter is organised as follows. Section 3.2 introduces the 

concept of Directional Change and the volatility measurement in the DC framework. 

Section 3.3 presents the measure of DC relative volatility using a pre-determined period. 

Section 3.4 introduces the concept of DC micro-market relative volatility mRV and its 

measurement method. Section 3.5.1 contrasts the classical method (time series 

approach) with the DC method from the perspective of measuring relative volatility. 

Section 3.5.2 illustrates the back-testing of measuring relative volatility between 

EURUSD and GBPUSD over seven years from 2012 to 2018. Particularly, mRV 

detected that Sterling was extremely volatile in comparison to the Euro in the week of 

the Brexit referendum. Inter alia, mRV detected that GBPUSD was extremely volatile 

compared to EURUSD after the voting time of the Brexit referendum. In Section 3.5.3, 

we discuss the benefits of measuring mRV compared to the classical method. In 

addition, Section 3.5.4 proposes a scaling-law to evaluate the relationship between the 

average period of sub-sequence and threshold chosen by the analyst.  In Section 3.6, we 

give our conclusions. 

 

3.1 Introduction 

Evaluating volatilities between different financial instruments is a primary idea in the 

application of risk management and trading strategy. The classical approach of 

measuring relative volatility is through comparing the variance of the price return on 

the regular timescale. It is capable of evaluating relative volatility if the objective 

dataset could better coincide with a period of relatively high homogeneity (like daily or 
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weekly time interval). However, in high-frequency data, the general approach might 

not present an accurate result for evaluating relative volatility, and there are two main 

reasons: (1) on the pre-determined timescale it is hard to summarise the real behaviour 

in terms of micro-market activity because, for instance, the volume of the participants’ 

transactions are not equal on the regular timescale. (2) the markets’ reactions to a 

sudden event might not be synchronously recorded in the prices, in other words, there 

might be a time delay between the response of markets. For instance, in measuring the 

consistency of the co-jumps between two markets, one price jump of market A may be 

followed by a price jump from market B with a short time delay. Under the DC 

framework, we propose a new concept of DC micro-market relative volatility (mRV) 

in evaluating relative volatility. In mRV, measuring relative volatility does not require 

a pre-defined timescale since the mRV approach determines the timescale based on a 

data-driven process. Specifically, we build the DC relative sequence, which combines 

the DC sequences of two markets into a single sequence. In a DC relative sequence, the 

timescale is passively defined by the observation of the DC data.  

 

As introduced in Section 2.1, the methodology of measuring relative volatility is 

different between the TS method and the DC method. Thus, there are some questions 

as follows: could the DC approch show similar results to the TS method in measuring 

relative volatility? How can observers benefit from using mRV compared with the TS 

method? In addition, to measure mRV, we build the DC relative sequence to combine 

the DC sequences of two markets into a single sequence. Can we find a new scaling 

law between the magnitude of the threshold and the timescale of the DC relative 

sequence? In other words, can we estimate the timescale of the DC relative sequence 
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(in terms of an average value) given a certain threshold? We will answer these questions 

in the following sections. 

 

3.2 Directional Changes 

Directional change (DC) is a new framework in the data sampling of the financial 

market transactions for the analysis of the market behaviours. The process of DC data 

sampling is based on the DC algorithm in equation (2.1) and (2.2) below (Guillaume et 

al. (1997) and Tsang et al. (2015)). In time series analysis, the market data is collected 

under a pre-determined timescale. However, the mechanism of DC data sampling 

considers the significant price changes such that the market data is recorded when the 

price change has reached a certain threshold from the last peak/trough of the price. In 

practice, the analyst determines the threshold as a percentage. Hence, price changes are 

recorded as a series of alternate uptrends and downtrends, and the timestamp of each 

DC data point is determined dynamically.  

 

3.2.1 DC volatility 

DC measures the volatility of a single market based on the frequency of the observed 

EPs over a period (Guillaume et al. (1997)). Tsang (2017) discussed how the DC 

approach could measure market volatility. Given a period of T, the more DC trends 

observed; this provides an indication of greater market volatility. As explained in Figure 

2.1 (in Section 2.3), a DC trend is defined by connecting two adjacent EPs. Hence, the 

number of DC trends are quantified by the number of observed extreme points 𝑁𝐷𝐶. 

Over the period T, a higher value of 𝑁𝐷𝐶 indicates higher volatility. Petrov et al. (2019) 

presented the measure of instantaneous volatility such that the equation (2.7) is 
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developed based on the theory of Brownian motion for the price returns (for deails of 

instantaneous volatility see Section 2.3). 

 

It is worth reiterating that DC and time series (TS) sample data differently. Therefore, 

given the same raw tick data, DC and TS will generate different sample datasets. 

Although volatility measures under DC and TS both reflect the market, they cannot be 

compared directly.  

 

3.3 DC relative volatility 

DC relative volatility (DCRV) is a concept in comparing the intensity of one market’s 

volatility relative to another market in a period 𝑇. The general method of evaluating 

relative volatility is through comparing the variances of the price returns between the 

two markets in a period 𝑇, which requires the same timescale of the two markets’ price 

returns. For instance, analysts compare the variances of hourly price returns between 

market A and market B in a particular month. In DCRV, the relative volatility is 

measured by differencing the values of two markets’ DC volatilities (𝜎𝐷𝐶) in a period 

𝑇; e.g. the measure of DCRV between market A and market B denoted 𝜎𝐷𝐶(𝐴,𝐵), is 

given by:  

 

𝜎𝐷𝐶(𝐴,𝐵) =  𝜎𝐷𝐶.𝐴 − 𝜎𝐷𝐶.𝐵 = 𝜃
√𝑁𝐷𝐶.𝐴−√𝑁𝐷𝐶.𝐵

√𝑇
,                                     (3.1) 

 

where 𝜎𝐷𝐶.𝐴  and 𝜎𝐷𝐶.𝐵  are the DC volatilities of the markets A and B respectively,  

𝑁𝐷𝐶.𝐴 and 𝑁𝐷𝐶.𝐵 are the number of extreme points of market A and market B over the 

period 𝑇 and 𝜃 is the threshold which is applied to obtain the DC sequences of market 

A and market B. 
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Given the 𝜎𝐷𝐶(𝐴,𝐵) over a period T: 

i. If 𝜎𝐷𝐶(𝐴,𝐵) > 0, the volatility of market A is relatively higher than the volatility 

of market B. 

ii. If 𝜎𝐷𝐶(𝐴,𝐵) = 0, the volatility of market A and market B are at the same level. 

iii. If 𝜎𝐷𝐶(𝐴,𝐵) < 0, the volatility of market A is relatively lower than the volatility 

of market B. 

 

3.4 DC micro-market relative volatility 

Section 3.3 introduces the measure DCRV in a pre-determined period 𝑇 evaluating the 

relative volatility depending on the length of the period. However, given a set of data, 

the DCRV may indicate different results in measuring relative volatility when the length 

of 𝑇 is selected randomly. In the example below, Figure 3.1 shows a segment of the DC 

sequences of market A and market B. Given the three different lengths of the periods 

𝑇1, 𝑇2, 𝑇3 , we obtain different numbers of EPs from the two markets. According to 

equation (3.1), the DCRV approach indicates three different results (
0.32𝜃

√𝑇1
, 

1.04𝜃

√𝑇2
 and 

0.83𝜃

√𝑇3
) in measuring the relative volatility under the periods of 𝑇1, 𝑇2, 𝑇3. Figure 3.1 

raises the question of how should we select the length of the 𝑇 for measuring the relative 

volatility.  

 

DC takes a data-driven approach to sampling. Based on the same principle, it may be 

better to let the data pick 𝑇. That motivates us to find a data-driven measure of relative 

volatility. Also, the DCRV approach might be incapable of evaluating the event-based 

collapse at micro-level. Figure 3.2 below shows two differently arranged frequencies 
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of the EPs from market A and market B in the same period 𝑇. In Scenario 1, there is a 

constant frequency of the observed EPs between the two markets in that, every two EPs 

of market B follows one EP of market A. In scenario 2, there is the same number of 

total EPs as in scenario 1. However, the frequency of the observed EPs is entirely 

different (six consecutive EPs of market B follow two EPs of market A, then two EPs 

of market B follow two EPs of market A). Although the two scenarios have differently 

arranged frequencies, the DCRV approach presents the same result because of the same 

number of EPs of the two scenarios (according to equation (3.1)). 

 

The shortcoming described in the previous paragraph is addressed with the concept of 

DC micro-market relative volatility (𝑚𝑅𝑉). This is a concept used to evaluate the 

relative volatility based on a data-driven process. In 𝑚𝑅𝑉, the period 𝑇 is determined 

according to the observation of the extreme points of the two markets. It is important to 

note time is passively defined in 𝑚𝑅𝑉. A formal definition of 𝑚𝑅𝑉 and how it may be 

measured is given in the next sections. 

Figure 3.1 The DC sequences of market A and market B with the periods of  𝑻𝟏, 𝑻𝟐, 𝑻𝟑. 

Under the three different lengths of the periods, the DCRV measurement shows 

different conclusions in evaluating relative volatility between the two markets. 

Figure 3. 2 
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 Figure 3.2 The same number of EPs from market A and market B in the same period 

T.  

 

3.4.1 DC relative sequence (RS) 

As discussed in the beginning of Section 3.4, a progressive data driven method is to 

dynamically determine the period 𝑇 based on the observing EPs of the two markets. 

The DC relative sequence (RS) combines the two DC sequences into a new sequence 

in chronological order. In a RS, the termination of the current period depends on 

changes of the market identity between the current EP and the next EP. Figure 3.3 

illustrates the DC relative sequences according to scenario 1 and scenario 2 as described 

in Figure 3.2. In scenario 1 of Figure 3.3, the 𝑇1 is terminated when the identity of the 

EP.A4 is different from the identity of the EP.B3. In scenario 2 of Figure 3.3, the 𝑇2 is 

terminated when the identity of the EP.A13 is different from the identity of the EP.B12 

(we suppose that the EP.13 is from market A). Hence, in scenario 1 of Figure 3.3, the 

DC relative sequence is decomposed into the four sub-sequences of the time periods 

Figure 3. 3 
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𝑇1, 𝑇2, 𝑇3, and 𝑇4. Likewise, the DC relative sequence of scenario 2 is decomposed into 

the two sub-sequences given by 𝑇1 and 𝑇2. 

 

Figure 3.3 The decomposed periods of Figure 3.2. We assume that the EP.A13 is from 

market A for both scenario 1 and scenario 2. 

 

3.4.2 Formal definitions of DC relative sequence 

A DC combined sequence comprises all observed EPs from the two DC sequences of 

SA
θ  and SB

θ ordered by the timestamp 𝐸𝑃. 𝑡: 

 

𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃  = (𝐸𝑃1, 𝐸𝑃2, … , 𝐸𝑃𝑚),       (3.2) 

 

where m equals the amount of the total number of EPs from both SA
θ  and SB

θ , and 

𝐸𝑃1, 𝐸𝑃2, … , 𝐸𝑃𝑚 are either from SA
θ or SB

θ. The examples of scenario 1 and scenario 2 

from Figure 3.2 are summarised as follows: 

 

(1) Scenario 1 from Figure 3.2:  

Figure 3. 4 
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𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 = (𝐴1, 𝐵2, 𝐵3, 𝐴4, 𝐵5, 𝐵6, 𝐴7, 𝐵8, 𝐵9, 𝐴10, 𝐵11, 𝐵12).     (E3.1) 

(2) Scenario 2 from Figure 3.2: 

𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 = (𝐴1, 𝐴2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7, 𝐵8, 𝐴9, 𝐴10, 𝐵11, 𝐵12).      (E3.2) 

A DC relative sequence (𝑹𝑺) is generated by a division process Γ(𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃) which 

divides a DC relative sequence into z sub-sequences according to the identity of the 

adjacent EPs:  

 

𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 = Γ(𝑅

𝑆𝐴
𝜃,𝑆𝐵

𝜃) =  (𝑌1, 𝑌2, … , 𝑌𝑗 , … , 𝑌𝑧),  (3.3) 

 

where 𝑌𝑗 is a sub-sequence of 𝑅𝑆. All 𝑌𝑗 contain at least two EPs that one EP from 𝑆𝐴
𝜃 

and another from 𝑆𝐵
𝜃 , thus the maximum value of z is 

𝑚

2
. Otherwise, at least one 𝑌𝑗 

contains more than two EPs, so z <  
𝑚

2
. For every 𝑌𝑗:  

 

∀ j: 𝑌𝑗  = (𝐸𝑃𝑗,1, 𝐸𝑃𝑗,2, 𝐸𝑃𝑗,3, … , 𝐸𝑃𝑗,𝑘−1, 𝐸𝑃𝑗,𝑘). (3.4) 

 

The termination of the current sub-sequence 𝑌𝑗 depends on the identity of the next EP. 

When the identity of the upcoming EP is not the same as the identity of the current EP, 

the length of the period of the current 𝑌𝑗 is determined by: 

 

𝑇(𝑌𝑗) = 𝐸𝑃. 𝑡𝑗+1,1 − 𝐸𝑃. 𝑡𝑗,1.   (3.5) 

 

Given the DC sequences 𝑆𝐴
𝜃  and 𝑆𝐵

𝜃  of scenario 1 and scenario 2 in Figure 3.3, we 

obtain the DC relative sequences: 

(1) Scenario 1 from Figure 3.3: 
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𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 = ((𝐴1, 𝐵2, 𝐵3)1, (𝐴4, 𝐵5, 𝐵6)2, (𝐴7, 𝐵8, 𝐵9)3, (𝐴10, 𝐵11, 𝐵12)4). 

(E3.3) 

(2) Scenario 2 from Figure 3.3: 

𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 = ((𝐴1, 𝐴2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7, 𝐵8)1, (𝐴9, 𝐴10, 𝐵11, 𝐵12)2).        (E3.4) 

 

3.4.3 The measure of DC micro-market relative volatility (𝒎𝑹𝑽) 

The approach of DC micro-market relative volatility bases on equation (3.1), while the 

subject of the measurement is the sub-sequence 𝑌 of 𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃: 

 

𝑚𝑅𝑉𝑌 = 𝜃
√𝑁𝐷𝐶.𝐴−√𝑁𝐷𝐶.𝐵

√𝑇(𝑌)
,                                                  (3.6) 

 

where, 𝑇(𝑌) is defined in equation (3.5). We shall abuse the notation by using 𝑚𝑅𝑉 as 

a measure as well as an abbreviation of the concept. Given the measure 𝑚𝑅𝑉𝑌 of the 

sub-sequence 𝑌: 

 

i. If 𝑚𝑅𝑉𝑌 > 0, the volatility of market A is relatively higher than the volatility 

of market B. 

ii. If 𝑚𝑅𝑉𝑌 = 0, the volatility of market A and market B are at the same level. 

iii. If 𝑚𝑅𝑉𝑌 < 0, the volatility of market A is relatively lower than the volatility of 

market B. 

 

In scenario 1 of Figure 3.3, we measure the 𝑚𝑅𝑉 in the first sub-sequence 𝑌1 of 𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃  

through equation (3.6): 
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𝑚𝑅𝑉𝑇(𝑌1) =
𝜃(√1−√2)

√𝑇(𝑌1)
 =

−0.41𝜃

√𝑇(𝑌1)
.             (E3.1) 

 

Given the DC relative sequence of equation (3.3), 𝑚𝑅𝑉 measures each sub-sequence 

through equation (3.6): 

 

𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) = (𝑚𝑅𝑉(𝑌1), 𝑚𝑅𝑉(𝑌2), … , 𝑚𝑅𝑉(𝑌𝑗), … , 𝑚𝑅𝑉(𝑌𝑧)),           (3.7) 

 

where, 𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) is a sequence, and 𝑌𝑗 refers to the sub-sequence 𝑗. 

 

In scenario 1 and scenario 2 of Figure 3.3, the 𝑚𝑅𝑉 is measure by:  

 

(1) Scenario 1 from Figure 3.3:  

𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) = (𝑚𝑅𝑉(𝑌1), 𝑚𝑅𝑉(𝑌2), 𝑚𝑅𝑉(𝑌3), 𝑚𝑅𝑉(𝑌4)).      (E3.2) 

(2) Scenario 2 from Figure 3.3: 

𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) = (𝑚𝑅𝑉(𝑌1), 𝑚𝑅𝑉(𝑌2)).         (E3.3) 

 

3.4.4 Discussion: the merits of using mRV in micro markets 

When measuring 𝑚𝑅𝑉, the sub-sequence 𝑌𝑗 is the primary object. 𝑇(𝑌𝑗) is a secondary 

object defined by the sub-sequence. DC is a data-driven approach of sampling the 

market data such that the DC data is only recorded when significant price changes are 

observed. Under the DC framework, the DC relative sequence is a combined sequence 

of two markets’ sequences. We then divide the DC relative sequence into a number of 

sub-sequences based on the market identity of the adjacent extreme points (EPs).  At 
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the end of Section 3.4.2, the example of scenario 1 (equation (E3.3)) illustrates that 𝐵3 

is the last EP of the first sub-sequence because 𝐴4 (the next EP) is from a different 

market compared to 𝐵3 . According to equation (3.5), the period 𝑇 of the first sub-

sequence (𝑌1) is passively determined by 𝑇(𝑌1) = 𝐸𝑃. 𝑡2,1 − 𝐸𝑃. 𝑡1,1; in the example of 

E.3, we have 𝑇(𝑌1) = 𝐴4. 𝑡 − 𝐴1. 𝑡. Hence, the period 𝑇 is intrinsically determined by 

the behaviour of the two markets’ price changes, rather than being a fixed time interval 

pre-determined by the analyst. Based on the sub-sequence, we can precisely locate the 

timestamp when a significant 𝑚𝑅𝑉  value is determined within the period 𝑇 . For 

example, an unusual ‘flash event’ may produce a series of EPs from market A compared 

to one EP from market B within a sub-sequence. We can then simply measure the 

relative volatility of this special event by calculating the 𝑚𝑅𝑉 of the sub-sequence. 

 

3.4.5 Discussion: regarding threshold selection 

Fundamentally, the DC data summarises the original price movement based on a pre-

determined threshold. In practice, observers utilize the threshold to capture the 

significant price changes and filter out the unnecessary noise of the price movement. 

Hence, the magnitude of the threshold directly impacts the frequency of the EPs over a 

period. An extremely small threshold will cause every tick data point to be determined 

as an EP. On the other hand, an extremely large threshold will give the result of 

recording no DC data. So, what is the ‘right’ threshold for us to use? It is unlikely to 

find an ‘optimal’ threshold for sampling DC data in this research. In fact, there are no 

‘wrong’ ways of determining the size of thresholds. It is actually the observer’s 

prerogative to set the threshold to suit the individual observer’s needs. High-frequency 

traders might prefer a smaller threshold to acquire the micro price changes, while 

institutions might be more focused on larger price movements. In addition, Glattfelder 
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et al. (2011) show that the same statistical measures can be observed under different 

thresholds.  

 

3.5 Experiment 

In this section, we contrast the realised volatility (the classical time series method under 

the regular timescale) and 𝑚𝑅𝑉 in the measurement of relative volatility. It is worth 

reiterating that DC and time series work on different datasets sampled from tick data, 

and therefore, volatility measures utilizing those frameworks cannot be compared 

directly. The aim of this experiment is to examine the consistency of measuring relative 

volatility between the two methods.  

 

3.5.1 Comparing relative volatility between Time Series and DC 

In this section, we compare the realised volatility (the classical time series method under 

the regular timescale) and 𝑚𝑅𝑉 as a measure of relative volatility. The aim of this 

experiment is to examine the consistency of measuring relative volatility between the 

two methods.  

In time series, we select four groups of the data under the regular time intervals ∆t = 

{10 seconds, 1 min, 5 min, and 15 min}. The return at time 𝑡, 𝑅𝑡, is defined by: 

 

 𝑅𝑡 = ln 𝑃𝑡 − ln 𝑃𝑡−∆t,                 (3.8) 

 

where, ln 𝑃𝑡  is the logarithmic price at the end of each time interval ∆t. Given the 

sequence of the returns over a period 𝜏 (e.g., a trading day or a trading week), the 

realised volatility is defined by the standard deviation (Alexander (2008)): 
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𝜎𝜏 =  √∑(𝑅𝑡−�̅�)
2

𝑛−1
,                 (3.9) 

 

where n is the number of returns over a period 𝜏, and �̅� is the mean of the sequence of 

the returns. Given the standard deviation of market A and market B, we calculate the 

difference of 𝜎𝜏,𝐴 and 𝜎𝜏,𝐵  to evaluate the relative volatility between the market A and 

market B over a period 𝜏: 

 

 𝐷𝑠𝑑𝜏,𝐴−𝐵
∆𝑡 = 𝜎𝜏,𝐴 − 𝜎𝜏,𝐵,               (3.10) 

 

where ∆𝑡 is the initially selected time interval to obtain the logarithmic price.  

 

Glattfelder et al. (2011) discovered 12 DC scaling laws in the market. For instance, the 

analytical relationship between the size of threshold and the average percentage change 

of a DC trend. The DC scaling law 10 gives the statistical property that the average 

period of a DC trend 〈𝑇𝑡𝑚𝑣〉 is approximately equal to a function of the threshold 𝜃: 

 

 〈𝑇𝑡𝑚𝑣〉 = (
𝜃

𝐶𝑡,𝑡𝑚𝑣
)

𝐸𝑡,𝑡𝑚𝑣

,                (3.11) 

 

where 𝐸𝑡,𝑡𝑚𝑣 and 𝐶𝑡,𝑡𝑚𝑣 are the scaling law parameters, 〈. 〉 is the operator to calculate 

the mean, and 𝜃 is the threshold. Based on equation (3.11), we can estimate the average 

period of a DC trend 〈𝑇𝑡𝑚𝑣〉 given a threshold 𝜃, and vice versa (we present a basic 

summary of the 12 DC scaling laws in Appendix C). Hence, we obtain the four 

corresponding thresholds given the time intervals ∆t =

 {10 seconds, 1 min, 5 min, and 15 min}. A DC total movement defines a trend of the 
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price movement between two adjacent extreme points (see Figure 2.1 in Section 2.2). 

According to the DC definition, a trend is terminated when the price changes have 

reached a certain threshold 𝜃  from the last peak/trough of the price. In DC, the 

peak/trough defines the extreme point (EP). Given a threshold and the scaling law 10 

(equation (3.11)), we can estimate the average period of the trend and vice versa. 

Glattfelder et al. (2011) estimated the average values of the parameters 𝐶𝑡,𝑡𝑚 and 𝐸𝑡,𝑡𝑚 

across 13 pairs of exchange rates, and obtained 𝐶𝑡,𝑡𝑚 = 0.00165 and 𝐸𝑡,𝑡𝑚 = 2.02. In 

this experiment, 〈𝑇𝑡𝑚𝑣〉  is the Δt. Given Δts, using equation (3.11), we obtain the 

corresponding thresholds, 𝜃 = {0.005%, 0.013%, 0.028%, 0.048%}. Based on the four 

thresholds, we calculate the DC sequences of the market A and market B and generate 

the DC relative sequence 𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 through equation (3.3). Then, we measure the 𝑚𝑅𝑉 

through equation (3.7). According to equation (3.10), we evaluate the relative volatility 

in the period 𝜏 of daily (D), weekly (W) and monthly (M) of 𝐷𝑠𝑑𝜏,𝐴−𝐵
∆𝑡 . As introduced 

in equation (3.7), 𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) is a sequence. Hence, we calculate the mean value of 

𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) over the period 𝜏 to match the value of 𝐷𝑠𝑑𝜏,𝐴−𝐵

∆𝑡 . In the back-testing, we 

calculate the mean of daily 〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 )〉𝐷 , the mean of weekly 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
𝜃,𝑆𝐵

𝜃 )〉𝑊, and 

the mean of monthly 〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 )〉𝑀. The data source is from Tickstory5 that gives 

direct access to the database of Dukascopy6. We select EURUSD as the major exchange 

rate comparing with five exchange rates. Table 3.1 summaries the two approaches in 

the measure of relative volatility. 

 

 

 
5 Tickstory is a retailer of market data that their data source is from Dukascopy. https://www.tickstory.com/ 

6 Dukascopy Bank is a Swiss online bank which provides high quality market data in different types. 
https://www.dukascopy.com/swiss/english/home/ 

https://www.tickstory.com/
https://www.dukascopy.com/swiss/english/home/
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Table 3.1 The summary of the two approaches in the measurement of relative volatility. For the 

classical method, the equations (3.8)-(3.10) provide the definitions for the measure of the relative 

volatility in daily, weekly and monthly. The back-testing picked 24 hours tick-by-tick data on 

weekdays from Monday 00:00:00.000 to Friday 22:00:00.000. 

 𝐷𝑠𝑑𝜏,𝐴−𝐵
∆𝑡  〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
𝜃,𝑆𝐵

𝜃 )〉𝜏 

The raw data 

sampling 

The sequences of the returns under 

Δt = {10 s, 1 min, 5 min, 15 min} 

over seven years from 2012 to 2018 

The DC relative sequence under 𝜃 = 

{0.005%, 0.013%, 0.028%, 0.048%} over 

seven years in tick data from 2012 to 2018 

The periods of 

the 

measurement 

Daily: 𝐷𝑠𝑑𝐷,𝐴−𝐵
∆𝑡 , Weekly: 

𝐷𝑠𝑑𝑊,𝐴−𝐵
∆𝑡   

Monthly: 𝐷𝑠𝑑𝑀,𝐴−𝐵
∆𝑡  

Daily: 〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) 〉𝐷,  

Weekly: 〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 ) 〉𝑊 

Monthly: 〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 )〉𝑀 

The measure 

of the pairs of 

exchange rates 

𝐷𝑠𝑑𝜏,𝐺𝐵𝑃𝑈𝑆𝐷−𝐸𝑈𝑅𝑈𝑆𝐷
∆𝑡 , 

𝐷𝑠𝑑𝜏,𝑈𝑆𝐷𝐽𝑃𝑌−𝐸𝑈𝑅𝑈𝑆𝐷
∆𝑡 , 

𝐷𝑠𝑑𝜏,𝐴𝑈𝐷𝑈𝑆𝐷−𝐸𝑈𝑅𝑈𝑆𝐷
∆𝑡 , 

𝐷𝑠𝑑𝜏,𝑈𝑆𝐷𝐶𝐴𝐷−𝐸𝑈𝑅𝑈𝑆𝐷
∆𝑡 , 

𝐷𝑠𝑑𝜏,𝐺𝐵𝑃𝐽𝑃𝑌−𝐸𝑈𝑅𝑈𝑆𝐷
∆𝑡  

 

〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐺𝐵𝑃𝑈𝑆𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 )〉𝜏, 

 〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝑈𝑆𝐷𝐽𝑃𝑌

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 )〉𝜏, 

〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴𝑈𝐷𝑈𝑆𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 )〉𝜏, 

〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝑈𝑆𝐷𝐶𝐴𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 )〉𝜏 

〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐺𝐵𝑃𝐽𝑃𝑌

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 )〉𝜏 

Table 3. 1 

In the seven year dataset, we obtain 1825 results for 𝐷𝑠𝑑𝐷,𝐴−𝐵
∆𝑡 , 366 results for 

𝐷𝑠𝑑𝑊,𝐴−𝐵
∆𝑡  and 84 results for 𝐷𝑠𝑑𝑀,𝐴−𝐵

∆𝑡 . 〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 )〉𝜏  also exhibited the same 

number of results. Given the results of the back-testing, we measure the correlation 

between the results of the two approaches. As the data have not been fitted to a Gaussian 

distribution, we evaluate the correlation through the Spearman rank-order correlation 

coefficient. The Spearman correlation tests the association of the ordinal relationship 

between 𝐷𝑠𝑑𝜏,𝐴−𝐵
∆𝑡  and 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
𝜃,𝑆𝐵

𝜃 )〉𝜏. Table 3.2 is a summary of the results of the 

correlation coefficient. 
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Table 3.2 The results of the correlation coefficient. The function 𝐂𝐨𝐫𝐫(. ) is the correlation test given 

the two sequences obtained by the approaches of 𝑫𝒔𝒅𝝉,𝑨−𝑩
∆𝒕  and 〈𝒎𝑹𝑽(𝑹𝑺

𝑺𝑨
𝜽,𝑺𝑩

𝜽 )〉𝝉. In the first row, EU, 

GU, UJ, AU, UC, and GJ are the abbreviation of EURUSD, GBPUSD, USDJPY, AUDUSD, 

USDCAD, and GBPJPY, respectively. The last column indicates the average value of each row 

spanning the five pairs of exchange rates under the parameters of Δt and θ. All the correlation 

coefficients below satisfy the significance level of 𝒑 < 0.05.  

   
GU-

EU 

UJ-

EU 

AU-

EU 

UC-

EU 

GJ-

EU 
Average 

Daily:       

Corr(𝐷𝑠𝑑𝐷,𝐴−𝐵
10𝑠 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.005%,𝑆𝐵

0.005%) 〉𝐷) 0.830 0.835 0.634 0.766 0.782 0.769 

Corr(𝐷𝑠𝑑𝐷,𝐴−𝐵
1𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.013%,𝑆𝐵

0.013%)〉𝐷) 0.869 0.921 0.713 0.794 0.862 0.832 

Corr(𝐷𝑠𝑑𝐷,𝐴−𝐵
5𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.028%,𝑆𝐵

0.028%)〉𝐷) 0.839 0.917 0.733 0.784 0.847 0.824 

Corr(𝐷𝑠𝑑𝐷,𝐴−𝐵
15𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.048%,𝑆𝐵

0.048%) 〉𝐷) 0.780 0.858 0.657 0.703 0.778 0.755 

  Weekly:       

Corr(𝐷𝑠𝑑𝑊,𝐴−𝐵
10𝑠 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.005%,𝑆𝐵

0.005%) 〉𝑊) 0.855 0.839 0.621 0.783 0.791 0.778 

Corr(𝐷𝑠𝑑𝑊,𝐴−𝐵
1𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.013%,𝑆𝐵

0.013%)〉𝑊) 0.908 0.941 0.723 0.794 0.893 0.852 

Corr(𝐷𝑠𝑑𝑊,𝐴−𝐵
5𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.028%,𝑆𝐵

0.028%)〉𝑊) 0.898 0.950 0.786 0.830 0.905 0.874 

Corr(𝐷𝑠𝑑𝑊,𝐴−𝐵
15𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.048%,𝑆𝐵

0.048%) 〉𝑊) 0.881 0.919 0.751 0.780 0.868 0.840 

  Monthly:       

Corr(𝐷𝑠𝑑𝑀,𝐴−𝐵
10𝑠 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.005%,𝑆𝐵

0.005%) 〉𝑀) 0.952 0.845 0.615 0.797 0.792 0.800 

Corr(𝐷𝑠𝑑𝑀,𝐴−𝐵
1𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.013%,𝑆𝐵

0.013%)〉𝑀) 0.938 0.955 0.757 0.789 0.898 0.867 

Corr(𝐷𝑠𝑑𝑀,𝐴−𝐵
5𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.028%,𝑆𝐵

0.028%)〉𝑀) 0.887 0.966 0.846 0.867 0.943 0.902 

Corr(𝐷𝑠𝑑𝑀,𝐴−𝐵
15𝑚𝑖𝑛 , 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
0.048%,𝑆𝐵

0.048%) 〉𝑀) 0.839 0.949 0.833 0.886 0.925 0.886 

Table 3. 2 

Table 3.2 summarizes the results of the correlation coefficients between 𝐷𝑠𝑑𝜏,𝐴−𝐵
∆𝑡  and 

〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 )〉𝜏. The statistical tests report strong positive correlation in that all the 

correlation coefficients are over 0.6. The far-right column is the mean of each row, 

which indicates the average correlation coefficients across the five pairs of exchange 

rates under the time intervals ∆t = {10 seconds, 1 min, 5 min, and 15 min} (with the 

four corresponding thresholds 𝜃𝑠). In Figure 3.4 (1), the three dot-lines illustrate the 

values of the right end column over the periods of daily, weekly and monthly timescales. 

Figure 3.4 (1) indicates that the correlation coefficients are tightly bunched for ∆t of 

10s and 1 min, while the spread enlarges at timeframes of 5 min and 15 min. Figure 3.4 

(2) shows the average correlation coefficients of each of the dot-lines and the average 
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correlation coefficients are 0.795, 0.836, and 0.864 for the daily, weekly, and monthly 

data. Overall, the results of the correlation test conclude that there exists positive 

correlation between 𝐷𝑠𝑑𝜏,𝐴−𝐵
∆𝑡  and 〈𝑚𝑅𝑉(𝑅𝑆

𝑆𝐴
𝜃,𝑆𝐵

𝜃 )〉𝜏 from 2012 to 2018.  

Figure 3.4  (1) the three dot-lines indicate the average values of the correlation under 

the pairs of parameters Δt and θ; (2) the three columns show the average values of each 

line from the left chart, which indicate the average correlation coefficients at 

frequencies of daily, weekly and monthly sampling.  

 

3.5.2 The back-testing of 𝒎𝑹𝑽 between Sterling and Euro 

This section will discuss the application of measuring 𝑚𝑅𝑉 between GBPUSD and 

EURUSD. The unexpected result of the Brexit referendum caused Sterling to fall -8.016% 

against the US dollar in 24/06/2016, which was the most significant single day drop 

since 20007. In the same day, Euro crashed -2.65% against the US dollar. The goal of 

 
7 According to the data source from Reuters Eikon. 

Figure 3. 5 
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this experiment is to ask whether 𝑚𝑅𝑉 is useful for measuring the relative volatility 

between the two markets. To answer that question, we have conducted two sets of 

experiments. First, we examine the average monthly 𝑚𝑅𝑉 over a long historical period 

from 2012 to 2018 to view the relative volatility between Sterling and Euro in the long-

term. Second, we test the 𝑚𝑅𝑉 at the micro-level in that we monitor the 𝑚𝑅𝑉 over each 

sub-sequence during the week of Brexit referendum.  

 

Throughout the two experiments, we select two thresholds 𝜃𝑠 = {0.05%, 0.1%} to 

calculate the 𝑚𝑅𝑉. According to equation (3.6), the value of 𝑚𝑅𝑉 could be very small 

if we select too low a threshold. Hence, we normalise the values of 𝑚𝑅𝑉  by the 

threshold, 𝑚𝑅𝑉  = 
𝑚𝑅𝑉

𝜃
.  We simplify the notation for the mean of monthly 

〈𝑚𝑅𝑉(𝑅𝑆
𝑆𝐺𝐵𝑃𝑈𝑆𝐷

0.05% ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
0.05% )〉𝑀 to 〈𝑚𝑅𝑉(𝑅𝑆)

0.05%〉𝑀 in this section. 

 

Figure 3.5 illustrates the mean of monthly 〈𝑚𝑅𝑉(𝑅𝑆)
0.05%〉𝑀 under the threshold of 0.05% 

over seven years. From 01/2012 to 09/2014, the volatility of EURUSD was relatively 

higher compared to GBPUSD in that the 〈𝑚𝑅𝑉(𝑅𝑆)
0.05%〉𝑀  was changing smoothly 

between -0.01 to 0 (except the months of 08/2013, 01/2014, and 02/2014, in which the 

values of the 𝑚𝑅𝑉 were slightly positive). During the year of 2015, EURUSD was more 

highly volatile compared to GBPUSD after the quantitative easing (QE) announcement 

from the European Central Bank8. In the periods between 01/2016 and 06/2016, there 

was a sharp climb in the values obtained from -0.011 to 0.0374. After the month of 

Brexit referendum (06/2016), Sterling retained higher volatility compared to the Euro 

 
8 Details check https://www.ecb.europa.eu/press/pr/date/2015/html/pr150122_1.en.html 

https://www.ecb.europa.eu/press/pr/date/2015/html/pr150122_1.en.html
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until the end of 2016. Under the threshold of 0.1%, the 〈𝑚𝑅𝑉(𝑅𝑆)
0.1%〉𝑀 shows a consistent 

result (see Figure A1 in Appendix A). 

Figure 3.5 The mean of monthly 〈𝒎𝑹𝑽(𝑹𝑺)
𝟎.𝟎𝟓%〉𝑴 measures the monthly average 𝒎𝑹𝑽 

under the threshold of 0.05%. From 2012 to 2018, there were 84 data points. The values 

of 𝒎𝑹𝑽 are normalised by θ.  

 

In the second experiment, we evaluate the 𝑚𝑅𝑉  in each sub-sequence under the 

thresholds of 0.05% and 0.1%. We select the DC relative sequences 𝑅𝑆𝑆𝐺𝐵𝑃𝑈𝑆𝐷
0.05% ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷

0.05%  

and 𝑅𝑆𝑆𝐺𝐵𝑃𝑈𝑆𝐷
0.1% ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷

0.1%  from 16/06/2016 to 30/06/2016 such that the periods cross the 

five working days before and after the Brexit referendum day on 23/06/2016. Given the 

DC relative sequences, we calculate 𝑚𝑅𝑉(𝑅𝑆)
0.05%. Figure 3.6 plots the 𝑚𝑅𝑉(𝑅𝑆)

0.05% of the 

2200 sub-sequences under the threshold 0.05%. Note that the x-axis in Figure 3.6 is not 

physical time, but the indices of the sub-sequences; the y-axis is the 𝑚𝑅𝑉 value. We 

highlight (in red colour) the sub-sequences in the period right after the voting of Brexit 

Figure 3. 6 
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referendum until the end of next day from 22:00 06/23/2016 to 22:00 06/24/20169 

(UTC) (24 hours after the vote of Brexit referendum). This corresponds to index 0 to 

2200 in Figure 3.6. Hence, the 2200 sub-sequences are separated into three parts:  

 

1) Part 1: from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours in total trading 

hours);  

2) Part 2: from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours);  

3) Part 3: from 00:00 06/27/2016 to 24:00 30/06/2016 (96 hours).  

Figure 3. 7 

 
Figure 3.6 The sequence of 𝒎𝑹𝑽(𝑹𝑺)

𝟎.𝟎𝟓%  over the periods from 16/06/2016 to 

30/06/2016. We select the tick-by-tick data of GBPUSD and EURUSD to calculate the 

𝒎𝑹𝑽 of each sub-sequence. Figure 3.6 plots 2200 sub-sequences observed under the 

threshold of 0.05%. Note that the x-axis refers to the index of the sub-sequences. Part 

1(blue line): from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours); Part 2 (red line): 

 
9 The voting ended at 22:00, which corresponds to index 590 (the period of the sub-sequence starts 

from 21:53:58 23/06/2016 to 22:00:06 23/06/2016) in Figure 3.6.  
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from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours); Part 3 (purple line): from 00:00 

06/27/2016 to 24:00 30/06/2016 (96 hours). 

 

 Two observations stand out from the results shown in Figure 3.6: 

Observation 1: GBPUSD is highly relatively volatile compared to EURUSD in Part 2. 

In the highlighted area of Figure 3.6 (the period of Part 2), there are enormous changes 

in 𝑚𝑅𝑉 after the voting time. In Part 2, we observe the sub-sequence of the highest 

𝑚𝑅𝑉 reached the value 0.834 in the period T from 23:17:53 23/06/2016 to 23:18:27 

23/06/2016. In this sub-sequence, there are 35 EPs of GBPUSD and 1 EP of EURUSD 

in 34 seconds. In contrast, the lowest value of 𝑚𝑅𝑉 is -0.633 and there is 1 EP of 

GBPUSD and 4 EPs of EURUSD in the period T of 3 seconds (from 03:59:28 

24/06/2016 to 03:59:31 24/06/2016). In table 3.3, we present the mean and median of 

the 𝑚𝑅𝑉(𝑅𝑆)
0.05% in the three periods (from the second column to the fourth column). 

Visibly, the values of 〈𝑚𝑅𝑉(𝑅𝑆)
0.05%〉 and 𝑀𝑒𝑑𝑖𝑎𝑛(𝑚𝑅𝑉(𝑅𝑆)

0.05%) of Part 2 are higher than 

the values in Part 1 and Part3, which indicates the significant volatility of GBPUSD 

compared to EURUSD after the voting. This conclusion is further confirmed by the 

ratio test, as shown in the last two columns of Table 3.3. In the column of Part2/Part1, 

the ratios reach 5.736 and 4.743 under the mean and median values of 𝑚𝑅𝑉(𝑅𝑆)
0.05%. In 

the column of Part2/Part3, the ratios reach 3.723 and 2.591.  

 

Table 3.3 The mean and median of the 𝒎𝑹𝑽(𝑹𝑺)
𝟎.𝟎𝟓%. The operator 𝑴𝒆𝒅𝒊𝒂𝒏(. ) denotes the 

median of a sequence. 

 Part 1 Part 2 Part 3  Part2/Part1 Part2/Part3 

〈𝑚𝑅𝑉(𝑅𝑆)
0.05%〉 0.014 0.082 0.022  5.736 3.723 

𝑀𝑒𝑑𝑖𝑎𝑛(𝑚𝑅𝑉(𝑅𝑆)
0.05%) 0.011 0.053 0.02  4.743 2.591 

Table 3. 3 
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Observation 2: GBPUSD and EURUSD are much more volatile in Part 2 than Part 1 

and Part 3. 

During the period of Part 2, we observe 949 sub-sequences out of the total 2200, which 

account for 43% of the total sub-sequences in 11 trading days. The period of Part 2 is 

24 hours after the Brexit referendum, which means around 39 sub-sequences 

determined in each hour. Also, we observe 1251 sub-sequences in the periods of Part 1 

and Part 3 (236 hours in total). Thus, there are approximately 5 sub-sequences in each 

hour over 236 hours. According to the definition of DC volatility (Section 3.2.2), in a 

period T, the higher value of 𝑁𝐷𝐶 (the number of EPs) indicates higher volatility. Hence, 

we evaluate the instantaneous volatility ( 𝜎𝐷𝐶 , equation (3.9)) of GBPUSD and 

EURUSD in Part 2 and obtained the values of 0.00598 and 0.00374, respectively. We 

also measure the daily 𝜎𝐷𝐶  of Part 1 and Part 3 to compare with the 𝜎𝐷𝐶  of Part 2. Figure 

3.7 illustrates the daily instantaneous volatility from 16/06/2016 to 30/06/2016. For 

both GBPUSD and EURUSD, there is an increase in 23/06/2016, and a peak in 

24/06/2016 (the period of Part 2). The 𝜎𝐷𝐶  of GBPUSD and EURUSD declines after 

24/06/2016. 
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Figure 3.7 The daily instantaneous volatility 𝝈𝑫𝑪  of GBPUSD and EURUSD. On 

17/06/2016 (Friday), the trading hours were terminated at 22:00 (UTC). On 23/2016, 

we select the period from 00:00 to 22:00 (the period before the end of the voting). On 

24/2016, the period was selected from 22:00 06/23/2016 to 22:00 06/24/2016 (the 

period of Part 2). 

 

We summarise the testing results in table 3.4: the third column and the fourth column 

present the mean and median of 𝜎𝐷𝐶  in Part 1 and Part 3; 𝑃𝑎𝑟𝑡2. 𝜎𝐷𝐶  is the 𝜎𝐷𝐶  of Part 

2; the last two columns are the ratios 𝑃𝑎𝑟𝑡2. 𝜎𝐷𝐶/〈𝑃𝑎𝑟𝑡1. 𝜎𝐷𝐶〉  and 𝑃𝑎𝑟𝑡2. 𝜎𝐷𝐶/

〈𝑃𝑎𝑟𝑡3. 𝜎𝐷𝐶〉. For both GBPUSD and EURUSD, the instantaneous volatility of Part 2 

is much higher than Part 1 and Part 3. For GBPUSD, the ratios 𝑃𝑎𝑟𝑡2. 𝜎𝐷𝐶/

〈𝑃𝑎𝑟𝑡1. 𝜎𝐷𝐶〉 and 𝑃𝑎𝑟𝑡2. 𝜎𝐷𝐶/〈𝑃𝑎𝑟𝑡3. 𝜎𝐷𝐶〉  are 3.4 and 2.61, respectively. For 

EURUSD, the ratios are 3.17 and 2.49, respectively. Obviously, in the period of Part 2, 

the volatility of GBPUSD and EURUSD was much higher than in the periods of Part 1 

and Part 3. The results of evaluating instantaneous volatility prove the conclusion of 

observation 2. 

Figure 3. 8 
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Table 3.4 The measure of instantaneous volatility in the periods of three parts.  

Name  Part 1 Part 3  
𝑃𝑎𝑟𝑡2. 𝜎𝐷𝐶

/〈𝑃𝑎𝑟𝑡1. 𝜎𝐷𝐶〉 
𝑃𝑎𝑟𝑡2. 𝜎𝐷𝐶

/〈𝑃𝑎𝑟𝑡3. 𝜎𝐷𝐶〉 

GBPUSD       

 〈𝜎𝐷𝐶〉 0.00176 0.00230  3.40 2.61 

 𝑀𝑒𝑑𝑖𝑎𝑛(𝜎𝐷𝐶) 0.00166 0.00217    

EURUSD       

 〈𝜎𝐷𝐶〉 0.00118 0.00150  3.17 2.49 

 𝑀𝑒𝑑𝑖𝑎𝑛(𝜎𝐷𝐶) 0.00107 0.00147    

Table 3. 4 

We repeat the second application under the threshold of 0.1%. The results are consistent 

with what we found in the second application in Section 3.5.2 (for details see Appendix 

B). 

 

3.5.3 Benefits of measuring 𝒎𝑹𝑽 

As discussed in Section 3.4.4, the 𝑚𝑅𝑉 measure has been developed under the DC 

framework. DC is an alternative approach to record price movements. Instead of 

recording the transaction prices at fixed time intervals, as is done in time series, DC lets 

the data alone decide when to record the transaction. In practice, we measure the 𝑚𝑅𝑉 

of every observed sub-sequence. The sub-sequences are the result of the division 

process of a DC relative sequence (RS, see equation (3.3)). The period of a sub-

sequence is passively determined by the observed extreme points of the two markets. 

Hence, we can precisely locate the time when we observe a significant value of 𝑚𝑅𝑉 

(for details see Observation 3 below). The precise time location of 𝑚𝑅𝑉 allows the 

observation of significant values which may not be registered by 𝐷𝑠𝑑 (an example will 

be presented in Observation 4). Because the division process of a RS is not conducted 

using regular time intervals, the frequency of the sub-sequences varies over a given 

trading period, e.g. a trading day. The more observed EPs of the two markets there are, 
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the more sub-sequences will likely be determined (we will discuss this point in 

Observation 5 below).  

 

Observation 3: DC can precisely locate the exact times within which an extreme mRV 

occurred. This cannot be done under time series (TS).  

 

As mentioned, at the beginning of section 3.5.3, using 𝑚𝑅𝑉 can give a precise time 

location when there is a significant value of the relative volatility. In micro-market 

analysis, it is beneficial for analysts who need to monitor the relative volatility in high-

frequency data. In contrast, the classical method 𝐷𝑠𝑑  cannot give the same precise 

timing because the measure of 𝐷𝑠𝑑 is based on sampling at fixed time intervals. So, the 

presence of a significant value can only be narrowed down to the particular fixed time 

interval in which it occurred in this case.  

 

Fundamentally, since DC and TS are different frameworks for data sampling, there is 

no direct comparison between 𝑚𝑅𝑉 and 𝐷𝑠𝑑. To draw parallels with the 𝑚𝑅𝑉 result 

in Figure 3.6, we calculated the 𝐷𝑠𝑑 between GBPUSD and EURUSD during the same 

time period (from 00:00 16/06/2016 to 24:00 30/06/2016). Based on equation (3.10), 

we sampled the TS data at 10 second time intervals (∆t = 10 seconds) and calculated 

the value of 𝐷𝑠𝑑 for every period of 10 minutes (𝜏 = 10 minutes). Sampling at 10 

second intervals allows the capture of patterns in high frequency data and then the 

period of 10 minutes for the calculation of 𝐷𝑠𝑑 permits the gathering of sufficient data 

points for an accurate calculated figure. In Figure 3.8 (2), we labelled the four 

significant 𝐷𝑠𝑑 values with their respective time intervals. Correspondingly, there were 

also four significant values of 𝑚𝑅𝑉. As shown in detail in table 3.5, for 𝑚𝑅𝑉, the 

periods of the four significant values were located within the time intervals associated 
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with the significant values of 𝐷𝑠𝑑. Specifically, the periods of the four sub-sequences 

are distinct and each is less than 1 minute.  

 

Figure 3.8 The measure of relative volatility in the periods from 16/06/2016 to 

30/06/2016; Part 1(blue line): from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours); 

Part 2 (red line): from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours); Part 3 (purple 

line): from 00:00 06/27/2016 to 24:00 30/06/2016 (96 hours). (1) The sequence of 

𝒎𝑹𝑽(𝑹𝑺)
𝟎.𝟎𝟓% between GBPUSD and EURUSD; 𝜽 = 0.05%; the x-axis refers to the index 

of the sub-sequence; the y-axis refers to the value of 𝒎𝑹𝑽 . (2) The series of 

𝑫𝒔𝒅𝝉 =𝟏𝟎𝒎𝒊𝒏
∆𝐭 =𝟏𝟎𝒔  between GBPUSD and EURUSD; ∆𝐭 = 10 seconds, 𝝉 = 10 minutes; the 

x-axis refers to the timescale; the y-axis refers to the value of 𝑫𝒔𝒅. 

 

For instance, as illustrated in Figure 3.9, the time interval of the highest 𝐷𝑠𝑑 (𝐷𝑠𝑑-2) 

was determined as being the 10 minute interval from 23:10:00 to 23:20:00. Whereas in 
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contrast, we observed the sub-sequence of the highest 𝑚𝑅𝑉 (𝑚𝑅𝑉-2) was contained 

within the 34 second time interval that ran from 23:17:53 to 23:18:27, which was 

located within a small sub-interval of the time interval for 𝐷𝑠𝑑.  

 

 

Figure 3.9 𝒎𝑹𝑽  shows a more precise period of high relative volatility between 

GBPUSD and EURUSD. 

 

Table 3.5 The observations of relative volatility using the methods of 𝒎𝑹𝑽 and 𝑫𝒔𝒅.   

𝑚𝑅𝑉 (DC)  𝐷𝑠𝑑 (TS) 

 Periods Values   Periods Values 

𝑚𝑅𝑉-1 21:04:36 – 21:04:55 0.2831  𝐷𝑠𝑑-1 21:00:00 – 21:10:00 0.0006624 

𝑚𝑅𝑉-2 23:17:53 – 23:18:27 0.8343  𝐷𝑠𝑑-2 23:10:00 – 23:20:00 0.001575 

𝑚𝑅𝑉-3 01:08:34 – 01:08:42 0.6531  𝐷𝑠𝑑-3 01:00:00 – 01:10:00 0.00108 

𝑚𝑅𝑉-4 02:44:14 – 02:44:26 0.5236  𝐷𝑠𝑑-4 02:40:00 – 02:50:00 0.001103 

𝑚𝑅𝑉-5 03:59:28 – 03:59:31 -0.6331     

 

 

Observation 4: Through 𝑚𝑅𝑉, DC enables us to observe changes in relative volatility 

that are not observable under 𝐷𝑠𝑑 in time series. 

 

We observed a sub-sequence (which we labelled as 𝑚𝑅𝑉-5 in Figure 3.8 (1)) with the 

biggest negative 𝑚𝑅𝑉 value from 03:59:28 to 03:59:31 24/06/2016. This sub-sequence 

only lasted for 3 seconds. The 𝑚𝑅𝑉-5 mentioned above records the lowest 𝑚𝑅𝑉 value 
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(-0.6331) in the whole period observed in Figure 3.8 (1). Notice that we do not observe 

significant negative values in 𝐷𝑠𝑑 in Figure 3.8 (2). There are two possibilities why the 

significant negative value might not be reflected in the 𝐷𝑠𝑑 that we can take away from 

this case. Firstly, the 3 seconds of high relative volatility for EURUSD compared with 

GBPUSD (as indicated by 𝑚𝑅𝑉-5) would tend to be diminished by the rest of the 

recordings within the 10 minutes. Secondly, with a sampling period of 10 seconds, a 3 

second spike might well not be even sampled in the first place. Thus, 𝑚𝑅𝑉enables us 

to observe changes in relative volatility between markets that cannot be observed by 

other means.  

 

Observation 5: The frequency of determining sub-sequences depends on the intrinsic 

behaviour of the two markets’ price changes. 

 

As discussed at the beginning of this section, the period 𝑇  of the sub-sequences 

obtained in order to calculate the values of 𝑚𝑅𝑉  are passively determined by the 

observation of the extreme points of the two markets. Hence, the period 𝑇  is 

intrinsically determined by the behaviour of the two markets’ price changes, rather than 

being a fixed time interval pre-determined by the analysts. In Figure 3.8 (1), the 

majority of the sub-sequences are determined within the period of Part 2 (from 22:00 

06/23/2016 to 22:00 06/24/2016 (24 hours)) as both two exchange rates were much 

more volatile in Part 2 (see Observation 2) compared to within the periods of Part 1 and 

Part 3. This illustrates how the approach facilitates the recording of more of the fine-

grained behaviour during periods of high flux. In contrast, we cannot observe such a 

quantity of data in TS as the data was collected using a fixed time interval. Specifically, 

in table 3.6, there were 949 sub-sequences confirmed in Part 2, which accounted for 43% 
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of the total sub-sequences. However, during the same period, 144 𝐷𝑠𝑑 values were 

calculated under TS, which only accounted for 9% of the total observations.  

 

 

Table 3.6 The number of observations in the periods of three parts under the methods 

of 𝒎𝑹𝑽 and 𝑫𝒔𝒅.   

 Number of observations (Percentage of total, %) 

 𝑚𝑅𝑉 𝐷𝑠𝑑 

Part 1 590 (27%) 840 (54%) 

Part 2 949 (43%) 144 (9%) 

Part 3 661 (30%) 576 (37%) 

Total 2200 1560 

 

3.5.4 The relationship between the threshold and the average period 

of the sub-sequence 

In Section 3.4.4, we discussed the merits of not requiring a pre-determined time interval 

for measuring 𝑚𝑅𝑉. The period 𝑇 of the sub-sequence is passively determined by the 

observation of the extreme points of the two markets. However, how long is the period 

of a sub-sequence before being terminated in practice? Is there a relationship between 

the threshold’s magnitude and the period of the sub-sequence? Hence can we obtain a 

degree of control over the period of a typical sub-sequence through intelligent selection 

of the threshold? We implemented back-testing to examine the relationship between the 

average period of the sub-sequence 〈𝑇(𝑌)〉 and the size of the threshold 𝜃. As discussed 

in Section 3.5.1, Glattfelder et al. (2011) developed 12 scaling laws under the DC 

framework. The DC scaling law 10 gives an estimation of the average period of a DC 

trend given a DC threshold. Following their work, we discovered a scaling law between 

the average period of a sub-sequence 〈𝑇(𝑌)〉 and the size of the threshold 𝜃. 
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As shown in table 3.7, we selected four pairs of exchange rates over four years (from 

2015 to 2018). The experiment selected 100 thresholds to calculate the 〈𝑇(𝑌)〉 over four 

years, ranging from 0.005% to 0.104% with the values increasing in increments of 

0.001%. The raw data type is tick-by-tick. Table 3.7 summarises the details of the data 

sources for the back-testing.  

 

Table 3.7 Specification of the back-testing. The back-testing utilises 24 hours of tick-by-tick data 

during the weekdays from Monday 00:00:00.000 to Friday 22:00:00.000. 

Data Type Tick-by-tick 

Periods 24 hour weekdays, from 2015 to 2018 

DC relative sequences 𝑅𝑆
𝑆𝐺𝐵𝑃𝑈𝑆𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 , 𝑅𝑆

𝑆𝑈𝑆𝐷𝐽𝑃𝑌
𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷

𝜃 , 𝑅𝑆
𝑆𝐴𝑈𝐷𝑈𝑆𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 , 𝑅𝑆

𝑆𝑈𝑆𝐷𝐶𝐴𝐷
𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷

𝜃 ,  

Thresholds 100 thresholds from 0.005% to 0.104% with an increment of 0.001% 

 

Following equation (3.11) in Section 3.5.1, we have a new ‘period-threshold’ scaling 

law between the average period of a sub-sequence 〈𝑇(𝑌)〉 and the size of threshold 𝜃: 

 

 〈𝑇(𝑌)〉 = (
𝜃

𝐶𝑇,𝜃
)

𝐸𝑇,𝜃

,                 (3.12) 

 

where 〈𝑇(𝑌)〉 indicates the average period of the sub-sequence related to a certain 

threshold 𝜃, and 𝐸𝑇,𝜃, 𝐶𝑇,𝜃 are the parameters of the scaling law. Figure 3.10 illustrates 

the log-log chart of the 〈𝑇(𝑌)〉 versus the DC threshold 𝜃 in the four pairs of exchange 

rates. Under logarithmic scaling, there are apparent linear relationships between 〈𝑇(𝑌)〉 

and 𝜃 crossing the four pairs of exchange rates. For example, the blue dot-line indicates 

the scaling law of GBPUSD and EURUSD.  
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Figure 3.10 The scaling law of the average period of a sub-sequence related to the size 

of the DC threshold. On the horizontal axis, the thresholds are chosen from 0.005% to 

0.104% with an incremental step of 0.001%. On the vertical axis, the unit of 〈𝑻(𝒀)〉 is 

seconds. The estimated scaling law parameters are summarised in table 8. 

 

Table 3.8 The ‘period-threshold’ scaling law: the parameters 

DC relative sequence  𝐶𝑇,𝜃  𝐸𝑇,𝜃  𝑅2 

𝑅𝑆
𝑆𝐺𝐵𝑃𝑈𝑆𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃  6.80147E-06 1.711108 0.99665483 

𝑅𝑆
𝑆𝑈𝑆𝐷𝐽𝑃𝑌

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃  6.92514E-06 1.739012 0.997322782 

𝑅𝑆
𝑆𝐴𝑈𝐷𝑈𝑆𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃  6.72848E-06 1.68019 0.996119037 

𝑅𝑆
𝑆𝑈𝑆𝐷𝐶𝐴𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃  6.20971E-06 1.698149 0.996568535 
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Under the DC framework, the data-driven approach passively determines the time 

interval of the sub-sequence based on observed extreme points of the two markets. On 

the other hand, unlike time series which uses a fixed time interval, there is no explicit 

timeline for the termination of a sub-sequence. In other words, if there is no upcoming 

DC data, we can’t terminate the current sub-sequence. The ‘period-threshold’ scaling 

law gives a relationship between 〈𝑇(𝑌)〉 and 𝜃. This gives us a basic estimate for the 

average period of the sub-sequence given the size of the threshold. However, in practice, 

there is no explicit guarantee between the average period and the actual period of a sub-

sequence. For example, for the sub-sequence of 𝑅𝑆
𝑆𝐺𝐵𝑃𝑈𝑆𝐷

𝜃 ,𝑆𝐸𝑈𝑅𝑈𝑆𝐷
𝜃 , the 〈𝑇(𝑌)〉  is 

approximately 1493 seconds (or 25 minutes) if the threshold is specified as 0.05%, but 

using the same size of the threshold, the 〈𝑇(𝑌)〉 was 40 seconds in the 24 hours after 

the Brexit referendum. By changing the threshold, the ‘period-threshold’ scaling law, 

allows the analyst control of the typical time period when the market is behaving 

normally. In future work, we would like to investigate the effect of the threshold on the 

deviation of the time period from the average values given by the scaling law in order 

to obtain indications as to the accuracy of the results from the ‘period-threshold’ scaling 

law. 

 

3.5.5 Discussion on Experiments 

In Section 3.5.1, we calculated the relative volatility using the approaches of  𝐷𝑠𝑑𝜏,𝐴−𝐵
∆𝑡  

and  〈𝜎𝐷𝐶(𝑅𝑆
𝑆𝐴

𝜃,𝑆𝐵
𝜃 )〉𝜏. The Spearman correlation test indicated high correlation for the 

measure of relative volatility between the two approaches. The correlation coefficients 

reached average values of 0.795, 0.836 and 0.864 under the periods of daily, weekly 

and monthly windows. This means 𝑚𝑅𝑉 agrees moderately with the relative volatility 

measure from the time series methodology. In Section 3.5.2, the results of monthly 
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relative volatility indicated that EURUSD was relatively more volatile than GBPUSD 

from 2012 to 2015. Starting from 2016, GPBUSD was exceedingly more volatile than 

EURUSD after the unexpected result of the Brexit referendum. Throughout the long-

term back-testing, we observed that the significant 𝑚𝑅𝑉 changes corresponded to the 

major historical events during that period. The second application summarises two 

observations in high-frequency data. The first observation concluded that GBPUSD was 

far more relatively volatile then EURUSD right after the time of the Brexit vote. For 

the second observation, we noted a substantial number of sub-sequences in Part 2, 

which accounted for 43% of the total sub-sequences in 11 trading days. This 

observation indicates that GBPUSD and EURUSD were both more volatile in Part 2 

compared to Part 1 and Part 3. In Section 3.5.3, compared with the time series method 

𝐷𝑠𝑑 , we illustrated that DC can precisely locate the exact times within which an 

extreme 𝑚𝑅𝑉 occurred (Observation 3). One weakness of the DC approach is that we 

don’t know when the current sub-sequence will terminate. This is a disadvantage of the 

data driven approach; if there is no upcoming DC data, we can’t terminate the current 

sub-sequence. This is only a problem during times with limited amounts of DC events. 

In Section 3.5.4, we proposed the ‘period-threshold’ scaling law to estimate the average 

period of a sub-sequence 〈𝑇(𝑌)〉 given a certain threshold. In practice, the deviation 

between the average value 〈𝑇(𝑌)〉  and the actual value 𝑇(𝑌)  could be significant 

especially during major events. Nevertheless, this new scaling law gives observers a 

basic guide to inform their influence on the average period of the sub-sequence when 

they select the size of the threshold.  
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3.6 Conclusions 

Directional change is an alternative way of sampling the price changes to form a DC 

sequence based on a data-driven process. Under the DC framework, this study opens a 

new path in studying the relative volatility between two markets. The DCRV approach 

evaluates the relative volatility based on the pre-determined period 𝑇. We have shown 

(in Section 3.4) that the DCRV measure is sensitive to the size of 𝑇. Also, we introduce 

𝑚𝑅𝑉, a data-driven measure of relative volatility. To develop 𝑚𝑅𝑉, we introduce the 

DC relative sequence (Section 3.4.2). It is a sequence which chronologically combines 

two markets’ DC sequences. In practice, the termination of the current sub-sequence 

depends on the identity of the upcoming extreme point (EP). Hence, the period 𝑇 is 

dynamically defined by the length of the sub-sequence. In Section 3.5.1, the correlation 

test proved that 𝑚𝑅𝑉 has a similar conclusion to the time series method in measuring 

relative volatility. Also, the correlation test indicates a positive relationship between the 

correlation coefficient and the period 𝜏 in that the longer the selected period 𝜏, the 

higher the correlation coefficient obtained. In Section 3.5.2, we executed back-testing 

in evaluating relative volatility between GBPUSD and EURUSD. In the long historical 

period from 2012 to 2018, significant changes in 𝑚𝑅𝑉 corresponded to major historical 

events. We also tested the relative volatility in high-frequency data from 16/06/2016 to 

30/06/2016 such that the periods span the five working days before and after the Brexit 

referendum day on 23/06/2016. Specifically, we separated the 11 trading days into three 

parts: (1) Part 1: from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours of total trading 

hours); (2) Part 2: from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours following the 

vote of Brexit referendum); (3) Part 3: from 00:00 06/27/2016 to 24:00 30/06/2016 (96 

hours). The advantage of the data-driven process is that it was possible to locate the 

sub-sequences which showed the highest and the lowest 𝑚𝑅𝑉. In Part 2, we observed 
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significant changes in 𝑚𝑅𝑉, which indicated the extreme volatility of GBPUSD versus 

EURUSD. In Observation 2, by comparing the number of sub-sequences between the 

three parts, we concluded that GPBUSD and EURUSD were both more volatile in Part 

2 than Part 1 and Part 3.  

 

To conclude, under the DC framework, we developed a new method to measure relative 

volatility by using 𝑚𝑅𝑉 which can be narrowed down to a precise time location in times 

of extreme values of relative volatility. This cannot be done under time series 

(Observation 3, details see Section 3.5.3). We believe, for instance, that 𝑚𝑅𝑉 can give 

an alternative approach to monitor in near real time the relative volatility in micro-

market activities when analysts consider high-frequency data or tick data. 
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Chapter 4. Jumps 

In recent decades, significant price turbulence has become more common in the 

financial markets. Past financial crises have emphasized the risk of instantaneous 

extreme price changes, so-called jumps. In fact, a substantial amount of the empirical 

research supported that the existence of jumps not only accompanied major financial 

crises but are also associated to different major news events, such as economic data, 

political crisis, natural disasters, etc. Being able to identify jumps could give a better 

understanding about the jumps’ behaviours and monitor the response of jumps to new 

information. In this chapter, we propose a novel approach to identify jumps based on a 

data-driven approach; that of Directional Change (DC). 

 

Compared with the data recording in time series, DC offers an alternative approach of 

sampling the price movement. In time series, a jump (TSJ) is a different source of risk 

compared to the risk of continuous volatility in the asset pricing model (Lee and 

Mykland, (2008)). The classical method identifies jumps through a model-based 

approach (for details see section 2.3). However, in DC, the jumps are identified by a 

data-driven approach. About the contribution of this chapter, we proposed the definition 

of jumps in DC (the data-driven approach) and implemented the back-testing of 

detecting DCJs from the selected datasets; we compared both the data-driven approach 

(DC) and model-based method (TS) for the ability to detect jumps, and the results 

indicate that the two approaches complement each other in identifying jumps in Forex. 

According to our back-testing, the results indicate that both approaches are effective in 

detecting jumps. The two approaches both found common jumps. Some TS jumps were 

not found as DC jumps and vice versa. Also, we examine the relationship between 
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major economic events and the jumps under both methods. The outcomes demonstrated 

that some jumps followed the economic events. DCJ can give precise information about 

the behavior of jumps in terms of size, direction, and quantity. According to our back-

testing, DC jumps offer the benefit of more fine-grained analysis in the monitoring of 

jump behavior in high-frequency data.     

 

The remainder of this chapter is organised as follows. Section 4.1 introduces the 

motivation of the study of DC jumps. Section 4.2 presents the process of DC data 

summary. Section 4.3 introduces the time-adjusted return sequence (𝑇𝑅 sequence). In 

section 4.4, we will introduce the definition of DC jump. The experimental design and 

results will be given in section 4.5 and section 4.6. The results of the experiment are 

discussed in section 4.7. In Section 4.8, we present our conclusion. 

 

4.1 Introduction 

In the financial markets, one of the core topics is to understand the ‘true’ value of the 

asset price. Some analysts believe that the efficient market hypothesis suggests that 

asset prices should react to all the relevant news (Bodie et al. (2013)). Others think that 

the asset prices may not totally coincide with the fundamentals (Levy and Post (2005)). 

From a practical perspective, researchers have been focussing on various factors to 

improve the asset price model. One subject of study is to understand how markets react 

to the information contained in news bulletins (Andersen et al. (2007); Jiang et al. 

(2011)). Some researchers emphasise that some sensitive news may cause price jumps 

that have an impact on risk management and asset pricing (Chatrath et al (2014); Jurdi 

(2020)). Erdemlioglu and Gradojevic (2019) conclude that there are two challenging 
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issues for studying jump behaviours: (1) the difficulty of identifying jumps; (2) 

analysing the determinants of jumps.  

 

In time series analysis (TS), the jump is a different source of risk in addition to the risk 

of continuous volatility in the asset pricing model. The classical method detects the 

jumps through the model-based approach. Barndorff-Nielsen and Shephard (2004) 

introduced bipower variation to estimate the instantaneous volatility. Jumps are 

determined through filtering out the instantaneous volatility from the realised variance. 

Barndorff-Nielsen and Shephard (2004) first presented their method to locate the jumps 

at a daily frequency. Lee and Mykland (2008) detected the jump arrival times and size 

in the intraday timeframe. 

 

Detecting jumps is also important for researchers to measure the market reactions to 

different news events through evaluating the jump behaviour. The events can generally 

be separated into two categories: (1) scheduled events, such as the scheduled 

macroeconomic announcements; (2) unscheduled events, such as natural disasters. In 

general, the unscheduled events may have more impact on jumps presenting than the 

scheduled events as participants are highly sensitized to the uncertain risk. However, 

some scheduled events may cause extreme turbulence in the financial markets. For 

instance, the unexpected result of the Brexit referendum produced significant shocks 

spanning various assets. 

 

As introduced in section 2.3, Barndorff-Nielsen and Shephard (2004) first presented 

their method to locate the jumps at a daily sampling frequency. Lee and Mykland (2008) 

detected the jump arrival times and size in the intraday timeframe. The classical method 
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identifies jumps based on a fixed time interval such that jump behaviour may depend 

on the length of the pre-determined time interval chosen. Many jumps may present 

randomly as unscheduled events that can occur at any time. For example, a jump may 

start at any time point within a fixed time interval and in addition, a jump may exist 

spanning the boundary of the current time interval. Fundamentally, the jump behaviours 

are the reactions of the participants’ trading actions. However, one can never know the 

participants’ trading behaviours to infer the timing of the jumps’ arrivals.   

 

As discussed above, the method of identifying jumps is developed under the framework 

of time series. Under the DC framework, we introduce a data-driven approach to detect 

jumps, which is different to the classical method in that it does not rely on a pre-defined 

model. DC is a concept for sampling the financial market data (Guillaume et al. (1997)). 

Tsang et al., (2017) developed the DC indicators to summarise the features of the price 

movements. They recognized that some features observed by DC indicators may not be 

discovered in time series analysis. Encouraged by their works, the DC jump (𝐷𝐶𝐽) is 

defined based on the DC indicator, time-adjusted return (𝑇𝑅). In DC, we detect the 

presentence of the jump based on the 𝑇𝑅 of the DC trend. Specifically, the existence of 

a 𝐷𝐶𝐽 is judged by two factors of the DC trend: (1) significant price changes; (2) a short 

time period over which this occurs. These two requirements are quantified by the 𝑇𝑅. 

The formal definition of the 𝐷𝐶𝐽 will introduce in section 4.4. 

 

Theoretically, the jump in DC is a different concept compared to the jumps in TS. They 

cannot directly compare with each other. In DC, what is termed a 𝐷𝐶𝐽 is an event 

whereby the price has changed by a significant magnitude in a short period. Since the 

DC approach of identifying jumps is different to the time series method, there are some 



63 

questions that follow: could we detect jumps under DC? Can we find the unique jumps 

under both methods? Or are the jumps detected under DC independent of the jumps 

detected under time series? Are 𝐷𝐶𝐽s associated to news events? Can we detect DC 

jumps during unscheduled events? And how can analysts benefit from the observed 

𝐷𝐶𝐽s? We will answer these questions in the following sections. 

 

4.2 The DC data summary  

In DC, we judge the presence of jumps based on DC trends. Specifically, we consider 

two factors to determine a DC jump: (1) significant price changes; (2) a short period of 

the DC trend. Tsang et al. (2017) introduced the indicator of the time-adjusted return of 

DC (we call this 𝑇𝑅 for short). 𝑇𝑅 not only measures the magnitude of total price travel 

of the DC trend (the TMV), but also evaluates the periods of the price movement to 

complete the DC trend. Section 2.2 introduced a formal definition of the TMV and 𝑇𝑅. 

Here, we would like to review the definitions in a practical way.  

 

For a certain financial instrument, a buyer and a seller made a deal at a certain price 

which is then recorded as the raw transaction price with a confirmed timestamp. In 

quantitative analysis, the recorded raw price is also called tick data. Over the period of 

trading activities, we record a sequence of tick data in irregular time. Normally, analysts 

summarise the raw data on a regular time interval and the result is called time series 

data. Given a pre-determined time scale like an hourly time interval, we record the 

transaction prices at the end of every hour.  

 

DC is an alternative way of data sampling. As introduced in section 2.2, DC records the 

reversal point when there is a significant opposite price change from the last 
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downtrend/uptrend. In practice, a significant change is defined by the threshold on a 

percentage scale which is given by the researcher. Thus, DC summarises the original 

transaction data as a series of alternative uptrends and downtrends which we call the 

DC trends. The reversal point between two DC trends is defined as the extreme point 

(𝐸𝑃). An 𝐸𝑃 is a couple which comprises a transaction price (𝐸𝑃. 𝑝) and a timestamp 

(𝐸𝑃. 𝑡): 

 

𝐸𝑃 = (𝐸𝑃. 𝑡, 𝐸𝑃. 𝑝).        (4.1) 

 

Tsang et al. (2017) introduced useful DC indicators to be used in the analysis of price 

movements. We will introduce the indicators which will be used for DC jump detection 

in this chapter. 

 

As shown in Figure 4.1 below, the upward DC trend is the connection from 𝐸𝑃1 to 𝐸𝑃2. 

The price distance travelled of the DC trend is measured by the total price movement 

(𝑇𝑀𝑉) which is the percentage change normalized by the threshold 𝜃. Hence, we can 

obtain the price distance from 𝐸𝑃1 to 𝐸𝑃2: 

 

𝑇𝑀𝑉 =
𝐸𝑃.𝑝2 − 𝐸𝑃.𝑝1

 𝐸𝑃.𝑝1× 𝜃
,        (4.2) 

 

Also, the time distance between 𝐸𝑃1 and 𝐸𝑃2 is given by 𝑇 = 𝐸𝑃. 𝑡2 − 𝐸𝑃. 𝑡1. Tsang et 

al. (2017) proposed the time-adjusted return of the DC trend (𝑇𝑅), denoted by 𝑅𝐷𝐶, to 

measure the price change over time. In the example of Figure 4.1, we can calculate the 

𝑇𝑅 by: 
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𝑅𝐷𝐶 =
|𝐸𝑃.𝑝2− 𝐸𝑃.𝑝1|

 𝐸𝑃.𝑝1∗ 𝑇
=

|𝑇𝑀𝑉| × 𝜃

𝑇
.      (4.3) 

 

Note, the terminal time of the 𝑅𝐷𝐶 above is defined by 𝐸𝑇(𝑅𝐷𝐶2
) = 𝐸𝑃. 𝑡2. In practice, 

𝑇𝑅 measures the ‘speed’ of forming the DC trend, which considers both the price 

change and the time taken. 𝑇𝑅 is the fundament for us to judge the presence of a DC 

jump as we need to consider both the significant price change and the (short) time 

period of the DC trend. 

 

Figure 4.1 A hypothetical example of the data summary in DC. 

 

4.3 The 𝑻𝑹 sequence 

 

This section will introduce the 𝑇𝑅 sequence of a single market. In section 2.2, equation 

(2.4) defines a DC sequence which comprises a series of extreme points of the market 

A, i.e., 𝑆𝐴
𝜃  = (𝐸𝑃1, 𝐸𝑃2, … , 𝐸𝑃𝑛). In Figure 4.2, we plot the DC trends of market A by 

connecting the EPs. For each DC trend, we calculate the 𝑇𝑅 through equation (4.3); the 
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𝑅𝐷𝐶𝑖
 is the 𝑇𝑅 in 𝑖𝑡ℎ DC trend. Thus, given a DC sequence of a market, we can generate 

the 𝑇𝑅 sequence using equation (4.3). 

 

Figure 4.2 An example of DC trends in a market. The chart illustrates a series of 5 DC 

trends formed by the 6 EPs. 

 

A 𝑇𝑅 sequence, denoted by 𝑆𝑇𝑅, is a finite sequence of 𝑇𝑅s: 

 

(𝑅𝐷𝐶1
, 𝑅𝐷𝐶2

, … , 𝑅𝐷𝐶𝑛
),       (4.4) 

 

where 𝑅𝐷𝐶  is obtained through equation (4.3) and 𝑛 equals the total number of DC 

trends from a DC dataset. 

 

In Figure 4.3, there are four 𝐸𝑃s (from 𝐸𝑃3 to 𝐸𝑃6). Given the four 𝐸𝑃s, we form three 

DC trends, and obtain the time intervals of the three DC trends (𝑇4, 𝑇5, and 𝑇6). We 

calculate the 𝑇𝑅s of the three DC trends (from 𝑇𝑅4 to 𝑇𝑅6). At the bottom of Figure 

4.3, we present a segment of the 𝑇𝑅 sequence.     

            
Figure 4. 1 
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Figure 4.3 Features of a 𝑻𝑹  sequence: (1) Threshold, 𝜽 ; (2) Extreme Point, 𝑬𝑷 ; 

(3) The period of the DC trend, 𝑻; (4) The time-adjusted return, 𝑻𝑹; (5) the absolute 

value of 𝑻𝑴𝑽 , |𝑻𝑴𝑽| . For each DC trend, we generate the 𝑻𝑹 , e.g., 𝑻𝑹𝟓 =

(|𝑻𝑴𝑽𝟓| ∗ 𝜽)/𝑻𝟓 . At the bottom of this chart, we present a segment of the 𝑻𝑹 

sequence. 

 

4.4 DC Jump (𝑫𝑪𝑱) 

As discussed in Section 4.1, a DC Jump (𝑫𝑪𝑱) is an event such that the price has 

changed by a significant magnitude in a short period. In other words, DC judges the 

presence of a jump according to two requirements: (1) significant price changes; (2) a 

short time period over which this occurs. As introduced in Section 4.2, 𝑇𝑅 measures 

the time-adjusted return of the DC trend. Hence, we detect the existence of a 𝐷𝐶𝐽 based 

on the 𝑇𝑅 of the DC trend; the significance of a 𝑇𝑅 is judged with reference to the 

historical 𝑇𝑅s, e.g., whether the 𝑇𝑅 is above 95% of the historical observations. 
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4.4.1 The empirical cumulative distribution function 

We test the significance of the 𝑇𝑅  against the empirical cumulative distribution 

function. Given a chosen historical 𝑇𝑅  sequence, we sort the elements of the 𝑇𝑅 

sequence in ascending order of magnitude (𝑇𝑅1, 𝑇𝑅2, … , 𝑇𝑅𝑛−1, 𝑇𝑅𝑛) , then the 

empirical cumulative distribution function of the 𝑇𝑅s is the function defined as: 

 

𝐹(𝑥) = 𝑛−1 ∑ 1{𝑇𝑅𝑖≤𝑥}
𝑛
𝑖=1         (4.5) 

 

where 1{𝑇𝑅𝑖≤𝑥}  is an indicator function 10 . Given the 𝑇𝑅  sequence we obtain the 

empirical cumulative distribution (𝑬𝑪𝑫) through equation (4.5). 

            

4.4.2 The definition of DCJ  

A DC Jump (𝑫𝑪𝑱) is an event of the DC trend such that the price has changed by a 

significant magnitude in a short period. Under the DC framework, a 𝐷𝐶𝐽  is 

parameterised by the 𝑇𝑅 which measures the absolute return per time unit in the DC 

trend. Therefore, a 𝐷𝐶𝐽 is detected when we detect a significant magnitude for the 𝑇𝑅 

in the DC trend. Given the 𝐸𝐶𝐷 of the historical 𝑇𝑅 sequence, we quantify a significant 

result by 𝑠 (in percentage terms); the 𝐷𝐶𝐽 is determined to have occurred when the 𝑇𝑅 

of the DC trend is above 𝑠% of the 𝐸𝐶𝐷. On a practical level, the value of 𝑠 is decided 

by the analysts. This motivates the following formal definition: 

 

 

 

 
10 Details about ECDF see van der Vaart (1998). 
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Definition: 𝐷𝐶𝐽 

A 𝐷𝐶𝐽 is an event of the 𝐷𝐶 trend from one extreme point 𝐸𝑃𝑖−1 to the next 𝐸𝑃𝑖 

when the 𝑅𝐷𝐶𝑖
 is greater than 𝑠% of the 𝐸𝐶𝐷 of the historical 𝑆𝑇𝑅. 

For instance, given 𝑠 = 95%, a 𝐷𝐶𝐽 is determined when the 𝑅𝐷𝐶 is above 95% of the 

𝐸𝐶𝐷 of the historical 𝑆𝑇𝑅. 

 

4.4.3 The practice of detecting 𝑫𝑪𝑱 

We first collect the historical 𝑇𝑅 sequence from a dataset, then we form the 𝐸𝐶𝐷 of the 

historical 𝑆𝑇𝑅 through equation (4.5). Given a certain value of 𝑠 (e.g., 95%), we need 

to find the indices 𝑖 such that 𝑅𝐷𝐶𝑖
 is greater than 𝑠% of the 𝐸𝐶𝐷 of the historical 𝑇𝑅 

sequence. For instance, let 𝑠∗ denote this value of 𝑅𝐷𝐶𝑖
, then a 𝐷𝐶𝐽 is determined when 

the 𝑅𝐷𝐶 of the DC trend is greater than 𝑠∗: 

 

𝑅𝐷𝐶  > 𝑠∗.         (4.6) 

 

In figure 4.4, given 𝑠 = 95%, the 𝐷𝐶𝐽 is identified when the 𝑅𝐷𝐶 is above 95% of the 

historical 𝑆𝑇𝑅, and we obtain 𝑠∗ ≈ 0.40783%. The upward jump starts from the 𝐸𝑃2 

(Timestamp: 14:59:22.552; Price: 1.112305) to the end of the 𝐸𝑃3  (Timestamp: 

15:00:16.574; Price: 1.11719). Note, as the time provided for tick data is accurate to 
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the millisecond, it is impossible to use the timestamp to plot the chart. Instead, we use 

the index of the tick data as the horizonal axis. 

 Figure 4.4 Given 𝒔 = 95%, an upward 𝑫𝑪𝑱 is detected in the DC trend from EP2 to 

EP3, where the 𝑹𝑫𝑪 = 0.48828% and |𝑻𝑴𝑽| = 𝟏𝟒. 𝟔𝟓𝟒𝟑𝟐.  The blue dot-points are 

the exchange rates of EURUSD (tick data) from 14:57:13 to 15:00:59 in 03/03/2020. 

The vertical axis is the exchange rate of EURUSD. The horizontal axis is the index of 

the data sequence of EURUSD in chronological order. The orange dot-points are the 

𝑬𝑷s (𝜽 = 𝟎. 𝟎𝟑%).  

 

 

 

 

 

 

 

 

Figure 4. 2 



71 

4.5 Experimental design 

4.5.1 The dataset 

Table 4.1 summarises the data sources, original frequency, and the period. The samples 

incorporate three exchange rates including EURUSD, GBPUSD, USDJPY, USDCAD 

and AUDUSD. The exchange rate is the value of one country’s currency relative to the 

currency of another country. The sample period is the 6 years from 2014 to 2019. We 

consider 24-hour trading tick data from Monday 00:00:00.000 to Friday 22:00:00.000 

(UTC). 

 

Table 4.1 Description of the raw datasets used in the experiment 

Asset Source Frequency Trading hours Period 

EURUSD 

Dukascopy11 Tick-by-tick 24 hours a day 
01/01/2014 – 31/12/2019 

(six years) 

GBPUSD 

USDJPY 

USDCAD 

AUDUSD 

 

4.5.2 The experimental design of DCJ detection 

To implement the 𝐷𝐶𝐽 detection, we separate the dataset into two groups: the historical 

dataset and the testing dataset. In the first group, we select the historical dataset of an 

exchange rate (e.g. EURUSD) to acquire the 𝑠∗. Then, we detect the 𝐷𝐶𝐽s in the second 

dataset. We use the ‘moving window’ approach to implement the experimental process. 

Given the 6-year dataset, we determine the window size W = 260 trading days (the total 

number of trading days per year in average, according the timeframe of Datastream 

Eikon), and the unit of the window movement M = 1 trading day. The whole process is 

 
11 Dukascopy Bank is a Swiss online bank which provides high quality market data in different forms. 
https://www.dukascopy.com/swiss/english/home/ 

https://www.dukascopy.com/swiss/english/home/
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illustrated in Figure 4.5: (1) calculate the 𝑇𝑅s in the past 260 trading days in the 1st 

window; (2) form the ECD of the observed TR sequence; (3) given the 𝑠 = 0.99, we 

acquire the 𝑠∗  of the historical ECD; (4) detect the 𝐷𝐶𝐽s in Day 261 based on the 

obtained 𝑠∗.  

 

Figure 4.5 An example of the DCJ detection: (1) the window size W = 260 trading days; 

(2) the window movement M = 1 day. In the 1st window, we acquire the 𝒔∗ of the 

historical ECD of the TR sequence, then detect the DCJ on Day 261. 

 

Overall, the experiment aims to detect the DCJs of the three exchange rates in the years 

from 2015 to 2019. Following the illustration of Figure 4.5, the process keeps detecting 

the DCJs in the current trading day based on the 𝑠∗ obtained by the previous window 

(the past 260 trading days). 

 

4.5.3 The relationship between jumps and the scheduled economic 

events 

Investigations of the relationship between jumps and the economic events have been 

conducted by many researchers. Andersen et al. (2003) discussed the influence of 

economic news on asset returns. Lee and Mykland (2008) observed that the jumps are 
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related to the news; for individual stocks, they concluded that the jumps are not only 

associated with the regular company’s news but also connected with unscheduled news. 

Lahaye et al. (2011) presented a detailed analysis of the relationship between jumps and 

scheduled economic events for different asset classes. They evaluated the possibility of 

the identified jumps being associated with the US economic data. Compared to the 

jumps in equities and bonds, Lahaye et al. (2011) concluded that the exchange rate 

jumps have a lower connection with these types of economic events. In time series (TS) 

analysis, the method of identifying TS jump has presented in Section 2.4.1. 

 

We evaluate the relationship between the jumps and scheduled economic events. For 

each exchange rate, we selected the economic data of the two relevant countries (or 

economic area). For the U.S., the federal government and private institutions release a 

substantial quantity of economic data at regular intervals. Fleming and Remolona (1997) 

summarised 21 major macroeconomic announcements. Baumohl (2012) argued that 

there are more than 40 economic indicators (data) released every month. Because our 

aim is to examine the 𝐷𝐶𝐽s associated with economic events, we only select major 

macroeconomic data. Also, the exchange rate value is directly affected by the interest 

rate decisions from the central banks. Hence, we choose the major economic data based 

on the most pressing concerns of the central banks. According to the Federal Reserve 

(FED) monetary policy12, the two most important economic goals of their policy are 

maximum employment and stable prices. Therefore, we focus on the economic data in 

terms of the three major aspects: GDP, consumer price, and employment. Table 4.2 

gives information about the selected macroeconomic announcements. For EURUSD, 

GBPUSD and USDJPY, we consider the four countries’ GDP announcements (or 

 
12 FED Monetary Policy: https://www.federalreserve.gov/monetarypolicy.htm 
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economic area), consumer price index and interest rate decisions as economic indicators. 

We also select the U.S. retail sales and nonfarm payroll which are the FED’s most 

important economic indicators. 

 

This section will answer two questions in the relationship between 𝐷𝐶𝐽s and major 

economic events:  

(1) What percentage of the jumps were followed major economic events 

(MEEs)?  

(2) How many MEEs were followed by jumps?  

 

We answer the two questions above through the results of our back-testing in the 

following sections. 

 

As discussed in Section 4.1, the unscheduled events may cause more jumps presenting 

because the participants are highly sensitive to uncertain risks. We will discuss the two 

Table 4.2 Information regarding the selected economic events 

Announcement Variable name Frequency 

U.S. Fed Funds Interest Rate Decision FED_IRD 8 times per year 

The European Central Bank Interest Rate Decision ECB_IRD 8 times per year 

Bank of England Interest Rate Decision BoE_IRD 8 times per year 

Bank of Japan Interest Rate Decision BoJ_IRD 8 times per year 

Bank of Canada Interest Rate Decision BoC_IRD 8 times per year 

Bank of Australia Interest Rate Decision BoA_IRD 
Not regular 

frequency 

GDP CountryName_GDP Quarterly 

Consumer Price Index CountryName_CPI Monthly 

US Retail Sales US_RS Monthly 

US Nonfarm Payrolls US_NFP Monthly 

Note, For AUDUSD, the number of CPIs is 24. 
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case studies about the detected 𝐷𝐶𝐽s associated to unscheduled events in the following 

sections.  

 

4.6 Results 

This section presents the results of the experiments. We start with the data description 

of the detected DC jumps over the years from 2015 to 2019. Then, we will show the 

three examples of the detected DCJs and TSJs after the announcement of the scheduled 

events. The next section will present the identified DCJs associated to the scheduled 

events and unscheduled events. The final part will study the detected common jumps 

and the unique jumps between the DCJs and TSJs. 

 

4.6.1 An overview of detected DCJs 

Table 4.3 (a) below shows a statistical summary of the determined DCJs in the five 

exchange rates in the periods from 2015 to 2019. For the back-testing we selected the 

threshold 𝜃 = 0.1% and 𝑠 = 0.99. Note: (1) the first row N(DCs) is the total number 

of DC trends over 5 years from 2015 to 2019; (2) N(days) is the total number of trading 

days during the 5 years; (3) N(DCJ-days) counts the number of the days which include 

at least one 𝐷𝐶𝐽, a 𝐷𝐶𝐽 day; (4) the fourth row is the probability of a day including at 

least one DCJ over the total trading days, P(𝐷𝐶𝐽-day) = (N(𝐷𝐶𝐽-days) / N(days)); (5) 

N(𝐷𝐶𝐽s) is the total number of 𝐷𝐶𝐽s; (6) the sixth row is the number of DCJs per 𝐷𝐶𝐽 

day, E(N(𝐷𝐶𝐽s) | N(𝐷𝐶𝐽-days)) = N(𝐷𝐶𝐽s)/ N(𝐷𝐶𝐽-days) days; (7) <𝐷𝐶𝐽-size> is the 

average 𝐷𝐶𝐽  size, which is measured by the average of the absolute TMV of the 

observed 𝐷𝐶𝐽s; (8) < 𝐷𝐶𝐽-periods> is the average period of a 𝐷𝐶𝐽.  
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Table 4.3 (a) The statistical summary of detected DCJs in EURUSD, GBPUSD, and USDJPY in the 

years from 2015 to 2019. Threshold θ = 0.1%; s = 0.99. 

 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

N(DCs), (1) 32060 39413 33079 28315 45181 

N(days), (2) 1303 1302 1298 1303 1302 

N(𝐷𝐶𝐽-days), (3) 107 128 82 126 152 

P(𝐷𝐶𝐽-day), (4) 8.2% 9.8% 6.32% 9.67% 11.67% 

N(𝐷𝐶𝐽s), (5) 336 841 589 292 538 

E(N(𝐷𝐶𝐽s)|N(𝐷𝐶𝐽-days)), (6) 3.1 6.6 7.2 2.3  3.5  

<𝐷𝐶𝐽-size>, in aTMV (7) 2.1 2.5 2.4 2.2  2.4  

<𝐷𝐶𝐽-period>, in seconds (8) 6.7 4.7 5.9 6.8  6.0  

 

Except AUDUSD, The P(𝐷𝐶𝐽-day) indicates that the number of 𝐷𝐶𝐽 days are less than 

a tenth of the total trading days for the three exchange rates. The sixth row presents the 

number of 𝐷𝐶𝐽s per jump day. For the five currencies, the E(N(𝐷𝐶𝐽s) | N(𝐷𝐶𝐽-days)) 

indicates that there were more than two 𝐷𝐶𝐽s within one day. This suggests that the 

𝐷𝐶𝐽s were more likely to present within some specific days. As discussed at the 

beginning of Chapter 4, the jumps are mainly caused by the events. Hence, a higher 

value of the E(N(𝐷𝐶𝐽s) | N(𝐷𝐶𝐽-days)) suggests that there were major events in the past 

5 years, and these events caused more 𝐷𝐶𝐽s. The <𝐷𝐶𝐽-size> is the average 𝐷𝐶𝐽 size 

in the five year period, which is measured by the mean of the absolute TMV of the 

observed 𝐷𝐶𝐽s. The <𝐷𝐶𝐽-period> shows the average period (in seconds) of the 𝐷𝐶𝐽 

in the past five years. In table 4.3 (a), the average 𝐷𝐶𝐽 sizes of the five exchange rates 

are greater than 2. In addition, except GBPUSD, the fiures of the <𝐷𝐶𝐽-period> are 

around 6 seconds. 

 

We also repeaded the same test with additional three thresholds as shown below in table 

4.3 (b), table 4.3 (c), and table 4.3 (d). The results of the three tables indicate the 

negative relashionship between the threshold and the N(DC), P(DCJ-day), and N(DCJs). 
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Also, crossing the four thresholds, we observed that the average TMV of a DCJ is 

greater than 2; the Ave(DCJ-period) is positive related to the level of the thresholds. 

 

Table 4.3 (b) The statistical summary of detected DCJs in EURUSD, GBPUSD, and USDJPY in the 

years from 2015 to 2019. Threshold θ = 0.05%; s = 0.99. 

 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

N(DCs), (1) 117977 142361 118433 104955 165467 

N(days), (2) 1303 1302 1298 1303 1302 

N(𝐷𝐶𝐽-days), (3) 221 288 183 286 335 

P(𝐷𝐶𝐽-day), (4) 16.96% 22.10% 14.04% 21.95% 25.71% 

N(𝐷𝐶𝐽s), (5) 1150 2693 1769 1059 1833 

E(N(𝐷𝐶𝐽s)|N(𝐷𝐶𝐽-days)), (6) 5.2  9.4  9.7  3.7  5.5  

Ave(DCJ-size), in aTMV (7) 2.3  2.7  2.7  2.6  2.6  

Ave(DCJ-period), in seconds 

(8) 

2.4  2.1  2.3  3.1  2.5  

      
Table 4.3 (c) The statistical summary of detected DCJs in EURUSD, GBPUSD, and USDJPY in the 

years from 2015 to 2019. Threshold θ = 0.075%; s = 0.99. 

 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

N(DCs), (1) 54965 66872 55918 49286 78419 

N(days), (2) 1303 1302 1298 1303 1302 

N(𝐷𝐶𝐽-days), (3) 155 178 123 183 207 

P(𝐷𝐶𝐽-day), (4) 11.90% 13.66% 9.44% 14.04% 15.89% 

N(𝐷𝐶𝐽s), (5) 557 1346 932 490 901 

E(N(𝐷𝐶𝐽s)|N(𝐷𝐶𝐽-days)), (6) 3.6  7.6  7.6  2.7  4.4  

Ave(DCJ-size), in aTMV (7) 2.3  2.5  2.4  2.3  2.5  

Ave(DCJ-period), in seconds 

(8) 

4.4  3.2  3.7  4.6  3.9  

      Table 4.3 (d) The statistical summary of detected DCJs in EURUSD, GBPUSD, and USDJPY in the 

years from 2015 to 2019. Threshold θ = 0.125%; s = 0.99. 

 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

N(DCs), (1) 20298 24985 21163 18217 29337 

N(days), (2) 1303 1302 1298 1303 1302 

N(𝐷𝐶𝐽-days), (3) 72 96 61 87 113 

P(𝐷𝐶𝐽-day), (4) 5.54% 7.39% 4.73% 6.69% 8.68% 

N(𝐷𝐶𝐽s), (5) 207 590 405 183 370 

E(N(𝐷𝐶𝐽s)|N(𝐷𝐶𝐽-days)), (6) 2.9  6.1  6.6  2.1  3.3  

Ave(DCJ-size), in aTMV (7) 2.1  2.6  2.3  2.2  2.4  

Ave(DCJ-period), in seconds 

(8) 

10.9  7.4  10.0  11.4  9.0  

 

It is important to note that the DC is a data driven approach to detect jumps. Under the 

DC framework, we judge the DC jump presenting based on the historical data (for 

details see Section 4.4). In the practise, the process of detecting DC jumps has shown 

in Section 4.5.2.  
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4.6.2 Examples of the detected DCJs and TSJs 

 

This section presents three scenarios where the TSJs overlapped the DCJs. We will 

elaborate on three examples of the detected jumps from the point of view of the two 

different approaches. Fundamentally, the TS jump is identified based on the time 

interval. we can’t make a judgement of a TSJ presenting before the end of the current 

time interval. In this study, the time interval is 15 mins; the parameters used based on 

the recommendations from Lee and Mykland (2008). The details of detecting TSJs have 

been discussed in Section 2.4.1. In the three scenarios below, based on the definition of 

TSJ, we judge the presence of a TSJ at the end of the blue region (the end of the 15 

minutes interval). 

 

Scenario 1: Two 𝐷𝐶𝐽s were found at the beginning of the TSJ (15 minutes) 

Scenario 1 shows the detected TSJ and 𝐷𝐶𝐽s after the US_NFP announcement at 12:30 

on 2015/08/07. In table 4.4 (a), the classical method identified a TSJ in the period from 

12:30 to 12:45 (a 15 minute time interval) with a jump size of -0.54%. In table 4.4 (b), 

DC determined two consecutive DCJs at the beginning of the TSJ time interval. The 

first of the two, DCJ1, was identified from 12:30:01.400 to 12:30:04.200 followed by 

DCJ2 from 12:30:04.200 to 12:30:11.900. The periods of DCJ1 and DCJ2 were 2.8 

seconds and 7.6 seconds, respectively. In figure 4.6, the long blue bar indicates the TSJ 

of the 15 minute time interval (horizontal axis) with jump size –0.54% (vertical axis). 

The black and red bars show DCJ1 and DCJ2 at the beginning of the blue bar. As is 

clear from the chart, the TSJ gives less information about the TSJ location. In contrast, 

DC gives precise information about the DCJs in terms of location, direction, and the 

size. In TS, the model-based approach determined the presence of the jump at the end 
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of the 15 minutes (2015/08/07/ 12:45). However, DC identified the two jumps after 

confirming the two DC trends (see the DCJ definition in section 4.4.2). Therefore, the 

data-driven approach (DC) identified the jumps earlier than the model-based approach 

(TS). 

 

Table 4.4(a) A EURUSD TSJ was detected within the 15 minute time interval after the US Nonfarm 

Payrolls announcement. The significance level α=0.01. 

 TSJ_StartTime TSJ_EndTime JumpSize Period 

TSJ 2015/08/07 12:30 2015/08/07/ 12:45 -0.54% 15 minutes 

 

Table 4.4 (b) Two DCJs were determined within the same 15min interval. Threshold θ = 0.1%; s = 

0.99. 

 DCJ_StartTime DCJ_EndTime JumpSize Period (seconds) 

DCJ1 2015/08/07 12:30:01.400 2015/08/07 12:30:04.200 0.21% 2.817 

DCJ2 2015/08/07 12:30:04.200 2015/08/07 12:30:11.900 -0.59% 7.666 
Table 4. 1 

 

Figure 4.6 The period and the size of the TSJ and the DCJs. The horizontal axis is the 

timestamp in seconds. The vertical axis is the jump size (%). 

 
Figure 4. 3 
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Scenario 2: Five DCJs were identified at the beginning of the TSJ (15 minutes) 

 

As shown in table 4.5 (a), the TSJ was identified within the 15 minutes after the 

ECB_IRD was released at 11:45 on 2019/09/12. At the start of TSJ, DC detected 5 

consecutive jumps (table 4.5 (b)). In figure 4.7, the large upward DCJ1 (0.49%) was 

followed by the downward DCJ2 with a greater size (-0.51%). Then, there were three 

sequential DCJs of small size. On the other hand, TS only confirmed a downward TSJ, 

and the jump size was -0.52%. 

Table 4.5 (a) A EURUSD TSJ was detected within the 15 minute interval after the EU interest rate 

decision announcement. The significance level α=0.01. 

 TSJ_StartTime TSJ_EndTime JumpSize Period 

TSJ 2019/09/12 11:45 2019/09/12 12:00 -0.52% 15 minutes 

 

Table 4.5 (b) Five DCJs were determined within the same 15min interval. Threshold θ = 0.1%; s = 

0.99. 

 DCJ_StartTime DCJ_EndTime JumpSize Period (seconds) 

DCJ1 2019/09/12 11:44:34.500 2019/09/12 11:45:15.300 0.49% 40.849 

DCJ2 2019/09/12 11:45:15.300 2019/09/12 11:46:14.000 -0.51% 58.65 

DCJ3 2019/09/12 11:46:14.000 2019/09/12 11:46:19.700 0.12% 5.755 

DCJ4 2019/09/12 11:46:19.700 2019/09/12 11:46:28.400 -0.20% 8.682 

DCJ5 2019/09/12 11:46:28.400 2019/09/12 11:46:48.600 0.18% 20.221 

 

 

Figure 4. 4 



81 

Figure 4.7 The period and the size of the TSJ and the five DCJs. The horizontal axis is 

the timestamp in seconds. The vertical axis is the jump size (%). 

 

Scenario 3: Four DCJs were found within the TSJ during the ECB Press Conference 

(15 minutes) 

 

As shown in table 4.6 (a), the TSJ was identified within the 15 minute time interval 

from 13:30 to 13:45 on 2015/12/03. For DC, we found 4 DCJs within the 15 minutes. 

As illustrated in figure 4.8, the TSJ size was significant at 2.06%. In DC, there were 3 

upward DCJs and one downward DCJ. Scenario 3 shows a different case compared 

with the previous two examples in that all the four DCJs were not presenting at the 

beginning of the TSJ. This suggests that jumps may present at the anytime within the 

TSJ (15 minute time interval). 
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Table 4.6 (a) A EURUSD TSJ was detected within the 15 minute interval. The significance level 

α=0.01. 

 TSJ_StartTime TSJ_EndTime JumpSize Period 

TSJ 2015/12/03 13:30 2015/12/03 13:45 2.06% 15 minutes 

 

Table 4.6 (b) Four DCJs were determined within the same 15 minutes interval. Threshold θ = 0.1%; 

s = 0.99. 

 DCJ_StartTime DCJ_EndTime JumpSize Period (seconds) 

DCJ1 2015/12/03 13:33:15.500 2015/12/03 13:33:35.900 0.83% 20.327 

DCJ2 2015/12/03 11:33:47.700 2015/12/03 13:33:53.200 0.23% 5.549 

DCJ3 2015/12/03 11:33:53.200 2015/12/03 13:33:57.900 -0.20% 4.68 

DCJ4 2015/12/03 11:35:07.100 2015/12/03 13:35:11.200 0.15% 4.084 

 

Figure 4.8 The period and the size of the TSJ and the four DCJs. The horizontal axis is 

the timestamp in seconds. The vertical axis is the jump size (%). 

 

4.6.3 Does DC find jumps that follow events? 

This section will show the results of DCJs related to the scheduled events and 

unscheduled events. The scheduled events are the major economic events which have 

Figure 4. 5 
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been listed in Section 4.5.3. The unscheduled events focus on the detected DCJs during 

the ‘flash crash’ of Sterling and Yen. 

 

4.6.3.1 Do the jumps follow major economic events (MEEs)? 

To answer the first question, we evaluate the events caused 𝐷𝐶𝐽 s of EURUSD, 

GBPUSD, USDJPY, USDCAD, and AUDUSD by studying the time frame consisting of 

the following 30 minutes after the economic data announcements. Table 4.7 (a) below 

shows the details of the 𝐷𝐶𝐽s identified within the 30 minutes following the economic 

announcements. Note: (1) N(𝐷𝐶𝐽-MEE) is the total number of 𝐷𝐶𝐽s following the 

MEEs; (2) N(𝐷𝐶𝐽) is the total 𝐷𝐶𝐽s detected over the five year period; (3) P(MME | 

𝐷𝐶𝐽) indicates the value of N(𝐷𝐶𝐽-MEE) over N(𝐷𝐶𝐽) as a proportion.  

 

For EURUSD, there were a total of 138 𝐷𝐶𝐽s corresponding to the MEEs, which 

accounted for 41.07% of the total detected 𝐷𝐶𝐽s. However, the P(MME | 𝐷𝐶𝐽) of 

GBPUSD is 11.41%, which is much less than the results of EURUSD. For USDJPY, 

20.2% of the total detected DCJs were corresponding to the MEEs. In addition, the 

results suggest that the 𝐷𝐶𝐽s were more associated with the interest rate decisions than 

other economic indicators except US_NFP. For EURUSD, there were 91 𝐷𝐶𝐽 s 

corresponding to the interest rate decisions, which account for 66% (
91

138
) of the N(𝐷𝐶𝐽-

MEE). For GBPUSD and USDJPY, there were 60 DCJs (62.5%) and 74 (62.7%) 

corresponding to the interest rate decisions, respectively.  

 

Also, the results indicate that Euro exchange rate is more sensitive to the US MEEs 

than Sterling and Yen. We detected 102 EURUSD DCJs associated with U.S. MEEs, 

while, for GBPUSD and USDJPY, there were 49 DCJs and 71 DCJs related to US MEEs, 
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respectively. Why is the Euro exchange rate more closely associated with the U.S. 

MEEs? There appears to be a stronger linkage between the Eurozone and US markets, 

which is indicated by the following; the Euro is more heavily weighted in the value of 

US dollar than Sterling. The ICE (Intercontinental Exchange) US dollar index13 is a 

geometric average of six currencies weighted against the US dollar. Euro is the top-

weighted currency which accounts for 57.6% of the US dollar index. Sterling and Yen 

account for 11.9% and 13.6% of the total index weight, which are around one-fifth of 

the weight of Euro. The Federal Reserve Board regularly releases the broad dollar index 

that is constructed using the currencies of the most important U.S. trading partners by 

volume of bilateral trade. According to the newest update of the trade weights (2019), 

the Euro zone contributes 20.086% of the total trade, while the contributions of the UK 

and Japan are 5.416% and 6.377%, respectively.14 Therefore, in terms of the weight of 

the broad dollar index, the Euro weighting is around 3.7-fold that of Sterling and 3.1-

fold that of Yen. Overall, the results of table 4.7 (a) lead to two stand out observations 

for EURUSD, GBPUSD and USDJPY: 

 

Observation 1: the jumps of EURUSD, USDCAD are more sensitive to the MMEs 

The P(MME | 𝐷𝐶𝐽) figure for EURUSD shows 41.07% of the total determined 

DCJs follow MEEs. The P(MME | 𝐷𝐶𝐽) figure for USDCAD shows 64.38% of 

the total determined DCJs follow MEEs. This result suggests that EURUSD and 

USDCAD jumps are firmly associated with the MEEs studied. As discussed in 

the previous section, there are more than 40 economic indicators published 

every month in the U.S. (Baumohl (2012)). This back-testing only selects a 

 
13 ICE U.S. Dollar Index Contracts: 

https://www.theice.com/publicdocs/futures_us/ICE_Dollar_Index_FAQ.pdf 
14 U.S. total trade weights: https://www.federalreserve.gov/releases/h10/weights/default.htm 
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restricted sample of 8 MEEs to test the economic event caused DCJs. Hence, 

around 41% and 64% DCJs are related to these MEEs; indicating that EURUSD 

and USDCAD are highly sensitive to the MEEs. 

 

Observation 2: For GBPUSD, USDJPY and AUDUSD, some jumps follow the MMEs 

For GBPUSD, the P(MEE | 𝐷𝐶𝐽) indicates that 11.41% of the total DCJs are 

related to the MEEs. For USDJPY, we observed that 20.2% of the total DCJs 

are associated to the MEEs. For AUDUSD, the P(MEE | 𝐷𝐶𝐽) indicates that 

28.25% of the total DCJs are related to the MEEs. For Sterling, Yen, and 

Australian dollar, the P(MEE | 𝐷𝐶𝐽 ) figures does not indicate a solid 

relationship between DCJs and MEEs like that observed for the Euro and 

Canadian dollar. This suggests that the majority of jumps for GBPUSD, 

USDJPY and AUDUSD do not follow the major economic events.  

 

 

 

 

 

 

 

 

 

 

 

. 2 
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Table 4.7 (a) The detected 𝑫𝑪𝑱s associated with the economic events. The event-caused 𝑫𝑪𝑱s were 

those identified within the 30 minutes after the economic data announcement. Threshold θ = 0.1%; s 

= 0.99. 
 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 55 19 26 22 36 

ECB_IRD 36 - - - - 

BoE_IRD - 41 - - - 

BoJ-IRD - - 48 - - 

BoC_IRD - - - 90 - 

BoA_IRD - - - - 54 

EU_GDP 0 - - - - 

EU_CPI 0 - - - - 

UK_GDP - 2 - - - 

UK_CPI - 4 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 3 - 

Canada_CPI - - - 27 - 

Australia_GDP - - - - 13 

Australia_CPI - - - - 15 

US_GDP 4 1 1 2 1 

US_NFP 40 24 39 41 28 

US_RS 3 2 2 2 1 

US_CPI 0 3 3 1 4 

N(𝐷𝐶𝐽-MEE)  138 96 119 188 152 

N(𝐷𝐶𝐽)   336 841 589 292 538 

P(MME | 𝐷𝐶𝐽)   41.07% 11.41% 20.20% 64.38% 28.25% 

 

We also selected additional three thresholds, 0.05%, 0.075%, 0.125%, to repeat the 

same test; the results are summarised in table 4.7 (b), table 4.7 (c) and table 4.7 (d). The 

results of the the three tables indicate the same conclusions of table 4.7 (a): (1) For 

EURUSD, under the threshilds of 0.05%, 0.075%, 0.125%, the figures of the P(MME | 

𝐷𝐶𝐽) are 34.28%, 39.32%, and 39.61%, respectively; (2) For GBPUSD and AUDUSD, 

under the three thresholds, the figures of the P(MME | 𝐷𝐶𝐽) are shown around 10% and 

30%; (3) For USDCAD, we observed the the figures of the P(MME | 𝐷𝐶𝐽) are over 50% 

under the three thresholds. 
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Table 4.7 (b) The detected 𝑫𝑪𝑱s associated with the economic events. The event-caused 𝑫𝑪𝑱s were 

those identified within the 30 minutes after the economic data announcement. Threshold θ = 0.05%; s 

= 0.99. 
 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 153 43 79 80 122 

ECB_IRD 123 - - - - 

BoE_IRD - 109 - - - 

BoJ-IRD - 0 170 - - 

BoC_IRD - - - 224 - 

BoA_IRD - - - - 136 

EU_GDP 0 - - - - 

EU_CPI 1 - - - - 

UK_GDP - 6 - - - 

UK_CPI - 21 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 17 - 

Canada_CPI - - - 98 - 

Australia_GDP - - - - 42 

Australia_CPI - - - - 56 

US_GDP 4 1 5 4 6 

US_NFP 107 64 88 143 99 

US_RS 6 15 12 5 16 

US_CPI 16 7 10 17 21 

N(𝐷𝐶𝐽-MEE)  410 266 364 588 498 

N(𝐷𝐶𝐽)   1196 2771 1825 1059 1833 

P(MME | 𝐷𝐶𝐽)   34.28% 9.60% 19.95% 55.52% 27.17% 
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Table 4.7 (c) The detected 𝑫𝑪𝑱s associated with the economic events. The event-caused 𝑫𝑪𝑱s were 

those identified within the 30 minutes after the economic data announcement. Threshold θ = 0.075%; 

s = 0.99. 
 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 73 30 46 47 53 

ECB_IRD 61 - - - - 

BoE_IRD - 67 - - - 

BoJ-IRD - - 79 - - 

BoC_IRD - - - 128 - 

BoA_IRD - - - - 78 

EU_GDP 0 - - - - 

EU_CPI 0 - - - - 

UK_GDP - 2 - - - 

UK_CPI - 7 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 4 - 

Canada_CPI - - - 38 - 

Australia_GDP - - - - 19 

Australia_CPI - - - - 32 

US_GDP 4 2 4 4 3 

US_NFP 70 37 54 66 50 

US_RS 4 7 4 3 8 

US_CPI 7 6 10 3 16 

N(𝐷𝐶𝐽-MEE)  219 158 197 293 259 

N(𝐷𝐶𝐽)   557 1346 932 490 901 

P(MME | 𝐷𝐶𝐽)   39.32% 11.74% 21.14% 59.80% 28.75% 
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Table 4.7 (d) The detected 𝑫𝑪𝑱s associated with the economic events. The event-caused 𝑫𝑪𝑱s were 

those identified within the 30 minutes after the economic data announcement. Threshold θ = 0.125%; 

s = 0.99. 
 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 34 14 16 23 34 

ECB_IRD 21 - - - - 

BoE_IRD - 25 - - - 

BoJ-IRD - - 32 - - 

BoC_IRD - - - 53 - 

BoA_IRD - - - - 34 

EU_GDP 0 - - - - 

EU_CPI 0 - - - - 

UK_GDP - 2 - - - 

UK_CPI - 3 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 2 - 

Canada_CPI - - - 17 - 

Australia_GDP - - - - 10 

Australia_CPI - - - - 10 

US_GDP 2 0 0 0 1 

US_NFP 22 14 17 28 25 

US_RS 3 1 2 1 1 

US_CPI 0 2 3 1 3 

N(𝐷𝐶𝐽-MEE)  82 61 70 125 118 

N(𝐷𝐶𝐽)   207 590 405 183 370 

P(MME | 𝐷𝐶𝐽)   39.61% 10.34% 17.28% 68.31% 31.89% 

 

4.6.3.2. How many MEEs were followed by jumps?  

In the previous section, the P(MEE | 𝐷𝐶𝐽) figure specifies the proportion of 𝐷𝐶𝐽s 

following the MEEs. In this section, we focus on the likelihood that a MEE 

announcement causes at least one 𝐷𝐶𝐽, denoted by P(𝐷𝐶𝐽 | MME). In other words, 

given the total number of MEEs, we would like to know how many MEEs are followed 

by DCJs. The P(𝐷𝐶𝐽 | MME) gives a useful perspective to evaluate the relationship 

between the 𝐷𝐶𝐽s and the MEEs. For instance, if a number of unexpected MEE data 

points cause many 𝐷𝐶𝐽s, all of which will contribute to the P(MEE | 𝐷𝐶𝐽) figure, which 

will then be high. However, in the same situation, the P(𝐷𝐶𝐽 | MME) may not exhibit a 

high value since if other MEEs do not involve the presentation of data significantly 
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different from market expectations; these events with many 𝐷𝐶𝐽s only have one unit of 

contribution in this case, the same as for an MEE followed by a single 𝐷𝐶𝐽. 

 

In table 4.8 (a) below, the N(MEE) is the total number of the selected MMEs over the 

five years. The N(MEE-𝐷𝐶𝐽) counts the number of the MEEs which are followed by at 

least one DCJ. P(𝐷𝐶𝐽 | MME) indicates N(MEE-𝐷𝐶𝐽) as a percentage of the N(MME). 

Hence, P(𝐷𝐶𝐽 | MME) indicates the proportion of MEEs which were followed by at 

least one 𝐷𝐶𝐽 . The N(MEE-DCJ) summaries the number of the MEEs which are 

followed by at least one DCJ. This indicates that there may be more than one DCJ 

associated to a specific MEE. Hence, we would like to know how many DCJs are 

associated to one MEE on average, which is represented by Ave(N(DCJ) per MEE) = 

N(𝐷𝐶𝐽−MEE)

N(MEE−𝐷𝐶𝐽)
 in table 4.8 (a) below.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 3 
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Table 4.8 (a) The summary of the MEE caused jumps. Threshold θ = 0.1%; s = 0.99.  
EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 25 9 12 7 14 

ECB_IRD 10 - - - - 

BoE_IRD - 15 - - - 

BoJ_IRD - - 7 - - 

BoC_IRD - - - 28 - 

BoA_IRD - - - - 14 

EU_GDP 0 - - - - 

EU_CPI 0 - - - - 

UK_GDP - 2 - - - 

UK_CPI - 4 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 2 - 

Canada_CPI - - - 19 - 

Australia_GDP - - - - 10 

Australia_CPI - - - - 8 

US_GDP 4 1 1 1 1 

US_NFP 23 13 20 17 11 

US_RS 2 1 2 2 1 

US_CPI 0 2 2 0 1 

N(MEE-𝐷𝐶𝐽)   64 47 44 76 60 

N(MEE)   360 360 360 360 339 

P(𝐷𝐶𝐽 | MEE)  18% 13% 12.2% 21.11% 17.70% 

Ave(N(DCJ) 

per MEE) 

2.1 2 2.7 2.5  2.5  

 

Observation 3: Some MEEs were followed by jumps 

For EURUSD, GBPUSD, USDJPY, and AUDUSD, the P(𝐷𝐶𝐽 | MEE) figures 

were less than 20%; the P(𝐷𝐶𝐽 | MEE) of USDCAD is 21.11%. For the five 

exchange rates, the jumps were mostly associated to the IRD and US_NFP; this 

may imply that the exchange rates were more sensitive to the interest rate 

decisions and the US employment figures.  

Observation 4: One MEE is followed by two DCJs on average 

The N(MEE-𝐷𝐶𝐽) figures for EURUSD, GBPUSD, USDJPY, USDCAD and 

AUDUSD are 64, 47, 44, 76 and 60, respectively. Following these confirmed 

MEEs, the Ave(N(DCJ) per MEE) figures indicate that at least two DCJs are 

associated to one MEE on average. 
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We also selected additional currencies under three thresholds, 0.05%, 0.075%, 0.125%, 

to repeat the same test in table 4.8 (b), table 4.8 (c) and table 4.8 (d) below. In table 4.8 

(b), under the threshold of 0.05%, the P(𝐷𝐶𝐽 | MEE)s of EURUSD, GBPUSD, and 

USDJPY are around 20%; while, we observed a higher figure of the P(𝐷𝐶𝐽 | MEE) in 

USDCAD (40.28%) and AUDUSD (35.10%). For the results in table 4.8 (c), all the 

figures of the the P(𝐷𝐶𝐽 | MEE) are less than 30%. For the results in table 4.8 (d), all 

the figures of the the P(𝐷𝐶𝐽 | MEE) are less than 20%. To conclude, for the results of 

tables (a, b, c, d), the figures of P(𝐷𝐶𝐽 | MEE) indicate that some MEEs followed by 

jumps; also, the figures of the Ave(N(DCJ) per MEE) are higher under the thresholds 

of 0.05% and 0.075%. 

 

Table 4.8 (b) The summary of the MEE caused jumps. Threshold θ = 0.05%; s = 0.99.  
EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 29 14 18 19 22 

ECB_IRD 9 - - - - 

BoE_IRD - 25 - - - 

BoJ_IRD - - 13 - - 

BoC_IRD - - - 33 - 

BoA_IRD - - - - 21 

EU_GDP 0 - - - - 

EU_CPI 1 - - - - 

UK_GDP - 4 - - - 

UK_CPI - 14 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 9 - 

Canada_CPI - - - 35 - 

Australia_GDP - - - - 14 

Australia_CPI - - - - 15 

US_GDP 4 1 3 3 4 

US_NFP 30 18 28 40 31 

US_RS 5 5 8 2 7 

US_CPI 6 3 4 4 5 

N(MEE-𝐷𝐶𝐽)   84 84 74 145 119 

N(MEE)   360 360 360 360 339 

P(𝐷𝐶𝐽 | MEE)  23.33% 23.33% 20.56% 40.28% 35.10% 

Ave(N(DCJ) 

per MEE) 

4.9  3.2  4.9  4.1  4.2  
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Table 4.8 (c) The summary of the MEE caused jumps. Threshold θ = 0.075%; s = 0.99.  
EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 24 11 13 14 19 

ECB_IRD 10 - - - - 

BoE_IRD - 20 - - - 

BoJ_IRD - - 10 - - 

BoC_IRD - - - 30 - 

BoA_IRD - - - - 19 

EU_GDP 0 - - - - 

EU_CPI 0 - - - - 

UK_GDP - 2 - - - 

UK_CPI - 7 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 3 - 

Canada_CPI - - - 23 - 

Australia_GDP - - - - 11 

Australia_CPI - - - - 12 

US_GDP 3 2 3 3 2 

US_NFP 34 17 23 26 16 

US_RS 3 2 4 1 4 

US_CPI 3 2 5 2 5 

N(MEE-𝐷𝐶𝐽)   77 63 58 102 88 

N(MEE)   360 360 360 360 339 

P(𝐷𝐶𝐽 | MEE)  21.39% 17.50% 16.11% 28.33% 25.96% 

Ave(N(DCJ) 

per MEE) 

2.8  2.5  3.4  2.9  2.9  
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Table 4.8(d) The summary of the MEE caused jumps. Threshold θ = 0.125%; s = 0.99.  
EURUSD GBPUSD USDJPY USDCAD AUDUSD 

FED_ IRD 20 8 9 8 13 

ECB_IRD 7 - - - - 

BoE_IRD - 9 - - - 

BoJ_IRD - - 6 - - 

BoC_IRD - - - 20 - 

BoA_IRD - - - - 13 

EU_GDP 0 - - - - 

EU_CPI 0 - - - - 

UK_GDP - 2 - - - 

UK_CPI - 3 - - - 

Japan_GDP - - 0 - - 

Japan_CPI - - 0 - - 

Canada_GDP - - - 2 - 

Canada_CPI - - - 12 - 

Australia_GDP - - - - 7 

Australia_CPI - - - - 5 

US_GDP 2 0 0 0 1 

US_NFP 13 11 12 14 11 

US_RS 2 0 2 1 1 

US_CPI 0 1 2 1 1 

N(MEE-𝐷𝐶𝐽)   44 34 31 58 52 

N(MEE)   360 360 360 360 339 

P(𝐷𝐶𝐽 | MEE)  12.22% 9.44% 8.61% 16.11% 15.34% 

Ave(N(DCJ) 

per MEE) 

1.9  1.8  2.3  2.2  2.3  

 

4.6.3.3 The 𝑫𝑪𝑱s associated to the unscheduled events 

In the previous section, we discussed the relationship between DCJs and MEEs where 

we observed some 𝐷𝐶𝐽s associated to the scheduled economic events. As discussed in 

section 4.1, unscheduled events may cause more impact on jumps presenting than the 

scheduled events as participants are highly sensitized to the uncertain risks. This section 

will discuss the case study of the association of the jumps to unscheduled events for 

Sterling. Note, the case study of the effect of an unscheduled event for Japanese Yen 

will be presented in Appendix E. 

 

The unscheduled event of the sterling flash crash started near midnight of 6th of October 

2016 (UTC). The sterling depreciated by around 9% versus the dollar in this 
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unscheduled event. This event had caused concern for the Bank of England and Bank 

for International Settlements (BIS). 

An analysis report about the sterling ‘flash event’ was published by the Markets 

Committee from BIS in January 2017 (Jackson et al. (2017)).  

 

The BIS report summarised three stages of the sterling fall of 7 October:  

Stage 1: GBPUSD fell from 1.2600 to 1.2494 during eight seconds from 

(23:07:03 to 23:07:11 UTC), and the sales of sterling was significantly 

imbalanced in terms of order flow. 

 

Stage 2: GBPUSD started accelerating in its decline with the mid-price reaching 

1.24 from 23:07:15 (UTC). The report highlighted that there were a series of 

significant price gaps in the price changes in the second stage (see Figure 4.9). 

 

Stage 3: The market started to rise after breaking the 1.200 barrier (around 

23:09:29 UTC). 
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Figure 4.9 The exchange rate of GBPUSD on 06/10/2016 (UTC). The vertical axis is 

the exchange rate. The horizontal axis is the time in UTC. Source: tickstory.com; 

Dukascopy Bank. 

 

The Markets Committee of BIS discussed the factors triggering the sterling crash. First, 

the event occurred during the illiquid period around midnight, and some regional bank 

holidays such as in China. Second, there was a large trade that attempted to lower the 

price during the illiquid period. Third, the market dealers hedged the options deals by 

selling sterling. Fourth, a lot of stop loss orders were automatically triggered during this 

big drop. In addition, under the circumstances of illiquidity, there was a big spread in 

the bid-ask price on the order books, which directly amplified the significant price 

changes. In the end, the report was concerned at the limitations of the policymakers’ 

abilities in terms of prediction of and reaction to, the flash event. Also, they suggested 

to build the capacity for better data collection to aid further research.  
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As discussed in section 4.1, the data driven approach in DC offers the benefit of more 

fine-grained analysis in the monitoring of jump behavior in high-frequency data. Thus, 

we are interested to study the jump behavior in this flash event. The experiment aims 

to detect DCJs in the 20 minutes from 23:00:00.000 to 23:20:00.000 (UTC) on 6th of 

October 2016.  

 

Table 4.9 presents the statistical summary of the observed 𝐷𝐶𝐽s: (1) the selected period 

for detection of the DCJs from 23:00:00.000 to 23:20:00.000 on 06/10/2016 (UTC); (2) 

the total DC trends confirmed in the periods; (3) N(𝐷𝐶𝐽) is the total DCJs detected in 

the 5 minutes; (4) <𝐷𝐶𝐽-size> is the average DCJ size, which is measured by the 

average of the absolute TMV of the total observed 𝐷𝐶𝐽s; (5) <𝐷𝐶𝐽-period> is the 

average period (in seconds) of a 𝐷𝐶𝐽. 

 

Table 4.9 The summary of detected 𝑫𝑪𝑱s during the 

Sterling flash event on 06/10/2016. Threshold θ = 

0.1%; s = 0.99. 

Asset GBPUSD 

Periods, (1) 
20 minutes (UTC) 

(23:00:00 to 23:20:00) 

N(DC), (2) 276 

N(𝐷𝐶𝐽), (3) 209 

<𝐷𝐶𝐽-size>, (4) 3.5 

<𝐷𝐶𝐽-period>, (5) 1.4 

 

From 23:00:00 to 23:20:00, we identified 209 DCJs from the 276 DC trends. The 

average of the absolute TMV was 3.5, and the average period of a 𝐷𝐶𝐽 was 1.4 seconds. 

According to the BIS report, starting from 23:07:15, there were a series of significant 

price gaps in the price changes in the second stage. Based on our results, the first 𝐷𝐶𝐽 

was identified from 23:07:16.200 at the price of 1.22906, which coincides with the 
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circumstances outlined in stage 2 in the report. In addition, we observed four significant 

consecutive 𝐷𝐶𝐽s where their TMVs were 20 or larger (see table 4.10). Therefore, the 

20 times the 0.1% threshold indicates the four consecutive 𝐷𝐶𝐽s reached the size of a 

2% or larger change, and the period of each 𝐷𝐶𝐽 was 6.6 seconds on average. The four 

significant 𝐷𝐶𝐽s detected at the bottom of this big fall in sterling, the termination of the 

last of which coincides with the beginning of stage 3 from the BIS report; 

 

Table 4.10 The four significant consecutive 𝑫𝑪𝑱s  

Start time End time Absolute TMV Periods (seconds) 

23:09:20.100 23:09:20.200 20.6 0.05 

23:09:20.200 23:09:21.200 20.4 1.001 

23:09:21.200 23:09:31.600 20.2 10.459 

23:09:31.600 23:09:46.500 20.1 14.929 

   

 Average 20.4 6.6 

 

4.6.4 Did DC and TS find the same jumps? 

 

As introduced in section 4.1, the time series jump (TSJ) is an additional source of risk 

alongside the traditional risk of continuous volatility. The TSJ is considered as a 

component of the asset pricing model. Barndorff-Nielsen and Shephard (2004) first 

presented the method to locate the TSJs at the level of daily sampling frequency. Lee 

and Mykland (2008) detected the jump arrival times and their sizes in the intraday 

timeframe. The classical method identifies jumps within a fixed time interval where the 

size of the jump depends on the length of the time interval. Technically, the TS method 

detects the jumps through the model-based approach; researchers confirm the presence 

of a TSJ if there is a significant value of the realised return relative to the continuous 

volatility.  



99 

 

Jumps in DC and TS are completely different concepts. As noted above, in TS, a jump 

is an additional source of risk to the risk of continuous volatility in the asset pricing 

model. The TSJ is identified based on the model-based approach. In DC, a jump is an 

event of the DC trend such that the price has changed by a significant magnitude in a 

short period. We determine the existence of a 𝐷𝐶𝐽 when there is a significant magnitude 

of the time-adjusted return (TR) in the DC trend. 

 

This section will present the results of jumps detected by the two different methods. 

The experiment selects EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD for 

analysing the detection of DCJs and TSJs in the period from 2015 to 2019. In DC, the 

DCJ significance is s = 0.99. In TS, the data timeframe is 15 minutes and the 

significance level α=0.01. The moving window size is 260 trading days (around 1 year), 

and the window movement is 1 trading day. The idea of detecting TS jumps based on 

the asset pricing model (Nielsen and Shephard (2004) and Lee and Mykland, (2008)); 

a jump (TSJ) is a different source of risk compared to the risk of continuous volatility 

in the asset pricing model (for details of TS method see Section 2.4.1). In TS, our back-

testing follows the approach of Lee and Mykland (2008), and the algorithm parameters 

are set according to their suggestions.  

Table 4.11 (a) below summarizes the details of the detected DCJs and TSJs over the 

five years. N( 𝐷𝐶𝐽 ) and N(TSJ) are the numbers of jumps identified by the two 

approaches. N(𝐷𝐶𝐽 -in-TSJ) represents how many DCJs were found within the 15 

minute time interval associated to a TSJ. P(𝐷𝐶𝐽-TSJ) indicates N(𝐷𝐶𝐽-in-TSJ) as a 

proportion of the total N(𝐷𝐶𝐽), and hence describes the percentage of the 𝐷𝐶𝐽s that 

coincide with a TSJ. N(TSJ-overlapping-𝐷𝐶𝐽) is the number of TSJs that overlap with 
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𝐷𝐶𝐽s. P(TSJ-overlapping-𝐷𝐶𝐽) is N(TSJ-overlapping-𝐷𝐶𝐽) as a proportion of the total 

number of TSJs, N(TSJ).  

Table 4. 4 

Table 4.11 (a) The summary of the 𝑫𝑪𝑱s and TSJs detected over the five years from 2015 to 2019. 

DCJs: Threshold θ = 0.1%; s = 0.99. TSJs: The significance level α=0.01. 

 EURUSD GBPUSD USDJPY USDCAD AUDUSD 

N(𝐷𝐶𝐽) 336 841 589 292 538 

N(TSJ)  441 444 440 416 124 

N(𝐷𝐶𝐽-in-TSJ)   219 474 387 145 181 

P(𝐷𝐶𝐽-TSJ) 65.18% 56.36% 65.70% 49.66% 33.64% 

N(TSJ-overlapping-𝐷𝐶𝐽)  54 61 50 59 30 

P(TSJ-overlapping-𝐷𝐶𝐽) 12.24% 13.74% 11.36% 14.18% 24.19% 

 

Table 4.11 (a) leads to two observations: 

Observation 5: Jumps found in both DC and TS; DCJs and TSJs exhibit a degree of a 

mutual validation in terms of jump detection. 

For EURUSD, GBPUSD, USDJPY and USDCAD, the P(DCJ-TSJ) figure 

indicates over half of 𝐷𝐶𝐽s coincided with TSJs (note, 49.66% for USDCAD). 

For AUDUSD, the figure of P(DCJ-TSJ) is 33.64%. The results suggest that the 

jumps found under DC were also frequently associated with jumps found by TS 

analysis. In other words, DCJs and TSJs are not totally independent methods of 

observation. 

Observation 6: DC and TS both found unique jumps 

The P(TSJ-overlapping-DCJ) figure indicates that many TSJs are not associated 

with 𝐷𝐶𝐽s. For EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD that all 

the figures of the P(TSJ-overlapping-DCJ) are less than 30%. Hence, we can 

conclude that both DC and TS identified a considerable number of unique jumps. 

 

We also selected additional three thresholds, 0.05%, 0.075%, 0.125%, to repeat the 

same test as shown the results in table 4.11 (b, c, d). For EURUSD, GBPUSD, USDJPY 



101 

and USDCAD, the P(DCJ-TSJ) figure indicates over half (or around 50%) of 𝐷𝐶𝐽s 

coincided with TSJs. However, for AUDUSD, the figures of the P(DCJ-TSJ) are around 

30%. Also, for the results of table 4.11 (b, c, d), the figures of the P(TSJ-overlapping-

DCJ) are less than 30% in EURUSD, GBPUSD, USDJPY, USDCAD. For AUDUSD, 

the figures of the P(TSJ-overlapping-DCJ) are over 30% under the thresholds of 0.05% 

and 0.075% (20.97% under the threshold of 0.125%). 

 

Table 4.11 (b). The summary of the 𝑫𝑪𝑱s and TSJs detected over the five years from 2015 to 2019. 

DCJs: Threshold θ = 0.05%; s = 0.99. TSJs: The significance level α=0.01. 
 

EURUSD GBPUSD USDJPY USDCAD AUDUSD 

N(𝐷𝐶𝐽) 1196 2771 1825 1059 1833 

N(TSJ)  441 444 440 416 124 

N(𝐷𝐶𝐽-in-TSJ)   687 1261 1082 464 495 

P(𝐷𝐶𝐽-TSJ) 57.44% 45.51% 59.29% 43.81% 27.00% 

N(TSJ-overlapping-𝐷𝐶𝐽)  98 101 73 122 49 

P(TSJ-overlapping-𝐷𝐶𝐽) 22.22% 22.75% 16.59% 29.33% 39.52% 

      
Table 4.11 (c). The summary of the 𝑫𝑪𝑱s and TSJs detected over the five years from 2015 to 2019. 

DCJs: Threshold θ = 0.075%; s = 0.99. TSJs: The significance level α=0.01. 

N(𝐷𝐶𝐽) 557 1346 932 490 901 

N(TSJ)  441 444 440 416 124 

N(𝐷𝐶𝐽-in-TSJ)   350 700 595 231 290 

P(𝐷𝐶𝐽-TSJ) 62.84% 52.01% 63.84% 47.14% 32.19% 

N(TSJ-overlapping-𝐷𝐶𝐽)  69 72 62 86 43 

P(TSJ-overlapping-𝐷𝐶𝐽) 15.65% 16.22% 14.09% 20.67% 34.68% 

      
Table 4.11 (d). The summary of the 𝑫𝑪𝑱s and TSJs detected over the five years from 2015 to 2019. 

DCJs: Threshold θ = 0.125%; s = 0.99. TSJs: The significance level α=0.01. 

N(𝐷𝐶𝐽) 207 590 405 183 370 

N(TSJ)  441 444 440 416 124 

N(𝐷𝐶𝐽-in-TSJ)   140 343 259 94 127 

P(𝐷𝐶𝐽-TSJ) 67.63% 58.14% 63.95% 51.37% 34.32% 

N(TSJ-overlapping-𝐷𝐶𝐽)  45 51 40 43 26 

P(TSJ-overlapping-𝐷𝐶𝐽) 10.20% 11.49% 9.09% 10.34% 20.97% 
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4.7 Discussion 

This section will discuss the major claims made in this chapter. The major discussion 

of this chapter, in Section 4.7.2, elaborates on the core value of DCJs for monitoring 

the markets’ behaviours in jumps. Specifically, analysts can obtain the detailed jumps’ 

behaviours from detected DCJs during scheduled and unscheduled events, which will 

be discussed in Section 4.7.3 and Section 4.7.4. Lastly, we will study the relationship 

between the observed TSJs and DCJs.  

 

4.7.1 Jumps are found under DC 

We executed back-testing for detecting DCJs in the three exchange rates over 5 years. 

There were more jumps determined in Sterling than Euro and Yen. The P(𝐷𝐶𝐽-day) 

indicates that GBPUSD exhibited more jump days than did EURUSD and USDJPY. 

Also, the E(N(𝐷𝐶𝐽s) | N(𝐷𝐶𝐽-days)) enabled us to conclude that we detected more 

jumps in Sterling and Yen than Euro in a jump day. This suggests that there were major 

events which cause a large number of DCJs in GBPUSD and USDJPY. As discussed in 

section 4.1, the unscheduled events (the uncertain risk) may have more impact on jumps 

than scheduled events. In fact, the two cases studies of unscheduled events support our 

conclusion that the jumps are highly sensitive to the unscheduled events (we will 

discuss the two cases studies in the following sections).  

 

4.7.2 Discussions: DCJs provide valuable information about jumps 

This section discusses the benefits of DCJs in analysing the jumps’ behaviour. As 

discussed at the beginning of section 2.3, the TS method identifies jumps through a 

model-based approach. TSJ is a different source of risk compared to the risk of 

continuous volatility and the existence of jumps may affect asset pricing and risk 
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management. Hence, a jump is a discontinuous component in the asset pricing model. 

In practice, researchers judge the presence of jumps based on a fixed time interval. In 

DC, a jump (𝐷𝐶𝐽) is an event of the DC trend such that the price has changed by a 

significant magnitude in a short period. In other words, a 𝐷𝐶𝐽 covers the period from 

one extreme point 𝐸𝑃𝑖−1 to the next 𝐸𝑃𝑖 . Thus, the location of the 𝐷𝐶𝐽 is precisely 

delimited by the two adjacent extreme points (𝐸𝑃𝑖−1 and 𝐸𝑃𝑖). Fundamentally, the DCJ 

identification is sensitive to the price and time especially during flash events. Hence, 

DCJ offers the benefit of more fine-grained analysis in the monitoring of jump 

behaviour in high-frequency data. We will discuss the details in following. 

 

Statement 1: DCJ specifies the precise time of the jump 

The DC approach precisely locates the timing of the jump process. DC gives 

the start (𝐸𝑃𝑖−1) and the end (𝐸𝑃𝑖) of the DCJ. In TS, the classical method judges 

the presence of the TSJ within a fixed time interval. Traditional TSJ cannot give 

the precise location of within the time interval. In scenario 3 (section 4.6.2), a 

TSJ was identified during the ECB Press Conference (within the 15 minute time 

interval from 13:30 to 13:45 on 2015/12/03). However, in the same period of 

15 minutes, we detected four DCJs at different time locations.  

 

Statement 2: DCJ gives the direction of every identified jump 

The DCJ gives the direction of every identified jump, e.g., upward jump or 

downward jump. The TSJ direction depends on the price return of the fixed time 

interval. If the return over the 15 minutes is negative, the jump direction is also 

negative. However, in practice, there may be one upward jump followed by one 

larger downward jump within the 15 minutes. In this case, the TS method would 
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not identify the first upward jump. In scenario 2, DC detected 5 consecutive 

jumps within the 15 minutes after the ECB_IRD was released at 11:45 on 

2019/09/12. In table 4.5 (b), there were three upward DCJs and two downward 

DCJs. 

 

Statement 3: DCJ analysis retains the magnitude of the individual jumps 

DCJs give the magnitude of every identified jump. We can measure the jump 

size by calculating the percentage change of the DC trend. The TSJ size is the 

difference of the realised return and the instantaneous volatility. If there are two 

jumps within a time interval, we cannot know the exact sizes of these two jumps. 

In scenario 1, the classical method identified a TSJ in the period from 12:30 to 

12:45 (15 minute time interval) with a jump size of -0.54%. However, DC 

determined two consecutive DCJs at the beginning of the TSJ time interval. In 

table 4.4 (b), the size of the DCJ1 was 0.21% (from 12:30:01.400 to 

12:30:04.200) followed by the DCJ2 with a jump size of -0.59% (from 

12:30:04.200 to 12:30:11.900). 

 

4.7.3 Do DCJs follow scheduled events? 

In section 4.6.3.1, the back-testing results demonstrate that EURUSD was highly 

sensitive to the MEEs (Observation 1). However, most of GBPUSD DCJs were not 

associated with MEEs (Observation 2). Also, we observed that DCJs were more 

sensitive to IRD as the monetary policy directly influences the value of the country’s 

currency. In section 4.6.3.2, the P(DCJ | MME) represents the likelihood that a MEE 

announcement causes a DCJ. The P(DCJ | MME) figures show lower values for both 

EURUSD (18%) and GBPUSD (13%). This suggests that many MEEs were not causing 
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jumps (Observation 3). In addition, there were at least two DCJs associated to one MEE 

on average (Observation 4).  

 

4.7.4 Are DCJs associated with unscheduled events? 

In section 4.6.3.3, we observed that jumps were highly sensitive to the unscheduled 

events based on two cases studies. Firstly, the background of the two cases was that 

there was no advanced notification of the happenings according to the hindsight studies 

from the reports by the authorities. Secondly, in the two cases there exist the significant 

price changes within a very short period. Thirdly, the flash price shocks of the two 

events were both caused by a lack of liquidity and unusual trading behaviours. These 

properties surrounding unscheduled events often do not exist in the vicinity of 

scheduled events. Because, the scheduled events, such as MEEs, are normally released 

in normal trading hours where there are usually no liquidity issues. In addition, the 

participants should have awareness of planned events. Hence, the market participants 

may have already considered the scheduled events in their trading strategies. 

 

In the Sterling flash crash, we detected 209 DCJs in 20 minutes from 23:00:00.000 to 

23:20:00.000 in 06/10/2016 (UTC). The average DCJ size was 3.5 which was larger 

than the average DCJ size from 2015 to 2019 (the Ave(DCJ-size) of 5 years was 2.5). 

In addition, we observed four consecutive DCJs at the bottom of this big crash in 

Sterling (from 23:09:20.200 to 23:09:46.500), which coincided with stage 3 of this 

event (Sterling reached the lowest price and started to rally) from the BIS report. The 

Ave(DCJ-size) of the four DCJs was 20.4, which indicates the price changes of each 

DCJ was 2.04% with the average period of 6.6 seconds.  
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In the Yen flash event, we observed 24 DCJs in 5 minutes from 22:35:00.000 to 

22:40:00.000 in 02/09/2019 (UTC). In this unscheduled event, the average DCJ size 

was 3.3 which was significantly larger than the average DCJ size of the detected DCJs 

over the 5 years (the Ave(DCJ-size) of 5 years was 2.4).  

 

4.7.5 The discussion of the detected DCJs and TSJs 

In section 4.6.4, we evaluated the relationship between DCJs and TSJs. In TS, a jump 

is a different source of risk compared to the risk of continuous volatility. Fundamentally, 

The TS jump (TSJ) and DCJ is a different concept. In DC, a DCJ is an event in that the 

price has changed by a significant magnitude in a short period. In section 2.3, we 

introduced a well known TS method of detecting intraday jumps. Based on the TS 

method, we implemented back-testing to detect jumps in the same periods from 2015 

to 2019. We analysed the relationship between the DCJs and TSJs in section 4.6.4. 

From table 4.11, for EURUSD, GBPUSD, and USDJPY, we determined 219, 474, and 

387 DCJs within the TSJs. This indicates that over half of the DCJs were located within 

the TSJs (see the P(DCJ-TSJ) figures in table 4.11). The results show that 12.24% of 

the EURUSD TSJs, 13.74% of the GBPUSD TSJs, and 11.36% of the USDJPY TSJs 

overlapped with the DCJs. Therefore, the results recognise that there were common 

jumps between TSJs and DCJs in the five years (Observation 5). On the other hand, 

around 35% of EURUSD DCJs, 44% of GBPUSD DCJs, and 34.3% of USDJPY DCJs 

were not associated with TSJs. This suggested that DC and TS both identified a number 

of unique jumps (Observation 6).  
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Statement 4: DCJs and TSJs complement each other 

The DCJs complement the TSJs in terms of jump detection. The results 

indicated that the two approaches found common jumps (Observation 5) and 

also there were unique jumps between DCJs and TSJs (Observation 6). DCJ is 

more sensitive to the data rather than limited by a pre-determined timescale. 

This allows the DC approach to detect the jumps during the random flash events 

which usually cause significant price changes within a very short period (in 

seconds). Also, the TSJ had been the subject of many studies tracking news 

events and thus improving the asset pricing model. Therefore, both TSJs and 

DCJs offer a viable solution to analyse jumps’ behaviour but with a different 

underpinning approach.  

 

4.8 Conclusion 

In this chapter, we propose a new approach, under the DC framework, to detect jumps 

in the FX markets. This DC approach is different from the classical time series method. 

DC is an alternative way to sample the market transactions that we can naturally refer 

to as a data-driven approach. In our experiment, DCJs were sensitive to news events 

especially during unscheduled events. Also, we studied the observed DCJs and TSJs; 

as discussed in Statement 4 (in Section 4.7.5), they complement each other in the aspect 

of jump detection by providing both unique information and mutual confirmation. We 

concluded that the DC approach and TS method found both common jumps and unique 

jumps. This confirmed that DCJs complement the TSJs in detecting jumps especially 

in high-frequency data. 
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In section 4.4, we defined the concept of the 𝐷𝐶𝐽 based on a significant magnitude of 

the 𝑇𝑅. Specifically, 𝑇𝑅 measures the price changes over time such that a greater 𝑇𝑅 

value indicates greater price changes in a shorter period. In addition, the approach given 

can be used in a practical manner to detect the 𝐷𝐶𝐽s in the financial markets. Our back-

testing results indicate that the relationship between MEEs and DCJs depends on the 

currency. Euro is more associated with MEEs than Sterling and Yen. Compared with 

the DCJs associated with MEEs, the DCJs were highly sensitive to the unscheduled 

events as we observed the DCJs in larger quantities and with a higher jump size on 

average. This conclusion supported our initial insight that the market participants are 

more sensitive to uncertain risks. 

 

The concept of the jump is different between DC and TS. TSJ is the discontinuous 

component of the asset pricing model. DCJ is an event of the DC trend such that the 

price has changed by a significant magnitude in a short time period. Hence, the two 

approaches cannot replace each other. In section 4.6.2, we presented the three scenarios 

that both DC and TS found jumps in the same periods after the news announcements. 

The three examples illustrated that the summary statistics of DCJs can give detailed 

information about their size, direction, and frequency. Hence, DCJs offer an alternative 

tool for studying the jump behaviour especially in high-frequency data (tick data). In 

section 4.6.4, we studied the identified DCJs and TSJs. The results showed that the 

jumps found under DC were also frequently associated with jumps found by TS method 

(Observation 5). Also, the two approaches both identified unique jumps (Observation 

6). TS detects jumps based on a fixed time interval such that we cannot know the 

amount and locations of the jumps within this time interval. In contrast, DC identifies 
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jumps for every observed DC trend, which gives precise jump information in terms of 

the timing, magnitude, and direction.  

 

Overall, we have proposed a new approach to detect jumps under the DC framework. 

We presented the finding that DCJs were sensitive to news events which was supported 

by the back-testing. Also, DCJs offer the benefit of more fine-grained analysis in the 

monitoring of jump behavior in high-frequency data. As per the concern from BIS 

report, the policymakers need to build the capability of better data collection to more 

optimally react to future flash events. As noted in Statement 4, we believe, using DCJs 

and TSJs can give us a better insight into studying the jumps’ behaviour. This could 

support further research in the improvement of risk monitoring. 
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Chapter 5. Co-jumps 

In Chapter 1, we discussed the drawback of DC in the study of real-time comparative 

analysis. In time series (TS), analysts can easily observe the price returns of two markets 

during the same time interval, e.g. monitoring the price returns of two financial 

instruments at every 1-minute interval. This parallel comparative analysis (in TS) for 

the same fixed time intervals is not applicable in DC due to the irregular time scale of 

the DC data. This chapter aims to introduce a method, under the DC framework, for re-

sampling the observed DC data of two markets into a single data sequence which is the 

foundation of studying co-jumps in DC. In Chapter 3, we introduced how to develop a 

DC relative sequence given two single DC sequences. Based on the DC relative 

sequence, we developed the measure of mRV to test the relative volatility in micro-

market activities. The experimental results demonstrated that observers can precisely 

locate the timestamp when a significant mRV value is determined. In Chapter 4, we 

built a DC approach to identify DC jumps (DCJs) for the financial markets. In Section 

4.6.2, compared with TS jumps, we showed that DCJs can give precise jump 

information in terms of the timing, magnitude, and direction.  

 

As introduced in Section 2.3, there are co-jumps in the FX markets. Historical major 

events were shown to cause the common jump of two exchange rates especially for the 

highly correlated currencies e.g., the co-jumps between EURUSD and GBPUSD. 

Observers need tools to identify co-jumps before they can be studied and the underlying 

causes ascertained. Following the work of the previous two chapters, we aim to find a 

solution to identify co-jumps under the DC framework. The contributions of this 

chapter: (1) In DC, we first define the co-jumps called DC co-jumps. (2) Based on the 
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definition, we develop a new method to identify the DC co-jumps. (3) We studied the 

co-jumps between EURUSD and GBPUSD, and the co-jumps between EURUSD and 

JPYUSD. Our study indicates that co-jumps are highly sensitive to the US economic 

data; based on the identified co-jumps related to the economic data, over 90% of co-

jumps in these major currency pairs are associated with US economic data. Also, the 

DC co-jumps inherit the merits of the DC jump which offers precise information on the 

timing, magnitudes, and the direction of the DC co-jumps. By employing this new 

method, we want to understand the relationship between the events and co-jumps (more 

details will be introduced in section 5.7). Especially, we want to track the presence of 

co-jumps during the global COVID-19 pandemic.  

 

This chapter is organised as follows: in Section 5.1, we will provide the motivation for 

the study in the DC framework of co-jumps; Section 5.2 gives a review of the relevant 

concepts in DC for developing the framework; Section 5.3 contains an exposition of 

how to combine the two 𝑇𝑅  sequences of two markets (𝐶𝑇𝑅𝑆 ) into a combined 

sequence. Given the 𝐶𝑇𝑅𝑆 , Section 5.4 discusses how to generate the 𝑇𝑅  sub-

sequences which are the foundation for defining the DC co-jump; Section 5.5 presents 

the definition of a DC co-jump; details about our retrospective studies will be given in 

section 5.6 and section 5.7; the results will be discussed in section 5.8; Section 5.9 

concludes this chapter. 

 

5.1 Introduction 

The risk of co-jumps has been emphasized in risk management over the past 10 years. 

In time series (TS) analysis, Dungey and Hvozdyk (2012) concluded that the co-jump 

is the occurrence of a joint contemporaneous discontinuity in two price series. However, 

they emphasized that there is no precise quantification in timing co-jumps. As discussed 
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in Chapter 4, jumps are associated with significant events. These events are generally 

categorised into scheduled events and unscheduled events (details about the events shall 

be explained in Section 5.6). Bollerslev et al. (2008) detected co-jumps in over 50 

stocks traded on the New York Stock Exchange which indicates that a similar pattern 

might be expected in the forex markets. They observed that the co-jumps usually 

present in the morning associated with the release of macroeconomic news. Gnabo et 

al. (2014) argued that worldwide news events may cause various degrees of co-jumps 

which depend on the significance of the received news. They stressed that it is important 

to accurately understand the tail risk of the co-jumps in the financial markets. In the 

classical method, Jacod and Todorov (2009) identified co-jumps under the daily 

approach. Gnabo et al. (2014) tested co-jumps under the intraday frequency, with the 

approach being the bivariate extension (two price series) of Lee and Mykland (2008).  

 

The classical method identifies co-jumps through a model-based approach. In this 

report, we present a new tool to detect co-jumps based on the data-driven approach or 

DC approach. Fundamentally, the concept of co-jump is different between the time 

series analysis and DC. Under the DC framework, the co-jump is the event that a jump 

in market A is followed by a jump in market B. In DC, we judge the presence of the co-

jump based on the 𝑇𝑅 sub-sequence (we will introduce the 𝑇𝑅 sub-sequence in section 

5.4). In Chapter 3 (DC relative volatility), we introduced how to generate the combined 

DC sequence of two markets and the DC relative sequence. In Chapter 4 (DC jumps), 

we introduced the 𝑇𝑅 sequence of a single market. The existence of a DC jump is based 

on the 𝑇𝑅 (the time-adjusted return) of the DC trend; the significance of a 𝑇𝑅 is judged 

with reference to the historical 𝑇𝑅 sequence. In this chapter, we propose the combined 

𝑇𝑅  sequence of two markets (𝐶𝑇𝑅𝑆 ) and the partitioned 𝐶𝑇𝑅𝑆  (𝑃𝑇𝑅𝑆 ). The DC 
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approach of identifying co-jumps is the bivariate extension of Chapter 4 where we judge 

the co-jumps of two assets’ prices based on the 𝑇𝑅 sub-sequence. In practice, the co-

jump detection is through an indicator function which will be presented in section 5.5. 

 

Overall, under the DC framework, this chapter aims to develop a new method in 

detecting co-jumps that we will call DC co-jumps. Thus, it could give a new tool to 

evaluate the market reactions from flash market shocks crossing two exchange rates in 

the FX markets. Being able to detect DC co-jumps, we want to explore how frequently 

do co-jumps happen over the long term. Also, in terms of the co-jumps, we want to 

know whether a country’s economic data affects another country’s currency. In March 

of 2020, the COVID-19 pandemic caused significant economic damage to society in 

Europe. Did the pandemic cause co-jumps in Euro and Sterling? In the following 

sections, we will present the approach of identifying DC co-jumps and answer these 

questions as part of the studies. 

 

5.2 The review of DC data 

DC is a data-driven process of data sampling in the financial markets. DC data is 

recorded as a series of alternative upward and downward trends. For any trend, the 

reversal point is confirmed when the price has changed beyond a threshold (a pre-

determined price distance in percentage terms) from the last highest/lowest price of the 

current trend (for details see Appendix A in Chen and Tsang (2021)). This 

highest/lowest price is identified as the DC extreme point (𝐸𝑃, the reversal point). A 

DC trend is an upward (or a downward) price movement between any two adjacent 𝐸𝑃s. 

In Section 2.3, we introduced DC sequence is a finite sequence which comprises the 

consecutive extreme points ordered by their timestamps (see equation (2.4)). Given a 
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DC sequence, we can calculate the sequence of the time-adjusted return of the DC trend 

based on the equation (2.6) (details will be introduced in the next section). 

              

5.3 The 𝑻𝑹 sequence and the combined 𝑻𝑹 sequence of two markets  

In Section 2.3 equation (2.4) defines a DC sequence which comprises a series of 

extreme points of a market, i.e., 𝑆𝐴
𝜃  = (𝐸𝑃1, 𝐸𝑃2, … , 𝐸𝑃𝑛). For each DC trend, we 

calculate the 𝑇𝑅 through equation (2.6). Thus, given a DC sequence of a market, we 

can generate the 𝑇𝑅 sequence. 

 

An  𝑇𝑅 sequence, denoted by 𝑆𝑇𝑅, is a finite sequence of 𝑇𝑅s: 

 

(𝑅𝐷𝐶1
, 𝑅𝐷𝐶2

, … , 𝑅𝐷𝐶𝑛
),       (5.1) 

 

where 𝑅𝐷𝐶  is obtained through equation (2.6) and 𝑛 equals the total number of DC 

trends from a DC dataset. 

 

Based on the 𝑇𝑅  sequence, we develop the combined 𝑇𝑅 sequence of two markets 

which comprises all observed 𝑇𝑅s of two different markets.  

 

The combined 𝑇𝑅 sequence (𝐶𝑇𝑅𝑆) of two 𝑇𝑅 sequences for market A and market B, 

denoted by 𝐶𝑅𝐴,𝐵, comprises all the 𝑅𝐷𝐶s of the two markets ordered by 𝐸𝑇(𝑅𝐷𝐶): 

 

𝐶𝑅𝐴,𝐵 = (𝑅𝐷𝐶1
𝑀, 𝑅𝐷𝐶2

𝑀, … , 𝑅𝐷𝐶𝑤
𝑀)       (5.2) 

such that 𝐸𝑇(𝑅𝐷𝐶1
𝑀) < 𝐸𝑇(𝑅𝐷𝐶2

𝑀) < … < 𝐸𝑇(𝑅𝐷𝐶𝑤
𝑀). 
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where 𝑤 equals the total number of 𝑅𝐷𝐶s from both market A and market B, and 𝑀 

denotes the market identity of the 𝑅𝐷𝐶𝑖
 (e.g., market A or market B). 

 

For example, given the 𝑇𝑅 sequences of market A and market B, we can have the 𝐶𝑇𝑅𝑆 

for market A and market B as shown below: 

 

𝐶𝑅𝐴,𝐵 = (𝑅𝐷𝐶1
𝐴, 𝑅𝐷𝐶2

𝐵, 𝑅𝐷𝐶3
𝐴, 𝑅𝐷𝐶4

𝐵, 𝑅𝐷𝐶5
𝐴, 𝑅𝐷𝐶6

𝐵, 𝑅𝐷𝐶7
𝐵, 

                               𝑅𝐷𝐶8
𝐴, 𝑅𝐷𝐶9

𝐴, 𝑅𝐷𝐶10
𝐵 , 𝑅𝐷𝐶11

𝐴 , 𝑅𝐷𝐶12
𝐵 ).                       (E5.1) 

 

5.4 The Partitioned 𝑪𝑻𝑹𝑺 

In section 5.3 we discussed how to combine the two 𝑇𝑅  sequences into a single 

sequence, i.e., 𝐶𝑇𝑅𝑆. In this section, we shall introduce how to partition the contiguous  

𝐶𝑇𝑅𝑆 into successive 𝑇𝑅 sub-sequences. For each 𝑇𝑅 sub-sequence, there are a series 

of 𝑇𝑅s from market A followed by a series of 𝑇𝑅s from market B, or vice versa.  

 

Given a 𝐶𝑇𝑅𝑆, a partitioned 𝐶𝑇𝑅𝑆 (𝑃𝑇𝑅𝑆) is the partition of the 𝐶𝑇𝑅𝑆 into contiguous 

𝑇𝑅 sub-sequences based on the market identity. Given a combined time-adjusted return 

of markets A and B (𝐶𝑅𝐴,𝐵), A 𝑃𝑇𝑅𝑆, denoted by 𝑅𝑆𝐶𝑅
𝐴,𝐵

, is generated by a partition 

process Γ(𝐶𝑅𝐴,𝐵) of 𝐶𝑅𝐴,𝐵 into z contiguous 𝑇𝑅 sub-sequences based on changes in 

market identity (𝑀) of the adjacent 𝑇𝑅s. Each 𝑇𝑅 sub-sequence comprises a series of 

𝑅𝐷𝐶
𝐴 ′s followed by a series of 𝑅𝐷𝐶

𝐵 ′s or vice versa. 

  

𝑅𝑆𝐶𝑅
𝐴,𝐵 = Γ(𝐶𝑅𝐴,𝐵) =  (𝑈1

𝐴,𝐵, 𝑈2
𝐴,𝐵, … , 𝑈𝑗

𝐴,𝐵, … , 𝑈𝑧
𝐴,𝐵),            (5.3) 
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where 𝑈𝑗
𝐴,𝐵

 is a 𝑇𝑅 sub-sequence. All 𝑈𝑗
𝐴,𝐵

s contain at least two 𝑅𝐷𝐶′s, that is, at least 

one 𝑅𝐷𝐶 from market A and at least one from market B, thus the maximum value of z is 

𝑤

2
. Otherwise, at least one 𝑈𝑗

𝐴,𝐵
 contains more than two 𝑅𝐷𝐶′s, so s <  

𝑤

2
. For every 

𝑈𝑗
𝐴,𝐵

:  

 

            ∀ j: 𝑈𝑗
𝐴,𝐵  = (𝑅𝐷𝐶𝑗,1

𝐴 , 𝑅𝐷𝐶𝑗,2
𝐴 , … , 𝑅𝐷𝐶𝑗,𝑔−1

𝐵 , 𝑅𝐷𝐶𝑗,𝑔
𝐵 )

𝑗
. (5.4) 

 

Note, we suppose the 𝑅𝐷𝐶 of market A is first identified. For instance, we partition the 

𝐶𝑅𝐴,𝐵 (E5.1) by: 

 

Γ(𝐶𝑅𝐴,𝐵) = ((𝑅𝐷𝐶1
𝐴, 𝑅𝐷𝐶2

𝐵)1, (𝑅𝐷𝐶3
𝐴, 𝑅𝐷𝐶4

𝐵)2, (𝑅𝐷𝐶5
𝐴, 𝑅𝐷𝐶6

𝐵, 𝑅𝐷𝐶7
𝐵)3, 

        (𝑅𝐷𝐶8
𝐴, 𝑅𝐷𝐶9

𝐴, 𝑅𝐷𝐶10
𝐵 )4 , (𝑅𝐷𝐶11

𝐴 , 𝑅𝐷𝐶12
𝐵 )5).           (E5.2) 

 

For the example of E5.2, we terminate the first 𝑇𝑅 sub-sequence when 𝑅𝐷𝐶3
𝐴 no longer 

belongs to the same market identity as 𝑅𝐷𝐶2
𝐵. Thus, we have that 𝑈1

𝐴,𝐵 = (𝑅𝐷𝐶1
𝐴, 𝑅𝐷𝐶2

𝐵)1 

and 𝑈4
𝐴,𝐵 = (𝑅𝐷𝐶8

𝐴, 𝑅𝐷𝐶9
𝐴, 𝑅𝐷𝐶10

𝐵 )4. In Figure 5.1, we determine 𝑈1
𝐴,𝐵

 when the market 

identity of the next 𝐸𝑇(𝑅𝐷𝐶3
𝐴) (market A) is not the same with the market identity of 

the current 𝐸𝑇(𝑅𝐷𝐶2
𝐵) (market B). 
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Figure 5.1 The example the two 𝑻𝑹  sequences of market A and market B.  The 

𝑬𝑻(𝑹𝑫𝑪𝒊
) is the terminal time of the DC trend 𝒊, i.e., 𝑬𝑻(𝑹𝑫𝑪𝒊

) = 𝑬𝑷𝒊. 𝒕 (for details 

about 𝑬𝑻(𝑹𝑫𝑪𝒊
) see equation (2.6) in Section 2.3). 

 

5.5 Co-Jumps in DC 

As discussed in section 5.1, a co-jump is the event that the 𝐷𝐶𝐽 of market A (𝐷𝐶𝐽𝐴) is 

followed by the 𝐷𝐶𝐽 of market B (𝐷𝐶𝐽𝐵). Therefore, we say in this case that the 𝐷𝐶𝐽𝐵 

co-jumps with 𝐷𝐶𝐽𝐴. In directional change, we define the existence of a co-jump based 

on the 𝑇𝑅 sub-sequence.  

 

Under the 𝑃𝑇𝑅𝑆, we judge the presence of a co-jump based on the 𝑇𝑅 sub-sequence 

𝑈𝑗
𝐴,𝐵

. For any 𝑈𝑗
𝐴,𝐵

, we divide this 𝑈𝑗
𝐴,𝐵

 into two subsets according to the market 

identity 𝑀 of the elements 𝑅𝐷𝐶 . Given a 𝑈𝑗
𝐴,𝐵

, we obtain  𝑈𝑗
𝐴  and 𝑈𝑗

𝐵  based on the 

market identity 𝑀: 
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𝑈𝑗
𝐴 = (𝑅𝐷𝐶1

𝐴, 𝑅𝐷𝐶2
𝐴, … , 𝑅𝐷𝐶𝑙

𝐴)
𝑗
,  𝑈𝑗

𝐵 = (𝑅𝐷𝐶1
𝐵, 𝑅𝐷𝐶2

𝐵, … , 𝑅𝐷𝐶𝑢
𝐵)

𝑗
,  (5.5) 

 

where 𝑈𝑗
𝐴  and 𝑈𝑗

𝐵  are ordered by 𝐸𝑇 (𝑅𝐷𝐶) , and 𝑙 + 𝑢 = 𝑘  (k is the length of the 

combined sub-sequence 𝑈𝑗
𝐴,𝐵

).  

 

Under the 𝑇𝑅  sub-sequence 𝑈𝑗
𝐴,𝐵

, we say that 𝑈𝑗
𝐵  co-jumps with 𝑈𝑗

𝐴 , denoted by 

𝐶𝑜𝐽𝑈𝑗

𝐴,𝐵
, if and only if (1) there first exists (at least) one 𝑇𝑅 in 𝑈𝑗

𝐴 that is bigger than 𝑠𝐴
∗ 

and (2) there then exists (at least) one 𝑇𝑅 in 𝑈𝑗
𝐵 that is bigger than 𝑠𝐵

∗ . 

 

∃ 𝑅𝐷𝐶
𝐴 ∈ 𝑈𝑗

𝐴, 𝑅𝐷𝐶
𝐵 ∈ 𝑈𝑗

𝐵 : (𝑅𝐷𝐶
𝐴 > 𝑠𝐴

∗) ∧ (𝑅𝐷𝐶
𝐵 > 𝑠𝐵

∗ ).  

 

Note that, 𝐶𝑜𝐽𝑈𝑗

𝐴,𝐵
 defines that 𝑈𝑗

𝐵 (experiencing a jump second) co-jumps with 𝑈𝑗
𝐴 (that 

jumps first) in the combined sequence 𝑈𝑗
𝐴,𝐵. In other words, 𝐶𝑜𝐽𝑈𝑗

𝐵,𝐴
 doesn’t necessarily 

correspond to 𝐶𝑜𝐽𝑈𝑗

𝐴,𝐵. 

 

5.5.1 The indicator for the detection of 𝑪𝒐𝑱𝑼𝒋

𝑨,𝑩
 

Given 𝑠𝐴
∗  and 𝑠𝐵

∗ , we count the number of 𝐷𝐶𝐽s in 𝑈𝑗
𝐴  and 𝑈𝑗

𝐵  using the functions 

𝑁(𝑈𝑗
𝐴) and 𝑁(𝑈𝑗

𝐵): 

 

𝑁(𝑈𝑗
𝐴, 𝑠𝐴

∗) = ∑ 1{𝑅𝐷𝐶𝑖
𝐴 > 𝑠𝐴

∗ }
𝑙
𝑖=1 ,  

𝑁(𝑈𝑗
𝐵, 𝑠𝐵

∗ ) = ∑ 1{𝑅𝐷𝐶𝑖
𝐵 > 𝑠𝐵

∗ }
𝑢
𝑖=1 ,                (5.6) 
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where 𝑠𝐴
∗  (and 𝑠𝐵

∗ ) is the significant value15 used to judge the presence of the 𝐷𝐶𝐽. 

According to the definition of the 𝐷𝐶𝐽, we identify the 𝐷𝐶𝐽 if the 𝑅𝐷𝐶 is greater than 

𝑠𝐴
∗ (for details see the definition of DC jump in Chapter 4). 

 

We define the indicator function to detect whether 𝑈𝑗
𝐵 co-jumps with 𝑈𝑗

𝐴 in the 𝑈𝑗
𝐴,𝐵

, 

denoted by 𝐼𝐶𝐽(𝑈𝑗
𝐴,𝐵

). 

 

𝐼𝐶𝐽(𝑈𝑗
𝐴,𝐵

)  =  { 
1,       𝑁(𝑈𝑗

𝐴, 𝑠𝐴
∗)𝑁(𝑈𝑗

𝐵, 𝑠𝐵
∗ ) ≥ 1 

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
,           (5.7) 

 

where 𝐼𝐶𝐽 (𝑈𝑗
𝐴,𝐵

) = 1 indicates that a 𝐶𝑜𝐽𝑈𝑗

𝐴,𝐵
 is confirmed in the 𝑈𝑗

𝐴,𝐵
, otherwise 

𝐼𝐶𝐽(𝑈𝑗
𝐴,𝐵

) = 0. We will give examples of the detection of DC co-jumps in Section 5.7.1. 

 

5.6 Retrospective studies 

In section 5.1, we introduced co-jumps and how they are related to major events. These 

events are generally comprised of two categories: (1) the scheduled events; (2) the 

unscheduled events. In the financial markets, most scheduled events are the major 

economic events (MEEs). The unscheduled events generally refer to the unexpected 

events or the sudden incidents, e.g., the COVID-19 pandemic. As introduced in the 

published references (details have been discussed in section 2.3 and section 5.1), in 

recent years, researchers stressed the risk of co-jumps spanning multiple markets under 

the time series (TS) framework. Fundamentally, the concept of the co-jumps in DC is 

 
15  𝑠∗ is the significant value of 𝑅𝐷𝐶  corresponding to an observer defined significant percentile of the 

historical 𝑅𝐷𝐶’s. For details see Section 4.3.3 in Chapter 4.  
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different to the concept in TS. Under the DC framework, considering two markets’ price 

sequences; the co-jump is the event such that a jump in one market is followed by a 

jump in another market. In Chapter 4, we demonstrated that the DC method offer 

precise information on jumps. This merit is also inherited by the DC co-jumps (we will 

give examples in section 5.7.1). Overall, there are three major motivations for us to 

study the DC co-jumps: (1) Can the DC method give precise information of co-jumps 

in practice? (2) Which MEEs have more influence on co-jumps? Or can we alert 

participants to avoid the risk of co-jumps for certain MEEs? The following sections will 

work on these questions. 

 

5.6.1 Data sets 

This section presents the data used in the back-testing of co-jump detection through the 

DC approach. Our study focuses on the jump behavior of two pairs of exchange rates. 

We select EURUSD as the major exchange rate pairing with GBPUSD, USDJPY, 

USDCAD and AUDUSD. As shown in table 5.1, the data type is selected as tick-by-tick 

(raw transactions) over 24 hours from 2015 to 2019. Throughout the application, we 

select two common arbitrary thresholds,  𝜃 = {0.05%, 0.1%}, and two significance 

levels, 𝑠 = {95%, 99%}.  

 

Table 5.1 Description of the datasets used in the experiment. Note, EU, GU, UJ, CA and AU are 

the abbreviation of EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD, respectively. 

Asset Source Frequency 
Trading 

hours16 
Period 

EU-GU 

Dukascopy17 Tick-by-tick 
24 hours a 

day 

01/01/2015 – 

31/12/2019 

(five years) 

EU-UJ 

EU-CA 

EU-AU 
 

 
16 The trading hours on Friday from 00:00:00 to 22:00:00. 
17 Dukascopy Bank is a Swiss online bank which provides different types of high-quality market data. 
https://www.dukascopy.com/swiss/english/home/ 

https://www.dukascopy.com/swiss/english/home/
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5.6.2 The processes of detecting DC co-jumps 

Based on the methodology of Section 5.5, in the paragraph that follows 𝐴 represents 

𝐸𝑈 and 𝐵 represents 𝐺𝑈; we detect the presence of a 𝐶𝑜𝐽𝑈
𝐴,𝐵

 in the 𝑇𝑅 sub-sequence 

𝑈𝐴,𝐵. The 𝑇𝑅 sub-sequence is the sub-sequence of a partitioned 𝐶𝑇𝑅𝑆 (𝑃𝑇𝑅𝑆). The 

combined 𝑇𝑅 sequence (𝐶𝑇𝑅𝑆) comprises all the 𝑅𝐷𝐶s of the two markets ordered by 

𝐸𝑇(𝑅𝐷𝐶). The details of generating 𝐶𝑇𝑅𝑆 and 𝑃𝑇𝑅𝑆 are given in the examples E5.1 

and E5.2. In DC, we study whether 𝑈𝐵 co-jumps with 𝑈𝐴 in 𝑈𝐴,𝐵. In other words, a 

𝐶𝑜𝐽𝑈
𝐴,𝐵

 is identified when there first exists (at least) one jump in 𝑈𝐴 followed by (at 

least) one jump in 𝑈𝐵. Given a 𝑇𝑅 sub-sequence 𝑈𝐴,𝐵, the process of 𝐶𝑜𝐽𝑈
𝐴,𝐵

 detection 

follows through the use of the indicator function 𝐼𝐶𝐽(𝑈𝐴,𝐵). Based on equation (5.7), a 

𝐶𝑜𝐽𝑈
𝐴,𝐵

 is detected when 𝐼𝐶𝐽(𝑈𝐴,𝐵) = 1, otherwise 𝐼𝐶𝐽(𝑈𝐴,𝐵) = 0. Table 5.2 (a, b, c, d) 

summaries the processed DC data which will be used to obtain DC co-jumps; we 

selected four pairs of currencies under the thresholds of 0.05%, 0.075%, 0.1% and 

0.125%.  

 

For instance, to detect 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

, we first set 𝜃 = 0.05% and 𝑠 = 95%. Table 5.2 (a) 

summarizes the details of the obtained DC trends and jumps in EURUSD and GBPUSD. 

From 2015 to 2019, there were 268162 DC trends where 121888 and 146274 DC trends 

are from EURUSD and GBPUSD, respectively. Also, we identified 15553 jumps in 

total where 5963 and 9590 jumps are from EURUSD and GBPUSD, respectively. 
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Table 5.2 (a) The summary of the obtained DC trends and jumps in EURUSD and 

GBPUSD. Note, N(*) is the counting function, s = 0.95 

Threshold 0.05% 0.075% 0.1% 0.125% 

N(DC trends) in total 268162 121837 71471 45283 

N(DC trends) for EURUSD 121888 54965 32059 20298 

N(DC trends) for GBPUSD 146274 66872 39412 24985 

N(Jumps) in total 15553 7399 4503 2969 

N(Jumps) for EURUSD  5963 2712 1604 1014 

N(Jumps) for GBPUSD 9590 4687 2899 1955 

     

Table 5.2 (b) The summary of the obtained DC trends and jumps in EURUSD and 

USDJPY. Note, N(*) is the counting function, s = 0.95 

Threshold 0.05% 0.075% 0.1% 0.125% 

N(DC trends) in total 236410 110883 64031 41461 

N(DC trends) for EURUSD 117977 54965 31494 20298 

N(DC trends) for USDJPY 118433 55918 32537 21163 

N(Jumps) in total 11999 5792 3398 2237 

N(Jumps) for EURUSD  5767 2712 1572 1014 

N(Jumps) for USDJPY 6232 3080 1826 1223 

     

Table 5.2 (c) The summary of the obtained DC trends and jumps in EURUSD and 

USDCAD. Note, N(*) is the counting function, s = 0.95 

Threshold 0.05% 0.075% 0.1% 0.125% 

N(DC trends) in total 222932 104251 59809 38515 

N(DC trends) for EURUSD 117977 54965 31494 20298 

N(DC trends) for USDCAD 104955 49286 28315 18217 

N(Jumps) in total 10952 5150 2952 1918 

N(Jumps) for EURUSD  5767 2712 1572 1014 

N(Jumps) for USDCAD 5185 2438 1380 904 

     
Table 5.2 (d) The summary of the obtained DC trends and jumps in EURUSD and 

AUDUSD. Note, N(*) is the counting function, s = 0.95 

Threshold 0.05% 0.075% 0.1% 0.125% 

N(DC trends) in total 283444 133384 76675 49635 

N(DC trends) for EURUSD 117977 54965 31494 20298 

N(DC trends) for AUDUSD 165467 78419 45181 29337 

N(Jumps) in total 14238 6771 3960 2584 

N(Jumps) for EURUSD  5767 2712 1572 1014 

N(Jumps) for AUDUSD 8471 4059 2388 1570 

5. 1 

Given the 𝑇𝑅 sequences of EURUSD and GBPUSD, we generate the 𝐶𝑇𝑅𝑆 (𝐶𝑅𝐸𝑈,𝐺𝑈), 

and then partition the 𝐶𝑇𝑅𝑆 (Γ(𝐶𝑅𝐸𝑈,𝐺𝑈)) to obtain the 𝑃𝑇𝑅𝑆𝐶𝑅
𝐸𝑈,𝐺𝑈

 (see the definitions 

of (5.6) and (5.7)). Given the 𝑃𝑇𝑅𝑆𝐶𝑅
𝐸𝑈,𝐺𝑈

, we judge the presence of a 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 in each 

𝑇𝑅 sub-sequence 𝑈𝐸𝑈,𝐺𝑈 through the usage of the indicator function 𝐼𝐶𝐽(𝑈𝐸𝑈,𝐺𝑈).  
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5.7 Results 

5.7.1 The examples of identified DC co-jumps 

This section gives two examples of identified DC co-jumps. The detection process has 

been explained in Section 5.6.2. Both examples summarise precise information on 

timing, magnitudes, and the direction of the detected DC co-jumps. 

 

Under the threshold 𝜃 =  0.1% and 𝑠 =  0.95, we detected a DC co-jump between 

EURUSD and GBPUSD. As introduced in Section 2.2 (Chapter 2), a DC trend, denoted 

by DCT, is a connection of two adjacent EPs. An EP is a couple which comprises a 

timestamp (𝐸𝑃. 𝑡) with a price (𝐸𝑃. 𝑝), i.e., 𝐸𝑃 = (𝐸𝑃. 𝑡, 𝐸𝑃. 𝑝). Thus, we write a DCT 

as a pair of EPs, e.g., 𝐷𝐶𝑇 = (𝐸𝑃1, 𝐸𝑃2).  

 

DC Co-jump Example 1: 

Example 1 illustrates the process of detecting a DC co-jump. For a DC co-jump, we 

shall focus on two trends shown in Table 5.3 that we refer to as 𝐷𝐶𝑇1 and 𝐷𝐶𝑇2:  

 𝐷𝐶𝑇1 = ((18: 00: 04.300, 1.1986), (18: 00: 13.800, 1.20344)), 

 𝐷𝐶𝑇2 = ((18: 00: 05.500,1.35785), (18: 00: 14.300,1.36578)). 

  

Table 5.3 The example of detected DC co-jump between EURUSD and GBPUSD in the 𝑻𝑹 sub-

sequence 𝑼𝒋
𝑬𝑼,𝑮𝑼

. The parameters for detecting the DC co-jump: threshold 𝜽 = 0.1% and 𝒔 = 0.95. 

𝑈𝐸𝑈,𝐺𝑈 
Start time End time 

20/09/2017 18:00:04.300 20/09/2017 18:00:14.300 

 

DCJ_EU (𝐷𝐶𝑇1) 

Start time Start price End time End price 
Period 

(seconds) 
TMV 𝑅𝐷𝐶1

𝐸𝑈 

18:00:04.300 1.1986 18:00:13.800 1.20344 9.6 4.04 0.042% 
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DCJ_GU (𝐷𝐶𝑇2) 

Start time Start price End time End price 
Period 

(seconds) 
TMV 𝑅𝐷𝐶2

𝐺𝑈 

18:00:05.500 1.35785 18:00:14.300 1.36578 8.8 5.84 0.07% 

 

We detected a DC co-jump in the following TR subsequence (equation (5.4)) 𝑈𝐸𝑈,𝐺𝑈 =

(𝑅𝐷𝐶1
𝐸𝑈, 𝑅𝐷𝐶2

𝐺𝑈) where 𝑅𝐷𝐶1
𝐸𝑈  and 𝑅𝐷𝐶2

𝐺𝑈  are the time-adjusted returns of the trend 

𝐷𝐶𝑇1 and 𝐷𝐶𝑇2. In this TR subsequence, there is only one trend in the EURUSD and 

one trend in the GBPUSD. According to equation (2.5), the TMV of the trend 𝐷𝐶𝑇1 is 

𝑇𝑀𝑉1 =
1.20344−1.1986

1.1086 × 0.001
= 4.04. The Period 𝑇  for 𝐷𝐶𝑇1  from 18:00:04.300 to 

18:00:13.800 is 9.6 seconds. Therefore, the time-adjusted return in T1 is 𝑅𝐷𝐶1
𝐸𝑈 =

|𝑇𝑀𝑉1| × 𝜃

𝑇1
= 0.042%. The 𝑅𝐷𝐶1

𝐸𝑈 is greater than 95% (𝑠 = 0.95) of the preceding DC 

trends in the current moving window of 260 days for EURUSD. Hence, 𝐷𝐶𝑇1 is a DC 

jump. Similarly, we calculated the time-adjusted return for 𝐷𝐶𝑇2 . 𝑅𝐷𝐶2
𝐺𝑈 = 0.07% 

which is bigger than 95% of the time-adjusted returns in the preceding trends in the 

current moving window for GBPUSD; 𝐷𝐶𝑇2 is also a DC jump. Therefore, a DC co-

jump (𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

) is confirmed that 𝑈𝐺𝑈  co-jumps with 𝑈𝐸𝑈  in the TR subsequence 

𝑈𝐸𝑈,𝐺𝑈. 

 

In fact, this DC co-jump was detected just a few seconds after the announcement of 

FED_IRD (U.S. Fed Funds Interest Rate Decision) on 20/09/2017. In Figure 5.2, 

GBPUSD co-jumps with EURUSD in the period of the 𝑇𝑅  sub-sequence from 

18:00:04.300 to 18:00:14.300. The jump sizes (the TMV) of EURUSD and GBPUSD 

are 4.04 and 5.84, respectively. 
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Figure 5.2 The identified DC co-jump in the 𝑼𝑬𝑼,𝑮𝑼 on 20/09/2017. The period of the 

𝑻𝑹 sub-sequence is about 10 seconds from 18:00:04.300 to 18:00:14.300. The jump 

sizes (the TMV) of EURUSD_Jump and GBPUSD_Jump are 4.04 and 5.84, 

respectively. 

 

DC Co-jump Example 2: 

In the previous example, we presented a DC co-jump between EURUSD and GBPUSD 

that the direction of EURUSD_Jump and GBPUSD_Jump is identical. In this example, 

we illustrate a DC co-jump while the direction of the two jumps is opposite. In general, 

EURUSD and USDJPY had the opposite relationship according to the data source of 

Eikon. In the second example, we observed a DC co-jump between EURUSD and 

USDJPY that there was one DC jump from EURUSD followed by another DC Jump 

from USDJPY. As shown in table 5.4 below, there are two DC trends in the 𝑈𝐸𝑈,𝑈𝐽. We 

obtained the 𝑅𝐷𝐶1
𝐸𝑈 = 0.01% and 𝑅𝐷𝐶2

𝑈𝐽 = 0.01% followed by the same computing 

progress of the first example. Given the 𝑠 = 0.95, both 𝐷𝐶𝑇1 and 𝐷𝐶𝑇2 are greater than 

95% of the time-adjected returns in current moving window of 260 days for EURUSD 
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and USDJPY. Thus, both 𝐷𝐶𝑇1 and 𝐷𝐶𝑇2 are jumps. Therefore, we noted that 𝑈𝑈𝐽 co-

jumps with 𝑈𝐸𝑈 in the 𝑇𝑅 sub-sequence 𝑈𝐸𝑈,𝑈𝐽. 

 

Table 5.4 The example of detected DC co-jump between EURUSD and USDJPY in the 𝑻𝑹 sub-

sequence 𝑼𝑬𝑼,𝑼𝑱. The parameters for detecting the DC co-jump: threshold 𝜽 = 0.05% and 𝒔 = 0.95. 

𝑈𝐸𝑈,𝑈𝐽 
Start time End time 

05/02/2016 13:30:59.700 05/02/2016 13:31:30.100 

 

DCJ_EU (𝐷𝐶𝑇1) 

Start time Start price End time End price 
Period 

(seconds) 
TMV 𝑅𝐷𝐶1

𝐸𝑈 

13:30:59.700 1.12201 13:31:29.500 1.1185 29.8 -6.26 0.01% 

 

DCJ_UJ (𝐷𝐶𝑇2) 

Start time Start price End time End price 
Period 

(seconds) 
TMV 𝑅𝐷𝐶2

𝑈𝐽 

13:31:00.700 116.6795 13:31:30.100 117.044 29.4 6.24 0.01% 

 

As illustrated in Figure 5.3, the direction of the two jumps is opposing. The jump size 

of EURUSD and USDJPY are -6.26 and 6.24, respectively. This DC co-jump is 

observed within the 2 minutes following the data release of the US Nonfarm Payrolls 

at 13:30 (UTC) on 05/02/2016 and the period of the  

𝑈𝐸𝑈,𝑈𝐽 is from 13:30:59.700 to 13:31:30.100.  
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Figure 5.3 The identified DC co-jump in the 𝑼𝑬𝑼,𝑼𝑱 on 05/02/2016. The period of the 

𝑻𝑹 sub-sequence is about 30 seconds from 13:30:59.700 to 13:31:30.100. The jump 

sizes of EURUSD_Jump and USDJPY_Jump are -6.26 and 6.24, respectively. 

 

5.7.2 A co-jump is not a common event 

Under the thresholds of 0.05%, 0.075%, 0.1% and 0.125%, table 5.5 (a, b, c, d) below 

summarises the details of the detected DC co-jumps of four pairs of exchange rates 

from 2015 to 2019. In row 1 of table 5.5 (a), N(SS) is the number of 𝑇𝑅 sub-sequences 

over the five year period. N(CoJ) is the number of confirmed DC co-jumps (in row 2). 

In row 3, P(N(Coj) | N(SS)) is the proportion of detected DC co-jumps over total 𝑇𝑅 

sub-sequences (N(SS)), i.e., P(N(Coj) | N(SS)) = 
N(Coj)

N(SS) 
. According to the results from 

table 5.5 (a, b, c, d), we observed that a co-jump is not a common event. Under the four 

thresholds, the figures of the P(N(Coj) | N(SS)) are less than 2%. 

 

 

 

 

5. 2   
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Table 5.5 (a) The summary of the DC co-jumps between EURUSD and GBPUSD. The 

parameters of detecting DC co-jump: 𝒔 = 0.95. Periods: from 2015 to 2019.  

  0.05% 0.075% 0.1% 0.125% 

1 N(SS) (1) 68040 31010 18253 11582 

2 N(CoJ) (2) 615 451 281 207 

3 P(N(Coj) | N(SS)) (5) 0.90% 1.454% 1.54% 1.787% 

      

Table 5.5 (b) The summary of the DC co-jumps between EURUSD and USDJPY. The 

parameters of detecting DC co-jump: 𝒔 = 0.95. Periods: from 2015 to 2019. 

  0.05% 0.075% 0.1% 0.125% 

1 N(SS) (1) 58292 27512 16011 10390 

2 N(CoJ) (2) 813 421 253 158 

3 P(N(Coj) | N(SS)) (5) 1.395% 1.530% 1.580% 1.521% 

      

Table 5.5 (c) The summary of the DC co-jumps between EURUSD and USDCAD. The 

parameters of detecting DC co-jump: 𝒔 = 0.95. Periods: from 2015 to 2019. 

  0.05% 0.075% 0.1% 0.125% 

1 N(SS) (1) 58239 27658 15915 10296 

2 N(CoJ) (2) 667 366 227 143 

3 P(N(Coj) | N(SS)) (5) 1.145% 1.323% 1.426% 1.389% 

      

Table 5.5 (d) The summary of the DC co-jumps between EURUSD and AUDUSD. The 

parameters of detecting DC co-jump: 𝒔 = 0.95. Periods: from 2015 to 2019. 

  0.05% 0.075% 0.1% 0.125% 

1 N(SS) (1) 73236 34606 20013 12978 

2 N(CoJ) (2) 955 472 333 227 

3 P(N(Coj) | N(SS)) (5) 1.304% 1.364% 1.664% 1.749% 

 

Observation 1: A co-jump is not a common event 

Observation 1 is shown by studying the frequency of DC co-jumps over the 

number of 𝑇𝑅 sub-sequences in 5 years. For the four pairs of the exchange rates, 

the figures of P(N(Coj) | N(SS)) are less than 2% under the four thresholds; this 

indicates that a co-jump is not a common event. 

 

In this section, we confirmed that the frequency of a co-jump presenting is very low 

compared with the total number of 𝑇𝑅 sub-sequences.  

 

5.7.3 Introducing major economic events (MEEs) 

As discussed in section 2.3.2, co-jumps are usually associating with the major economic 

events (MEEs). In Chapter 4, we detected jumps after the announcements of the 
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economic data. Also, we observed that different economic data have various degrees of 

the influence on jumps. In other word, jumps are highly sensitive to some certain MEEs 

in comparison to others. In this chapter, the presence of a co-jump may be associated 

with the MEEs from at least three countries. We focus on the 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 (the DC co-

jumps of EURUSD with GBPUSD), 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

 (the DC co-jumps of EURUSD with 

USDJPY), the 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐶𝐴

 (the DC co-jumps of EURUSD with USDCAD) and 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐴𝑈

 

(the DC co-jumps of EURUSD with AUDUSD). Because the US dollar is the 

comparative currency, the presence of a DC co-jump could be the result of the MEEs 

from one of the three countries. This section intends to study the relationship between 

DC co-jumps and the three countries’ MEEs.  

 

Note, the domestic MEEs indicate those MEEs from the relevant currency’s country, 

e.g., the domestic MEEs of Sterling (GBPUSD) are the UK MEEs. The US MEEs 

(denoted by MEEUS) are the MEEs from the US. Also, the non-US MEEs are the MEEs 

from the domestic countries. For example, the MEEs of a DC co-jump (𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈) refer 

to three countries: the US, the UK, and Euro zone. Hence, for the 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

, we define 

the domestic MEEs as the MEEs from both the UK and Europe (denoted by MEEnon-

US), and the MEEUS indicates the US MEEs. 

 

The back-testing selected the same MEEs as used in section 4.5.1 to track the identified 

𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

, 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

, 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐶𝐴

, and 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐴𝑈

 during the 30 minutes following the MEE 

announcements. The details about the selected MEEs are described in table 5.6. 
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In all, there are 240 US MEEs (8 FED_IRD, 4 US_GDP, 12 US_CPI, US_RS and US 

NFP per year for five years, i.e. (8+4+12+12+12)x5=240). The non-US MEEs are the 

MEEs from the domestic countries. In the study of DC co-jumps between EURUSD 

and GBPUSD, the non-US MEEs are the MEEs from the UK and Europe. Thus, there 

are 240 non-US MEEs (8 ECB_IRD, 8 BoE_IRD, 4 EU_GDP, 4 UK_GDP,12 EU_CPI, 

and 12 UK_CPI per year for five year, i.e. (8+8+4+4+12+12)x5=240). 

 

5.7.4 The impact of US MEEs on DC co-jumps 

We will give a detailed study of the impact of US MEEs on DC co-jumps between 

EURUSD and GBPUSD; then the other three pairs will be discussed.  In Section 5.7.3, 

we noted that the presence of a co-jump should be affected by at least three countries’ 

MEEs. Thus, we expect that the MEEs of Euro zone, the UK, and the US will have an 

Table 5.6 Information regarding the selected major economic events.  

Announcement Variable name Frequency 
# of MEEs over 5 

years 

US Fed Funds Interest Rate 

Decision 
US_IRD 

8 times per 

year 
40 

The European Central Bank 

Interest Rate Decision 
EU_IRD 

8 times per 

year 
40 

Bank of England Interest Rate 

Decision 
GB_IRD 

8 times per 

year 
40 

Bank of Japan Interest Rate 

Decision 
JP_IRD 

8 times per 

year 
40 

Bank of Canada Interest Rate 

Decision 
BoC_IRD 

8 times per 

year 
40 

Bank of Australia Interest Rate 

Decision 
BoA_IRD 

Not regular 

frequency 
55 

GDP 

US_GDP, UK_GDP, 

EU_GDP, JPY_GDP, 

CA_GDP, AU_GDP 

Quarterly 20 per country 

Consumer Price Index 

US_CPI, UK_CPI, 

EU_CPI,JPY_CPI,CA

_CPI,  

Monthly 60 per country 

US Retail Sales US_RS Monthly 60 

US Nonfarm Payrolls US_NFP Monthly 60 

Note, For AUDUSD, the number of CPIs is 24. 
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impact on the presence of DC co-jumps, but we expect that the degree of the impacts 

on the co-jumps from the three countries’ MEEs is different. The US dollar is the 

comparative currency to both Euro and Sterling, i.e., EURUSD and GBPUSD. For 

instance, a US MEE may cause a jump in US dollar, and this may trigger a jump in both 

EURUSD and GBPUSD simultaneously. However, in EURUSD, Euro is not directly 

comparative to Sterling. Also, in GBPUSD, Sterling is not directly comparative to Euro. 

So, for example, an EU MEE may cause a jump in Euro, and this may trigger a jump in 

EURUSD; but it may not cause a jump in GBPUSD.  

 

Specifically, our questions about the MEEs’ impact on co-jumps are listed below: 

1. The US MEEs may trigger a DC co-jump in EURUSD and GBPUSD. 

2. The domestic MEEs (Europe and the UK) may or may not trigger a DC co-jump 

in EURUSD and GBPUSD. 

 

To investigate the issues raised above, this section will study the relationship between 

the MEEs (from Europe, the UK, and the US) and the DC co-jumps. This could answer 

the following questions. Do DC co-jumps follow both US and domestic MEEs? How 

often do DC co-jumps happen after US and domestic MEEs? 

 

In this study, we continue to use the observations of the previous sections:  

i. We focus on DC co-jumps between EURUSD and GBPUSD in the 2015-2019 

dataset, as described in Section 5.6.1.  

ii. We focus on the US and the domestic MEEs listed in Table 5.6. 
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We define that a DC co-jump follows a MEE if the co-jump happens within 30 minutes 

after the economic data announcement (the MEE). Table 5.7 (a) summarizes the results 

of the DC co-jumps associated with the MEEs. The data indicated that most of the co-

jumps are associated with the US MEEs; we will give a statistical summary in table 5.7 

(b). 

 

Table 5.7 (a) The detected DC co-jumps associated with the MEEs. The parameters of 

detecting DC co-jump: threshold 𝜽 = 0.05% and 𝒔 = 0.95. Periods: 2015 to 2019.The DC 

co-jumps were those identified within the 30 minutes after the economic data 

announcement. Note, EU, GU, and UJ are the abbreviations of EURUSD and GBPUSD.  

Index The name of MEEs 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 

1 US_IRD 94 

2 ECB_IRD 12 

3 BoE_IRD 1 

4 EU_GDP 0 

5 EU_CPI 0 

6 UK_GDP 0 

7 UK_CPI 0 

8 US_GDP 1 

9 US_NFP 78 

10 US_RS 6 

11 US_CPI 8 

   
Table 5.7 (b) The statistical summary of table 5.7 (a). Threshold 𝜽 = 0.05% and 𝒔 = 0.95. 

Index The measurement 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 

1 N(CoJ-MEEUS) 187 

2 N(CoJ-MEEnon-US) 13 

3 N(CoJ-MEE)  200 

4 N(CoJ)  615 

5 P(CoJ-MEEUS | CoJ-MEE) 93.5% 

6 P(CoJ-MEEnon-US | CoJ-MEE) 6.5% 

7 P(MEE | CoJ) 32.52% 

Note: (1) Row 1: N(CoJ-MEEUS) is the total number of DC co-jumps following the US 

MEEs; (2) Row 2: N(CoJ-MEEnon-US) is the total number of DC co-jumps following the 

non-US MEEs (the two domestic MEEs); (3) Row 3: N(CoJ-MEE) is the total number of 

DC co-jumps following the MEEs; (4) Row 4: N(CoJ) is the total DC co-jumps detected 

over the five year period; (5) Row 5: P(CoJ-MEEUS | CoJ-MEE) is the proportion of N(CoJ-

MEEUS) over N(CoJ-MEE), i.e., P(CoJ-MEEUS | CoJ-MEE) = 
N(CoJ−MEEUS)

N(CoJ−MEE) 
; (6) Row 7: 

P(MEE | CoJ) indicates the value of N(CoJ-MEE) over N(CoJ) as a proportion, i.e., P(MEE 

| CoJ) = 
N(CoJ−MEE)

N(CoJ) 
. 
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Table 5.7 (b) presents the statistical summary of the relationship between co-jumps and 

the MEEs based on the data from table 5.7 (a). We found the most significant number 

of DC co-jumps to follow the US MEEs.  

 

Following are our observations from table 5.7 (b): 

1. We detected 615 DC co-Jumps over 5 years from 2015 to 2019 (N(CoJ), row 4 

of table 5.7 (b)). 

2. 200 out of 615 DC co-jumps associated with MEEs (N(CoJ-MEE) in row 3 of 

table 5.7 (b)), which accounted for 32.52% (P(MEE | CoJ) = 
200

615 
 = 32.52%, in 

row 7 of table 5.7 (b)), roughly one third, of the total detected DC co-jumps. 

3. From the 200 CoJ-MEEs, 187 DC co-jumps followed the US MEEs (N(CoJ-

MEEUS), row 1 of table 5.7 (b)), i.e., 93.5% of the CoJ-MEEs (P(CoJ-MEEUS | 

CoJ-MEE), row 19). 13 DC co-jumps follow the domestic MEEs (N(CoJ-

MEEnon-US), row 16), i.e., 6.5% of the CoJ-MEEs (row 6 of table 5.7 (b)).  

4. From the 187 CoJ-MEEUS, the numbers of DC co-jumps associated with 

US_IRD and US_ NFP are 94 and 78, respectively. Together these make up just 

under 92% (
172

187
) of CoJ-MEEUS. 

5. In the same period, there were 240 US MEEs and 240 domestic MEEs (the sum 

of the MEEs from the UK and Europe, as explained in Section 5.7.3.). 

6. From the 200 CoJ-MEEs, we observed that 78% (
187

240 
) DC co-jumps followed 

the US MEEs, and 5.4% (
13

240 
) DC co-jumps were found after the domestic 

MEEs. 
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7. Therefore, DC co-jumps followed the US MEEs substantially more than they 

followed the domestic MEEs in both absolute numbers (point 3) and percentage 

wise (point 6). 

 

In summary, we found that US MEEs have a significant impact on the DC co-jumps. 

This is supported by point 3 above that 93.5% of the CoJ-MEEs follow the US MEEs. 

While the impact of the domestic MEEs is very small that 6.5% (in row 6 of table 5.7 

(b)) of the CoJ-MEEs follow the domestic MEEs (the EU and UK). Importantly, of the 

US MEEs, we discovered that US the interest rate decision announcements (US_IRD) 

and non-farm payroll (US_NFP) numbers impact significantly on the presence of DC 

co-jumps (point 4). This suggests that Forex traders should be aware of the risk of co-

jumps between EURUSD and GBPUSD following the release of US economic data 

especially interest rate decisions and non-farm payroll number announcements.  

 

We also repeaded the same test for four pairs of currencies under the thresholds of 

0.05%, 0.075%, 0.1% and 0.125%; the results are shown below in the table 5.8 (a, b, c, 

d). The four tables indicate the following conclusions: (1) the majority of the DC co-

jumps associated with the US MEEs that the figures of the P(CoJ-MEEUS | CoJ-MEE) 

are over 90%; (2) few DC co-jumps followed to the the domestic MEEs that the figures 

of the P(CoJ-MEEnon-US | CoJ-MEE) are less than 5%; (3) for the co-jumps 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐶𝐴

 

and 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐴𝑈

, there is a solid relationship between the MEEs and the co-jumps 

presenting that the figures of the P(MEE | CoJ) are over 50%; (4) for the co-jumps 

𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 and 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

, we observed the figures of the P(MEE | CoJ) are around 30% 

and 40%, respectively. Overall, under the thresholds of 0.05%, 0.075%, 0.1% and 

0.125%, we observed the similar conclusions with the observations from table 5.7. 
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Table 5.8 (a) The detected DC co-jumps associated with the MEEs. The parameters of detecting DC 

co-jumps: threshold 𝜽 = 0.05% and 𝒔 = 0.95. Periods: 2015 to 2019.The DC co-jumps were those 

identified within the 30 minutes after economic data announcements. Note, EU, GU, UJ, CA, and AU 

are the abbreviations of EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD.  

Index MEEs 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐶𝐴

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐴𝑈

 

1 US_IRD 94 147 170 209 

2 EU_IRD 12 3 5 8 

3 UK_IRD 1 - - - 

4 JP_IRD - 2 - - 

5 CA_IRD - - 2 - 

6 AU_IRD - - - 0 

7 EU_GDP 0 0 0 0 

8 EU_CPI 0 0 0 0 

9 UK_GDP 0 - - - 

10 UK_CPI 0 - - - 

11 JP _GDP - 0 - - 

12 JP _CPI - 0 - - 

13 CA _GDP - - 3 - 

14 CA _CPI - - 6 - 

15 AU _GDP - - - 0 

16 AU _CPI - - - 0 

17 US_GDP 1 6 8 9 

18 US_NFP 78 123 129 181 

19 US_RS 6 16 24 27 

20 US_CPI 8 19 18 22 

 

The statistical summary  

1 N(CoJ-MEEUS) 187 311 349 448 

2 N(CoJ-MEEnon-US) 13 5 16 8 

3 N(CoJ-MEE)  200 316 365 456 

4 N(CoJ)  615 94 95 96 

5 P(CoJ-MEEUS | CoJ-MEE) 93.5% 98.42% 95.62% 98.25% 

6 P(CoJ-MEEnon-US | CoJ-MEE) 6.5% 1.58% 4.38% 1.75% 

7 P(MEE | CoJ) 32.52% 38.87% 54.72% 47.75% 
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Table 5.8 (b) The detected DC co-jumps associated with the MEEs. The parameters of detecting DC 

co-jumps: threshold 𝜽 = 0.075% and 𝒔 = 0.95. Periods: 2015 to 2019.The DC co-jumps were those 

identified within the 30 minutes after economic data announcements. Note, EU, GU, UJ, CA, and AU 

are the abbreviations of EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD.  

Index MEEs 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐶𝐴

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐴𝑈

 

1 US_IRD 68 71 101 101 

2 EU_IRD 11 3 6 6 

3 UK_IRD 0 - - - 

4 JP_IRD - 1 - - 

5 CA_IRD - - 0 - 

6 AU_IRD - - - 0 

7 EU_GDP 0 0 0 0 

8 EU_CPI 0 0 0 0 

9 UK_GDP 0 - - - 

10 UK_CPI 0 - - - 

11 JP _GDP - 0 - - 

12 JP _CPI - 1 - - 

13 CA _GDP - - 0 - 

14 CA _CPI - - 3 - 

15 AU _GDP - - - 0 

16 AU _CPI - - - 0 

17 US_GDP 1 5 5 5 

18 US_NFP 65 82 79 109 

19 US_RS 6 10 8 14 

20 US_CPI 6 8 6 13 

 

The statistical summary. 

1 N(CoJ-MEEUS) 146 176 199 242 

2 N(CoJ-MEEnon-US) 11 5 9 6 

3 N(CoJ-MEE)  157 181 208 248 

4 N(CoJ)  93 94 95 96 

5 P(CoJ-MEEUS | CoJ-MEE) 92.99% 97.24% 95.67% 97.58% 

6 P(CoJ-MEEnon-US | CoJ-MEE) 7.01% 2.76% 4.33% 2.42% 

7 P(MEE | CoJ) 34.81% 42.99% 56.83% 52.54% 
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Table 5.8 (c) The detected DC co-jumps associated with the MEEs. The parameters of detecting DC 

co-jumps: threshold 𝜽 = 0.1% and 𝒔 = 0.95. Periods: 2015 to 2019.The DC co-jumps were those 

identified within the 30 minutes after economic data announcements. Note, EU, GU, UJ, CA, and AU 

are the abbreviations of EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD.  

Index MEEs 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐶𝐴

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐴𝑈

 

1 US_IRD 51 51 66 84 

2 EU_IRD 7 2 3 1 

3 UK_IRD 0 - - - 

4 JP_IRD - 2 - - 

5 CA_IRD - - 0 - 

6 AU_IRD - - - 0 

7 EU_GDP 0 0 0 0 

8 EU_CPI 0 0 0 0 

9 UK_GDP 0 - - - 

10 UK_CPI 0 - - - 

11 JP _GDP - 0 - - 

12 JP _CPI - 0 - - 

13 CA _GDP - - 1 - 

14 CA _CPI - - 3 - 

15 AU _GDP - - - 0 

16 AU _CPI - - - 0 

17 US_GDP 1 3 4 6 

18 US_NFP 40 43 48 62 

19 US_RS 4 2 7 7 

20 US_CPI 2 4 5 8 

 

The statistical summary. 

1 N(CoJ-MEEUS) 98 103 130 167 

2 N(CoJ-MEEnon-US) 7 4 7 1 

3 N(CoJ-MEE)  105 107 137 168 

4 N(CoJ)  93 94 95 96 

5 P(CoJ-MEEUS | CoJ-MEE) 93.33% 96.26% 94.89% 99.40% 

6 P(CoJ-MEEnon-US | CoJ-MEE) 6.67% 3.74% 5.11% 0.60% 

7 P(MEE | CoJ) 37.77% 42.29% 60.35% 50.45% 
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Table 5.8 (d) The detected DC co-jumps associated with the MEEs. The parameters of detecting DC 

co-jumps: threshold 𝜽 = 0.125% and 𝒔 = 0.95. Periods: 2015 to 2019.The DC co-jumps were those 

identified within the 30 minutes after economic data announcements. Note, EU, GU, UJ, CA, and AU 

are the abbreviations of EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD.  

Index MEEs 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐶𝐴

 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐴𝑈

 

1 US_IRD 39 37 44 65 

2 EU_IRD 4 2 3 2 

3 UK_IRD 0 - - - 

4 JP_IRD - 2 - - 

5 CA_IRD - - 0 - 

6 AU_IRD - - - 0 

7 EU_GDP 0 0 0 0 

8 EU_CPI 0 0 1 0 

9 UK_GDP 0 - - - 

10 UK_CPI 0 - - - 

11 JP _GDP - 0 - - 

12 JP _CPI - 0 - - 

13 CA _GDP - - 1 - 

14 CA _CPI - - 0 - 

15 AU _GDP - - - 0 

16 AU _CPI - - - 0 

17 US_GDP 1 1 2 4 

18 US_NFP 29 25 32 41 

19 US_RS 1 2 4 2 

20 US_CPI 2 4 2 4 

 

The statistical summary. 

1 N(CoJ-MEEUS) 72 69 84 116 

2 N(CoJ-MEEnon-US) 4 4 5 2 

3 N(CoJ-MEE)  76 73 89 118 

4 N(CoJ)  93 94 95 96 

5 P(CoJ-MEEUS | CoJ-MEE) 94.74% 94.52% 94.38% 98.31% 

6 P(CoJ-MEEnon-US | CoJ-MEE) 5.26% 5.48% 5.62% 1.69% 

7 P(MEE | CoJ) 36.71% 46.20% 62.24% 51.98% 

 

5.7.5 The case studies of the relationship between the major historical 

events and co-jumps 

 

In the previous section, we analysed the influence of the economic data on co-jumps. 

In Section 5.6, we introduced that the presence of co-jumps may relate to non-economic 

events. Particularly, some key historical events may cause substantial co-jumps. This 

section presents two examples to explore the relationship between the major historical 
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events and co-jumps in terms of posing the question whether major outlying events may 

have a significant impact on co-jumps? We study the Brexit Referendum which is a 

scheduled event with an unexpected result and the COVID-19 pandemic which is an 

entirely unexpected event with far reaching consequences. We find a strong association 

between these outlying events and the presence of co-jumps. 

 

The two case studies are: (1) the effects of the Brexit Referendum covering a time 

period in 2016; (2) the COVID-19 pandemic during the year of 2020 in Europe. 

 

Case study 1: 

Brexit is the UK’s departure from the European Union (EU). On 23th of June 2016, the 

UK held a referendum on its membership of the EU18. The result of the referendum 

caused more than 10% drop in GBPUSD on 24th of June 2016. Also, EURUSD had 

more than 4% fall in the same day.19 In this study, we want to know the impact of the 

Brexit Referendum result on the co-jumps between EURUSD and GBPUSD. Figure 5.4 

summarizes the daily number of DC co-jumps in 2016. Obviously, most of the co-jumps 

were detected after the day of the Brexit referendum. In table 5.9, we observed 141 DC 

co-jumps in 2016. While 86 DC co-jumps are confirmed on 24th of June which accounts 

for 61% (in row 3 of table 5.8) of the total DC co-jumps of the year.  

 

 

 

 

 
18 For details about Brexit see: https://www.government.nl/topics/brexit/question-and-answer/what-is-

brexit 
19 According to the data from Refinitiv Eikon. 
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Table 5.9 The summary of the detected DC co-jumps between EURUSD and 

GBPUSD in 2016. The parameters of detecting DC co-jump: threshold 𝜽 = 0.1% 

and 𝒔 = 0.95. There were 86 DC co-jumps on 24th of June. 

1 N(CoJ) 141 

2 N(CoJ-Brexit)  86 

3 P(N(CoJ-Brexit) | N(CoJ-Brexit)) 61% 

Note: (1) N(CoJ) is the total DC co-jumps detected in 2016; (2) N(CoJ-Brexit) is 

the number of DC co-jumps detected on 24th of June; (3) P(N(CoJ-Brexit) | N(CoJ)) 

is the proportion of N(CoJ-Brexit) over N(CoJ), i.e., P(N(CoJ-Brexit) | N(CoJ)) = 
N(CoJ−Brexit)

N(CoJ) 
. 

 

Figure 5.4 The daily number of DC co-jumps between EURUSD and GBPUSD in 2016. 

We observed 141 DC co-jumps in 2016. Parameters: 𝜽 = 0.1% and 𝒔 = 95%. 

 

Case study 2: 

In the second case study, we tracked the daily number of DC co-jumps between 

EURUSD and GBPUSD during the COVID-19 pandemic in 2020. On 13th of March 

2020, the World Health Organization (WHO) stated that Europe was the epicenter of 

the coronavirus pandemic.20 This unscheduled event caused turmoil in the FX markets 

especially in Euro and Sterling in March 2020. As shown in table 5.10, there were 72 

 
20 For the references about WHO’s comments on the coronavirus pandemic in Europe see: (1) 

https://www.bbc.co.uk/news/world-europe-51876784; (2) https://www.reuters.com/article/us-health-

coronavirus-who/europe-is-epicenter-of-coronavirus-pandemic-who-idUSKBN2102Q0. 

https://www.bbc.co.uk/news/world-europe-51876784
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DC co-jumps detected in March, which account for 77% (in row 3 of table 5.9) of the 

total number of the DC co-jumps within the year. Figure 5.5 illustrates the daily number 

of DC co-jumps. Obviously, most of the DC co-jumps were determined during March. 

Especially, we observed the largest number of DC co-jumps on 19/03/2020 (26 DC co-

jumps detected) when more than 250 million people were in lockdown in Europe21. 

After March 2020, we observed 8 DC co-jumps on 10/06/2020 after the announcement 

of the US Interest Rate Decision22. 

 

Table 5.10 The summary of the detected DC co-jumps between EURUSD and 

GBPUSD in 2020. The parameters of detecting DC co-jump: threshold 𝜽 = 0.05% 

and 𝒔 = 0.95.  

1 N(CoJ) 93 

2 N(CoJ-March)  72 

3 P(N(CoJ- March) | N(CoJ)) 77% 

Note: (1) N(CoJ) is the total DC co-jumps detected in 2020; (2) N(CoJ-March) is 

the number of DC co-jumps detected in March; (3) P(N(CoJ-March) | N(CoJ)) is 

the proportion of N(CoJ) over N(CoJ-March), i.e., P(N(CoJ-March) | N(CoJ)) = 
N(CoJ−March)

N(CoJ) 
. 

 

 
21For the references about the lockdown of Europe in March 2020: 

https://www.theguardian.com/world/2020/mar/18/coronavirus-lockdown-eu-belgium-germany-adopt-

measures. 
22 The DC co-jumps were those identified within the 30 minutes after the economic data 

announcement. 
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Figure 5.5 The daily number of DC co-jumps between EURUSD and GBPUSD in 2020. 

There were 93 DC co-jumps identified in total. Parameters: 𝜽 = 0.05% and 𝒔 = 95%. 

 

To summarise, we observed that major historical events could cause a significant 

impact on co-jumps. The results of our back-testing indicate that major adverse news 

can cause many co-jumps in a single day. For instance, the amount of the co-jumps 

related to the Brexit referendum accounts for 61% of the total co-jumps for the year. 

This suggests that co-jumps may be more sensitive to key events than the economic 

data. This further reflects the unusual behaviours of the trading actions from the Forex 

traders when they encounter unexpected events. 

 

5.7.6 Did DC and TS find the same co-jumps? 

In Chapter 4 (Section 4.6.4), we presented the results of co-jumps detected by the two 

different methods. In this section, we will give a summary of identified co-jumps based 

on the TS method and DC approach. The back-testing selected EURUSD as the major 

exchange rate pairing with GBPUSD, USDJPY, USDCAD, and AUDUSD; the periods 

of the dataset used between 2015 to 2019 (for details see table 5.1). For the TS method, 

we selected the method proposed by Lahaye et al (2011) that they detect jumps 
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happening simultaneously in two markets by using the product of the indicator 

functions of the jumps in the individual markets (for details see equation (2.18) in 

Section 2.4.2). 

 

Table 5.11 (a, b, c, d) summaries the details of the DC co-jumps and TS co-jumps over 

five years; specifically, we selected four pairs of currencies, under the thresholds of 

0.05%, 0.075%, 0.1% and 0.125%. Note, in row 1 and row 2 of table 5.11 (a), N(DC-

CoJ) and N(TS-CoJ) are the number of co-jumps identified by the two approaches; in 

row 3, N(DC-CoJ in TS-CoJ) represents how many DC co-jumps were found within 

the 15 minute time interval associated to a TS co-jumps; in row 4, P(DC-CoJ in TS-

CoJ) indicates N(DC-CoJ in TS-CoJ) as a proportion of the total N(DC-CoJ), 

(P(DC − CoJ in TS − CoJ) =
N(DC−CoJ in TS−CoJ)

N(DC−CoJ)
)); thus P(DC-CoJ in TS-CoJ) describes 

the percentage of the DC co-jumps that coincide with a TS co-jump; in row 5, N(TS-

CoJ overlapping DC-CoJ) is the number of TS co-jumps that overlap with DC co-jumps; 

in row 6, P(TS-CoJ overlapping DC-CoJ) is N(TS-CoJ overlapping DC-CoJ) as a 

proportion of the total number of TS co-jumps, (P(TS − CoJ overlapping DC − CoJ) =

N(TS−CoJ overlapping DC−CoJ)

N(TS−CoJ)
). 
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Table 5.11 (a) The summary of the DC co-jumps and the TS co-jumps. The parameters of detecting 

DC co-jump: threshold 𝜽 =  0.05% and 𝒔 =  0.95. The parameters of detecting TS co-jump: the 

significance level α = 0.01 and the time interval = 15 min. Note, EU, GU, UJ, CA, and AU are the 

abbreviations of EURUSD, GBPUSD, USDJPY, USDCAD and AUDUSD. 

  EU with GU EU with UJ EU with CA EU with AU 

1 N(DC-CoJ) 880 813 667 955 

2 N(TS-CoJ) 111 140 87 37 

3 N(DC-CoJ in TS-CoJ) 208 157 133 147 

4 P(DC-CoJ in TS-CoJ) 23.64% 19.31% 19.94% 15.39% 

5 N(TS-CoJ overlapping) 

DC-CoJ) 
39 43 36 25 

6 P(TS-CoJ overlapping) 

DC-CoJ) 
35.14% 30.71% 41.38% 67.57% 

Table 5.11 (b) The summary of the DC co-jumps and the TS co-jumps. The threshold 𝜽 = 0.075%.  

  EU with GU EU with UJ EU with CA EU with AU 

1 N(DC-CoJ) 451 421 366 472 

2 N(TS-CoJ) 111 140 87 37 

3 N(DC-CoJ in TS-CoJ) 99 79 69 80 

4 P(DC-CoJ in TS-CoJ) 21.95% 18.76% 18.85% 16.95% 

5 N(TS-CoJ overlapping) 

DC-CoJ) 
30 33 21 22 

6 P(TS-CoJ overlapping) 

DC-CoJ) 
27.02% 23.57% 24.14% 59.46% 

Table 5.11 (c) The summary of the DC co-jumps and the TS co-jumps. The threshold 𝜽 = 0.1%.  

  EU with GU EU with UJ EU with CA EU with AU 

1 N(DC-CoJ) 278 253 227 333 

2 N(TS-CoJ) 111 140 87 37 

3 N(DC-CoJ in TS-CoJ) 58 44 43 50 

4 P(DC-CoJ in TS-CoJ) 20.86% 17.39% 18.94% 15.02% 

5 N(TS-CoJ overlapping) 

DC-CoJ) 
19 22 18 18 

6 P(TS-CoJ overlapping) 

DC-CoJ) 
17.12% 15.71% 20.69% 48.65% 

Table 5.11 (d) The summary of the DC co-jumps and the TS co-jumps. The threshold 𝜽 = 0.125%.  

  EU with GU EU with UJ EU with CA EU with AU 

1 N(DC-CoJ) 207 158 143 227 

2 N(TS-CoJ) 111 140 87 37 

3 N(DC-CoJ in TS-CoJ) 30 25 20 32 

4 P(DC-CoJ in TS-CoJ) 14.49% 15.82% 13.99% 14.10% 

5 N(TS-CoJ overlapping) 

DC-CoJ) 
12 13 9 14 

6 P(TS-CoJ overlapping) 

DC-CoJ) 
10.81% 9.29% 10.34% 37.84% 

 

According to table 5.11, we observed that co-jumps found in both DC and TS method. 

Under the four thresholds, the figures of the P(DC-CoJ in TS-CoJ) are observed 

between 15% and 20% crossing the four pairs of the currencies. There is a negative 

relationship between the P(TS-CoJ overlapping DC-CoJ) figures and the thresholds. 

For the first three pairs of the currencies (EU with GU, EU with UJ and EU with CA), 

under the thresholds of 0.05% and 0.75%, the figures of the P(TS-CoJ overlapping DC-



145 

CoJ) are over 20%; while, for the thresholds of 0.1% and 0.125%, the figures of the 

P(TS-CoJ overlapping DC-CoJ) are less than 20% (for EU with CA, we saw 20.69% in 

table 5.11 (c)); note, under the threshold  of 0.125% (table 5.11 (d)), there is an obvious 

decrease of the P(TS-CoJ overlapping DC-CoJ) that the figures are around 10%. In 

addition, for the co-jumps between EURUSD and AUDUSD, the P(TS-CoJ overlapping 

DC-CoJ) is over 50% under the thresholds of 0.05% and 0.75%.   

 

Overall, table 5.11 indicates that both DC and TS approaches found the common co-

jumps; also, the results conclude that the two methods detected a considerable number 

of unique co-jumps.  

 

5.7.7 The examples of the co-jumps detected by both two methods 

In the previous section, we gave a summary of identified TS co-jumps and DC co-jumps 

over five years. This section selected two examples of co-jumps detected by both two 

methods. In the two examples below, we found that the periods of the two DC co-jumps 

within the periods of the two TS co-jumps. 

 

Co-jumps Example 1: 

As showed in table 5.12 (a), on 2015/10/28, a TS co-jump is determined within 15 

minutes from 18:00:00 to 18:15:00; for EURUSD and GBPUSD, the two jumps size are 

-1.05% and -0.32%, respectively. In table 5.12 (b), the DC approach also identified a 

DC co-jump on the same date from 18:00:04 to 18:00:25 (in 21 seconds); the jumps 

size of EURUSD and GBPUSD were -0.5% and -0.42%, respectively. 
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Table 5.12 (a) A TS co-jump was identified within 15 minute interval. The significance level 

α = 0.01. Note: EU and GU are EURUSD and GBPUSD. 

StartTime EndTime EU_JumpSize GU_JumpSize Period 

2015/10/28 18:00:00 2015/10/28 18:15:00 -1.05% -0.32% 15 mins 

 

Table 5.12 (b) A TS co-jump was determined within the same 15 minute interval. Threshold 

𝜽 = 0.05% and 𝒔 = 0.99. 

StartTime EndTime EU_JumpSize GU_JumpSize Period 

2015/10/28 18:00:04 2015/10/28 18:00:25 -0.50% -0.42% 21 secs 

 

Co-jumps Example 2: 

The example 2 presents the co-jumps between EURUSD and USDJPY; in this example, 

the directions of the co-jumps are opposite. In table 5.13 (a), we observed a TS co-jump 

on 2015/06/01 within the period from 14:00:00 to 14:15:00. For EURUSD, we 

identified a downward jump with the jump size of -0.51%; while, for GBPUSD, there 

was an upward jump with the jump size of 0.31%. At the beginning of the TS co-jump 

time interval, we detected a DC co-jump. As shown in table 5.13 (b), for EURUSD and 

GBPUSD, the two jumps size are 0.14% and -0.09% within the period of 3 seconds 

from 14:00:02 to 14:00:05. 

 

Table 5.13 (a) A TS co-jump was identified within 15 minute interval. The significance level 

α = 0.01. Note: EU and GU are EURUSD and GBPUSD. 

StartTime EndTime EU_JumpSize GU_JumpSize Period 

2015/06/01 14:00:00 2015/06/01 14:15:00 -0.51% 0.31% 15 mins 

 

Table 5.13 (b) A TS co-jump was determined within the same 15 minute interval. Threshold 

𝜽 = 0.05% and 𝒔 = 0.99. 

StartTime EndTime EU_JumpSize GU_JumpSize Period 

2015/06/01 14:00:02 2015/06/01 14:00:05 0.14% -0.09% 3 secs 
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5.8 Discussion 

This section will discuss the observations from our studies in the previous section. The 

study object that we focus on is the DC co-jumps of 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 (the DC co-jumps 

between EURUSD and GBPUSD) and 𝐶𝑜𝐽𝑈
𝐸𝑈,𝑈𝐽

 (the DC co-jumps between EURUSD 

and USDJPY). We start to discuss the information the observer can obtain from the DC 

co-jumps. After that, the major discussion is the relationship between the events (the 

MEEs and the major historical events) and the DC co-jumps.  

 

5.8.1 Can the DC method give precise information of co-jumps in 

practice? 

As illustrated in Section 5.7.1, the two examples shown us that the DC co-jumps can 

give precise information in terms of timing, magnitudes, and the directions. For instance, 

in table 5.3, a 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

 was identified in the period of 10 seconds from 18:00:04.300 

to 18:00:14.300 in that there was an upward jump of EU followed by an upward of GU. 

Separately, the period of EU jump (9.6 seconds) was almost 1 second longer than the 

period of GU (8.8 seconds). Also, the jump size of GU (5.84 TMV) was greater than 

the jump size of EU (4.04 TMV). Therefore, DC co-jumps can give deep insight to the 

observers for studying the behaviour of co-jumps. 

 

5.8.2 Discussion: the relationship between co-jumps and MEEs 

We studied the relationship between co-jumps and MEEs in Section 5.7.4. The results 

indicated that the DC co-jumps are highly sensitive to the US MEEs. For 𝐶𝑜𝐽𝑈
𝐸𝑈,𝐺𝑈

, 

from the determined DC co-jumps associated with MEEs (CoJ-MEEs), 93.5% of the 

CoJ-MEEs follow the US MEEs. In particular, we found that the US interest rate 
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decision announcements (US_IRD) and non-farm payroll (US_NFP) numbers impact 

significantly on the presence of DC co-jumps. This suggests a cautionary note to the 

Forex traders to avoid the risk of co-jumps after US_IRD and US_NFP. 

 

5.8.3 Do historical events cause DC co-jumps?    

In Section 5.7.5, we studied the relationship between major historical events and co-

jumps through two cases studies. Although the historical events from the two examples 

are not related to the economic data, the results indicated that the historical events may 

have even more influence on co-jumps compared with the MEEs. For instance, we 

tracked the daily number of DC co-jumps between EURUSD and GBPUSD during the 

COVID-19 pandemic in 2020. The results showed that 77% of the total number of the 

DC co-jumps were identified in March. This indicates the very uncommon trading 

activities from the traders during this major historical event.  

 

5.8.4 The relationship between DC co-jumps and TS co-jumps    

In Section 5.7.6 we gave the summary of the jointed co-jumps determined by the two 

approaches. The results revealed that around 20% of the DC co-jumps detected within 

the periods of the identified TS co-jumps. On the other hand, over 30% of the TS co-

jumps were overlapped by DC co-jumps. In addition, Section 5.7.7 presented two 

examples that the detected DC co-jumps within the periods of the TS co-jumps. We 

observed that the DC co-jumps were presented at the beginning of the time interval of 

TS co-jumps. DC co-jumps gave the precise timing of the start and end of the co-jumps, 

and the periods of the DC co-jumps are less than 30 seconds. Thus, we believe DC 

approach can be an alternative tool for the analysts for locating the time of the co-jumps. 
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5.9 Conclusion 

In Chapter 4, we proposed a new approach for detecting jumps in the DC approach. The 

benefits of the DC approach give us a new tool for fine-grained analysis in monitoring 

jumps’ behaviour. In this chapter, we extended the study to the identification of the DC 

co-jumps. In DC, this is the first method proposed for the detection of co-jumps. Unlike 

time series data, the challenge of detecting DC co-jumps are the irregular timescales of 

the DC data in that observers cannot simultaneously judge jumps of two markets within 

the same time interval. Instead, we re-sample the two 𝑇𝑅 sequences of two markets into 

a single sequence, i.e., 𝐶𝑇𝑅𝑆 . In section 5.4, we introduced the partitioned 𝐶𝑇𝑅𝑆 

(𝑃𝑇𝑅𝑆) which partitions the 𝐶𝑇𝑅𝑆 into contiguous 𝑇𝑅 sub-sequences. In section 5.5, 

we presented the definition of the DC co-jump in 𝑈𝐴,𝐵 that we name 𝐶𝑜𝐽𝑈
𝐴,𝐵

. In section 

5.5.1, we developed the indicator 𝐼𝐶𝐽(𝑈𝐴,𝐵 ) to detect the 𝐶𝑜𝐽𝑈
𝐴,𝐵. Therefore, we built 

the approach for the identification of DC co-jumps of two markets under the DC 

framework. 

 

Our studies suggested that the DC method is beneficial for offering detailed information 

concerning detected co-jumps as shown by the examples in Section 5.7.1. From the 

statistical analysis of the five-year historical data, we observed that the co-jump is not 

a common event. For the back-testing of EURUSD and GBPUSD, using the threshold 

of 0.1%, there were 18253 𝑇𝑅 sub-sequences over the five years while 1.54% of the 

total that we identified DC co-jumps. In addition, the results confirmed the existence of 

the relationship between the events and the DC co-jumps. Specifically, the US MEEs 

were the main factor affecting the presence of DC co-jumps, while the domestic MEEs 

had a very low influence on the presence of DC co-jumps. This study may give some 

suggestions to the Forex participants to understand which MEEs may have high 
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likelihood to cause co-jumps between EURUSD and GBPUSD. For instance, in practice, 

our study can give a pre-alert for participants to avoid the risks of co-jumps after the 

announcements of the US Interest Rate Decision and the US Nonfarm Payrolls. Also, 

we observed that the unexpected outcomes of the major events caused a high proportion 

of the co-jumps. This may imply that there were unusual trading reactions to these 

unanticipated events from the markets’ participants. These major historical events may 

cause multi-market shocks e.g., the identified DC co-jumps between Sterling and Euro. 

We think that DC co-jumps could be used as an indicator to monitor unusual trading 

behaviour spanning major exchange rates. Although the current stage of our study only 

works on two markets, future research could focus on identifying DC co-jumps crossing 

multiple markets.  
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Chapter 6. Conclusion 

6.1 Summary of work completed 

In the field of DC, this thesis presents a new path for the comparative analysis of two 

sequences in Forex. Compared with existing work, our new fundamental approach 

focuses on the real-time comparative analysis of two markets. This allows observers to 

implement comparative analysis using the irregular timescale of DC data sequences.  

 

6.1.1 The DC measure of relative volatility (mRV) 

Under the DC framework, this thesis exposes a new path for the study of the relative 

volatility between two markets. In this thesis, we introduce 𝑚𝑅𝑉, a data-driven measure 

of relative volatility that does not come with a predetermined time interval of 

measurement. In order to develop 𝑚𝑅𝑉, we develop the DC relative sequence (Section 

3.4.2). It is a sequence which chronologically combines two markets’ DC sequences, 

such that the termination of the current sub-sequence depends on the identity of the 

upcoming extreme point (EP). In this way, the period 𝑇 is dynamically defined by the 

length of the sub-sequence. In Section 3.5.1, in low-frequency data, the correlation test 

proved that 𝑚𝑅𝑉 has a high level of correlation to the time series method in measuring 

relative volatility. In addition, the correlation test indicates a positive relationship 

between the correlation coefficient and the period 𝜏  in that the longer the selected 

period 𝜏 , the higher the correlation coefficient between the two methods of 

measurement. In summary, using the DC framework, we have developed a new method 

to measure relative volatility by using 𝑚𝑅𝑉  which allows measurements to be 

narrowed down to a precise time location in times of extreme values of relative 

volatility. This is something that cannot be done under the time series framework 
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(Observation 3, details see Section 3.5.3), thus demonstrating the benefit of using our 

approach in high-frequency data. We believe, for instance, that 𝑚𝑅𝑉  can give an 

alternative measure to allow the monitoring in near real time of the relative volatility in 

micro-market activities when analysts consider high-frequency data or tick data. This 

demonstrates that time series measures of relative volatility and our approach can 

provide complementary methods for the analysis of financial data. 

 

6.1.2 DC jumps (DCJs) 

We proposed a new approach, under the DC framework, to detect jumps in the FX 

markets. This DC approach differs from the classical time series method which uses a 

model-based method to identify a jump in a time interval. Under DC, the alternative 

way to sample the market transactions that we can naturally refer to as a data-driven 

approach (the DC method) is that we judge the presence of a DCJ based on a DC trend. 

In the experiment, DCJs were found to be sensitive to news events especially those that 

were unscheduled. In addition, we studied the observed DCJs and TSJs, and 

demonstrated that they complement each other in terms of the jumps detected. It was 

identified that both DC approach and TS method readily found both common jumps 

and unique jumps. This confirms that DCJs are a useful complement to the TSJs for the 

identification of jumps in high-frequency data especially. The concept of the DCJ is 

based on a significant magnitude of the 𝑇𝑅, which measures the price changes over 

time such that a greater 𝑇𝑅 value indicates greater price changes in a shorter period. 

The approach we give can be used in a practical manner to detect the DCJs in the 

financial markets and the back-testing results indicated a relationship between major 

economic events (MEEs) and DCJs.  
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6.1.3 DC co-jumps  

The study of DC co-jumps is an extension of Chapter 4 which provides a method to 

detect a DCJ in a single market. In DC,  the co-jump is the event that a jump in market 

A is followed by a jump in market B; we detect a DC co-jump based on the 𝑇𝑅 sub-

sequence. The studies we performed suggested that the DC framework is beneficial in 

providing detailed information on detected co-jumps as indicated by the examples in 

Section 5.7.1. From statistical analysis of five-year historical data, it is clear that co-

jumps are not common events. For the back-testing of EURUSD and GBPUSD, using 

the threshold of 0.1%, there were 18253 𝑇𝑅  sub-sequences over the five years 

comprising 1.54% of the total in which we identified DC co-jumps. Furthermore, the 

results confirmed the existence of a relationship between major economic events and 

the presence of DC co-jumps. Specifically, the US MEEs seemed to be most closely 

associated with the presence of DC co-jumps, while the domestic MEEs were found to 

have a very low influence on the presence of DC co-jumps. 

 

6.2 Summary of contributions 

Contribution 1: Relative Volatility (mRV) 

Under the DC framework, this is the first approach which allows us to compare the 

volatility of one market to another in micro-market structure. Further to this, we can 

pinpoint the timing of the changes in relative volatility between two markets. In DC 

comparative analysis, we first proposed a data-driven approach to combine two DC 

sequences on irregular timescales into a single combined sequence. This is the 

foundation for establishing DC micro-market relative volatility (𝑚𝑅𝑉). In practice, 

𝑚𝑅𝑉 is capable of evaluating the relative volatility in high-frequency data, especially 

in tick data (the records of raw transactions). It is important to note, time is passively 
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defined in 𝑚𝑅𝑉. The termination of the current sub-sequence depends on the market 

identity (market A or market B) of the upcoming EP. In the application of 𝑚𝑅𝑉 to 

Sterling and Euro, the advantage of the data-driven process is that it allowed the precise 

location of the DC sub-sequences which showed the highest and the lowest 𝑚𝑅𝑉 during 

the event of the Brexit referendum. Using the regular timescale as well, the correlation 

test proved that 𝑚𝑅𝑉  provides similar conclusions to the time series method in 

measuring relative volatility. Therefore, we believe that the invention of  𝑚𝑅𝑉 has 

provided a complementary tool to the traditional time series approach to evaluate the 

relative volatility. 

 

Contribution 2: Jumps in DC 

Under the DC framework, we proposed the definition of jumps in DC. The DC jump 

(DCJ) is an event whereby the price has changed by a significant magnitude in a short 

period. Compared to the classical method, we detect jumps based on the time-adjusted 

return of the DC trends. In other words, this new approach of identifying jumps does 

not require a pre-determined time interval. DCJs can give more information about the 

behavior of jumps in terms of size, direction, and quantity. Lastly, TSJ and DCJ are two 

different concepts that are not directly comparable. According to the back-testing, some 

TSJs were not identified as DCJs and vice versa. Thus, it can be said that the two 

methods complement each other and each is capable of providing unique information.  

 

Contribution 3: Co-jumps in DC 

Under the DC framework, we propose a definition of co-jumps in DC in two markets, 

which we refer to as DC co-jumps; based on this, we introduced an indicator to detect  

DC co-jumps. We found from studying 5 years of historical data that although co-jumps 
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in general were rare, there existed a strong association of the DC co-jumps with US 

major economic events, especially those containing unexpected data. Based on the co-

jumps we identified as related to the economic data, over 90% of co-jumps in these 

major currency pairs are associated with US economic data. This analysis provides a 

cautionary note for traders that market behaviour is likely to be abnormal following 

announcements of important US economic data containing unexpected information. 

Furthermore, the DC co-jump inherits the merits of the DC jump in that they offer 

precise information on the timing, magnitudes, and the direction of the DC co-jumps. 

 

6.3 Future Work 

In terms of potential directions for future work, our current work suggests that it would 

be a potentially productive area of research to investigate the correlation of 𝑚𝑅𝑉 in the 

appropriate exchange rates (which is related to the presence of shocks/jumps) with the 

specific shocks to the US market quantified by Verdelhan (2018) and Mueller et al. 

(2017). Further research would be to look at the 𝑚𝑅𝑉 for various bilateral exchange 

rates compared to US and global shock terms from similar models. Positive associations 

would both reinforce our thinking that 𝑚𝑅𝑉 is a useful measure for different types of 

shocks and also possibly give some more insight into how our data driven approach 

associates with the market structure. This could further increase its utility as an 

instrument for decisions regarding pricing investments. This is further highlighted by 

the factor models in Mueller et al. (2017) that also use global shocks priced locally, 

which suggests an association of exchange rate co-movement and the global and local 

shock terms. The real-time nature of the 𝑚𝑅𝑉 as a measure indicates that it could be 

potentially very useful in the real time analysis events of major historical significance, 

such as flash crashes.  
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In Chapter 4, DCJs can give a better insight into studying the jumps’ behavior especially 

in monitoring flash events both in real time and providing analysis after the fact. We 

think the DCJ could give a real-time alert of the price crash through monitoring the 

price changes under our approach; especially, in high-frequecy trading, traders need 

more tools to measure the risk of their opening positions. Hence, we would like to work 

on the DCJs in terms of the application to real time risk monitoring in future research. 

 

Under the framework of DC comparative analysis, this thesis proposed new studies in 

relative volatility and co-jumps. This is the beginnings of work on DC comparative 

analysis. For instance, in DC co-jumps, further research may focus on the co-jumps of 

multi-markets (more than two markets) which may lead to new tools to monitor the 

systematic risk spanning multiple financial markets. Another idea is working on DC 

co-movement; fundamentally, DC makes it easy to track the price movements by 

determining DC trends; the idea is could we find a similar ‘pattern’ of the DC trends 

between two markets? Thus, through recognising similar patterns in real-time we could 

quantify the similarity of the DC co-movements of two markets. 
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Appendix A. The mean of monthly 〈𝒎𝑹𝑽(𝑹𝑺)
𝟎.𝟏%〉𝑴  

To show that the results in this section are relatively insensitive to the choice of DC 

threshold, we repeated the same experiment (the first application in Section 5.2) under 

the threshold 0.1%. Figure A1 shows the mean of monthly 〈𝑚𝑅𝑉(𝑅𝑆)
0.1%〉𝑀 over seven 

years from 2012 to 2018.  

Figure A1. The mean of monthly 〈𝒎𝑹𝑽(𝑹𝑺)
𝟎.𝟏%〉𝑴 measures the monthly average 𝒎𝑹𝑽 

under the threshold of 0.1%. From 2012 to 2018, there are 84 data points. The values 

of 𝒎𝑹𝑽 are normalised by θ.  
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Appendix B. Evaluating 𝒎𝑹𝑽 in the sub-sequences under 

the threshold 0.1% 

Under the threshold 0.1%, there are a total of 718 sub-sequences observed. Figure B1 

illustrates the values of 𝑚𝑅𝑉 in the same time period (from 16/06/2016 to 30/06/2016). 

Over the periods of the three parts, we detect the amount of 180 (Part 1), 353 (Part 2), 

and 185 (Part 3) sub-sequences, respectively. Table B1 presents the mean and median 

of the 𝑚𝑅𝑉(𝑅𝑆)
0.1% in the periods of the three parts. 

 

Figure B1. The sequence of 𝒎𝑹𝑽(𝑹𝑺)
𝟎.𝟏% in the periods from 16/06/2016 to 30/06/2016. 

Figure B1 plots 718 sub-sequences observed under the threshold of 0.1%. Part 1(blue 

line): from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours); Part 2 (red line): from 

22:00 06/23/2016 to 22:00 06/24/2016 (24 hours); Part 3 (purple line): from 00:00 

06/27/2016 to 24:00 30/06/2016 (96 hours). 
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Table B1. the mean and median of the 𝒎𝑹𝑽(𝑹𝑺)
𝟎.𝟏% . The operator 𝑴𝒆𝒅𝒊𝒂𝒏(. ) denotes the 

median of a sequence. 

 Part 1 Part 2 Part 3  Part2/Part1 Part2/Part3 

〈𝑚𝑅𝑉(𝑅𝑆)
0.1%〉 0.009 0.051 0.011  5.979 4.475 

𝑀𝑒𝑑𝑖𝑎𝑛(𝑚𝑅𝑉(𝑅𝑆)
0.1%) 0.008 0.032 0.011  3.959 2.818 
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Appendix C. About the 12 DC scaling law 

The idea of the DC scaling law was proposed by Glattfelder et al. (2011) that they 

discovered 12 DC scaling laws in the market. In Section 3.5.1, we used the DC scaling 

law 10 to obtain the thresholds given the regular time intervals. Specifically, the DC 

scaling law discovered the relationship between different data properties of the forex 

markets. Given a market data property, one can estimate the corresponding data 

property. For instance, the DC scaling law 10 gives the statistical property that the 

average period of a DC trend 〈𝑇𝑡𝑚𝑣〉 is approximately equal to a function of the 

threshold 𝜃 (for details see equation (3.16)). Table C1 below present an overview of the 

12 DC scaling laws, more details see the literature. 
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Table C1. The summaries of 12 DC scaling laws from the literature.  

DC scaling laws 1 The relationship between the number of DC events and the size of the 

threshold. 

DC scaling laws 2 The relationship between the average yearly number of price moves and the 

related size of the price change. 

DC scaling laws 3 The relationship between the maximum price move (defined by the vertical 

distance between the high and low price levels) and the size of that time 

interval. 

DC scaling laws 4 The relationship between the average time interval and the related size of the 

price change. 

DC scaling laws 5 The relationship between the average time interval of a DC event and the 

related size of the threshold. 

DC scaling laws 6 The relationship between the average time interval of an overshoot event and 

the related size of the threshold. 

DC scaling laws 7 The relationship between the average size of an overshoot event (the absolute 

value) and the related size of the threshold. 

DC scaling laws 8 The relationship between the average size of a DC event (the absolute value) 

and the related size of the threshold. 

DC scaling laws 9 The relationship between the total price move and the related size of the 

threshold. 

DC scaling laws 10 The relationship between the average time period of a DC trend and the 

related size of the threshold. 

DC scaling laws 11 The relationship between the number of tick counts during a DC trend and 

the related size of the threshold. 

DC scaling laws 12 The relationship between the cumulative total price move (coastline) and the 

related size of the threshold. 
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Appendix D. The 𝑫𝑪𝑱s associated to the unscheduled events 

in Yen 

The motivation of this study is derived from a published statement on monetary policy 

from the Reserve Bank of Australia 23(RBA, the central bank of Australia) in February 

2019. The Japanese Yen exhibited a flash crash (appreciation) against several 

currencies. This flash crash event was the focus of many of the market participants and 

made the headlines in much of the financial media. Han and Westelius (2019) 

catalogued the details of the flash crash of the Yen. On 2nd of January 2019, the yen 

appreciated more than 3% against the dollar at 10:35 PM (UTC) in eight minutes. Many 

financial analysts discussed the reasons for the Yen crash. Financial Time and 

Bloomberg both reported that the initial trigger of the Yen crash was the negative sales 

outlook of Apple Inc. Nevertheless, there was no direct connection between the news 

concerning Apple and the Yen. RBA gave three key factors which are likely to have 

contributed to the brief but rapid deterioration:  

(1) The impact of carry trade reversal. Carry trades get funding from low yield 

currencies (such as the Yen) to take a long position in a high yield currency 

(such as the US dollar or Australia dollar). However, when the long positions 

register a loss and trigger the ‘stop loss’, the carry trade will be reversed and 

increase the demand for the funding currency (the Yen). 

 

(2) The seasonably low liquidity at the time of the day and year. The time of the 

flash crash was following the close of US markets but before the opening of the 

 
23 RBA - The Recent Japanese Yen Flash Event: 

https://www.rba.gov.au/publications/smp/2019/feb/box-b-the-recent-japanese-yen-flash-event.html 
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Asian markets; in the middle of this time period. Also, on 2nd January, the 

liquidity was likely low due to the new year vacation. 

 

(3) Algorithmic trading may have amplified the flash event as ‘swing trading’ 

opens positions to chase the momentum of the price move. 

 

Han and Westelius (2019) found that USDJPY increased 4% in one minute starting at 

10:35 PM (UTC). RBA reported that the Yen appreciated 3% against the US dollar 

within 30 seconds, and in the absence of any major news. Thus, we implemented back-

testing to detect DCJs in USDJPY in 5 minutes from 10:35 to 10:40 PM (UTC). The 

experiment selected the threshold 𝜃 = 0.1% and 𝑠 = 0.99. Table E1 summarises the 

details of the observed DCJs: (1) the selected periods for detecting DCJs from 

22:35:00.000 to 22:40:00.000 on 02/09/2019 (UTC); (2) the total DC trends confirmed 

in those periods; (3) N(𝐷𝐶𝐽) is the total DCJs detected in the 5 minutes; (4) <𝐷𝐶𝐽-size> 

is the average 𝐷𝐶𝐽 size, which is measured by taking the average of the absolute TMV 

of the total observed 𝐷𝐶𝐽s; (5) <DCJ-periods> is the average period (in seconds) of a 

𝐷𝐶𝐽. 

 

Table E1. The summary of detected 𝑫𝑪𝑱s during the 

Yen flash event on 02/09/2019. Threshold = 0.1% 

and s = 0.99. 

Asset USDJPY 

Periods, (1) 
5 minutes (UTC) 

(22:35:00 to 22:40:00) 

N(DC), (2) 24 

N(𝐷𝐶𝐽), (3) 24 

<𝐷𝐶𝐽-size>, (4) 3.3 

<𝐷𝐶𝐽-period>, (5) 10.2 
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Starting from 10:35, we observed 24 DC trends in 5 minutes. The results recognised 

that all of the 24 trends were confirmed as containing 𝐷𝐶𝐽s. The mean of the absolute 

TMV was 3.3, which indicates a significant jump size on average during the periods. 

Also, the average period of the 𝐷𝐶𝐽s was 10.2 seconds. 
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