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Abstract

Stock markets are very important in modern societies and their behaviour have serious

implications in a wide spectrum of the world’s population. Investors, governing bodies

and the society as a whole could benefit from better understanding of the behaviour of

stock markets. The traditional approach to analyze such systems is the use of analytical

models. However, the complexity of financial markets represents a big challenge to the

analytical approach. Most analytical models make simplifying assumptions, such as

perfect rationality and homogeneous investors, which threaten the validity of analytical

results. This motivates the use of alternative methods. For those reasons, the study of

such markets is a fertile field to use the agent-based methodology.

In this work, we developed an artificial financial market and used it to study the

behaviour of stock markets. In this market, we model technical, fundamental and noise

traders. The technical traders are non-simple genetic programming based agents that

co-evolve (by means of their fitness function) by predicting investment opportunities in

the market using technical analysis as the main tool. Such traders are equipped with

an investment strategy that we consider to be realistic and we avoid any kind of strong

assumptions about the agents’ rationality, utility function or risk aversion.

Changes in some parameters and in the agents behaviour produce different properties

of the stock price series that we analyze. In this paper we investigate the different

conditions under which the statistical properties of an artificial stock market resemble

those of the real financial markets. Additionally, we modelled the pressure to beat the

market by a behavioural constraint imposed on the agents related to the Red Queen

principle in evolution. The Red Queen principle is a metaphor of a co-evolutionary arms

race between species. We investigate the effect of such constraint on the price dynamics

and the wealth distribution of the agents after several periods of trading in the different

simulation cases. We have demonstrated how evolutionary computation plays a key role

in studying stock markets.

i



To Biliana and Serafito

ii



Acknowledgements

First of all I am eternally grateful to Professor Tsang for his invaluable help, this work

could not be possible without him and his patience. I am also grateful to my co-supervisor

Professor Sheri Markose whose always sharp comments made this research richer. I am

sure that we will find time and space to continue working together.

Thanks to my dearest Biliana and beloved Serafito, they make my life better, happier,

full of rewards and more importantly, full of hope.

Thanks to my mother, brothers, nieces and nephews. All of them are an encourage-

ment to work harder all the time. I am particulary grateful to the Kabadjovi family for

their tremendous support, encouragement and care, without their help this could not be

possible. My eternal gratitude to Idulia Isabel and Hector, our loved Chilean friends and

people of goodwill and infinite generosity.

I would like to acknowledge the Mexican people that through the CONACYT allowed

this dream to come true. I would also like to acknowledge all the people from the Banco
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Chapter 1

Introduction

1.1 Background

The complexity of financial markets, represents a big challenge to the specialist in the

area. The traditional way of coping with the analysis of such markets is the use of ana-

lytical models. However, the analytical models present some difficulties and this has led

to the development of alternative methods for the analysis of such markets. The emerg-

ing fields of Agent-based Computational Economics (ACE) [189] and Computational

Finance [198], provide some means to tackle some of the limitations of the analytical

models in economics and finance. The ACE approach has been successfully applied in

several economic studies, varying from macroeconomic models to fish and payment cards

markets [8], [11], [111], [112], [2]. The study of financial markets, in particular, caught

the attention of an increasing number of researchers in this area.

Agent-based financial markets of different characteristics have been developed for the

study of such markets in the last decade since the influential Santa Fe Artificial Market

[16], [124]. Some of them differ from the original Santa Fe market on the type of agents

used like [53], [91], [149], [184], [208]; on market mechanism like [25], [91], [184], [208].

Other markets borrow ideas from statistical mechanics like [129], [130], [138]. Some

important research has been done modelling stock markets inspired on the Minority

1



Game like [42], [45]. There are financial simulated markets in which several stocks are

traded like in [56]. However, there are some criticisms to this approach like the problem of

calibration, the numerous parameters needed for the simulation program, the complexity

of the simulation, etc.

1.2 Motivations

“Levy, Solomon and Levy’s Microscopic Simulation of Financial Markets points us to-

wards the future of financial economics. If we restrict ourselves to models which can be

solved analytically, we will be modeling for our mutual entertainment, not to maximize

explanatory or predictive power.”

Harry M. Markowitz, President, Harry Markowitz Co., and Nobel Laureate in Eco-

nomics

The previous quote about the book [128] by one of the most influential authors in

financial economics can be considered as an inspiration for us in the development of our

work. We certainly pretend to increase the explanatory power of the financial models by

using novel but powerful techniques to overcome the limitations of the analytical models.

The contradictions between the existing theory and the empirical properties of the

stock market returns are the main driving force for some researchers to develop and use

different approaches to study financial markets. An additional aspect on the study of

financial markets is the complexity of the analytical models of such markets. Previous

to the development of some new simulation techniques, very important simplifying (un-

realistic) assumptions had to be made in order to allow tractability of the theoretical

models.

Artificial intelligence and in particular evolutionary computation have been used in

the past to study some financial and economic problems. However, the development of

a well established community of what is now known as the Agent Based Computational

Economics community facilitates the study of phenomena in financial markets that was
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not possible in the past. Within such community, a vast number of works and a different

number of approaches are being produced by numbers in order to solve or gain more

understanding of some economic problems.

The influential work [16] and previously the development of the concept of bounded

rationality [177], [178], [179], [12] and [14], changed the way in which we conceive the

economic agents. This change in conception, changed dramatically the possibilities to

study some economic phenomena and in particular the Financial Markets. The new

models of economic agents have changed, there is no need any more of fully rational

representative agents, there is no need of homogeneous expectations and information

symmetry. Furthermore, the development of Artificially Adapted Agents [102] gives to

the economics science a way forward into the study of economic systems.

1.3 Our research agenda

Our approach to the modelling of artificial stock markets is different to the above men-

tioned cases mainly on the strategic behaviour of the agents. We use a very simple

market mechanism and non-simple agents, because our aim is to study the co-evolution

of the group of genetic programming based agents and the consequences on the price of

changes in the agents’ strategic behaviour. We believe that the modelling of the learning

behaviour of the agents is a central part of our research agenda. Regarding the agents’

learning process, we consider of extreme importance what Lucas wrote in [136]:

In general terms, we view or model an individual as a collection of decision

rules (rules that dictate the action to be taken in given situations) and a set

of preferences used to evaluate the outcomes arising from particular situation-

action combinations. These decision rules are continuously under review and

revision; new decision rules are tried and tested against experience, and rules

that produce desirable outcomes supplant those that do not.

3



There are many useful techniques to implement what Lucas’ defined as adaptive

learning, like genetic algorithms, as has been done in [40]. However, for the modelling of

the learning process described above by Lucas we will use genetic programming. Such

technique has been previously described as a suitable way to model economic learning in

[36]. The learning process that we used to model our agents’ behaviour will be described

with detail in Chapter 3.

Additionally, we are interested in finding the conditions under which the statistical

behaviour of the endogenously generated price resembles the behaviour of real prices.

Such task has been recognized as a very important one. Due to the complexity of the

simulated financial markets, it is difficult to know which features of the model is the

responsible for the appearance of such statistical properties. The market reported in this

work is composed by different types of traders: technical traders, fundamental traders,

and noise traders. The market mechanism, the agents’ strategic behaviour and the rele-

vant parameters will be described in detail in later chapters.

1.4 Organization of the thesis

This thesis is organized in the following way: In the second chapter we will introduce

four broad areas that are involved in our research: Financial Markets, Agent-Based Eco-

nomics, Evolutionary Computation in Economics and Finance and Artificial Intelligence

in Financial Forecasting. In such chapter, we provide references to some of the most

important works on each topic. However, it is not our intention to provide an exhaustive

review of the literature on each subject as that would take a lot of space and effort to be

done in a complete way.

In Chapter three we review the literature on Artificial Stock Markets, in particular

what we consider to be the state-of-the-art in this area. In this chapter we review some

of the most important works that have been done in the past and we review some of the

most recent works which we think could lead to promising areas of research in the future.
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Chapter four deals with the description of the model and the computational platform

(CHASM) that we constructed in order to perform the experiments that we had in mind.

In such chapter we describe first the important characteristics of the model that are

going to be explored in order to obtain stylized facts. The computational platform is

later briefly described in software engineering terms and the more important parameters

are enumerated. Additionally, in Chapter four we report the results of an experiment on

learning in CHASM.

In Chapter five we describe the conditions under which some of the so called “stylized

facts” emerge in CHASM. The important characteristics in CHASM, previously described

in Chapter four, are explored and the experimental results are shown. In this chapter

we conclude with the features of the model that lead to the reproduction of some of the

universally exhibited statistical properties of the financial returns.

Chapter six deals with co-evolution in CHASM, the Red Queen principle and the

experimental results under what we called the Red Queen constraint. In this chapter,

experiments are performed in which the agents adapt to the environment (the market)

in two different ways. The first form of adaptation consists in that the agents change

their behaviour in fixed periods. The second form of adaptation is called the Red Queen

constraint and is inspired by the character of Lewis Caroll’s book Through the Looking

Glass.

Chapter seven concludes and summarizes the research findings of this work. The most

prominent findings are enumerated and the main contributions of our work to the ACE

field are described as well. Additionally, we describe some promising areas of research

along the line of our artificial stock market.
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Chapter 2

Literature Survey

2.1 Financial markets

Financial markets can be broadly defined as a group of institutions that have the main

purpose of facilitating the exchange of assets. The asset that is going to be traded

obviously depends on the specific type of market. Some examples of such markets are:

stock markets, bond markets, money markets, commodity markets, foreign exchange

markets and derivatives markets.

Financial markets are a very important part of our everyday lives even if we do not

follow them closely. For example, everybody suffers the consequences of a stock market

crash, like the international market crash in 1987. Moreover, this phenomena (market

crashes) occurs with an unpleasant higher frequency than is predicted by the standard

economic theory.

One of the most important research issues in financial markets is the explanation of the

process that determines the asset prices and as a result the rate of return. There are many

models that can be used to explain such process, like the Capital Asset Pricing Model

(CAPM), the Arbitrage Pricing Theory (APT) or the Black-Scholes Option Pricing.

However, it is not our intention to give in this chapter an overview of such models, but

any introductory book to financial markets could help in this issue, like [172].
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We are more interested in the sort of assumptions made in some of those models.

Some of such assumptions are believed to be false or at least unrealistic, like the assump-

tions of full rationality, information symmetry, homogeneous expectations, etc. However,

there are some phenomena that question the validity of the assumptions made by such

models, like the appearance of patterns on the prices. Furthermore, some empirical

studies contradict the predictions of such analytical models.

Another important concept in the study of financial markets is the concept of market

equilibrium. In such state, it is assumed that the price of the asset is adjusted so that the

demand to hold the asset equals its total stock. In a more general sense, the concept of

equilibrium can be considered one of the most important concepts in economic sciences.

However, in our ever changing real world it is difficult to imagine such static equilibrium

happening. In [15], Arthur explores deeply the implications of an economic world in

which things are not in equilibrium and he names his approach as out-of-equilibrium

economics.

2.1.1 Market Efficiency

“I’d be a bum in the street with a tin cup if the markets were efficient.”

Warren Buffett

The concept of market efficiency ([71] and [72]) has ruled the research agenda in Fi-

nancial Economics in the previous decades. It is considered one of the most important

concepts in finance and for some years has been at the centre of a debate. There exist

different forms of efficiency. However, we are interested just in what is known as informa-

tional efficiency. Markets are said to be informationally efficient if the price fully reflects

the available information [71].

One must be careful to interpret such definition of efficiency, the last part of the

phrase refers to the “available information”. This implies that the definition of market

efficiency depends on the information set. Furthermore, we can now derive an alternative

definition of market efficiency:
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A market is efficient with respect to a particular information set φ if it is impossible

to make abnormal profits by using this set of information to formulate buying and selling

decisions. It is helpful to link the type of efficiency with the information set in the

following definitions of different market efficiencies:

• Weak Form Efficiency. In this case, the relevant information set comprises all

current and past prices.

• Semi-Strong Form Efficiency asserts that the asset market is efficient relative to all

publicly available information.

• Strong Form Efficiency asserts that the market for an asset is efficient relative to

all information including private information.

Market efficiency has been associated in the past with the concept of “random walk”

[142]. However, it is now a well known fact that the price changes do not follow a

random walk [134]. Moreover, it is commonly accepted that there are certain variables

that posses some predictability power on the price changes [74]. Beyond the debate of

market efficiency or the joint hypothesis test our work pretends to shed some light on the

way in which such efficiency is achieved or at least to explain the origins of the behaviour

of financial prices.

2.1.2 Statistical properties of stock returns

After the publication of the seminal review article in Market Efficiency [71], the arrival

of new econometric techniques has changed permanently the perception we had about

market efficiency. It seems that the empirical evidence of the behaviour of the financial

data points into a different direction than the market efficiency tells us. Alternatively,

it could be argued that the analytical models do not fully explain some of the statistical

behaviour of the financial prices.
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The statistical analysis of the price time series is usually performed on the contin-

uously compounded return or log return. The log returns are defined in the following

way:

rt ≡ log
Pt

Pt−1

= pt − pt−1 (2.1)

where pt ≡ log Pt. Some of the advantages of such returns are first that the continu-

ously compound multiperiod return is the sum of continuously compounded single period

returns, and second that it is more easy to derive the time-series properties of additive

processes than multiplicative processes.

Time series of stock returns exhibit interesting statistical features which seem to be

common to a wide range of markets and time-periods. Such statistical properties are

known as “stylized facts” and have been reported for several types of financial data and

their presence seems to be ubiquitous in all sorts of financial markets [59], [138], [139].

Such statistical properties of the returns have become a very important benchmark

for the researchers of artificial financial markets. Such properties are the first step to

accomplish when building a simulated financial market [123]. The difficulty of replicating

such properties even with stochastic models is well expressed by Cont in [59]: “these

stylized facts are so constraining that it is not easy to exhibit even an (ad hoc) stochastic

process which possesses the same set of properties and one has to go to great lengths

to reproduce them with a model”. Moreover, some artificial markets try to explain the

origins of some of such stylized facts [137].

We will not report all of such stylized facts for our experiments due to different reasons,

like the frequency of our generated prices (which we will interpret as daily closing prices).

Therefore, we will describe briefly, as they are described by Cont in [59], the facts that

we will be reporting in later chapters:

1. Lack of autocorrelations: (linear) autocorrelations of returns are usually insignifi-

cant. However, this is not true for small intra-day time scales.
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2. Volatility clustering: different measures of volatility display a positive autocorre-

lation over several days, which quantifies the fact that high-volatility events tend

to cluster in time. As noted by Mandelbrot, “large changes tend to be followed

by large changes, of either sign, and small changes tend to be followed by small

changes”.

3. Slow decay of autocorrelation in absolute returns: the autocorrelation function of

absolute returns decays slowly as a function of the time lag, roughly as a power

law with an exponent β ∈ [0.2, 0.4]. This is sometimes interpreted as a sign of

long-range dependence.

4. Heavy tails: The distribution of daily and higher frequency returns displays a heavy

tail with positive excess kurtosis. The tail index is finite, higher than two and less

than five for most assets, exchange rates and indexes.

5. Conditional heavy tails: even after correcting returns for volatility clustering (e.g.

via GARCH-type models), the residual time series still exhibit heavy tails. How-

ever, the tails are less heavy than in the unconditional distribution of returns.

6. Non Gaussianity: the stock returns on a weekly, daily and higher frequencies fail

to be normally distributed.

Figure 2-1, illustrates the daily closing prices 2-1(a) and log returns 2-1(b) for the

FTSE100 index and for the Barclays bank’s share 2-1(c) and 2-1(d) from the 2nd of

January 1998 to the 31st of December 2004.

In order to verify that our endogenously generated price mimics some of the above

described statistical properties, we will perform different sorts of test. For the first

described property, we will report the autocorrelations of the log returns, the absolute

log returns and the squared log returns for different time lags. The autocorrelation of

the absolute and squared log returns will allow us to investigate the phenomena known

as volatility clustering. Empirical studies in various stock indexes and stock prices have
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Figure 2-1: Price and log returns for the FTSE100 (a) and (b); and the Barclays bank’s
share (c) and (d).
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shown that the autocorrelation function of the squared returns remains positive and

decays slowly over several days. The autocorrelation function can be defined in the

following way:

C(τ) = corr(r(t, δt), r(t + τ, δt)) (2.2)

If the first property holds, it should be observed that the log returns’ autocorrelations

for different lags should be around zero. In Figure 2-2, we can observe that the log returns’

autocorrelation is effectively around zero for the FTSE100 index and the Barclays bank’s

share. However, we can see in the same figure, that such lack of autocorrelations does

not happen for the absolute or squared log returns, which is a quantitative signature of

the phenomenon known as volatility clustering (property number two).

Property number three can be also verified in Figure 2-2, we can see there that the

autocorrelation of the absolute and squared log returns decays until it is practically zero

for lags larger than eighty days.

The distribution of financial time series displays “fat tails”. The term “fat tails”

refers to higher density on the tails of a distribution in comparison to the tails’ density

under the normal distribution. In order to be able to determine the shape of the tail one

must estimate the shape parameter (α) or the tail index (τ). The Hill tail index ([100])

is an estimator of the α parameter and it could be considered as the standard tool for

the study of tail behaviour of economic data due to its good performance and simplicity.

However, one of the main problems on the application of such index is that it is necessary

to define a priori the size of the tail. To overcome such limitation, the fourth property is

going to be tested by calculating and reporting the Hill tail index for different tail sizes

(0.1%, 0.5%, 1%, 2.5%, 5%, 10% and 15%). Additionally, we will report the returns’

kurtosis. For a normal distribution the kurtosis is three. However, it has been found

that in financial data sample kurtosis is larger than three. This phenomenon is known

as excess kurtosis and is an indication of fat tails.

The fifth property is going to be tested by reporting the ARCH and GARCH coef-
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Figure 2-2: Autocorrelations for different lags of the log returns, absolute log returns and
squared log returns on the FTSE100 (a) and on the Barclays bank’s share (b).
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Statistics FTSE100 Barclays
Mean -0.0000340558 0.00020352
Median 0 0
Minimum -0.0588534 -0.0898057
Maximum 0.0590256 0.0937403
Std. Dev. 0.0124598 0.0233416
GARCH coefficient 0.899999 0.899536
ARCH coefficient 0.0895644 0.0899882
Skewness -0.133266 0.113409
Kurtosis 5.13829 4.62582
J-B Test H value 1 1
Corr. coefficient -0.00831591 0.085004
AlphaHill 1 % 5.05533 6.7913
AlphaHill 2.5 % 3.96377 4.89301
AlphaHill 5 % 3.24536 3.35794
AlphaHill 10 % 2.61432 2.26481
AlphaHill 15 % 1.97705 1.94232

Table 2.1: Statistics for the log returns FTSE100 and Barclays.

ficients. Both coefficients should be less than one. The property number six is going to

be tested by the Jacque-Bera test, which indicates us if the sampled data is drawn from

a Normal distribution or not. Table 2.1.2, shows for the FTSE100 and the Barclays’

share some basic statistics, the GARCH and ARCH coefficients, skewness, kurtosis, the

Jacque-Bera H value, the correlation coefficient with lag one and different Hill tail in-

dexes for various tail sizes. Sample kurtosis is also a valuable indicator of departure from

normality, such statistic should be three for the Normal distribution. Typical values for

sample kurtosis in exchange rates, indexes and high frequency data are much larger than

three.

We can observe in Table 2.1.2 typical values for the kurtosis (5.13829 and 4.62582)

and for the Hill tail index. Depending on the percentage of extreme returns taken from

the sample, such index takes values from 6.7913 to 1.94232. In most of the financial time

series, the Hill tail index takes values from 5 to 2. Another interesting value to look at,

is the result of the Jacque-Bera test, which in the two reported cases rejects the null

hypothesis that the sampled data is drawn from a normal distribution.

14



2.2 Investment strategies in stock markets

Financial time series are probably the most intensively studied of all. The reason for

this is obvious and is mostly related to the economic reward associated with a successful

forecasting of such time series. There are different ways in which an investor can define a

strategy. It is not our intention to give a full and detailed review of investment strategies,

we just want to exemplify the way in which an investment strategy can be defined.

In this section we will briefly describe some simple, yet commonly used trading strate-

gies. The reason to describe such strategies is because one of the most important decision

in the building of an artificial financial market is the strategic decision making of the in-

dividual agents. Therefore, if we want to endow our agents with a realistic investment

strategy we should know the sort of strategies that are currently being used by the real

investors.

It is not our intention to give a complete overview of all the different trading strategies

being used in the stock markets. A full review of such dimensions is far beyond the scope

of this thesis. Nevertheless, there is a plenty of information about such strategies in

books and the internet. The only recommendation is to be careful with the sources and

advices that are currently available on such books and sites.

2.2.1 Fundamental strategies

Fundamental analysis of stock prices is based on the analysis of the factors that could

affect such prices. These factors include information like financial reports, information

about the management of the company, earnings per share, revenue, cash flow, book-to-

market equity, earnings-to-price, earnings announcements, analyst upgrades and down-

grades, etc. Some researchers have found evidence of the relation between some of the

above information and the future returns [73], [115] and [74].

The basic idea in fundamental analysis is to produce what is known as the “funda-

mental value” by using all the previously mentioned factors. Once such fundamental

15



value has been obtained, the investor is able to compare such value with the current

security’s price and then she can take a position depending on the comparison. If the

price of a security is above the fundamental value, it is said to be “overvalued” and a

selling position or short selling position is recommended. If on the other hand, the price

of the security is below the fundamental value it is said to be “undervalued” and a buying

position is recommended.

A very important assumption on the technical analysis is that the security’s price is

always going to return to its fundamental value. Otherwise, the recommendations that

we explained before are meaningless. Therefore, the performance of such trading strategy

heavily depends on the accuracy of the perception of the fundamental value and on the

assumption that the price is always returning to its fundamental value.

2.2.2 Momentum trading

Momentum trading is said to take place when an investor buys past winners and sells past

losers. Despite of the simplicity of such strategies, it is believed that they are frequently

used by some mutual funds [156], [93], [94]. In [94], Grinblatt et al by using a measure

of momentum investment found that around 77 percent of mutual funds bought past

winners and sold past losers. Furthermore, momentum strategies could be responsible

for the abnormal profits earned by some mutual funds [156], [93], [94].

The volume has been recognized to provide useful information about a security’s price

change in the past [34]. In [125], Lee and Swaminathan find relationships between the

high and low trading volume and momentum and value strategies. In such work, the

authors provide plausible explanations for the intermediate horizon momentum and the

long horizon return reversal.

Momentum trading (and as a consequence contrarian trading) is related to two well

recognized regularities: overreaction and underreaction [27]. Underreaction consists that

on intermediate horizons, securities prices incorporate slowly the information. This means

that good or bad news have predictive power on the future returns. Overreaction happens
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in longer horizons when the prices overreact to patterns of news pointing out on the same

direction. This means that securities that have had a long history of good or bad news

tend to become overpriced or underpriced. However, in the long term such valuations

will return to the mean [27].

2.2.3 Contrarian strategies

Contrarian strategies are very simple in principle like the momentum trading strategies.

Whenever an investor is using such strategies he is trying to capitalize on the overreaction

and underreaction of stock prices. Such overreaction and underreaction refer to the

finding that past winners would perform bad and that past losers could perform well in

the future. The probable reason for the above described phenomena is that investors

can be over exited by the past performance of an asset and believe that such trend will

continue. The opposite happens with the past losers: the investors probably think that

such asset is going to continue under-performing in the future.

There exist several theories of the reason why such type of strategies perform well. In

[73] Fama and French suggest that such good performance is due to the higher risk that is

being taken by the investors. On the other hand, in [115] Lakonishok et al. argue that the

good performance of such strategies is because they bet against investors that are over

optimistic of the performance of past winners and over pessimistic of the performance

of past losers. Furthermore, they find no evidence that such strategies bear more risk.

However, in [135] Lo and MacKinlay arrive to the conclusion that overreaction is not the

only source of contrarian investment profits.

2.2.4 Trading strategies based on technical analysis

Technical analysis has been on the trading arena for quite some time and it is believed

that is widely used in different markets [109], [157], [186]. Additionally, technical analysis

is by far the most common type of trading strategy in some markets like the foreign

exchange markets [158], [157].
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Despite the long history of technical analysis and its widespread use, such technique

has been strongly criticized by some sectors of the academia and the industry. In [142],

Malkiel shares his opinion about technical analysis: “under scientific scrutiny, chart-

reading must share a pedestal with alchemy.” Nevertheless, there are numerous works

that suggest that technical analysis could be a profitable trading strategy [5], [34], [38],

[212], [61], [63], [64], [62], [103], [158], [159].

Technical analysis tries to identify patterns in the past prices and use them to predict

future movements and make an investment decision on that basis. Such technique is

mainly visual (although things have changed a lot recently) while one of its main com-

petitors, quantitative finance, is mainly numerical. The first person to use a technical

trading rule was Charles Dow, the editor of the Wall Street Journal, more than a hundred

years ago.

There are some recent modifications to the old techniques comming from different

areas like physics. In [17], Ausloos and Ivanova use the volume as the “physical mass” of

stocks and derive something that they call the generalized momentum indicator. In [103],

Hsu and Kuan reexamined the profitability of some trading rules taking into account the

well known problem of data snooping.

2.3 Agent-Based Computational Economics

Agent-based computational economics can be thought of as a branch of a wider area:

Agent-based Modelling. The field of Agent-based modelling is not restricted to economics,

it has been applied in social sciences in general [21], in some classical and not so classical

problems in computer science and in some other disciplines. In [22] Axelrod provides an

account of his experience using the Agent-based methodology for several problems and

he suggests that the Agent-based modelling can be seen as a bridge between disciplines.

Axelrod and Tesfatsion provide a good guide to the relevant literature of the Agent-based

modelling in [23]. In [50] there is a good introduction to agents in economics and finance;
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in such work, Chen conceives the agents not just as economic agents but as computational

intelligent units.

Most of the economic and finance theory is based on what is known as investor

homogeneity or the representative agent. Agent-based Computational Economics (ACE)

is an emerging field of research in which the researchers can depart from the assumptions

of homogeneous expectations and perfect rationality by means of computational-based

economic agents. In [188], [187], [189] and [190], Tesfatsion surveys some of the most

important works and topics on this area of research.

In ACE one of the main goals is to explain the macro dynamics of the economy by

means of the micro interactions of the economic agents. This approach to the study of the

economy has been called a “bottom-up” approach in opposition to the more traditional

approaches in economics.

There are many different disciplines involved in this area, from which, computer

science can be distinguished as one of the most important ones. Another important

discipline that is somehow related to Agent-based computational economics is “Econo-

physics”. In [78], [144] and [140] there is an overview of the sort of economic research

done by physicists, the convergence in some areas with economists and the contributions

already made by some researchers in this field. Despite the interesting research being

done in econophysics, there is a certain reluctance from economists and physicists to fully

accept this new discipline.

There are some interesting works in which the Agent-based methodology is compared

with experiments performed with human beings [46] and [66]. In both works, the benefits

that each type of research has on each other are identified. Experimental research can

be used as an important method to calibrate an agent-based model. On the other hand,

agent-based simulations can be used to explain certain phenomena present in human

experiments. To summarize, there are many beneficial ways in which both types of

research influence each other.

According to Tesfatsion, the economic research being done with the ACE methodology
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can pursue one of two main objectives: the first one is the constructive explanation of

macro phenomena and the second is the design of new economic mechanisms [187], [188]

and [189]. In [190] Tesfatsion updates the classification of the research being made

in ACE into four main categories: empirical understanding, normative understanding,

methodological advancement and finally qualitative insight and theory generation.

2.4 Evolutionary computation in economics and fi-

nance

Evolutionary computation possesses now a long tradition as a research tool in economics

and particulary in finance. The areas of research in economics and finance in which an

evolutionary technique is being used, are among the most relevant ones in both fields.

It is not exaggerated to say that evolutionary computation is at the heart of economics

and finance, sharing the place with more traditional tools. Some examples of the use of

evolutionary computation in economics can be [8], [39], [9], [180], [51], [52]. In finance,

evolutionary computation has a long lasting tradition, for example [29], [5].

Chen provides a good collection of papers that use either genetic algorithms or genetic

programming in finance [48]. In [198] there is a good introduction to the Computational

Finance field. In such paper the research agenda on the field is defined and some impor-

tant works are described. There are yet another two important works: on computational

intelligence [49] and on computationally intelligent agents [50] in economics and finance.

Despite the existence of several useful artificial intelligence techniques like neural

networks, a great body of research in computational economics and computational finance

employs some form of evolutionary computation. In the following subsections, some

examples of such applications will be provided and some of the most relevant works

are going to be briefly described. It would take a full survey paper to give a complete

account of all the work that has been done in economics and finance using evolutionary

computation. Nevertheless, our objective is just to show the relevance of evolutionary
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computation in both fields and to introduce briefly the subject.

2.4.1 Multi-agent systems for economic and financial simula-

tions

One obvious place where is possible to find evolutionary computation techniques is in

the Multi-agent systems [80], [207], [182]. Genetic algorithms have been used for the

modelling of the agents’ learning in multi-agent simulations. In multi-agent simulations

of economics systems it is possible to find very different approaches and topics, just to

illustrate some few examples of the immense amount of works, lets take a look to the

following list:

• Electricity markets [6] (Learning Classifier System), [204] (This work is based on
reinforcement learning).

• Payment card markets [1], [2] (Population Based Incremental Learning).

• Large value payments systems [209] (This work is based on reinforcement learning).

• Retail petrol markets [99] (Genetic Algorithms).

• Stock markets [16] (Learning Classifier System).

• Foreign exchange markets [10], [106] (Genetic Algorithms).

A fairly good introduction to the relevance of computational agents in economics and

finance can be found in [50].

Artificial financial markets

Financial markets are probably the markets that attract the most attention from very

different disciplines. This might be caused by the dynamism of such markets and the

importance that they have in our lives (for example the impact of financial crashes

in everyone’s economy). Another important aspects of financial markets is the highly

frequent information that they generate and that can be used to study them.
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With all these elements present it is hard to imagine that the computer scientist could

not be fascinated by financial markets and in particular such markets have caught the

attention of researchers in Artificial Intelligence and multi-agent systems.

Since Genetic Algorithms have been used to perform financial forecasting in the past

[29], it was natural to combine them within the framework of a multi-agent system to

model the induction performed by an autonomous agent participating in a simulated

financial market [102], [16].

Different sorts of evolutionary techniques have been used to model economic agents

participating in an artificially simulated financial market. Among such techniques we

can mention: genetic algorithms, learning classifier systems, population-based incremen-

tal learning and genetic programming. There are, however, other artificial intelligence

techniques used in the modelling of economic agents in financial markets like Artificial

Neural Networks.

We will give a more detailed account of the research in Artificial Financial Markets

in the next chapter.

2.4.2 Game Theory and Computer Science

Game theory is one of the best established theories in economics and it has been used

to model the interactions between the economic agents extensively. One of the main

assumptions in game theory is that the agents behave in a rational way. However, in real

life human behaviour is frequently irrational.

Computer science has been used in traditional game theory problems, like the strategic

behaviour of agents in auctions, auction mechanism design, etc. This approach can be

useful where analytical solutions have not been found by providing approximate solutions

in such complex problems.

The iterative prisoners’ dilemma is one of the most studied games by researchers

from computer science [20]. The prisoners’ dilemma is a classic game that consists of the

decision making process by two prisoners which can choose to cooperate or to defect. In
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the case that the two prisoners choose to cooperate they get a payoff of three each, in

the case that both choose to defect they get a payoff of one each and in the case that

any of them decides to defect and the other to cooperate, the former gets a payoff of five

and the later a payoff of zero. In equilibrium, both players decide to defect despite the

fact that would be better for them to cooperate.

Axelrod organized a tournament on the iterated prisoners’ dilemma in which he asked

people from game theory and amateurs to provide him with strategies. The surprising

result was that a very simple strategy (Tit for Tat) won the tournament [20]. After

the reporting of the results from such tournament, Axelrod was able to provide some

mathematical results on how cooperation can emerge in a population of egoists. The

previous example clearly illustrates how beneficial was the use of computer science to

obtain theoretical results in a problem where analytical methods alone have not delivered

the desired results.

2.4.3 Portfolio optimization

Portfolio optimization is probably the most important task in finance. Almost everything

in finance surrounds this problem: the determination of the price, the estimation of the

volatility, the correlation among stocks. The portfolio selection problem can be described

in a simple way as the problem of choosing the assets and the proportion of such assets

in an investor’s portfolio that wants to maximize his profits and minimize the risk.

The literature on portfolio optimization is vast and it is not our intention to provide

a full review of this area here. However, we will try to provide some interesting examples

of research being done with an extensive use of computation.

The population of papers on portfolio optimization using any form of evolutionary

computation is very big. Nevertheless, we can say that [155], [191], [183], [97], [181],

[146], [65] and [145] are some interesting works on portfolio optimization that use some

form of evolutionary computation or artificial intelligence.
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2.4.4 Financial forecasting

Some of the most relevant evolutionary techniques that have been used in the past to

perform financial forecasting are: genetic algorithms, learning classifier systems and ge-

netic programming. In the next section, a brief description of the different works on each

of the above mentioned techniques is provided.

2.5 Artificial Intelligence in financial forecasting

Despite the wide acceptance of the Efficient Market Hypothesis among academics and the

implications of such theory for the predictability of price changes, financial forecasting

has always been one of the most intense research fields, due to the implications of a

successful technique to foresee the changes in financial time series. The possible reward

of a useful tool to discover the changes in the prices or the returns of financial assets, is

the single and most important motivation to invest an enormous amount of effort and

money in this field. Furthermore, the availability of financial data (both in quantity and

in quality) causes that a great number of resources are dedicated to the single task of

predicting future price changes.

Financial time series are probably the most studied time series by numerous disci-

plines and Computer Science could not be the exception. Moreover, there is a growing

acceptance among practitioners of the techniques and tools based or inspired by some

important areas of research in Computer Science.

Artificial Intelligence in general and Evolutionary Computation in particular are two

of the most influential areas involved in the design of techniques and tools to perform

some forms of financial forecasting. Among the most successful ones we can find Artificial

Neural Networks, Genetic Algorithms, Genetic Programming and Learning Classifier

Systems.
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2.5.1 Artificial Neural Networks

Artificial Neural Networks (ANN’s) are probably the most exploited artificial intelligence

technique in financial forecasting, their use is wide across banks and even countries. The

literature on the topic is huge, we will just cite some classic works and books: [193], [166],

[24], [213]. Additionally, this technique has been applied on different fields of finance and

in [206] it is possible to find a good survey of the literature between 1990 and 1996.

Another more recent survey can be found in [171].

Artificial neural networks have achieved something that some other artificial intelli-

gence techniques would like to have: acceptance among the practitioners and academics

in finance. However, such technique has often been seen as a “black box” in contrast to

techniques like GAs or GP. Nevertheless, such view has been recently challenged in [31].

The input data is a crucial factor on the success or failure of ANN’s in financial

forecasting as it is in all the other techniques. However, this aspect becomes critical in

ANN’s due to the lack of flexibility of such technique, although some interesting research

has been done in which ANN’s are combined with GAs [98]. Some other relevant examples

of this area of research are: [96], [210], [63], [28].

2.5.2 Genetic Algorithms

Genetic Algorithms (GAs) were invented by John H. Holland [101]. A good introductory

book to the topic is [154]. Such algorithms have been very popular in optimization and

machine learning problems. As we will see later, financial forecasting is not the only task

that GAs successfully perform in Computational Economics and Finance. Moreover,

such technique has been used as an important part of the modelling of economic learning

in the context of agent-based computational economics and in the context of multi-agent

systems in general.

In the past, GAs have been used in several important works to perform financial

forecasting like in [29], [143], [5] and [126]. However, they have not been used frequently

in recent works mainly due to some of the limitations of GAs like the fixed size structure
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of the individuals and their representation.

Despite the fact that GAs are not used intensively nowadays to perform financial

forecasting, they can be used as a meta-heuristic or in conjunction with other techniques

to improve the predictions’ performance like in [201] and [98].

2.5.3 Learning Classifier Systems

A learning classifier system is basically a machine learning mechanism in which a popu-

lation of rules is selected and modified by a GA. The fact that a GA is used to evolve

and modify the population of rules implies that the representation of the rules must be

done typically with binary strings.

Learning classifier systems were derived by Holland, then proposed to model economic

agents in [102] and finally, they were used in the Santa Fe Artificial Stock Market [16].

Such mechanism has been used to perform financial forecasting in works like [169], [170].

Classic LCS have the same limitations of GAs regarding the representation and the

fixed size structure of the individuals of the population. In our opinion, a better alterna-

tive to the GAs and LCS is the genetic programming paradigm. Genetic programming,

as it will be explained in next subsection overcome the fixed size limitation and the

representation problem of GAs and LCS.

2.5.4 Genetic Programming

Genetic Programming (GP) was created (at least in the form that became better known)

by John Koza [113] and it has recently become one of the most popular techniques to

perform financial forecasting. Genetic programming is similar to the GAs and evolution-

ary strategies in the sense that there is a population of individuals that are going to be

selected for reproduction based on a fitness criteria, plus mutation and this process is

repeated until a stoping criteria is met.

Genetic programming is a very appealing technique to perform financial forecasting

because it is a very flexible technique, transparent for the investor and it has some
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theoretical work that could help to improve its forecasting ability. This technique could

be preferred to other techniques like neural networks in the sense that it is possible to

“see” the sort of mechanism that is generating the decision rules and there are different

ways to control the objective function and the complexity of such rules.

After the pioneering work by Butler and Tsang [41], GP is now one of the most

widely evolutionary computation techniques used in financial forecasting. Some of the

most relevant examples in financial forecasting that use genetic programming can be

found in [158], [61], [30], [199], [83].

2.5.5 Other Artificial Intelligence techniques

Artificial intelligence and machine learning are two important disciplines in Computer

Science. Such disciplines have developed a reputation because of the high quality research

that is being constantly created. Financial forecasting is one of the fields that attracts

most of the attention of researchers from Computer Science. It would be far too ambi-

tious to give a full account of all the research that is done in financial forecasting using

some Artificial Intelligence’s techniques. Instead, we will provide just some illustrative

examples that we hope are some of the most relevant research on the field.

We will start by describing some works that use more than one Artificial Intelligence

techniques. It is very common to build up hybrid techniques mixing some of the pre-

viously mentioned artificial intelligence techniques. For example, combining artificial

neural networks and genetic algorithms is a fairly commonly used combination [98].

Reinforcement learning is an example of another artificial intelligence technique widely

applied in financial forecasting. Some examples of such approach can be found in [63],

[64], [62].

Support Vector Machines (SVMs) are powerful mechanisms that have been used to

perform financial forecasting like in [192], [43], [87], [185], [44] and [104]. In particular,

such mechanisms have been extensively used to predict bankruptcy like in [75], [86] or

to perform credit rating like in [105].
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We have been saying that a full account of the techniques borrowed from artificial

intelligence in general and evolutionary computation in particular is impossible for an

introductory chapter like this. Nevertheless, we hope that the numerous works that have

been mentioned here can give an idea of the relevance of both disciplines in modern

economics and finance.
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Chapter 3

Artificial financial markets,

state-of-the-art

In this chapter we review the state-of-the-art in Artificial Financial Markets. We start

with the first attempts to model financial markets by other means than the analytical

methods and the methods used in experimental economics.

This branch of research is inspired in the notion that financial markets can be seen

as an adaptive complex system in which rich dynamics exist and is full of emergent

properties. Such rich dynamics and emergent properties should arise endogenously rather

than being imposed exogenously. By using this approach, the intention is to overcome

the limitations of the traditional theory in which many unrealistic assumptions have to

be made to allow analytical tractability.

We will use the term Artificial Financial Markets as a synonymous for the follow-

ing terms: Agent-Based Financial Markets, Multi-Agent Financial Markets, Microscopic

Simulations of Financial Markets and some other similar terms. In this chapter we are

surveying the literature that encompasses all the above terms, by no means we are refer-

ring just to the markets in which an Artificial Intelligence technique is being used. The

reason for this is that we want to emphasize how multidisciplinary this area of research

is, and how different the approaches to the design of simulated financial markets are.
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3.1 Survey of artificial financial markets research

The area of Artificial Financial Markets has witnessed a sustained increase in the number

of papers published related to this field. We can see all different sorts of artificial markets

made by researchers from very dissimilar disciplines like Economics, Finance, Computer

Science, Physics, Psychology, etc.

Although they all differ in the sort of assumptions made, methodology and tools; these

markets share the same essence: the macro behaviour of such market (usually the price)

should emerge endogenously as a result of the micro-interactions of the (heterogeneous)

market participants. This approach is in opposition with the traditional techniques being

used in Economics and Finance. Moreover, in [140] Lux and Ausloos declare:

“Unfortunately, standard modelling practices in economics have rather tried

to avoid heterogeneity and interaction of agents as far as possible. Instead, one

often restricted attention to the thorough theoretical analysis of the decisions

of one (or few) representative agents”

In [110], Kirman criticizes the representative individual approach in economics. De-

spite the existence of different works around the same time (beginning of the nineties),

we can assert that the most influential work that has the most of the responsibility of the

success of this area is the Santa Fe Artificial Stock Market [16]. Such market was devel-

oped by a number highly reputed researchers, among them John Holland, the inventor

of genetic algorithms [101].

In order to understand the different approaches of the variety of artificial (simulated)

financial markets we will describe the different types of markets on the basis of the

framework proposed in [118]. In such work, LeBaron identifies the key design issues

present in every artificial financial market and describes some of the most important works

until then. In [122], LeBaron surveys again the literature existent until then. We will

comment on some other works that have been created after the above mentioned survey

or were ignored by LeBaron because he probably did not consider them as important.
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The main design issues identified in [118] are:

• Agents

• Market Mechanism

• Assets

• Learning

• Calibration

• Time

In addition to the description of the different approaches in artificial financial markets

by using the above described framework, we will describe some other related works that

were not commented in LeBaron’s survey. Although, we consider such framework suffi-

cient for our needs, there is a fairly detailed extension of it in [95] that is worth looking

at. In such work the basic design issues proposed in [118] are extended and detailed.

The main goal that we pursue in this chapter is to update such surveys with some

of the most recent works on the field. It is encouraging for us, the researchers on this

field, that some of the people that in the nineties started doing some work on this area

are still working on it by extending some previous works or approaching new issues.

Summarizing, we will describe some of the classic works on Artificial Financial Markets

within the frameworks of [118] and [95] and we will update such surveys, to our best

knowledge, with the most relevant recent research done so far. We think that it is about

time to update our knowledge on the most recent research done in this dynamic area that

brings together researchers from Economics, Computer Science, Physics, Psychology and

other related fields.
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3.1.1 Agents’ Trading Strategies: From “zero intelligence” to

Artificial Intelligence

The decision of which type of agents will be used in the artificial financial market is by

far the most important one and the different options that exist range from basic zero

intelligence agents ([91], [184] and [56]) to genetic programming based agents ([53], [54],

[153], [152], [68]). There are several design issues regarding the agents, as is described

in [95]: the decision making process, the objective function that drives such decision

making, heterogeneity and learning. Learning is going to be discussed alone in one

further subsection.

In relation to the decision making process, there are several routes to follow when

we face the decision of the design of the agents that will participate in the market. The

most obvious way to do it, and the one we partially agree with, is to model the agents

to reflect the strategies that are used in real life. However, this rule based agents are

strongly criticized by traditional economists in the sense that such agents might lack of

a well defined objective (utility) function. Another criticism is related to the dynamics

of interactions and that in real life people do change their mind, and as a consequence,

change their investment strategies. Such type of agents are placed on the spectrum where

learning does not happen.

Examples of static ruled based agents are: [91] and [184]. Gode and Sunder propose

what they called “zero intelligence” agents. Such agents’ behaviour is ruled by a simple

budget constraint. Nevertheless, such agents generate efficient trading behaviour when

they are placed in realistic market mechanism. This research aims to demonstrate the

importance of the market mechanism. This sort of agents fit into the same category

as the agents previously mentioned regarding the learning mechanism, this means that

these agents do not learn.

There are agents that are able to adapt to the new market conditions by changing

their investment rules like in [9], [16], [53], [149], [153], [152]. Such type of agents use a

variety of artificial intelligence techniques to model the constant change of the strategies.
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Some related problems to this approach are: (i) the complexity of the resulting model

that incorporates sophisticated agents, (ii) the limitations on the search space caused

by the assumptions and design of the agents and (iii) the complexity of the evolved

strategies.

In [95] in addition to the rule based agents, there is a further classification of agents in

forecasting agents. Within such classification, the agents can be divided into econometric

based forecasters and forecasters based on cognitive systems. Examples of the former can

be found in [120], [208]. Examples of the later are [9], [16], [53], [68], [149], [214], [153],

[152]. The main difference between the two approaches is that forecasting agents do not

consider the semantic specifications of the cognitive process. This rises an important

aspect of the agents modelling as it was stated in [70]: it is important to represent the

cognitive process in a way that helps to understand the things that we model, we should

be careful in the selection of the technique that we use to represent the agents’ behaviour

and avoid just taking an algorithm designed with other original purpose.

A different approach to the design of the agents, is the one followed in works like

[111], [137], [138], [3], [4], [60], [25]. In such models the agents make their decisions

taking into account the decisions made by the other agents. The purpose of such works

is to model herding behaviour among the agents. Such phenomena is thought to be

present in financial markets and it is believed that such behaviour could partially be the

responsible for the appearance of the heavy tails in the distribution of the stock price

changes. More detail will be given about herding behaviour in chapter six.

In relation to the objective function, there are mainly two ways to design such im-

portant element of the agents. The objective function could be modelled implicitly or

explicitly on the agents decision making process. In the case of an implicit objective

function, the decision making incorporates indirectly the objective of the agents. For

example, in the case where the agents are equipped with real life trading strategies, the

goal of such strategies is profit maximization; however, it is not explicitly incorporated

into the agents trading strategy. In [77] we can find such type of objective functions.

33



The case of an explicitly modelled objective function is present in the majority of

agents that participate in simulated markets. Within such type of objective functions,

utility maximization and profit maximization objective functions can be found. The first

type of objective function can be found in works that base the agents’ decision on the

concept of Constant Absolute Risk Aversion (CARA). Such type utility functions can be

found in [162], [16], [53], [211], [208], [121]. Modifications or enhancements of the CARA

concept can be found in works like [55], [37]. The second form of objective function can

be found in works like [215], [149], [153], [152].

Summarizing, the design of the agents is the single most important aspect on the

modelling of agent-based markets. Some of the most important design issues include:

• decision making (rule based, econometric forecasters and cognitive based agents)

• objective function (explicit, implicit, utility maximization and profit maximization)

• heterogeneity (types of agents, information basis, parameter settings and learning)

• learning (from zero intelligence to genetic programming)

If more detail is desired, in [95] there is a fairly detailed description of each of the

above mentioned design issues.

3.1.2 Market Mechanism

This is the second most important design decision that the researcher must make in order

to build up an artificial financial market. Again, there is a wide range of possibilities in

this front. There are mainly three ways to solve this design problem: the most simple is

to create a simple price response to the excess demand with a simple clearing mechanism,

an alternative is to create a simple market where a local equilibrium can easily be found

and last, a continuous double auction-like mechanism can be explicitly implemented.
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One of the main advantages of this area of research is that different market mecha-

nisms can be compared in order to contrast them in specific issues that the researcher

might be interested to study.

In the first type of market mechanism we can find an earlier version of the Santa

Fe Artificial Stock Market [162]. Additionally, there are markets using a similar market

mechanism, some examples of such models are: [60], [53], [77], [149], [153], [152]. In

addition to the above described mechanism, there are some works that incorporate a

market maker to deal with the excess demand like in [76].

The second type of mechanism implies to define a market structure that allows to

find a certain temporal equilibrium price. This method requires to define a market with

more economic structure than in the previous case. Among some examples of markets

with such type of mechanism are [16], [129].

The third way of modelling the market mechanism is to implement a fairly realistic

market. For example, a continuous double auction mechanism with limit orders and some

other realistic features. Some examples of such models are [91], [208], [46]. More recently,

some new research has been done in modelling the decision making process made by a

market maker by means of reinforcement learning [47].

An alternative to all of the above mentioned market mechanisms is to model a stylized

mechanism that does not resemble any real trading mechanism. However, such mecha-

nism should bring some advantages, like in the case of the Minority Game, as the basis

for the modelling of a simulated financial market. For such game, there exists an analyt-

ical solution to the problem and can be used to gain understanding of its rich collective

behaviour. There is a fairly important group of researchers working on the MG as the

basic framework to model financial markets, like [42], [45], [150], [107].

3.1.3 Assets

The assets that are going to be traded on the market are an important aspect of every

artificial financial market. The way of modelling such aspect of the market can be
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separated into three different cases: number of assets, types of assets and asset properties.

Regarding the first case, the vast majority of the research done in this area so far has

involved the trading of two different assets: a risk free asset and a risky asset. This has

been done for the sake of tractability, otherwise the complexity involved in the simulation

and the analysis of a multiple assets market could be impossible. Nevertheless, some

recent works have carried out such challenging task and have produced markets in which

multiple assets are traded ([215], [203], [56]).

The aspect related to the types of assets traded in the market refers to the different

possibilities of financial instruments that are going to be considered available to the

agents. Again, in the majority of the available markets, the agents can choose from

a risky free asset (mostly cash or bonds) or a risky asset (a stock, a currency or a

security). Some more interesting extensions along this line could include markets of

financial derivatives.

In relation to the third aspect of the traded assets, we can observe that in the majority

of the markets, the agents can choose between a risk free asset or a risky one. The

properties of each of the assets may vary in the following way: the risk free asset could

be cash or a bond that pays an interest rate in each period of the simulation; on the other

hand, the risky asset could be linked to a fundamental value that could be modelled by

an exogenous fundamental process like in [153], [152], [77], a stream of dividends like

in [162], [161] [53] or even a constant value like in [138]. Another way of modelling the

fundamental process can be found in [133], where each fundamental trader perceives an

individual fundamental value. Finally, let us consider the case of the approach in [46],

where the authors propose a market in which there is a stream of dividends for each

individual agent.

3.1.4 Learning

Learning is a crucial element of the design of an Artificial Financial Market. Several

design issues arise when deciding the way in which the agents will update their trading
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strategies. One of such issues is the rule generation mechanism, the rule transformation

over time (if any) and the fitness evaluation criteria for such rules. In [36], Brenner

provides an overview of the learning models that have been used by the economists in

the last decades. Additionally, in such paper there is an extensive discussion on how to

design the learning process for economic models and he provides some very useful advice.

On the design of the learning mechanism it is possible to follow the line originally

developed in [91] in which they make use of zero-intelligence agents with a budget con-

straint in a double auction like market. Despite the low level of intelligence, they are

able to get a remarkable allocation efficiency that could be comparable with the efficiency

obtained in experiments with humans. In such work Gode and Sunder state:

“Adam Smith’s invisible hand may be more powerful than some may have

thought; it can generate aggregate rationality not only from individual ratio-

nality but also from individual irrationality.”

In [79] Farmer, Patelli and Zovko by using zero intelligence agents, arrive to almost the

same conclusion of Gode and Sunder: ... it appears that the price formation mechanism

strongly constrains the statistical properties of the market, playing a more important role

than the strategic behavior of agents.

Our position regarding such conclusions is that, in our opinion, “intelligence” and

adaptation are very important mechanisms in the modelling of the agents’ behaviour.

The experimental results we got, point in a different direction to the above mentioned

research. We believe that, as it has been clearly explained in [57], the results in [91] are

a consequence of the experimental setting and more sophistication is needed to test the

behaviour of humans in different conditions and markets.

The following discussed agents’ adaptation mechanism is considered to be similar to

reinforcement learning and it is a very interesting mechanism that has been intensively

used by some researchers in modelling of financial markets. We are referring to the so

called “Minority Game” a simplification of the problem introduced by Brian Arthur in
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[13]. Such problem was inspired by the bar El Farol in Santa Fe and the basic idea in such

problem is to attend to the bar when there is less than 60% of the possible attendees.

There are some works that are based on the Minority Game to develop simulated financial

markets, like in [42], [45], [150], [151], [107]. Despite the limitations of the MG as the

basic element of an artificial market, its analytical tractability makes it very attractive

for the study of financial markets as complex adaptive systems of many interacting units.

Another possibility on the design of the agents’ learning mechanism is to model the

agents behaviour by using Artificial Intelligence techniques, like genetic algorithms [11];

or as it has been proposed in [102] by Holland and Miller, by using learning classifier

systems [16], [124], [169], [170]; or by using artificial neural networks [208], [214]; or

genetic programming like in [53], [54], [69], [68], [153], [152]; or using reinforcement

learning [47].

From the soup of different Artificial Intelligence techniques to select from, some ques-

tions arise like:

• Which technique to use?

• Which one is the best?

• Which one is more realistic?

• Which technique is more efficient in computational terms

The answer to all these questions obviously depends on the type of agent to model.

Another important issue is the computational effort that is needed to implement each

of the above listed techniques. Depending on the computational resources available, one

specific technique might be better than other because of its computational efficiency.

In addition to the reasons exposed in [68], in our opinion GP is a suitable computa-

tional technique to model the agents’ behaviour for the following reasons:

• It is a technique that has proven to be successful in financial forecasting.
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• It is a very flexible technique.

• Its expressional power can allow the researcher to build up very sophisticated be-
haviour.

• There are several techniques that allow complexity control on the evolved individ-
uals.

Despite all the advantages on using artificial intelligence techniques on the design of

the agents trading strategy; is important to never forget that such decision should be

made considering the modelling of a realistic behaviour and cognition process [70]. It is

already hard to reconcile the views of researchers that use analytical methods and the

ones that use agent-based techniques. With this problem, a careless modelling of the

agents’ behaviour will face the same recurrent criticisms and would increase the lack of

understanding between both types of research.

3.1.5 Calibration and validation

Validation is an important issue in Agent-Based Computational Economics and in par-

ticular in Artificial Financial Markets as it has been pointed out in [118], [121], [90]. This

design issue involves the task of how do we relate a simulated market with reality.

Validation is a basic demand to the agent-based markets as it is pointed out in [121].

Simulated markets should be able to replicate realistic quantitative features of the real

market with a reasonable calibration. Another important aspect that we would expect

from simulated markets is that the modelling of bounded rationality should be modelled

in a fairly simple and transparent way. Finally, the trading mechanism should be a

truthful representation of a real trading situation.

Due to the way in which simulated markets are designed, we have that there could be a

certain number of parameters that need to be defined and that gives the researcher several

degrees of freedom. Such number of degrees of freedom is one of the main criticisms to

this methodology, as some physicists have said: beyond seven parameters one is able to

model the universe.
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Despite such problem, the researchers in this area can perform several things in order

to overcome this problem [118]. Among such things, one is to create a useful benchmark

in which the behaviour of the market is well defined. Another approach in trying to solve

such problem is to use parameters in the simulated market derived from experimental or

real markets.

The selection of the market parameters is by no means a simple task. However, it is

very important to explore the changes on the behaviour of the market due to changes on

such parameters. This has been recognized in [118] by LeBaron:

“... understanding exactly where the parameter boundaries are between sim-

ple and complex behaviors is crucial to understanding the mechanisms that

drive agent based markets.”

We can find some interesting works in which an analysis of such parameters has been

made, like [138], [37], [55], [89].

The approach of incorporating parameters borrowed from either, real or experimental

markets, can be found in works like [214], [215], [121], [35] and partially in [153], [152]. In

[205] and [90] Gilli and Winker estimate the parameters of the model in [111] by Kirman

using the daily DM/US-$ exchange rate.

In [123] the author compares how well an agent-based model performs against the

traditional methods and against the models that incorporate features borrowed from the

behavioural finance area.

3.1.6 Time

The timing in the context of artificial financial markets refers to the order in which the

relevant events take place (synchronization), the length of the past history considered by

the agents and the frequency in which such agents update their behavioural rules.

The vast majority of agent-based financial markets have synchronous models of trad-

ing. The most important assumption in these models is that trading happens between
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two discrete points in time. Examples of such trading synchronization are: [129], [16],

[77], [214], [149], [153], [152]. This sort of synchronization mechanism is one of the main

criticisms to this methodology as clearly such assumption is unrealistic. More effort is

needed to implement realistic asynchronous agent-based models.

There are some models that contemplate (even if it is in a limited way) asynchronous

trading. Examples of a more realistic simulation synchronicity can be found in [165].

In relation to the memory span of the agents in [124] and [120], LeBaron studies the

changes on the statistical properties of the price due to changes on the memory of the

agents.

Regarding the frequency of the updating of the agents’ behavioural rules, the options

are essentially three: updating with a fixed periodicity, like in [16], [120], updating with

a notion of rank, like in [53], [211] or updating in an endogenous way, as it is proposed

in [141], [149] and [153], [152].

3.2 Limitations

It is always a challenge to convince a person that uses or believes in the traditional

methods in economics and finance of the validity of the Agent-Based approach to study

financial markets. Surely, many of us have faced such difficulties when talking to some of

our fellow researchers. Particularly, the mention of the lack of realism of some of the most

important assumptions in economics (like homogeneous expectations or full rationality)

generates always a debate with passionate positions on each side [71], [72], [162], [175],

[174].

In this section we will mention some of the most important and frequent criticisms

that the Agent-based approach to the study of financial markets faces. We think that

some of such criticisms are justifiable and the people that believe in the validity of this

field should work in trying to tackle them in order to gain further acceptance from the

critics of this approach. However, some of the criticisms are just created by the traditional
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use or the comfort with some of the prevalent ideas until now.

One of the main criticisms to the ACE approach and by extension to the Artificial

Financial Markets field is the calibration of the models and the necessary tuning of

the parameters’ constellation [90], [118], [121], [122] and [205]. Some of the critics of

this approach argue that a lot of work is needed to choose the right parameters for the

simulation to make sense. Moreover, how could we justify the values taken by some of

such parameters?

Another important criticism is that some of such artificial markets lack of a ratio-

nal, optimizer, utility maximizer representative economic agent. The more traditional

economists are very reluctant to accept an approach in which there is not a rational

expectations type of agent, where instead there are inductive boundedly rational hetero-

geneous agents [177], [178], [13]. Nevertheless, we are convinced that people have bounded

rationality. To justify our opinion we will cite Herbert Simon: “boundedly rational agents

experience limits in formulating and solving complex problems and in processing (receiv-

ing, storing, retrieving, transmitting) information”

More objections to the Agent-Based models come from the complexity of such sim-

ulations. There exist many artificial financial markets that achieve realistic prices that

reproduce the stylized facts present in financial time series. However, due to the com-

plexity of the simulations, it is not clear which aspect is responsible of the generation of

such statistical properties.

The assumption of the synchronicity of some of the events in the artificial financial

markets and more generally in the agent-based models is one of the most unrealistic as-

sumptions as it was seen in the previous section. Although, some progress has been made

more work is needed in order to implement more realistic models on the synchronization

of the trading events.
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Chapter 4

CHASM: Co-evolutionary

Heterogeneous Artificial Stock

Market

The Co-evolutionary Heterogeneous Artificial Stock Market (CHASM) can be considered

as a software platform that allows the user to perform a series of experiments that

contemplate different aspects of our simulated financial market. In this chapter we explain

the abstract model and its main characteristics, later we explain the software and its

interfaces.

4.1 Overview of the model

The market is populated by traders that will interact with each other by means of buying

and selling some assets. The market participant i will be able to hold at time t, two

different types of assets:

• a risky asset, denoted by hi(t) or

• cash, denoted by ci(t)
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The decision of having just two types of assets resides mainly on the complexity of the

implementation and analysis of markets in which more than two assets could be traded.

Nevertheless, there are some works in which such challenging task has been carried out

[215], [203], [56].

Despite the complex task of defining all the different sorts of traders that intervene

in a financial market, there are some well accepted classes of traders that are commonly

used on the literature. In this work we will limit such classes of traders to three different

types: technical traders, fundamental traders, and noise traders. We define NT as the

number of technical traders, NF as the number of fundamental traders, NN as the number

of noise traders and N as the total number of traders in the market. The stock price at

time t will be denoted by P (t).

At the beginning, all the agents are endowed with a certain number of shares and a

certain quantity of cash, both specified by the investigator. Their position on each of the

assets might change as a result of the agents decision to sell or buy a certain quantity of

the risky asset. The different types of traders will take a decision in every time step to

change their position based on three different procedures.

The noise traders will take a decision to buy, sell or do nothing randomly, whereas the

fundamental traders will take a decision based on the difference between the generated

price and a certain value that they perceive as the real (fundamental) value of the stock.

The technical traders will take their decision by using some technical indicators and the

history of past prices. Additionally, the technical traders will behave in some lapses of

time like the fundamental ones. The details of strategic behaviour of the different types

of traders will be detailed in further sections.

4.2 Market mechanism

The market mechanism that we use in this thesis is similar to the one introduced in [89].

We chose a simple mechanism in order to avoid that the complexity of such mechanism
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could prevent us from understanding some other important aspects that would lead to

the reproduction of the statistical properties of real financial markets.

Our interest is on the impact that changes on agents behaviour, information asym-

metry, differences in computational capabilities and the generation of limit orders, have

on the price and on the traders wealth distribution.

The participants will take a decision di(t) at each time step of the simulation. We

denote the fact that an agent takes a decision to buy by di(t) = 1 , to sell by di(t) = −1

or to do nothing by di(t) = 0 . Moreover, they will make a bid or offer of just a fraction

qi(t) of their current holdings in the following way:

qi(t) =





g ci(t)
P (t)

if di(t) = 1

−ghi(t) if di(t) = −1

0 if di(t) = 0

(4.1)

The fraction of change in the agents’ holdings g is an important parameter of our

simulation and it is related to the cautiousness of the agents. In most of the artificial

markets, the agents buy or sell just one asset at each trading period. Nevertheless, we

wanted to investigate what would be the impact on the price of changes in the quantities

of shares that the agents would either buy or sell. We follow the scheme proposed in [89]

in our work.

The aggregated volume of bids, denoted by B(t) and the aggregated volume of offers,

denoted by O(t) will be used to calculate the excess demand D(t):

D(t) = B(t)−O(t) (4.2)

To determine the price based on the excess demand D(t), we follow a price determi-

nation equation similar to the ones in [77], [60], and [107] 1. The price is then calculated

in the following way:

1In CHASM it is possible to use a price determination equation like in [53]
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P (t) = P (t− 1) + D(t)/λ (4.3)

The parameter λ represents the sensitivity of the market to the orders’ imbalance.

In our market λ was set to be the number of traders participating in that trading round

times a constant c, which is yet another parameter of our simulation.

The orders placed by the different types of traders will be interpreted as market orders.

However, the technical traders will be able to place limit orders in particular situations

to be explained later. Such market and limit orders will be just partially satisfied. The

fraction of unsatisfied orders will be the same for all the agents.

The rationing scheme of the fulfilled orders is similar to the one introduced in [89].

The total number of sell orders is O(t) and the total number of shares that can be bought

at the new price can be calculated as follows:

B̃(t) = B(t)
P (t− 1)

P (t)
(4.4)

The fraction of filled buy δ+ and sell orders δ− can be described as follows:

δ+ = min
(
1, O(t)

B̃(t)

)
, δ− = min

(
1, B̃(t)

O(t)

)
(4.5)

Having this, we can now calculate the amount of shares that the agent i will buy or

sell ρi(t) as:

ρi(t) =





gδ+
ci(t)
P (t)

if di(t) = 1

−gδ−hi(t) if di(t) = −1
(4.6)

Finally we can update the traders holdings of cash and the risky asset:

hi(t) = hi(t− 1) + ρi(t)

ci(t) = ci(t− 1) + ρi(t)P (t)
(4.7)
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4.3 Traders

As it was described in Section4.1 the market is composed of technical, fundamental and

noise traders. None of our traders follows rational expectations and their interaction will

be only by means of the price. In the Artificial Financial Markets literature we will find

mostly those three types of traders, although the specific mechanisms and implementa-

tions can vary widely.

4.3.1 Noise traders

The noise traders will take a decision to buy, sell or do nothing with different probabilities

pb , ps and pn respectively. Such probabilities are defined before the simulation and

remain with the same value during the simulation. This type of traders were included to

represent a justifiable source of noise.

On early stages of our research we tried to incorporate a different source of noise in

our market, more specifically we had a price equation of the following form:

P (t) = P (t− 1) +
D(t)

λ
+ ξ(t) (4.8)

where ξ(t) was normal noise process. However, the results that we got, suggested that

such source of noise was not the most adequate one. Besides, a number of other artificial

markets use noise traders as an important component.

4.3.2 Value Traders

The behaviour of the fundamental traders is taken from [77]. The basic idea behind the

strategy of such traders is that they will change their position on the risky asset if the

price departs from a value that they perceive as the fundamental one. These traders will

continue to adjust their positions until such difference T , is lower than a certain threshold

value τ .
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The afore mentioned values will be generated for each individual trader by drawing

random numbers from uniform intervals [Tmin, Tmax] for T and [τmin, τmax] for τ . The

limits of such intervals represent another four parameters of the simulation.

Given that the above mentioned threshold values are randomly generated for each

trader, we can consider each fundamentalist as a unique trader. This fact is important

because such difference is an important source of heterogeneity in the market. In further

sections it is explained why such heterogeneity is important.

Fundamental value

There are several forms to implement the value that is going to be considered as the

fundamental one as it was explained on the previous chapter. For example, it is possible

that there is just one fundamental process for all the value traders like in [77], or it could

be the case where there are several fundamental processes like in [133].

We will use the same basic idea of a single fundamental process like in [77]. We assume

that the value perceived as the fundamental price of the risky asset is exogenously given.

Such fundamental value is a random process of the following form:

Vt = Vt−1 + ηt (4.9)

where ηt is a normal noise process with mean µη and standard deviation ση.

4.3.3 Technical traders

We consider technical analysis as a key feature for the modelling of the behaviour of this

group of agents, despite the open debate between academics and practitioners about it.

We believe that technical analysis is an important tool for decision making in investment.

Besides, there is strong evidence that technical analysis is being used extensively in

financial markets.

Financial forecasting using neural networks, genetic algorithms, genetic programming
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and other machine learning techniques has been a very dynamic field of study. We can

see some important work in the nineties and some innovative recent proposals [5], [18],

[19], [29], [41], [61], [63], [64], [62], [84], [83], [85], [195]. An always increasing number of

works testify the interest of the researchers and the financial industry on this buoyant

area.

Broadly speaking, the technical traders in our artificial market forecast if the price

is going to rise by a certain r% within a certain n number of days. For that purpose,

they will be equipped with up to twelve different technical and momentum indicators

to form investment decision rules. Such indicators are well known technical indicators.

We chose a short period indicator and a long period one because it is the way in which

they are used by technical analysts. We will give more detail regarding the indicators in

subsection 4.6.3.

Each technical trader owns a population of such investment decision rules, represented

by decision trees. The decision trees are randomly initialized and then evolved by an

evolutionary mechanism known as Genetic Programming (GP) [113], [117]. EDDIE ([41],

[195], [131], [194], [196], [148], [199], [197]) constitutes the basic platform to the design

of the investment strategy of this group of agents.

Genetic programming has been used in the past to model agents in artificial financial

markets [69], [68], [211], [53], [48] and [149].

It is important to point out that the agents could use any kind of financial information,

even including information considered as fundamental. However, we did not want to have

many exogenous sources of information and we decided to let the traders build their own

decision rules with technical and momentum indicators, considering that we were able

to generate them all just by using the price. Additionally, under certain (exogenous)

circumstances they will be able to behave like the fundamentalists.

This group of traders is the richest in behaviour and the most complex of the market

participants. Such traders are organized in heterogeneous groups and the agents inside

each group share all the same parameters. The heterogeneity among the groups will
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come from several sources: generation of limit orders, computational capability, informa-

tion, time horizon and desired rate of return. We will explain in detail such sources of

heterogeneity later in this section.

The technical agents within the same group will share the following set of parameters

and characteristics:

• Technical indicators

• Logical functions

• Relational functions

• Genetic Programming parameters

• Time horizon and desired rate of return

• Retraining condition

• Limit orders generation

• Fundamental behaviour.

4.4 Forecasting with EDDIE

We use the architecture for EDDIE explained in [195] and [131] for the elaboration of

the agents’ decision rules which recommend whether to buy, hold or sell. As is standard

with genetic programming, each agent is assigned an initial population of decision rules

randomly generated. These include well known fundamentals based forecasting rules or

trend following moving average type technical rules. Candidate individuals are selected

randomly, biased by their fitness, for involvement in generating members of the next gen-

eration. General mechanisms (referred to as genetic operators, e.g. selection, crossover,

mutation) are used to combine or change the selected candidate individuals to generate

offspring, which will form the population in the next generation.

In EDDIE, an individual is represented by a decision tree. The basic elements of such

decision trees are rules and forecast values. A single rule consists of one useful indicator
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Figure 4-1: Example of a decision tree.

for prediction, one relational operator such as “greater than”, or “less than”, etc, and a

threshold (real value). Such a single rule interacts with other rules in one decision tree

through logic operators such as “Or”, “And”, “Not”, and “If-Then-Else”. Forecast values

in this model are directions of price movements, either a positive trend (i.e. positive x%

return within specified time interval can be achievable) or negative trend (i.e. negative

x% return within a specified time interval can be achievable).

Figure 4.4 shows an example of one possible decision tree. In such figure we can see

that the root node is always an If-Then-Else node, the left child an If-Then-Else node is

a “condition” node. Additionally, there are two right children which could be either a

“decision” node or another If-Then-Else node. The rule that is being represented by the

decision tree in Figure 4.4 is the following one:

One of the conditions of the previous expression that specifies that the moving average

of the past twelve days should be equal to 0.98 in fact is verified in a range around

such value. It would be extremely unlikely that a randomly generated number could be

matched exactly by the evolution process and for that reason a range is used instead.

The type of node is going to become relevant when applying the crossover and muta-
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1 If ((MA 12 = 0.98)AND(NOT (TRB 5 < 0.25))) Then
2 Buy
3 Else
4 If(V OL 12 > 0.56) Then
5 Sell
6 Else
7 Hold
8 End if
9 End if

Figure 4-2: Example of a decision rule interpreted from a decision tree

tion genetic operators because it is precise to maintain the tree consistency. For example,

in the case that a mutation operation is going to take place and the selected node where

such mutation is going to happen is a “condition” node; then, the randomly generated

mutation must be a “condition” like node. The same should happen for the crossover op-

eration: there must be compatibility between the subtrees that are going to be exchanged

by the parents.

Recommendation to BUY at t follows from the prediction of a price rise (positive

trend) over a given period, recommendation to do nothing (HOLD) follows from the fact

that there is no evidence of a price rise or a price drop and recommendation to SELL

follows from the prediction of a price fall (x% negative trend). Note different returns

thresholds and horizons exist for different classes of traders. Since decision trees are

used to predict directions of price changes and make recommendations for trade, the

success or failure of recommendations can be categorized as a three-class classification

problem. Each prediction point for every decision tree can be classified into either a

positive position, a holding position or a negative position. For each decision tree, we

define RC (Rate of Correctness), and RF (Rate of Failure) as its prediction performance

criteria. Formula for each criterion is given through a contingency table in Table 4.1 as

follows:

Lets define: RC as the Rate of Correctness; and RF as the Rate of Failure.
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Table 4.1: A contingency table for three-class classification/prediction problem

Predicted Predicted Predicted
price rise no inf. price drop

(PBs) (PHs) (PSs)
BUY HOLD SELL

Actual # of True # of Actual Buy # Actual Buy
price rise Buys Predicted Hold Predicted Sell
(ABs)
BUY (TB) (ABPH) (ABPS)
Actual # of Actual Hold # of True # of Actual Hold
no inf. Predicted Buy Holds Predicted Sell
(AHs)
HOLD (AHPB) (TH) (AHPS)
Actual # of Actual Sell # of Actual Sell # of True
price drop Predicted Buy Predicted Hold Sells
(ASs)
SELL (ASPB) (ASPH) (TS)

RC =
TB + TH + TS

ABs + AHs + ASs
(4.10)

RF =
AHPB + ASPB

PBs
+

ABPH + ASPH

PHs
+

ABPS + AHPS

PSs
(4.11)

Each agent selects the decision tree which constitute trading strategy to buy or sell

that maximizes the fitness function

Γ(1) = ϕ(rc)RC − ϕ(rf)RF (4.12)

The fitness function involves two performance values, i.e. RC and RF, each of which

is assigned a different weight ϕ(rc) or ϕ(rf) respectively. While the fitness function can

guard against loss making positions, the population of decision trees from which agents

conduct their search may lead to investment income under-performance. One important

advantage of genetic programming is that we can bias the search mechanism by using

different values for such weights. However, we used a value of zero for the weight ϕ(rf).
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In other words, we used just the rate of correctness as the performance criteria to drive

the evolutionary mechanism.

4.5 Learning

Learning is a key factor in our simulation and as we were investigating the repercussions

of the type of the learning frequency on the endogenously generated price; we had to

verify that the learning process has been beneficial. To be more precise, learning should

enable the individual to improve her wealth in relation to the other traders.

Among the different types of agents that we have modelled in CHASM, the technical

traders are the only ones that will be able to learn during the simulation of the market.

The noise traders by definition do not learn and the fundamental traders are guided by

what we call the fundamental value of the stock.

To investigate this issue, we performed several experiments in the following way: on

each experiment we replicated one trader (technical) and followed both traders’ wealth

(the original and the replicated one) throughout the whole simulation. We set the repli-

cated trader to be able to retrain every 1000 steps of the simulation. We can see clearly

in Figure 4.5 that after the execution of the GP mechanism with the endogenously gen-

erated price, the replicated trader improved her wealth in comparison to the original

trader. We executed these experiments several times with different traders from different

groups and in the vast majority of the cases the replicated traders did better than the

original ones.

It is important to point out that in our case, the fitness measure used to drive the

evolution process was the rate of correctness. Some other fitness criteria could be used,

like the profitability of the agents’ trading strategies. Moreover, such classification mea-

sure can be translated into an improvement on the traders wealth. We consider such

a result as an important one in our research that can be stated in the following way:

a classification rate driving the evolutionary process has a direct impact on the agent’s
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Figure 4-3: Examples of wealth evolution with (red dashed line) and without learning
(blue continuous line).
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wealth. It is not obvious that a better classification rate leads to a better application

performance. Fortunately, in our case this is true.

4.6 Important Characteristics of CHASM

In this section we will describe in detail some of the most important features of CHASM.

The implications of changes in such important aspects of our model will be described by

experimentation in the next chapter.

4.6.1 Market and limit orders

When a person, a professional trader, a market maker or a corporation are trading on

a stock market, there are different ways to do so. After the decision making process of

any of such entities an order must be submitted to a broker (or the representant that is

trading on behalf of them). Essentially 2, there are two main types of orders:

• Market orders

• Limit orders

The market orders are buying or selling orders that must be executed at the current

price of the stock on the market. There is certainty about the execution of a market order

but uncertainty about the execution price. On the other hand, limit orders are buying

or selling orders in which the trader specifies the price at which she is willing to trade

(such prices are called bid or ask prices). In the case of limit orders, there is certainty

about the execution price, but there is no certainty about the execution of the order.

In order to have a complete and realistic investment strategy, we incorporated certain

types of limit orders in addition to the market orders to model an exit strategy for the

agents. In CHASM, there are basically two types of limit orders: profit taking limit

orders and stop loss limit orders.

2there is a number of other types of orders, but it is not our intention to give a full account of them
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The profit taking limit orders are orders for selling that are sent after a purchase

of a stock takes place. The asking price for such limit orders must be higher than the

purchasing price that originated the profit taking limit order. The basic idea behind such

order is to lock a certain profit realization for the trader. However, there is no certainty

of the execution of such type of orders.

The stop loss limit orders are orders for selling a stock that is being held by an investor.

Such order becomes a market order after the price is at or goes below a threshold price

(stop price) defined by the investor. The basic idea behind such limit orders is to try to

limit the loss of an investment made by the trader.

The profit taking limit orders are incorporated in our model to provide the agents’

with a complete investment strategy. To be more specific, if the agent forecasts that the

price is going to rise and he buys now a certain amount of shares, she would have to sell

them whenever the price actually reaches such forecasted increase. On the other hand, if

the price does not rise beyond her forecast she should sell at the end of her time horizon

due to budget constraints.

The stop loss limit orders are incorporated as well as part of an exit strategy for our

agents. The generation of such orders and the profit taking ones during the trading has

important repercussions on the dynamics and the statistical properties of the price as we

will see on the experiments reported in the next section.

4.6.2 Fundamental trading

In addition to the incorporation into the market of fundamental traders, CHASM al-

lows us to incorporate fundamental like behaviour on top of the technical traders. This

characteristic of the technical traders in our model can be justified by arguing that in

real life some traders do use technical analysis in conjunction with fundamental analysis.

These traders know that the price of a certain stock is well beyond a reasonable value

(fundamental value); however, they still follow the trend a little bit longer (short time

horizon) in order to make a profit out of it. In [186] the authors report that more than
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Indicator Short period Long period
Price moving average 12 50
Trading breaking rule 5 50
Filter rule 5 63
Price volatility 12 50
Momentum 10 60
Momentum moving average 10 60

Table 4.2: Indicators used by the agents to create investment rules

90 percent of dealers in the foreign exchange market use some form of technical analysis

and in short time horizons, technical analysis predominates over fundamental analysis.

In CHASM, we are able to have technical (fundamental) traders that behave like

fundamental (technical) traders under certain specific circumstances. These traders will

behave like technical traders until the price is well beyond a reasonable (fundamental)

value. Then, they trigger the fundamental trading until such discrepancy disappears.

We will report the experimental implications of such behaviour later in this work.

4.6.3 Indicators

The indicators used by the technical traders to forecast increases or decreases in the

price are a very important aspect of our market. Such indicators can make a substantial

difference on the behaviour of the endogenously generated price.

The indicators used for the current work consist of technical, momentum and volatility

indicators. In Table 4.6.3 we can find the list of different indicators and their periods.

We use a short horizon and a long horizon indicator because that is the way in which

they are used by practitioners of technical analysis.

Given a price time series {P (t), t ≥ 0} and given a period of length L, we will define

our interpretation of some popular technical indicators as follows:

The Moving Average indicator is defined as:

MA(L, t) =
P (t)−

(
1
L

∑L
i=1 P (t− i)

)

1
L

∑L
i=1 P (t− i)

(4.13)
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The Trading Breakout indicator is defined as:

TRB(L, t) =
P (t)−max {P (t− 1), ..., P (t− L)}

max {P (t− 1), ..., P (t− L)} (4.14)

The Filter indicator is defined as:

Filter(L, t) =
P (t)−min {P (t− 1), ..., P (t− L)}

min {P (t− 1), ..., P (t− L)} (4.15)

The Volatility indicator is defined as:

V ol(L, t) =
σ (P (t), ..., P (t− L + 1))

1
L

∑L
i=1 P (t− i)

(4.16)

where σ, represents the standard deviation.

The Momentum indicator is defined as:

Mom(L, t) = P (t)− P (t− L) (4.17)

The Moving Average Momentum indicator is defined as:

MomMA(L, t) =
1

L

L∑

i=1

Mom(L, t− i) (4.18)

We chose such indicators mainly because they proved to be useful to develop invest-

ment decision rules to forecast rises and drops of the price in previous works like [5], [19],

[84], [83] and [85]. However, due to the design of the forecasting mechanism, there is

no reason to stop us using some other information like information from the limit order

book, market microstructure information, fundamental information, etc. Additionally,

we performed a sort of standardization in order to avoid that the range of numbers,

generated by the GP mechanism, to be very large and therefore increasing the size of the

search space.

There are some different ways in which the moving averages could be built (like
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exponential moving averages) for providing the input to the forecasting mechanism. The

advantage of the exponential moving average in comparison with simple moving average

is that the later tends to signal twice for the outlying data. Nevertheless, our work is not

designed to provide the ultimate and most novel techniques in financial forecasting.

Further in this work we will explore experimentally the implications of changes on

the information (modelled here by the above listed indicators) provided to the different

groups of technical traders.

4.6.4 Computational Capability

In CHASM we model the computational capability of the agents mainly on the basis of

the GP mechanism. The two most important parameters that would determine the level

of intelligence of the agents are:

• The population size

• The number of generations.

Such parameters of the GP mechanism determine the intensity of the search engine

to look for new investment rules. If the population size is rather small then, the search

over the set of investment rules will be severely limited giving us as a result rather poor

investment rules. On the other hand, if the number of generations is small then, the

evolutionary mechanism will have little time to refine the search over the huge search

space and as result we will have again rather poor investment rules.

We will further describe the implications of variations on the computational capability

provided to the different groups of agents by the experiments described in the next

chapter.

4.6.5 Desired return and time horizon

The technical traders will be organized in groups that will share common characteristics,

as it has been described previously. Among such characteristics we have the desired rate
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of return and the corresponding time horizon to achieve such rate of return. These two

characteristics (parameters) proved to be of central importance on the behaviour of the

market, since our GP agents work as classifiers.

The majority of the simulated markets possess agents that do not consider multi-

period preferences and the agents share the same planning, forecasting and decision

making horizon [118]. CHASM is different to most of the previously designed models in

the forecasting mechanism and the heterogeneity of time horizons.

The GP forecasting mechanism of our agents works, broadly speaking, by classifying

the training cases in three different classes: buy, sell or hold. Such classification depends

on the time horizon provided as the mechanism verifies for each data point if in the near

future (time horizon) effectively, there was a rise (drop) on the price by more (less) than

the desired rate of return.

If the selection of such quantities is unreasonable, it will cause the classifier to be

biased towards a certain class. Therefore, creating unrealistic (unreasonable) investment

rules and having an unrealistic price and statistical properties of the returns.

The next chapter describes some experiments that were designed to test the impact

that this feature of CHASM has on the dynamics of the simulation.

4.6.6 Trading proportion

The trading proportion is a parameter of the market that controls the proportion of the

asset or cash that the traders would commit on each of the operations that they will

perform during the trading rounds. Such trading proportion is a quantity that we can

use to model the degree of cautiousness of the agents in our market.

The trading proportion proved to be of central importance in our simulations. The

implications of this important feature of our market will be tested experimentally and

described in the next chapter.
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4.6.7 Fitness function

The fitness function is a very important aspect of our market, we use a prediction accuracy

fitness function to drive the GP mechanisms of each of the agents. The fitness function

used as a rate of accuracy was the rate of correctness defined as the number of correct

classification over the total number of cases. The memory of the traders is going to be

of the same size as the size used for the initial training. There exists the possibility of

using some other ingredients (like the rate of failure) on the fitness functions to bias the

search over the solution space. Some interesting changes to the fitness measure have been

implemented and tested in [132].

The flexibility on the manipulation of the fitness function due to the original design of

the GP forecasting mechanism is one of the main advantages that we consider important

in the use of GP as a successful technique to perform financial forecasting.

4.7 CHASM: The software

In this section we will briefly describe CHASM from the Software engineering point of

view. We will describe its main components and we will explain the reasons why such

platform can be easily extended to test different economic hypotheses.

4.7.1 Design

From the very beginning, the software was designed having in mind the following desired

properties:

• The software should be easy to modify in order to incorporate some new features

• The software should be easy to extend to include some new functionalities

• The software should be highly parameterized in order to allow the user to execute
different scenarios.
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Figure 4-4: CHASM’s main screen.

Later on the project, we realized that the implementation of a a Graphic User Interface

(GUI), was necessary to facilitate the use of the program as it turned out to be very

difficult to trace changes on the parameters in a systematic way.

The CHASM’s GUI provides access to all the parameters and plots the endogenously

generated price on run-time. This feature of the software facilitates the experimentation

for the user of the platform. For example, if for a particular configuration the user

observes that the price is not realistic at all; then, she can stop the simulation and

change the parameters to start another execution of the market. In Figure 4.7.1 we can

see a screen shot of the applet after an execution of the market has finished.

The main program is a Java applet that is going to control the execution of the

most important class: Market. The class Market is going to be the responsible to create
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Figure 4-5: CHASM java classes.

and maintain all the agents. Additionally, such class is going to store all the necessary

statistics for further analysis and is going to assure market clearing. In Figure 4.7.1 we

can observe CHASM’s most important classes and their organization.

We based the design of the agents that behave like technical traders mainly on EDDIE

[131], [195], [194] and [196]. In Figure 4.7.1 we can observe the TechnicalTrader java

class and its main components. It is worth saying, that such class is going to run a GP

mechanism (an EDDIE like mechanism). This means that each technical trader possesses

a forecasting mechanism and that is the reason why our market can be considered a

Multiple Population Genetic Programming (MP GP) market.

CHASM will write on text files several output files in order to allow further analysis

of the execution of the market. In addition to the endogenously generated price and

corresponding indicators, the platform is going to generate output for the three different

types of traders for each trading round. Finally, the market is going to generate a text

file with the following information for each trading round:
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Figure 4-6: Technical Trader java class.

• Bids

• Offers

• Price

• Fundamental Value

• Total Wealth

• Average Wealth

• Total Cash

• Total Shares

• Number of Retrained Traders

• Number of Sellers

• Number of Buyers

• Number of Holders
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4.7.2 Flexibility and extensibility of the platform

The platform that we have designed is certainly very flexible as we can see from the

different features that we can model on each of the groups of technical traders. We can

model the cautiousness of the traders with the trading proportion parameter. We can

easily change the proportion of each type of trader on the market. We could assign

specific probabilities to the noise traders (bias the trader to buy with higher probability

than to sell or hold). We can generate or not limit orders. It is possible as well, to

model information asymmetries by assigning different indicators to each of the groups.

We can model different computational capabilities for the traders. Moreover, we can

assign different memory sizes to each group of agents.

Regarding the extensibility of the software, due to its object oriented design, it is rel-

atively easy to incorporate new functionalities. For example, it is very easy to create and

use another price determination equation (currently, the market has two different price

determination equations). It is easy to incorporate other types of traders. There exits

the possibility to report more information for each trading round or trader. Additionally,

we could use more indicators or another type of information to feed the technical traders.

4.7.3 Implementation

The market will operate as if each trading round is one day. This is due to the fact that

our technical traders were trained with daily closing prices. However, there is nothing

to prevent us from interpreting the time in another scale or train the agents with high

frequency data. The market participants will be able to trade on every single round of

the market with some exceptions to be explained next.

Noise traders will take a decision to buy, sell or do nothing based on the probabilities

assigned for each decision. They will be able to participate in the market on every single

iteration of the simulation program.

The fundamentalists enter on a buying (selling) cycle if there is a difference between

the stock’s price and the fundamental value beyond certain threshold value T . They will
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stay in such cycle until the difference is smaller than another threshold value τ . After

the return of the stock’s price to the fundamental value, this type of traders will review

again if there exists a difference between the price and fundamental value and so on.

The technical traders can change their position on each trading round based on their

forecasts, unless they have some pending limit orders to execute. Once they have com-

pleted the round trip (the investment decision and the exit strategy), they can take

another decision based on the generated rules. A more complex (realistic) scheme of

investment could be implemented. For example, the agents could be allowed to take

a decision on each time period. However, the analysis of such scheme could become

impossible. For that reason, it is not uncommon to see even simpler schemes in other

works.

Once all the market participants make their bids and offers, we calculate the excess

demand and then the price can be updated. Afterwards, each agents’ orders are partially

satisfied by a proportion that clears the market considering the new price. Finally, the

holdings of the risky asset and cash are updated for each of the traders that participated

in the trading round.

After all the above steps are executed, each technical trader reviews its retraining

condition. In the model there exist two types of conditions for retraining: in fixed time

intervals and in an endogenous way known as Red Queen retraining.

In the case that the retraining periodicity is set to be in fixed time intervals, the

trader launches the GP mechanism creating the initial population of rules with half of

her current population and the other half randomly generated.

The case of the Red Queen retraining is more complex: retraining for a certain

agent will take place whenever the agent’s wealth falls below the average wealth. The

agent’s initial population for each retraining process is generated in the same way as

was described for the retraining with fixed periodicity. The implications of such forms of

retraining are going to be described in Chapter 7.
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4.7.4 Parameters

We have created a flexible model in which we have a large number of different parameters

for us to explore and analyze different phenomena in financial markets. These parameters

are going to be divided mainly in two different classes: market parameters and traders’

parameters.

Market Parameters

The market parameters control some of the general parameters of the simulation, they

determine for example the proportion to invest, the number of periods of trading, etc.

Below is a list of the relevant market parameters:

• Number of trading periods

• Proportion to trade

• Price constants

• Random seed

In Figure 4.7.4 we can observe the parameters that are available to the user, with the

exception of the technical traders parameters’ window that is going to be shown later in

this work.

Traders’ parameters

The different types of traders possess different parameters. For example, the noise traders

only have three parameters: the probability to buy, the probability to sell and the prob-

ability to do nothing. On the other hand, the fundamentalists have four constants as

parameters: Tmin, Tmax, τmin and τmax. All the different traders share as parameters the

initial number of shares and the initial amount of cash available at the beginning of the

simulation.
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Figure 4-7: Parameters’ windows.
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The group of technical traders is organized in several groups. Within such groups

they share the same parameters. This organization allowed us to model a key factor

in our research: heterogeneity. It is possible to split the parameters of the technical

traders in three different types: group parameters, information parameters and genetic

programming parameters.

The most important group parameters are:

• Desired rate of return

• Time horizon

• Memory length

• Retraining condition

• Fixed retraining periodicity

• Fitness function type

• Limit order to sell generation

• Limit order to buy generation

• Fundamental behaviour

• Tmin, Tmax, τmin and τmax

We used a memory length of around three years and we did not changed or scaled

it during our experiments mainly because we wanted to maintain a certain prediction

accuracy and our previous experience on this issue is that three years make a good

training data set.

The information parameters refer to the technical indicators that the agents can use

to generate the investment rules during the execution of the GP mechanism. With the

parametrization of the indicators we can model different types of technical traders. For

example, we can have moving average or momentum traders.

Within the parameters of the technical traders, the GP ones constitute an important

set for the simulation. Such parameters will determine how close to a competent trader
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the agents are. For example, if the traders are equipped with a limited population size and

a small number of generations, there is little chance that the traders will create accurate

investment rules. The most important parameters that control the genetic programming

mechanism are:

• Population size

• Number of generations

• Mutation rate

• Crossover rate

• Initial tree depth

• Maximum tree depth

• Tournament size

• Probability of selecting the best individual of the tournament

• Tarpeian constant

In Figure 4.7.4 we can observe the parameters’ window for one of the groups of tech-

nical traders. In such window we can observe the GP related parameters, the information

parameters, the retraining conditions, the fundamental behaviour condition and the limit

orders generation options.
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Figure 4-8: Technical traders parameters’ window.
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Chapter 5

Minimal Conditions for Stylized

Facts in CHASM

This chapter describes the experimental results performed in order to obtain a realistic

price behaviour. We seek to discover the minimal conditions under which stylized facts

arise in CHASM. It is worth emphasizing that with a complex model it is not a trivial

task to search for such conditions. Furthermore, it is the first work (to our knowledge)

in which an exhaustive search for the minimal set of conditions under which realistic

price dynamics emerge. As it was pointed out in section 3.2, the complexity of some

artificial markets prevents the researcher from knowing which aspect of her model is the

responsible for the emergence of stylized facts. In [120] LeBaron says: “It is important in

agent based models not just to replicate features of real markets, but also to show which

aspects of the model may have lead to them”

Regarding the exploration of the parameters and main features, we performed a full

exploration of each of the parameters involved on the simulation. For example, in the

case of the trading proportion parameter we scaled it from one percent to one hundred

percent. We presented the most relevant examples for illustrative purposes. In the case

of the limit orders, their exploration was easier as there are only eight possible variations

on this feature. In the case of the fundamental behaviour we turned on and off for every
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single group of the technical traders. We proceeded on the same fashion for all the above

mentioned parameters and features. Nevertheless, we will only present the results of the

most relevant cases.

5.1 Parameters and features exploration

In the previous chapter we described the important characteristics and parameters of

CHASM. Due to the different possible combinations of such features and parameters,

a systematic approach was necessary to discover promising areas under which we could

obtained the desirable properties of the price.

In the following sections of this chapter we will first describe the characteristics of

what we call the base case and then, we will describe the experimental results of changes

on the other features and parameters of the model. In such case, we believe that we found

the characteristics and parameters under which a realistic price behaviour was obtained.

5.2 The base case

A large amount (one for each trader) of controlled experiments were conducted before

obtaining a price that resembles the dynamics present in real prices. In this section, we

present the results of a parameter setting which reproduce statistical properties of stock

returns. This setting will be used as a base case for studying the effects of changing the

model along individual dimensions listed in the previous chapter.

To illustrate the complexity of the parameter selection in our model we can see Figure

5-1 where we can visually contemplate the sort of prices that were generated under the

different parameter settings. We can consider the setting at the centre of picture our

basic case. In such case, in addition to the realistic looking price, the statistical properties

exhibit some of the stylized facts. From there, we explored one by one the individual

dimensions to examine the implications of changes along them.
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Figure 5-1: Artificial Stock Market Parameter Study

At the centre of Figure 5-1, we can see what we will call from now on the Base Case.

Such case has the following parameters and characteristics:

• Seven different groups of technical traders

• The groups have different indicators

• The groups share the same desired rate of return (5.5%) and time horizon (14 days)

• The agents trade 8% of their current holdings or use the 8% of their cash to buy
more shares

• The agents generate both types of limit orders

• The groups have the same computing capability

• There is no learning taking place

• Group number seven of technical traders behaves like value traders under certain
circumstances

Besides the indicators set used by each group of traders and the fundamental be-

haviour exhibited just by one group, everything else is the same for all the different
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groups. The indicators were assigned in the following way: group one was assigned with

the two moving average indicators, group two was able to use the trading breakout in-

dicators, group three had the filter indicators, group four used the volatility, group five

used the momentum indicator, group six used a moving average of the momentum indi-

cator and finally group seven used all the indicators. The above described distribution

of indicators for each group, was done with the purpose of having heterogeneity on the

information used by the agents to construct their investment decision rules. Although

it was done in a very basic way, this was our implementation of information asymmetry

between the agents.

In Figure 5-2 we can see the price and the log returns of the Base Case. In such

figure we can see that the price resembles the dynamics of the prices in real markets

and the log returns capture the well known phenomenon of volatility clustering. Such

phenomenon can be investigated quantitatively and in Figure 5-3 it is possible to see

the autocorrelation for different lags of the log returns, the absolute log returns and the

squared log returns. In the last section of this chapter we will see the statistical properties

of such base case in comparison with the other explored cases.

We can observe in Figure 5-3, that the autocorrelation of log returns is around zero,

as it should be. Additionally, we can see in the same figure that for the absolute and

squared log returns, there is a positive autocorrelation that decays slowly but remains

positive even for lags larger than eighty. However, such positive autocorrelation is never

close to zero as we saw on the cases of the FTSE100 and the Barclays bank’s share. The

observed autocorrelation persistence means that there is still something missing in order

to get the autocorrelation of the absolute and squared return close to zero for large lags.

In Figure 5-4 we can see the wealth evolution between groups and the final wealth

distribution between the agents for the Base Case. In such figure we can appreciate

that the most successful group is group one and the least successful is group seven. The

main differences between such groups are the information set used and the fundamental

behaviour that the last group has activated. In the final wealth distribution we can see
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Figure 5-2: Price and log returns for the Base Case.
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Figure 5-3: Autocorrelations for different lags of the log returns, absolute log returns and
squared log returns on the Base Case.
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Figure 5-4: Base Case wealth distribution

that the half of the population ends up with low wealth and probably the traders in one

of the groups (group one) end up with the biggest share of the wealth.

5.3 Dimension exploration

In this section we will describe the different experiments that we performed in order to

test the relevance of the different aspects of our market. For each relevant feature of

our market we will report the obtained results and we will draw some conclusions about

the importance and the impact of each of such features on the price and on the wealth

distribution.

5.3.1 Limit Orders

The inclusion of limit orders on the agents’ strategic behaviour was done as a result of

our findings during the first stage of our experiments as it was described in the previous

chapter. The prices that we were obtaining did not show interesting behaviour and even

less realistic statistical properties of the log returns.

We decided that a more complete strategy was necessary to obtain realistic price dy-
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namics. Our agents were equipped with a powerful forecasting mechanism. Nevertheless,

after forecasting that the price would rise and buy some assets they did not realized their

profits that they would get as a reward for their forecasting ability.

The above mentioned reasons are the cause of including an exit strategy for our agents

in CHASM. Such exit strategy will be modelled by two different types of limit orders:

profit-taking limit orders and stop-loss limit orders.

Experimental design on limit orders

In order to test the relevance and the impact of the inclusion of limit orders on the agents’

trading strategy we designed some experiments in which we turned on and off the use of

one or both types of limit orders. We departed from the base case by no generating both

limit orders everything else remaining the same.

Results on limit orders

In Figure 5-5 we can see the price and the log returns of the Base Case without limit

orders being generated. We can observe by simple inspection from such figure that the

price dynamics are not realistic and that such orders represent an important element in

the generation of dynamics close to reality. It is important to stress that such orders

represent a complete investment strategy for the traders. For example, it would be

unreasonable to buy some shares today if we forecasted that the price was going to rise

and later on, keep them without realizing the profit that we could get.

We can observe under this scenario that the price has huge upwards jumps and sud-

den dramatic crashes. Additionally, after around the 4500th period, we can observe a

monotonic behaviour that is reflected on the volatility as well.

In Figure 5-6, we can observe the behaviour of the autocorrelations for different lags

of the log returns, absolute log returns and squared log returns. Considering the two

examples on Chapter 2, we can appreciate that the behaviour of the autocorrelation for

the log returns is not like in those examples (oscillating around zero). Such autocorre-
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Figure 5-5: Price and log returns for the Base Case without limit orders.

lation is even negative for lags between sixty and ninety. The autocorrelations for the

absolute and squared log returns do not do well neither, for short lags they are very high

and decay very sharply to zero. However, such autocorrelations remain positive even for

large lags, particulary the autocorrelation for the absolute log returns.

In Figure 5-7 we can see the wealth evolution between groups and the final wealth

distribution between agents. We can infer from such Figure that the group with the

longest time horizon is not subject to the ups and downs of the price, their wealth

remains stable during the trading rounds and it is the group that ends up with the

highest wealth. In this case the groups with the highest trading frequency end up being

the groups with less wealth.

Conclusions on limit orders

The inclusion of limit orders can be considered as an important factor to obtain the

desired statistical properties of the log returns as we can observe from the experiment

described on the previous subsection. In the experiment that we performed, we can
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Figure 5-6: Autocorrelations for different lags of the log returns, absolute log returns and
squared log returns on the Base Case without limit orders being generated.
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Figure 5-7: Base Case without limit orders wealth distribution
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observe that the omission of the limit orders gives as a result very unrealistic price

dynamics. We can see that the price and log returns do not behave in the way that real

prices and log returns do. The price is far from the prices in real markets and the returns

do not capture the phenomena of volatility clustering. Moreover, after a certain period,

the volatility of the returns becomes constant. Additionally, at the end of the price’s

graph we can see that there was a sort of consensus between the traders and the price

started to increase without reversion taking place. This phenomenon might be caused

by the lack of a complete investment strategy as it was explained before. In other words,

the agents were not selling to make profits after they bought with the purpose of making

some profits.

5.3.2 Fundamental trading

Fundamental behaviour is one of the aspects that most of the Artificial Financial Markets

possess. It is a very important mechanism, in our experience, in order to avoid the price

to behave in a very simplistic fashion. Before including such characteristic in our market,

we had prices that were either always increasing or decreasing until they collapsed. We

modelled the fundamental behaviour as it was designed in [77], on top of the technical

trading behaviour. This means that the agents will be trading like technical traders until

the price departs beyond a certain threshold value from what they consider to be the

fundamental value of the risky asset.

The decision to enhance the technical traders with fundamental-like behaviour is

based on the behaviour of some traders as it is reported in [186]. In such paper the

authors report that some traders acknowledged that in various occasions, although they

believed that the price was departing from the fundamental value; they would still chase

a trend (a little bit longer) in order to make a profit out of it.
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Figure 5-8: Price and log returns for the Base Case without fundamental trading.

Experimental design on fundamental trading

In order to test the impact of triggering the fundamental behaviour, we performed some

experiments in which we activated or deactivated such behaviour in just one of the groups.

Departing from the base case, we turned on and off the fundamental-like behaviour for

the group number seven everything else remaining the same. We did not imposed such

mechanism in all the groups for two reasons: first, we wanted to have certain heterogeneity

and second, we wanted to prevent that the endogenously generated price would follow

too closely the exogenous fundamental value as it has happened to us in the past.

Results on fundamental trading

In Figure 5-8 we can see the price and the log returns of the Base Case without fun-

damental behaviour taking place in any of the groups. We can observe that the price

behaves somehow in a “reasonable” way and we can see on the log returns that they

capture the volatility clustering and they look “reasonable” as well. To verify that, we

have to recur to Figure 5-9.
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Figure 5-9: Autocorrelations for different lags of the log returns, absolute log returns and
squared log returns on the Base Case without fundamental behaviour

In Figure 5-9 it is possible to observe the autocorrelation for different lags of the log

returns, absolute log returns and squared log returns. In such figure, we can see that

the autocorrelations of the log returns are around zero (which is fine). Additionally, we

have that the autocorrelations for the absolute and the squared log returns are positive

for short lags and we observe a decay that takes them close to zero. However, such

autocorrelations remain positive even for lags larger than ninety.

In Figure 5-10 we can see the wealth evolution between groups and the final wealth

distribution between the agents. We can see in such figure that the group with the longest

time horizon has a stable wealth during the simulation and that group four ends up with

the highest wealth among all the groups.

Conclusions on fundamental trading

The inclusion of the fundamental like behaviour in one of the groups of the agents was

enough to help us in our search for the right parameters in order to reproduce stylized

facts. There was no need to trigger such behaviour in all the different groups of agents

84



0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3
x 10

5

 

 
g1 g2 g3 g4 g5 g6 g7

(a)

0 1 2 3 4

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

Wealth

N
um

be
r 

of
 T

ra
de

rs

(b)

Figure 5-10: Base Case without fundamental trading wealth distribution

because we would get that the price stays too close to the fundamental value. Despite

the attempts that we made with other groups, the price behaved much better if the

fundamental behaviour of group seven was activated, this might be caused by the fact

that the group seven has the longest time horizon.

We observed that despite departing (in the fundamental behaviour sense) from what

we consider to be our base case, we still get fairly realistic dynamics. This particular

experiment encouraged us to perform some further experiments in which no fundamental

behaviour took place. Such experiments will be reported in the next chapter.

5.3.3 Indicators

The indicator set used by each of the different groups of agents is one of the most relevant

factors that we identified in order to reproduce stylized facts. We used the indicator set

to model information asymmetries on the different groups of agents.

Experimental design on indicators

We had two different possibilities: first, as it was described for the base case, we could

have that each group possess one specific type of indicator and one of the groups could
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Figure 5-11: Price and log returns for the Base Case with homogeneous indicators set
for all groups.

possess them all; second, all the different groups could build their decision rules with all

the available indicators.

We tested the two different approaches by departing from the Base Case and we either

provided all the groups with all the available indicators or assigned the different types of

indicators in the way that was described for the Base Case.

Results on indicators

In Figure 5-11 we can see the price and the log returns of the Base Case with homogeneous

indicators sets for all groups. Despite the appearance of the endogenously generated price,

we can observe that the returns do not resemble the returns present in real markets. The

returns generated in our experiments for this case started to present lower volatility at

later stages of the simulation. Additionally, we cannot see volatility clustering in our

generated returns. In Figure 5-12, we can see this more clearly.

In Figure 5-12, we can see how the autocorrelation for the log returns does fine in

86



0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

Lags

A
ut

oc
or

re
la

tio
ns

 

 

Log returns
Absolute log returns
Squared log returns

Figure 5-12: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on the Base Case with homogeneous information for all groups.

comparison with the examples in Chapter 2. However, we observe a high autocorrelation

for the squared and the absolute log returns that remains positive without decay. There-

fore, this experimental setting fails to replicate the behaviour of the autocorrelation for

the squared and absolute log returns.

In Figure 5-13 we can see the wealth evolution between groups and the final wealth

distribution between the agents. We cannot see any particular aspect regarding the

wealth evolution between groups, except that it seems that the groups “tracked” the

price. This was probably due to the fact that the agents were mostly holding their shares

and willing to buy more. As a result the price observed an upward trend.

Conclusions on indicators

The assignment of the different types of indicators proved to be an important factor in

our search for stylized facts. We started to note with these experiments that having

more heterogeneity helped us to get more interesting price dynamics. Although we could

observe interesting dynamics, they were not as “good” as is the Base Case in which the
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Figure 5-13: Base Case with homogeneous indicators set for all groups wealth distribution

different groups of traders were provided with different indicators for each group. This

set of experiments helped us prove the importance of heterogeneity in CHASM.

5.3.4 Computational capability

Computational capability among the agents was modelled in CHASM with two of the

most important parameters of the GP mechanism: population size and number of gener-

ations. We wanted to test the relevance of asymmetries in computing capability among

the agents and with that purpose we endowed the agents in different groups with different

population sizes and we varied the number of generations as well. There is no other work,

to our best knowledge, in which the agents are organized in groups of different computa-

tional capability. It can be argue that ours is a naive approach; nevertheless, we believe

that it is necessary to study in different ways how to depart from the representative agent

paradigm.

Experimental design on computational capability

Departing from the base case, we assigned different groups with different computational

capabilities. Group one was assigned with a small population size and a small number of

88



generations, group two was assigned with larger population size and a number of genera-

tions in comparison with group one, group two had larger population size and number of

generations than group two, group three had larger parameters than the previous group,

group four had the largest population size and number of generations. From group five

onwards, we started to reduce both parameters again. Group number four was assigned

the parameters with the values that we used when we wanted competent traders. Such

values were used whenever we modelled homogeneity in computing capability among the

groups.

Results on computational capability

In Figure 5-14 we can see the price and the log returns of the Base Case with hetero-

geneous computational capability for all the groups. In such figure, we can see that the

price behaviour for this experimental setting was the most unrealistic of all our experi-

ments. We can even observe changes on the price by more than 600%. Such dramatic

changes, prevented us from getting a full size experiment. Moreover, on a huge number

of experiments with different random seeds the price always collapsed. This is the reason

why we are reporting the results of this experiment with less than five thousand data

trading rounds.

In Figure 5-15, we can observe a quite atypical behaviour of the autocorrelations for

the absolute and squared log returns. The autocorrelations for the squared returns are

practically zero for all lags and autocorrelations for the absolute log returns decay sharply

to zero. On the other hand, the autocorrelations for the log returns behaves on a realistic

way.

In Figure 5-16 we can see the wealth evolution between the groups and the final wealth

distribution between the agents. We can see on the wealth evolution between groups that

there are two groups (Group 1 and Group 5) with constant wealth on most of the trading

rounds. Such behaviour is extremely unlikely and very atypical in comparison with all

the other experiments.
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Figure 5-14: Price and log returns for the Base Case with heterogeneous computational
capability for each group.

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Lags

A
ut

oc
or

re
la

tio
ns

 

 

Log returns
Absolute log returns
Squared log returns

Figure 5-15: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on the Base Case with heterogeneous computational capability.
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Figure 5-16: Base Case with heterogeneous computational capability for each group
wealth distribution.

Conclusions on computational capability

Despite our initial belief that heterogeneity in general and on computing capability in

particular, would help us to achieve realistic market dynamics, we observed that hetero-

geneity in the computing capability did not improved the statistical nature on the price

and log returns. It was the other way around, we observed an unrealistic price behaviour.

We believe that we need agents that are competent enough in order to create a realistic

artificial market.

5.3.5 Desired return and time horizon

The desired rate of return and the time horizon are two very important aspects of our

model. In fact, these two parameters will rule the creation of investment rules during the

evolutionary process.
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Experimental design on return and time horizon

In order to test the impact of such parameters on the behaviour of the price, we performed

several experiments in which we either had homogeneity among the different groups (like

in the Base Case) or we had heterogeneity in those two parameters. We have to stress

the importance of a careful selection of both parameters. For example, if for a particular

group, we programmed the traders in the group to ask for a large desired return on

their investment, then it was unreasonable to assign them a short time horizon. Such

unreasonable selection of both parameters could lead to unreasonable behaviour of the

agents, like agents that buy all the time or agents that do nothing the most of the time.

In other words, lets assume that we want to get a 20% return, clearly this is very difficult

to observe in real markets. However, if we want to achieve this in five days this is almost

impossible to observe. The result of such selection would generate training data in which

the class that would have the majority is the “Do Nothing” class 1

Results on return and time horizon

In Figure 5-17 we can see the price and the log returns of the Base Case with heteroge-

neous time horizon and expected return for all the groups. In such figure we can observe

an interesting price and the returns present volatility clustering. We will observe later in

this chapter the statistical properties of this experimental setting. Again, what we can

infer from this setting is that heterogeneity is very important to emulate the properties

of real prices.

In Figure 5-18, we can see that despite the somehow realistic behaviour of the auto-

correlations for the log returns, the autocorrelations for the absolute and squared returns

is highly positive and remains in such way for all the reported lags. We can say that

we would like to observe that the autocorrelations for the nonlinear functions of the log

returns to present higher decay.

1Remember that the agents are trying to classify each price point to belong to the classes: “Buy”,
“Sell” and “Do Nothing”
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Figure 5-17: Price and log returns for the Base Case with heterogeneous desired return
and time horizon for each group.
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Figure 5-18: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on the Base Case with heterogeneous desired rate of return and
time horizon.
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Figure 5-19: Base Case with heterogeneous desired return and time horizon for each
group wealth distribution

In Figure 5-19 we can see the wealth evolution between groups and the final wealth

distribution between the agents. We can observe from such figure that in the same way,

as in previous cases, the groups with the longest time horizon end up with the highest

wealth and such wealth is not subject to the fluctuations of the price. In the final wealth

distribution graph we can see that the agents in the last group end up with the highest

wealth.

Conclusions on return and time horizon

The selection of the desired rate of return and time horizon parameters for each of

the different groups of agents is a very important factor that has a clear impact on the

market dynamics in CHASM. Despite the fact that in the base case we have homogeneity

in such parameters (among the different groups), when we performed experiments with

heterogeneity (in such parameters) the price dynamics remained realistic and interesting.
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5.3.6 Trading proportion

The trading proportion parameter could be used to model how cautious or aggressive

the agents are in trading terms. If we wanted to model rather conservative agents, the

trading proportion parameter would be close to 1%. On the other hand, if we wanted to

model aggressive trading, such parameter would be close to 100%. We use the same idea

as in [89], but we report the results of different values for such parameter.

Experimental design on trading proportion

As we can see from Figure 5-1, in the Base Case the trading proportion is 8%. We varied

then the trading proportion parameter in order to test the impact of such parameter on

the market dynamics. The changes on such parameter were essentially in one direction,

this means, we increased the value of such parameter above 8% because we did not have

significant changes to report with smaller trading proportions. However, we must stress

that changes in such parameter were closely related to the parameter λ (market depth)

on the price determination equation.

Results on trading proportion

In Figure 5-20 we can see the price and the log returns of the Base Case with a trading

proportion of 20%, 30% and 40%. In Figure 5-21 we can observe the same Base Case

with 50%, 60% and 70% trading proportion. Finally, in Figure 5-22 we have the same

case with 80%, 90% and 100% trading proportion. From such figures we can see that

when the trading proportion is getting close to the 100% value, the dynamics worsen and

the log returns can take unreasonable values. For example, in one of the cases (90 %

trading proportion) there are values for the log return of less than -1. Such values would

imply a drop on the price of more than a seventy percent!

In Figure 5-23, we can see the autocorrelations of the log returns, the absolute and

squared log returns for different trading proportions. In Figure 5-23(a), we can see that

the behaviour of the autocorrelations of log returns for a trading proportion of 30% is
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Figure 5-20: Price and log returns for the Base Case with values of 20%, 30% and 40%
for the trading proportion.

96



0 1000 2000 3000 4000 5000
2000

4000

6000

8000

10000

12000

14000

16000

Time

P
ric

e

(a)

0 1000 2000 3000 4000 5000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

Lo
g 

re
tu

rn
s

(b)

0 1000 2000 3000 4000 5000
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

Time

P
ric

e

(c)

0 1000 2000 3000 4000 5000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

Lo
g 

re
tu

rn
s

(d)

0 1000 2000 3000 4000 5000
2000

4000

6000

8000

10000

12000

14000

16000

Time

P
ric

e

(e)

0 1000 2000 3000 4000 5000
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

Lo
g 

re
tu

rn
s

(f)

Figure 5-21: Price and log returns for the Base Case with values of 50%, 60% and 70%
for the trading proportion.
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Figure 5-22: Price and log returns for the Base Case with values of 80%, 90% and 100%
for the trading proportion.
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somehow acceptable. However, for the absolute and squared log returns, the decay of the

autocorrelations is not enough to mimic the behaviour of real financial time series.

For the 90% trading proportion, the behaviour of all the autocorrelations is far from

realistic (Figure 5-23(b)). In Figure 5-23(c), we can observe an acceptable appearance

of the autocorrelations of the log returns. On the other hand, the autocorrelations for

the absolute and squared returns remains positive without a desirable more pronounced

decay.

In Figure 5-24 we can see the wealth evolution between groups and the final wealth

distribution between the agents with trading proportion of 20%, 30% and 40%. In Fig-

ure 5-25 we can observe the wealth evolution between groups and the final wealth distri-

bution between traders for same Base Case with trading proportions of 50%, 60% and

70%. Finally in Figure 5-26 we can see the same case with 80%, 90% and 100% trading

proportions. We can say that generally speaking, the groups with the lowest time horizon

were the groups that finished the simulations with the highest wealth among the groups.

Conclusions on trading proportion

The trading proportion parameter proved to be an important feature in CHASM in two

senses: first, it allowed us to model how cautious or aggressive the agents were and second,

the right selection of such parameter had an important impact on the endogenously

generated price. Changes in such parameter must be associated with changes on the

market depth parameter on the price determination equation. If the right values for

both parameters were not chosen, then we would have observed very dramatic (and

unrealistic) price changes. Even when the right parameters were chosen for very high

trading proportions (above 40%), the price reactions were more dramatic and it became

very difficult to chose the right market depth parameter because of the drastic changes

on the price and sudden crashes.

We can observe as well the statistics of the different trading proportion parameters

in tables 5.4 and 5.4. We can see that despite the fact that we can chose a good value
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Figure 5-23: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on the Base Case with trading proportion of 30%, 90% and 100%.
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Figure 5-24: Base Case with a trading proportion of 20%, 30% and 40% wealth distribu-
tion
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Figure 5-25: Base Case with a trading proportion of 50%, 60% and 70% wealth distribu-
tion
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Figure 5-26: Base Case with a trading proportion of 80%, 90% and 100% wealth distri-
bution
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for the market depth parameter in conjunction with the trading proportion, some of the

reported cases with trading proportion above 40% can have drastic changes in some of

the reported statistics. For example, in the case of 70%, 80% and 90% we can observe

that the maximum and minimum are beyond reasonable values. In particular in the case

of 90% we can observe a minimum of -1.2672 and a maximum of 0.704216. Such values

mean that the price decreased by more than a hundred percent in one case and increased

by more than seventy percent in the other, which is completely unreasonable.

In the case that the trading proportion is 100%, the resulting price looks very unreal-

istic and the statistics for such case are far from the desirable ones. Moreover, the price

in several experiments crashed as a result of big changes in relation to previous periods.

5.4 Statistics

In this section we will see some of the statistical properties of the log returns obtained from

the experiments previously described. In Table 5.4 we can see for some of the explored

cases, basic descriptive statistics, the result of the Jacque-Bera Test, the GARCH and

ARCH coefficients, the skewness and kurtosis, the correlation coefficient, and the Hill

estimator for the 0.1%, 0.5%, 1%, 2.5%, 5%, 10% and 15% most extreme log returns of

the experiment’s respective data series.

The basic descriptive statistics reported here are the mean, median, minimum, max-

imum and the standard deviation. Well known stylized facts on stock market returns

are that on a weekly, daily and higher frequencies they fail to be normally distributed

and they are also unpredictable. By the Jacque-Bera test, we find significant departures

from normality for the returns for all the runs. Other stylized fact related to normality is

excess kurtosis, the kurtosis for a normal distribution should be equal to three. However,

kurtosis in financial time series is commonly larger than three.

The correlation coefficient reported here is the autocorrelation with one day difference.

Nevertheless, we will report as well the autocorrelation for several different lags. Addi-
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Statistics Base Case No Fund. No Lim. Ord.
Mean 0.0000260827 -0.000116144 0.000072801
Median 0 0 0.000715808
Minimum -0.0832311 -0.388934 -0.0847121
Maximum 0.0687655 0.322442 0.133523
Std. Dev. 0.0116531 0.0388055 0.0141436
GARCH coefficient 0.833932 0.906647 0.909964
ARCH coefficient 0.142407 0.0933507 0.0900339
Skewness -0.228933 -0.266586 0.356513
Kurtosis 7.16933 14.5536 8.94936
J-B Test H value 1 1 1
Corr. coefficient -0.113495 -0.244743 0.472212
AlphaHill 0.1 % 10.2369 4.32321 4.40851
AlphaHill 0.5 % 6.00172 3.43562 4.63281
AlphaHill 1 % 3.63479 2.72147 3.28108
AlphaHill 2.5 % 3.1786 2.77186 2.75089
AlphaHill 5 % 2.97314 2.58302 2.44403
AlphaHill 10 % 2.48271 2.19543 2.08338
AlphaHill 15 % 2.01574 1.96398 1.89973

Table 5.1: Statistics for the log returns Base Case I.

tionally, we will report the autocorrelation of the absolute log returns and the squared

log returns. The autocorrelation of the absolute and squared log returns will allow us

to investigate the phenomena known as volatility clustering. Empirical studies in vari-

ous stock indexes and stock prices have shown that the autocorrelation function of the

squared returns remains positive and decays slowly over several days. The autocorrelation

function can be defined in the following way:

C(τ) = corr(r(t, δt), r(t + τ, δt)) (5.1)

One of the main problems on the application of the Hill tail index is that it is necessary

to define a priori the size of the tail. To overcome such limitation we estimated the Hill

tail index for different tail sizes: 0.1%, 0.5%, 1%, 2.5%, 5%, 10% and 15%.

In Tables 5.4 and 5.4 we can see for the different trading proportion values, the same

statistics of the previous table.
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Statistics Homo. Inf. Heter. Rate & Days Heter. Comp.
Mean 0.000159937 -0.000220975 0.000072801
Median 0 0 0.000715808
Minimum -0.0544893 -0.322546 -0.0847121
Maximum 0.0453318 0.451173 0.133523
Std. Dev. 0.0085663 0.05952 0.0141436
GARCH coefficient 0.867286 0.849709 0.909964
ARCH coefficient 0.132712 0.150289 0.0900339
Skewness -0.213223 0.290987 0.356513
Kurtosis 9.0001 6.27148 8.94936
J-B Test H value 1 1 1
Corr. coefficient -0.275138 -0.526801 0.472212
AlphaHill 0.1 % 42.2572 7.4181 4.40851
AlphaHill 0.5 % 8.17095 5.80796 4.63281
AlphaHill 1 % 4.72576 4.97972 3.28108
AlphaHill 2.5 % 3.21678 3.58746 2.75089
AlphaHill 5 % 2.49699 3.06868 2.44403
AlphaHill 10 % 1.92608 2.26054 2.08338
AlphaHill 15 % 1.49928 1.73862 1.89973

Table 5.2: Statistics for the log returns Base Case II

Statistics 10% 20% 30% 40% 50%
Mean 0.000168107 0.000291057 -0.000136899 0.000175474 0.000169053
Median 0 0.000642644 -0.000189339 -0.000134957 0
Minimum -0.130188 -0.254192 -0.523957 -0.0977285 -0.161904
Maximum 0.0922768 0.25286 0.38993 0.0924014 0.118275
Std. Dev. 0.0167669 0.0198555 0.0476619 0.00907183 0.0163249
GARCH coefficient 0.891803 0.911486 0.874917 0.908532 0.898486
ARCH coefficient 0.108195 0.0885117 0.125081 0.0852231 0.101512
Skewness -0.254966 -0.936059 -0.115114 -0.36324 -0.313575
Kurtosis 8.54657 33.6388 13.9952 23.527 17.6405
J-B Test H value 1 1 1 1 1
Corr. coefficient -0.254329 -0.211815 -0.374861 -0.161039 -0.192468
AlphaHill 0.1 % 7.74972 3.12511 6.32739 5.14047 23.2149
AlphaHill 0.5 % 7.27158 3.72534 4.92574 3.19246 4.40829
AlphaHill 1 % 5.03563 2.70143 4.25612 3.27407 3.29929
AlphaHill 2.5 % 3.7277 2.59587 2.80341 2.50883 2.50649
AlphaHill 5 % 2.48321 2.30615 2.12793 1.98152 2.01181
AlphaHill 10 % 1.92349 1.77097 1.69649 1.49472 1.55429
AlphaHill 15 % 1.49082 1.38673 1.49535 1.14805 1.17958

Table 5.3: Statistics for the log returns Base Case Trading Proportion I.
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Statistics 60% 70% 80% 90% 100%
Mean 0.00017462 0.000133192 0.000132636 -0.000102296 -0.000178743
Median -0.000324696 0 0 -0.000952448 -0.000405151
Minimum -0.161402 -0.257609 -0.312498 -1.2672 -0.42604
Maximum 0.140165 0.412267 0.302572 0.704216 0.357911
Std. Dev. 0.0207563 0.0350901 0.0492769 0.0822619 0.0462254
GARCH coefficient 0.854014 0.867212 0.957689 0.624627 0.955915
ARCH coefficient 0.145984 0.132786 0.0423091 0.315992 0.0440828
Skewness -0.272259 0.74249 0.00458005 -0.912754 -0.159393
Kurtosis 11.4512 18.9064 8.01334 26.6752 14.3583
J-B Test H value 1 1 1 1 1
Corr. coefficient -0.274244 -0.304991 -0.253525 -0.251376 -0.233028
AlphaHill 0.1 % 8.64128 5.45065 16.6104 5.82751 11.2171
AlphaHill 0.5 % 5.51174 2.93004 4.62763 4.06839 4.00578
AlphaHill 1 % 5.4529 3.3357 4.14005 3.90861 4.0789
AlphaHill 2.5 % 3.19741 2.37363 3.22629 3.1404 2.78479
AlphaHill 5 % 2.51586 2.21524 2.69543 2.73194 2.24749
AlphaHill 10 % 1.45281 1.54832 2.0543 1.92623 1.54339
AlphaHill 15 % 0.975017 1.09297 1.60132 1.52477 1.21649

Table 5.4: Statistics for the log returns Base Case Trading Proportion II.

5.5 Concluding Summary

In this chapter we described the investigated conditions under which some of the statis-

tical properties of the endogenously generated price resembles those of the real financial

markets. In CHASM we have the possibility of changing several parameters and changing

some of the important features of the model. A systematic experimental investigation

of changes in such parameters and characteristics was necessary. In this chapter we re-

ported the results of such experiments from which we can extract the following main

conclusions:

• The generation of limit orders proved to be an important factor to obtain realistic

price dynamics. Such limit orders were incorporated as part of a more complete

investment strategy of the agents

• The inclusion of the fundamental behaviour in one of the groups of agents was

an important factor to obtain a realistic price. We must stress that even when
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just one of the groups has activated such behaviour, the obtained price improves

dramatically in terms of the desirable properties that we were looking for.

• The indicators and the heterogeneity on their assignment to the different groups of

agents is an important factor in our aim to obtain stylized facts. The assignment

of such indicators allowed us to model asymmetries on the information used by the

agents.

• Heterogeneity in the computational capability assigned to the groups of agents

proved to be of no utility or even harmful in our aim to get realistic price dynamics.

We attribute this to the fact that the sort of investment rules generated by stupid

agents are far from realistic and as consequence, the behaviour of such agents is

unrealistic as well.

• The desired rate of return and time horizon parameters, proved a key factor first

to generate realistic investment rules within the agent’s minds and second the

heterogeneity on the assignment of such parameters favoured the behaviour of the

endogenously generated price.

• The trading proportion parameter can be considered as a parameter that possesses

an important impact on the resulting price. Nevertheless, we must stress that

changes in such parameter should be accompanied by reasonable changes on the

market depth parameter on the price determination equation.

Additionally, with the objective of making a clear distinction of which scenarios and

the reported experiments are the ones that approach the most to real prices, we will

present a resume in a tabular form. The criteria that we used for our experiments to

determine if a price is or not (in our opinion) realistic are the following ones:

C1) GARCH and ARCH coefficients. Both coefficients and their addition must be less

than one.
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C2) Kurtosis. The kurtosis of the price generated on the reported experiment should

be larger than three, which is the kurtosis of a normal distribution.

C3) Jacque-Bera Test H value. It is also necessary that the hypothesis that the gener-

ated price is drawn from a normal distribution is rejected.

C4) Alpha Hill estimator. It is required that the Hill estimator is between five and two

for different tail sizes.

C5) Autocorrelation I. The autocorrelation of the logarithmic returns should be around

zero, even for different lags.

C6) Autocorrelation II. A positive autocorrelation for lags close to zero and autocor-

relation decay for larger lags should be observed for the absolute and squared

logarithmic returns.

C7) Atypical behaviour. The prices generated under the evaluated scenario must not

show cyclical or another forms of atypical behaviour like huge changes or mono-

tonicity.

In Table 5.5 we report if the experiment passes or not each individual criterion. In

such table, on each row we report the analysis for a price generated under one of the

scenarios described on this chapter and each column represents one of the criterion. We

can see that the two most successful experiments are: the one in which we provided the

groups with different time horizon and expected return, and the one in which we used a

trading proportion of 30%. Interestingly, the criteria number six seems to be the most

difficult to satisfy and none of our experiments was able to reproduce such property.
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C1 C2 C3 C4 C5 C6 C7
Base Case 3 3 3 3 3 7 7

Limit Orders 3 3 3 3 7 7 7

No Fundamental 3 3 3 3 3 7 7

Homo. Information 3 3 3 7 3 7 7

Heter. Computation 3 3 3 3 3 7 7

Heter. Time and Return 3 3 3 3 3 7 3

Trading Proportion 10% 3 3 3 7 - - -
Trading Proportion 20% 3 3 3 3 - - 7

Trading Proportion 30% 3 3 3 3 3 7 3

Trading Proportion 40% 3 3 3 3 - - 7

Trading Proportion 50% 3 3 3 7 - - 7

Trading Proportion 60% 3 3 3 7 - - 7

Trading Proportion 70% 3 3 3 3 - - 7

Trading Proportion 80% 3 3 3 7 - - 7

Trading Proportion 90% 3 3 3 3 3 7 7

Trading Proportion 100% 3 3 3 7 3 7 7

Table 5.5: Evaluation criteria on stock prices for each group of experiments.
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Chapter 6

Co-evolution in CHASM

Co-evolution is said to take place when two or more lineages have an impact on each

other’s selection mechanism and cause changes on each other that increases fitness. This

mutual adaptation happens whenever certain ecological interaction derives into fitness

effects for all the participants.

Co-evolution in Evolutionary Computation and in particular in GP, is an important

area of study in Computer Science and has been used in the modelling of independent

agents in the past [114]. Moreover, the notion of evolving competitively populations and

in particular decision trees has been intensively studied in [7], [108] and [176].

We aim to model traders in real markets. Therefore, we consider co-evolution to be of

central importance in our work, because in real life the traders certainly have an influence

in each other’s trading strategies. Additionally, it is common for them to change their

strategy if they are not performing well in relation to the other market participants.

Therefore, in our opinion it is necessary to include in our market model the co-evolution

of the agents’ trading strategies. In our market the co-evolution of such strategies will

be modelled by using two different mechanisms:

• The endogenous generation of the risky asset’s price.

• The regeneration of the technical trader’s “strategies”. In CHASM, this can be
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done in a fixed or endogenous way.

In our market, the population of investment rules of each trader co-evolves through

the price. The effectiveness of each rule (its forecasting precision) determines the prob-

ability of it being selected to be part of the population of the next generation during

the evolutionary process. The precision of a certain rule belonging to a particular trader

depends on the rules of the other traders because they will have to change his rules if

their performance on the market is not good. Therefore, it affects the trader’s fitness.

Our work differs from [53] in the sense that each of our agents runs a GP mechanism

“inside their minds” and possess a population of rules (trees)1. Another important dif-

ference with the previously cited work and some others, is that we do not model social

learning or explicit interactions between the agents. The interaction between the agents

is modelled solely through the price.

In [211] the authors acknowledge the necessity of having to model the individual

intelligence of the agents. Clearly, their approach of previous works[53] was not sufficient

to achieve realistic modelling of certain aspects of the market participants. However,

they recognize the complexity of such task and the intensive computation involved on

the simulation of such market. Our work is much more computationally demanding than

the model proposed in [53]. Nevertheless, we are able to model complex traders with a

realistic formation process of investment rules.

Regarding the learning process, in CHASM the user can model the agents, so that

they are able to adapt to the new conditions of the market, either periodically (with

a user defined periodicity) or with a periodicity that is endogenously generated by a

behavioural constraint known as the Red Queen constraint. CHASM allows those two

different conditions to trigger learning because we want to contrast both ways, although

we believe that learning in an endogenous way is more realistic. Besides, we believe

that the statistical properties of stock returns will emerge from the activation of the Red

1In [53] there are basically two GP mechanisms, one is the main mechanism which possess the
populations of traders and the other GP mechanism is known as the “Business School”

112



Queen constraint.

Adaptation of the market participants with fixed periodicity has been used on previous

works, eg. [16]. However, we consider it unrealistic because in real life, the traders do

not change their investment strategies (at least not the totality) in strictly fixed way.

Moreover, the findings reported in [124] are very revealing about the importance of the

learning periodicity. In [124] the authors reported the differences on the price properties

due to changes on the frequency of the retraining procedure and the memory length of

the agents.

The condition to trigger endogenously the learning process has been modelled in

previous works. For example, the notion of self realization was modelled in [53] and

[211], which is based on a notion of rank. However, we believe that such approach is not

a hundred percent realistic. We believe that the traders’ decision to change their strategy

must be motivated by their performance on the market in terms of wealth. It is very

likely that this decision is strongly related to the other market participants’ performance.

This was recognized as an important aspect in Artificial Financial Markets in [118] by

LeBaron:

“This suggests an approach which looks at performance which can only be

fully evaluated relative to others in the market. Agent based markets provide

a perfect setting for testing these ideas, but this opens the question of how

and where to implement evolution”

To summarize, we believe that the modelling of co-evolution in simulated markets

is important. Therefore, we make it a key feature in CHASM. It is possible to model

the way in which learning is triggered in two different ways: with fixed periodicity or

endogenously. In CHASM we are able to model such forms of adaptation and we will

report the results of some experiments later in this chapter.
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6.1 Social learning and herd behaviour

In this section we will discuss some of the different possibilities to model the interactions

among the agents and the way in which they update their belief systems.

In the Artificial Markets literature, there are different means to model the interaction

among the agents and their adaptation or learning. In some works, we can find that the

interaction between the agents has been modelled explicitly, eg. see [137], [141], [60], [81].

Alternatively, it could be implicit on the price, as in our case. In terms of adaptation and

learning, there is a wide range of possibilities. We can find among such possibilities from

agents with zero intelligence [91], [184], to many different machine learning mechanisms

like neural networks [208], bayesian learning, genetic algorithms [16], learning classifier

systems [170], genetic programming [53], [149], [153], [152], etc.

6.1.1 Individual versus Social Learning

In the case that an Evolutionary Computation technique is being used to model the

agents’ learning process, there are two main possibilities for such modelling: Single Pop-

ulation (SP) or Multiple Population (MP).

When SP is used, each individual of the population represents an economic agent.

This means that there is just one evolutionary mechanism driving the simulation and

the agents have no control over it. On the other hand, in the case of MP each agent

possesses a population of individuals and “runs” an evolutionary mechanism by herself.

There are advantages and disadvantages when using either of the two approaches.

Nevertheless, we can point out to the ones that we believe are the most significant:

when a SP evolutionary process is being used, the individual intelligence is not being

explicitly modelled, when a MP evolutionary process is being used, social learning must

be represented in an explicit way.

In [53] and in a later and extended work [211] the authors explore two different archi-

tectures of an Artificial Stock Market. In the first one, they propose basically a SP-GP
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mechanism enhanced with another SP-GP mechanism known as the “Business School”.

In the second one, the authors propose a MP-GP mechanism for the agents and in ad-

dition they preserve the “Business School” as well. However, due to the computational

demand of the simulation, the extension in the second work could not be taken further

because the agents have very limited “intelligence”, as the population size of the GP

mechanism of each agent is rather small. In our case, we found in our experiments that

having limited computing capability in the traders’ GP mechanism implies that we would

have prices with non desirable properties.

In the Santa Fe’s experiments, they use a MP-GA and the change of behaviour is

exogenously imposed by the experimenters [16]. Chen and Yeh proposed an endogenous

scheme for retraining in [53]. In their experiments, prices in the artificial market are

determined by artificial agents, which were modelled by genetic programs. They studied

when and by how much agents (which were investors) retrained themselves. From the

experimenters’ point of view, retraining was endogenously motivated by ‘peer pressure’

and self-realization. They prescribed a way in which agents looked for ‘better’ invest-

ment rules. To make an analogy to real world phenomena, they called this procedure

’Visiting the Business School’. Driven by differences in performance (as opposed to being

determined by experimental parameters), agents co-evolve.

Our approach is similar to the architecture in [211] in the sense that each of the

agents runs a GP mechanism. However, in our market there is no “Business School” or

any other explicit mechanism of social interaction. In our case, the interaction through

the price is enough to replicate some of the stylized facts. Besides, we believe that the

inclusion of “trend following” indicators as part of the agents information, can replace an

explicit model of interaction among them. Moreover, as it was stated at the beginning

of this work, the modelling or implications of social interactions in financial markets is

beyond the scope of our research.
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6.1.2 Herd behaviour

It is now accepted that some fluctuations of stock prices are not explained by the arrival

of information or changes in fundamentals. In the recent years, it has been recognized

the impact that some social phenomena have on the prices of the financial assets. Among

them we find the so called “Herd behaviour”. A good introduction to this concept in

finance is [33], which is a review of the theoretical and empirical research on the field.

Herd behaviour is said to happen when a group of individuals act in the same way

without the existence of an explicit coordination mechanism. Such tendency to act in a

similar way suggests certain irrationality, in particular in financial markets. In [173] the

author describes two different approaches to model such phenomenon like the “Informa-

tional Cascades” in [26] and [32]. In such models, people acquire information in sequence

by observing the actions of other preceding individuals in the group. The individuals that

come after may ignore their own information and decide that the information revealed

by their predecessors is more valuable.

Another approach to the study of herd behaviour is to analyze the transmission of

information within groups of individuals by means of “conversation analysis” [92] or

“socio-cognition” [127]. This approach follows the premise that the human society has

had an evolutionary advantage in acting as a unit and human communication should be

acknowledged as part of the success in the competition with other species. Nevertheless,

it seems that sometimes such collective behaviour could be harmful or even counterpro-

ductive and the occurrence of bubbles and crashes in financial markets is an illustrative

example.

There exists some empirical evidence of herd behaviour in financial markets as it has

been documented in the case of mutual funds in [94] and in the case of security analysts

in [202]. Therefore, it is natural to use Artificial Financial Markets to investigate some of

the implications of such phenomenon in finance. Herding is explicitly modelled in some

important works like [137], [141], [60].

In [137], Lux models explicitly the factors which influence the behaviour of some
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traders in his model. In [60], Cont and Bouchaud established a relation between the Fat

Tails of the returns and herding in financial markets. In [141], Lux and Marchesi modelled

different types of agents (fundamental and noise traders) with changes of behaviour

between them and herding taking place among the noise traders.

Despite the importance of this topic in finance we did not modelled in an explicit way

the interaction among traders. We left it for the technical analysis to summarize much

of the collective behaviour and the inclusion of some trend following and momentum

indicators allowed us to implicitly model social interaction.

6.2 The Red Queen principle in evolution and eco-

nomics

In our research we have a market populated by a co-evolving population of agents, each

attempting to enhance its fitness relative to others. This is inspired by the Red Queen

principle, based on the observation made to Alice by the Red Queen in Lewis Caroll’s

Through the Looking Glass: “in this place it takes all the running you can do, to keep in

the same place”.

The Red Queen principle was originally proposed by the evolutionary biologist Leigh

van Valen in [200] as a metaphor of a co-evolutionary arms race between species. In cases

in which the competition for scarce resources rules the behaviour of the participants; the

important performance measure is relative to the other individuals involved in such arms

race.

The Red Queen principle has been studied in Computer Science, more specifically

in competitive co-evolution [163], [160]. In particular, in [58] the authors propose some

means to measure the progress in computer simulated co-evolution. The Red Queen effect

has been also studied in the context of Economics in the past. In [167], the author claims

that the evolution of intelligence itself is hypothesized to arise as a Red Queen type arms

race giving rise to Machiavellian behaviour in social interactions. In [168] the author
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describes the relation between the evolution of complex organisms, the reasons behind

sexual reproduction, the emergence of high intelligence and the Red Queen effect. In [147]

there is a fuller discussion of the relevance of the Red Queen principle in Economics.

In competitive co-evolution, the Red Queen principle, therefore, entails constraints on

performance enhancement of all individuals, if each is to maintain status quo in relative

fitness measured by an index relating to aggregate performance. However, such arms

race could lead in some occasions to a decrease in fitness in absolute terms. When this

phenomena is present in an evolutionary system, it is said that such system presents

the Red Queen Dynamics. Moreover, in some specific problems the use of competitive

co-evolution might be less effective than other techniques as it was shown in [163].

6.2.1 The Red Queen in CHASM

The model presented in this work recurs to the Red Queen principle to reproduce the

interaction and the co-evolution of the market agents. We consider that the need for

adaptation to the new conditions of the environment must be modelled explicitly and

should be done in an endogenous way.

One of the main criticisms to the agent-based modelling is the fact that such models

need a lot of calibration and their behaviour depends heavily on a certain number of

parameters. It is indeed difficult to justify some of the values that such parameters take.

To avoid this situation, we model endogenously the majority of the processes or at least

some of the most important ones.

In CHASM, the Red Queen principle will be modelled through the Red Queen Con-

straint. Such behavioural constraint will force a trader to search for new investment

rules whenever she is being “left behind”. More specifically, a trader will launch a GP

mechanism considering the most recent information (the most recent price history and

the relevant indicators) whenever her wealth is below the population’s average wealth.

As it was pointed out at the beginning of this chapter and as it was recognized in [118]

by LeBaron: “A trader’s performance depends critically on the behavior of others”.
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In order to avoid the renovated trader to be completely unrelated with the trader that

entered into this retraining phase; the renovated trader will inherit half of her initial pop-

ulation from the original trader. Such decision has two objectives in mind: first, allowing

the evolutionary process to start from scratch is equivalent to inserting a completely new

trader into the population of agents. Second, there is already a certain knowledge on the

traders’ population of rules, the recombination with new ideas should allow the agent to

improve without discarding all the experience gained during the previous trading rounds.

6.2.2 Experimental design

To experimentally test the impact of the Red Queen principle, we designed a set of

experiments in which the agents will retrain in a fixed or endogenous way. Then, we

observe the differences in the statistical properties of the stock returns and the agents’

wealth distribution.

In such experiments we defined some study cases which we considered to be interest-

ing. This was taking into account the experience gained with the experiments described

in the previous chapter. Such study cases were different variations of the factors that we

identified as important in the previous phase of experimentation.

We first executed the simulation program with the parameters that we consider to

be appropriate to get realistic statistical behaviour of the log returns. Afterwards, we

observed the price behaviour and we performed a series of statistical tests to identify

if the price presented the stylized facts. In case the stylized facts were not replicated

we tried another parameter constellation and so on until we got the desired properties.

After getting the appropriate parameters, we executed the market with the same setting

but allowing the agents to learn with fixed periodicity. Then, we reported the statistics

of such execution. For the experiments reported in this chapter learning with fixed

periodicity was triggered every one thousand trading periods.

Using the same configuration of the two previous experiments (without learning and

learning with fixed periodicity), we allowed the agents to retrain in an endogenous way,

119



this means that we turned on the red Queen Constraint. Then, we observed the price

and the statistical properties of the log returns. Additionally, we reported the wealth

distribution per group during the execution and the wealth distribution of the final

trading round.

The vertical scales of the different graphs may differ and make comparisons more

difficult. However, the change of scale is due to the different behaviour of the price and

log returns; therefore, to apply the same scale to all the graphs might cause difficulty to

appreciate the behaviour of the price or log returns. The case of the differences on the

horizontal scales is due to the computational cost of the market’s execution when the

Red Queen constraint is activated. The cases where we report the price and log returns

under Red Queen retraining will normally have less data points.

6.3 Case studies and results

After the experience on the exploration of the model described in the previous chapter,

we developed a series of experiments by changing key features and parameters of the

simulation, already identified as important. We have different base cases in which the

statistical properties of the price will be reported for different parameters. After tuning

the simulation under each case of study to obtain interesting prices and statistics, the

simulation is executed again with learning taking place. This allowed us to observe the

changes on the statistical properties of price due to the different types of learning.

In the tables included in this section we can see how the changes on certain parameters

or in the learning process, change the statistical properties on the artificially generated

price. Such changes depend on the base case that we defined and in some cases the

changes take us very close to the stylized facts. We can see from the tables presented

below that the statistical properties of the prices are being reproduced successfully in

some cases and that learning do changes such properties.

We will present four out of the possible eight combinations of three important features
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(Computing Capability, Information, and Time Horizon and desired Rate of Return) that

we detected as important in the previous phase of experimentation. The reason for the

exclusion of the other four cases depends on the specific case. The excluded cases are

the following:

• Heterogeneous Computing Capability, Heterogeneous Information and Heteroge-
neous Time Horizon and Return.

• Heterogeneous Computing Capability, Heterogeneous Information and Homoge-
neous Time Horizon and Return.

• Heterogeneous Computing Capability, Homogeneous Information and Homogeneous
Time Horizon and Return.

• Homogeneous Computing Capability, Homogeneous Information and Homogeneous
Time Horizon and Return.

The reason for the exclusion of the first three cases is that our previous results showed

that heterogeneity on the computational capabilities proved to be counterproductive in

our quest for stylized facts. In all the experiments that we performed with heterogeneous

computational capabilities, the results were similar in the sense that the price did not

resemble by any means prices in real financial markets.

The reason for the exclusion of the last case is that we detected that complete homo-

geneity was not good neither in our aim. The results of the last case (not reported here)

showed a monotonous price (always increasing or always decreasing), ie, there was a sort

of consensus and a self fulfilling behaviour of the price. We believe that this was mainly

caused by the homogeneity of agents on these important features that we detected.

Case 1: Heterogeneous Computing Capability, Homogeneous Information and

Heterogeneous Time Horizon and Return.

In this study case we have seven groups of technical traders with heterogeneous computing

capabilities, homogeneous information, heterogeneous desired return and time horizon.
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The purpose of testing and analyzing this specific case was to verify the impact

that the asymmetry in computational capability (in terms of the GP mechanism) has in

the market. In other words, heterogeneity in computing capability refers to two of the

GP parameters assigned to the agents: population size and number of generations. We

identified these two parameters as the most relevant ones for measuring the computational

capabilities of the agents. In this experiment, the first group of agents was provided with

the smallest number of generations and population size, the second group had a bigger

number of generations and population size than the first group, the third had bigger

numbers in both parameters than the second group, the fourth was the most competent

of all the different groups and then we started to reduce the population size and number

of generations for the remaining three groups.

The obtained prices were the least successful to replicate the stylized facts in com-

parison with the other cases. We expected such results to a certain extent because it is

very important that the behaviour of the agents is closer to reality, we need competent

traders to participate in our market. Otherwise, the price and its statistical properties

do not resemble real data. We found very unrealistic behaviour of the price even with

learning taking place, in fact the price behaviour is worst when learning happens as we

can see in Figure 6-1.

Figures 6-1(a) and 6-1(b) show the price and log returns without learning taking place.

The next two figures 6-1(c) and 6-1(d) show the price and log returns when learning with

fixed periodicity takes place. Finally, the figures 6-1(e) and 6-1(f) show the price and

log returns when the Red Queen constraint is applied. In such figure, we can observe

that the price, when learning is not taking place, looks somehow realistic. However, if

we observe the other two cases (when learning takes place); then, it was clear that under

these conditions and parameter constellation we would not get any closer to the stylized

facts.

In Figures 6-1(c) and 6-1(e) we can appreciate the sort of things that can go wrong

in artificial financial markets research and why it is difficult to find the conditions under
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which the simulated market resembles real markets. By looking at such figures we can

see that the agents’ perception about the price converged after a certain period and then

there was no trading activity anymore. In other words, there were no bids or offers and

the agents’ were essentially maintaining their current positions. The trading activity

stopped around the trading period 5000 in the case where learning was taking place in

a fixed way. In the case where learning was controlled by the Red Queen constraint, the

same thing happened much earlier (around the trading period 1250).

In Figure 6-2 we can observe the wealth evolution and the wealth distribution in

the final round for Case 1 in three different scenarios: without learning taking place,

(figures 6-2(a) and 6-2(d)); when learning with fixed periodicity is happening (figures

6-2(c) and 6-2(d)) and when the Red Queen Constraint is being activated (figures 6-2(e)

and 6-2(f)). In this figure is now clear that convergence takes place under this case of

study. We observed a convergence of the price in Figure 6-1 and we observe convergence

on wealth among the different traders when learning happens.

Figure 6-3 shows the autocorrelations for different lags of Case 1 (No learning, Fixed

learning and Learning with the Red Queen constraint). Regarding the autocorrelations

of the above mentioned three cases, we can see that the case where learning does not

take place is the more realistic. On the other hand, in the cases where learning takes

place we observe a very unrealistic behaviour of the autocorrelations for the log returns,

the absolute and the squared log returns.

Finally, Table 6.3 shows the statistics corresponding to the first case of study. In

addition to the standard descriptive statistics we are reporting the correlation, GARCH

and ARCH coefficients, skewness, kurtosis, the Hill estimator for different tail sizes and

the Jacque Bera test for normality. In such table we can see that the values reported are

not very well related to the stylized facts that we are looking for, despite that normality

is rejected. In particular the values for the Hill estimator for the fixed learning case are

well out of the desired range.
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Figure 6-1: Case 1 prices and log returns
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Figure 6-2: Case 1 wealth distribution
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Figure 6-3: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on Case 1 with no learning taking place, learning with fixed
periodicity and learning under the Red Queen constraint.
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Statistics No Learning Learning
Fixed Red Queen

Mean -0.00009084 0.00003527 0.00032009
Median 0 0 0
Minimum -0.261032 -0.00747089 -0.0105133
Maximum 0.399649 0.00744778 0.0105347
Std. Dev. 0.0237131 0.0017209 0.00138945
GARCH coefficient 0.916433 0.355824 0.965349
ARCH coefficient 0.0835655 0.644174 0.0346486
Skewness 0.982907 0.100449 3.79522
Kurtosis 38.6423 9.30956 26.2017
J-B Test H value 1 1 1
Corr. coefficient -0.108092 -0.881107 0.746318
AlphaHill 0.1 % 3.6429 221.124
AlphaHill 0.5 % 2.99165 42.2454
AlphaHill 1 % 2.97188 13.2267 5.69426
AlphaHill 2.5 % 1.88164 3.88784 2.97623
AlphaHill 5 % 1.45753 3.12363 2.06187
AlphaHill 10 % 1.13026 0.451349
AlphaHill 15 % 0.715213

Table 6.1: Statistics for the log returns Case 1

Case 2: Homogeneous Computing Capability, Heterogeneous Information and

Homogeneous Time Horizon and Return.

In this case we have seven groups of technical traders with homogeneous computing

capabilities, heterogeneous information, homogeneous desired return and time horizon.

This configuration is the same as for the base case reported on Chapter 5.

The purpose on the setting up of this case was to study the role that the information,

modelled here by the different indicators, has on the price formation and wealth distribu-

tion. For that purpose, the computational capabilities of the agents will be homogeneous

and the same will happen with the desired return and time horizon. Therefore, the only

difference between the trader groups is the information set they will use to create the

investment rules. For example, the agents in the first group will use just the moving av-

erage indicators to create decision rules, the second group of agents will use the trading

breaking rules to do the same, the third group will use filter rules, the fourth group will
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use the volatility, the fifth will use a momentum indicator, the sixth a moving average

indicator based on the momentum and the last group will use all the indicators.

Figures 6-4(a) and 6-4(b) show the price and log returns without learning taking place.

The next two figures 6-4(c) and 6-4(d) show the price and log returns when learning with

fixed periodicity takes place. Finally, figures 6-4(e) and 6-4(f) show the price and log

returns when the Red Queen constraint is applied.

In this case, we can see that having traders with more computing capability creates

more interesting price dynamics. Additionally, we can observe the impact that the het-

erogeneity in the use of information has on the price dynamics. It is perceivable from

Figure 6-4 that more realistic price dynamics emerged in comparison with Case 1 and

that the log returns present volatility clustering in the three different cases.

In Figure 6-5 we can observe the wealth evolution and the wealth distribution in the

final round for the Case 2 in three different scenarios: without learning taking place

(figures 6-5(a) and 6-5(b)), when learning with fixed periodicity is happening (figures

6-5(c) and 6-5(d)) and when the Red Queen Constraint is being activated (figures 6-5(e)

and 6-5(f)). In this figure we can appreciate that there is a diverse wealth evolution

by group when learning is not happening and that there is a certain convergence when

learning takes place, specially under the Red Queen Constraint.

Figure 6-6 shows the autocorrelation for different lags of Case 2. In such figure, we

can see that the autocorrelations for the experiments where learning does not take place,

behave in a realistic way to a certain extent (in particular the autocorrelations of the

log returns). When learning in a fixed way takes place, the autocorrelations behave less

reasonable, with the autocorrelation of the squared returns being practically zero for all

lags. The case where the Red Queen constraint is applied is the one that reports the

best behaviour for all the autocorrelations. We observed in the Red Queen constraint

experiment that there is a positive autocorrelation of the absolute and squared log returns

for short lags, even the decay for such case is quite acceptable.

Table 6.3 shows the statistics corresponding to the second of the analyzed cases. We

128



0 2000 4000 6000 8000 10000
2000

4000

6000

8000

10000

12000

Time

P
ric

e

(a)

0 2000 4000 6000 8000 10000
−0.3

−0.2

−0.1

0

0.1

0.2

Time

Lo
g 

re
tu

rn
s

(b)

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Time

P
ric

e

(c)

0 1000 2000 3000 4000 5000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

Lo
g 

re
tu

rn
s

(d)

0 500 1000 1500 2000 2500
0

2000

4000

6000

8000

10000

Time

P
ric

e

(e)

0 500 1000 1500 2000 2500
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

Lo
g 

re
tu

rn
s

(f)

Figure 6-4: Case 2 prices and log returns
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Figure 6-5: Case 2 wealth distribution
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Figure 6-6: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on Case 2 with no learning taking place, learning with fixed
periodicity and learning under the Red Queen constraint.
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Statistics No Learning Learning
Fixed Red Queen

Mean 0.000122397 -0.00009105 -0.00009672
Median 0 0 0
Minimum -0.129137 -0.552234 -0.296821
Maximum 0.151981 0.516802 0.358635
Std. Dev. 0.013666 0.0602089 0.051374
GARCH coefficient 0.991996 0.845768 0.870907
ARCH coefficient 0.00722658 0.15423 0.129091
Skewness 0.148694 -0.305522 0.0300995
Kurtosis 19.5229 14.4732 8.14092
J-B Test H value 1 1 1
Corr. coefficient -0.307564 -0.268753 -0.268612
AlphaHill 0.1 % 4.72968 3.173
AlphaHill 0.5 % 4.0303 2.92985
AlphaHill 1 % 3.25591 3.04049 4.55034
AlphaHill 2.5 % 2.47495 3.02408 2.94514
AlphaHill 5 % 1.82119 2.64413 2.62655
AlphaHill 10 % 0.88278 2.1084 2.23069
AlphaHill 15 % 0.486301 1.81222 1.90355

Table 6.2: Statistics for the log returns Case 2

can observe from the statistics, as it was already revealed by the figures, that this case

is very good in reproducing the stylized facts. This suggests that heterogeneity in the

information used is a key factor to reproduce our desirable statistical properties of the

log returns.

Case 3: Homogeneous Computing Capability, Homogeneous Information and

Heterogeneous Time Horizon and Return.

In this case we have seven groups of technical traders with homogeneous computing ca-

pabilities, homogeneous information and heterogeneous desired return and time horizon.

The purpose of this experiment was to verify the importance of the heterogeneity in

the agents’ time horizon and desired rate of return in reproducing the statistical properties

in real financial markets. We proceeded in the same way as in the previous cases, we

started with a plausible set of parameters, observed the statistical properties of the price

and started to change the proportion to trade and price constant parameters until we
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obtained what we considered to be realistic prices.

In this experiment, for the first group of agents, we chose a small time horizon and a

desired rate of return that made sense for such time horizon (otherwise we would have

experienced the same problems that we had at the beginning of our research). For the

second group we chose a slightly bigger time horizon and again a desired rate of return

that was reasonable to expect in such time. We increased the time horizon and chose the

respective desired rate of return for the remaining five groups. With this organization,

we had the first groups with small time horizon and rate of return and the last groups

with the parameters taking bigger values.

Figures 6-7(a) and 6-7(b) show the price and log returns without learning taking place.

The next two figures 6-7(c) and 6-7(d) show the price and log returns when learning with

fixed periodicity takes place. Finally the figures 6-7(e) and 6-7(f) show the price and log

returns when the Red Queen constraint is applied.

We can observe that the obtained dynamics without learning are interesting and

realistic. However, when learning in a fixed way takes place, after certain time, there is

a sort of agreement and the volatility of the log return starts to decrease. When the Red

Queen Constraint is applied, the price exhibits volatility clustering as well and a decrease

on it as in the fixed learning case.

In Figure 6-8 we can observe the wealth evolution and the wealth distribution in the

final round for Case 3 in three different scenarios: without learning taking place (figures

6-8(a) and 6-8(d)), when learning with fixed periodicity is happening (figures 6-8(c) and

6-8(d)) and when the Red Queen Constraint is being activated (figures 6-8(e) and 6-

8(f)). From such figures we can see that in the case when learning does not take place,

the evolution of wealth of the different groups varies considerably. When fixed learning

takes place, most of the groups behave in the same way and such similar behaviour is

even stronger in the case of the Red Queen Constraint.

Figure 6-9 shows the autocorrelation for different lags of Case 3. In such figure we

can observe well behaved autocorrelations for the three different cases: when there is no
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Figure 6-7: Case 3 prices and log returns
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Figure 6-8: Case 3 wealth distribution
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Statistics No Learning Learning
Fixed Red Queen

Mean -0.0000839 -0.0000939359 -0.000313119
Median 0 0 0
Minimum -0.227218 -0.302405 -0.52115
Maximum 0.388358 0.338526 0.565525
Std. Dev. 0.0203521 0.0333384 0.060565
GARCH coefficient 0.933505 0.918561 0.866955
ARCH coefficient 0.0664933 0.0814368 0.133043
Skewness 0.711244 0.281638 0.241175
Kurtosis 31.6569 14.4124 26.2376
J-B Test H value 1 1 1
Corr. coefficient -0.245651 -0.391441 -0.392911
AlphaHill 0.1 % 3.32575 5.30302
AlphaHill 0.5 % 3.19726 3.28499
AlphaHill 1 % 2.6011 3.21093 2.37963
AlphaHill 2.5 % 2.49727 2.57308 2.19594
AlphaHill 5 % 2.21421 2.36902 1.77109
AlphaHill 10 % 1.86745 2.11074 1.6755
AlphaHill 15 % 1.6483 1.85418 1.60089

Table 6.3: Statistics for the log returns Case 3

learning, when there is learning in fixed time periods and when there is learning under

the Red Queen constraint. In particular, we can observe that when learning takes place

under the Red Queen constraint, there is a positive autocorrelation for short lags and

there is a decay quite similar to the one observed on the two examples in Chapter2. The

behaviour of such autocorrelations is the best so far and the Red Queen constraint seems

to have an impact on them.

Table 6.3 shows the statistics for Case number three. Despite the initial success

under this scenario (the values for the reported statistics are within the desired range),

the scenario when the Red Queen Constraint is applied is less successful. This would

imply that heterogeneity in the agents’ time horizon and desired rate of return certainly

helps to reproduce stylized facts. However, such heterogeneity is not enough and some

more ingredients might be needed to finally obtain the desired statistical properties.
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Figure 6-9: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on Case 3 with no learning taking place, learning with fixed
periodicity and learning under the Red Queen constraint.
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Case 4: Homogeneous Computing Capability, Heterogeneous Information and

Heterogeneous Time Horizon and Return.

In this case we have seven groups of technical traders with homogeneous computing ca-

pabilities, heterogeneous information and heterogeneous desired return and time horizon.

The purpose of this experiment is to explore the impact on the price of the hetero-

geneity in information, desired return and time horizon. This case would allow us to

clarify the importance of the heterogeneity in our market. We expected the price dy-

namics in this case to be the best of all of our basic cases. Benefitting from the experience

of the previous cases, we decided not to make the traders different in terms of the GP

mechanism (computational capability). We decided that in order to obtain realistic price

behaviour, having extremely incompetent traders made no good to the dynamics of the

market. For that reason the sources of heterogeneity were: the indicators, the desired

rate of return and the time horizon. We assigned the indicators to the different groups in

the same way that was described in Case 2. In the case of the time horizon and desired

rate of return we proceeded in the same way that was described in the study Case 3.

Figures 6-10(a) and 6-10(b) show the price and log returns without learning taking

place. The next two figures 6-10(c) and 6-10(d) show the price and log returns when

learning with fixed periodicity takes place. Finally Figures 6-10(e) and 6-10(f) show the

price and log returns when the Red Queen constraint is applied.

In this case we can observe a very realistic price being generated without learning

taking place, and more importantly: without any exogenous process being used. Addi-

tionally, we can observe the emergence of bubbles and crashes during the execution of the

experiment in which the Red Queen Constraint is activated (still getting stylized facts),

this result is very important since we can clearly appreciate some of the phenomena dif-

ficult to explain with current models. It is the case, in our experience, that technical

trading might be the responsible for some of the dynamics present in real financial mar-

kets. Despite the strong cyclical behaviour of the price, the third experiment of this case

is quite revealing on the basis that the price still presents some of the stylized facts.
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Figure 6-10: Case 4 prices and log returns
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In Figure 6-11 we can observe the wealth evolution of the different groups on the

left and the wealth distribution on the final trading round on the right. It is notorious

the inegalitarian distribution of wealth on the final round of the market’s execution.

Additionally, we can observe that the groups that are doing better are the groups with

shorter time horizon. This might be caused due to the fact that they perform more

investment decisions than the groups with longer time horizon. However, we had the

same conditions in some of our previous study cases and this is the only case in which

we can observe such behaviour on the agents’ final wealth distribution.

Figure 6-12 shows the autocorrelation for different lags of Case 4. The autocorrela-

tions when learning does not take place, behave on a similar way to the most of the cases

when learning does happen. In Figure 6-12(a), we observe a well behaved autocorrela-

tions of the log returns. On the other hand, the autocorrelations for the absolute and

squared log returns remains positive for several lags with a small decay. When learning

on fixed periods happens, the autocorrelations behave on a similar way to the case when

learning does not happen. Nevertheless, the have smaller values for the different lags.

The case when the Red Queen constraint is applied, shows similar decay to the reported

cases on Chapter2 for the absolute log returns.

Table 6.3 shows the statistics for Case number four. In terms of the statistical prop-

erties of the log returns, we can say that we have very reasonable values for each of the

three different experiments. We can say that this study case is the best of the four study

cases in terms of the statistical properties observed.

6.4 Concluding summary

In this chapter we observed the implications that learning has on the statistical properties

of the endogenously generated price and the repercussions of learning on the wealth

distribution of the agents and on the different groups of traders.

We described the way in which we implemented what we called the Red Queen Con-
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Figure 6-11: Case 4 wealth distribution
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Figure 6-12: Autocorrelations for different lags of the log returns, absolute log returns
and squared log returns on Case 4 with no learning taking place, learning with fixed
periodicity and learning under the Red Queen constraint.
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Statistics No Learning Learning
Fixed Red Queen

Mean -0.0000358 -0.0000916302 0.00007929
Median 0 -0.0000826437 -0.00023846
Minimum -0.293954 -0.777021 -0.303987
Maximum 0.283729 0.575629 0.392999
Std. Dev. 0.0892986 0.0775069 0.0389244
GARCH coefficient 0.953031 0.922381 0.864849
ARCH coefficient 0.0469667 0.0776172 0.135149
Skewness 0.329118 0.152999 0.438554
Kurtosis 8.62664 6.23266 17.5102
J-B Test H value 1 1 1
Corr. coefficient -0.391261 -0.473053 -0.236828
AlphaHill 0.1 % 13.7083 11.6683
AlphaHill 0.5 % 4.87626 4.71139
AlphaHill 1 % 3.79693 3.94017 3.29714
AlphaHill 2.5 % 2.97087 3.85935 2.61319
AlphaHill 5 % 2.60586 3.48402 2.21265
AlphaHill 10 % 1.98593 2.52688 1.7273
AlphaHill 15 % 1.56148 2.11641 1.4732

Table 6.4: Statistics for the log returns Case 4

straint, inspired on previous works describing the relevance of the Red Queen Principle

in Economics. Before we experimentally tested our interpretation of such principle, we

performed a series of experiments in which the agents retrained with fixed periodicity

determined in an exogenous way. But which is the right periodicity? Moreover, how do

we justify such decision?

We argue that the agents’ decision to retrain should be taken endogenously and for

that reason we propose the Red Queen Constraint as the way in which the traders should

update their beliefs. As a result, we observed that the price dynamics and the statistical

properties of the log returns were closer to the dynamics and properties of the real

financial time series.

We observed that the wealth distribution of different groups of traders was different

in different executions of CHASM: Generally speaking, the traders that take decisions

with higher frequency end up better off than those that do not. Interestingly, asking

the agents to review their beliefs in an endogenous way, resulted in a very inegalitarian
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distribution of wealth in the final trading round of the market. This result is a very

interesting one, since we are just asking to the population of traders to do the best they

can to preserve their status quo in the market. Nevertheless, it seems that such arms

race causes the majority of the traders to end up with a small amount of wealth, while

very few agents end up with most of the population’s wealth.

Additionally, we observed that heterogeneity does help in general terms to obtain

realistic statistical properties. However, having heterogeneity in computing capability

between the agents proved to be harmful to our intentions of reproducing realistic market

dynamics (Case 1). This point is important for us due to the fact that we believe that

simulations of Artificial Financial Markets should be done with agents capable enough

to imitate human behaviour. In our experience, having agents with not good enough

investment decision rules, creates a very different type of market dynamics.

Information proved to be an interesting source of heterogeneity in our market (Case

2). The impact of the time horizon and desired rate of return was beneficial (Case 3).

The combination of heterogeneity in both information and investment preferences did

not lead to the best results in terms of reproducing the stylized facts (Case 4).

In real life, the traders are likely to have different time horizons (due to budget

constraints or simple preferences), return considerations and they tend to look in different

ways the same information (or even they might use different sources of information).

Nevertheless, it is unlikely that there is a big difference in computing capability among

the main players (small investors and the rest of us are just noise).

We should emphasize at this point that despite the fact that our market is capable

of modelling fundamental behaviour, in this four study cases we are not making use of

it. This means that we are able to mimic to a certain extent the statistical properties of

log returns without an explicit-exogenous fundamental mechanism. We consider this to

be very important for the study of Artificial Financial Markets because so far we have

always seen a sort of fundamental mechanism in any of the important works in this field.

The exception to this rule are the works [42], [82] and [88]. In [42] the authors arrive to
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C1 C2 C3 C4 C5 C6 C7
Case 1 with no learning 3 3 3 7 3 7 7

Case 1 with fixed learning 3 3 3 7 7 7 7

Case 1 with Red Queen constraint 3 3 3 3 7 7 7

Case 2 with no learning 3 3 3 3 3 7 7

Case 2 with fixed learning 3 3 3 3 3 7 7

Case 2 with Red Queen constraint 3 3 3 3 3 7 7

Case 3 with no learning 3 3 3 3 3 7 3

Case 3 with fixed learning 3 3 3 3 3 7 3

Case 3 with Red Queen constraint 3 3 3 3 3 3 7

Case 4 with no learning 3 3 3 3 3 7 3

Case 4 with fixed learning 3 3 3 3 3 7 7

Case 4 with Red Queen constraint 3 3 3 3 3 7 7

Table 6.5: Evaluation criteria on stock prices for each group of experiments.

a conclusion that is very much related to ours:

“This suggests that the statistics we observe in real markets is mainly due to

the interaction among speculators trading on technical grounds, regardless of

economic fundamentals”

Finally, we resume in the same way as it was done on Chapter 5, the criteria that we

used to differentiate the results of the experiments reported on this chapter. We use the

same criteria also defined on the previous chapter. In Table 6.4, we can observe which

of the individual criterion is satisfied by each study case. We can see that the cases that

satisfy the most of the criteria are: the three experiments of Case 3 and the experiment

in which learning does not take place of the Case 4. The Case 3 is the most successful

of all the study cases and it is the only case in which the price satisfies C6. In Case 4

we can observe that in the experiment with the Red Queen Constraint the non-linear

autocorrelations decay to zero. However, in the case of the absolute log returns, such

autocorrelation becomes negative for lags close to 100.
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Chapter 7

Conclusions

In this chapter we summarize the research done so far, we review the experimental results,

describe our contributions to the field and propose possible lines of future research.

7.1 Summary

Artificial financial markets of all sorts and flavors have been developed in the last decade

and are still being created with an always increasing complexity and proximity to reality

that was not possible in the past. The research in this field is now mature and its

acceptance in Economics has finally increased.

Motivated by the richness of this area of research, we decided to participate in it and

to stretch some particular aspects of this methodology. The main research goals at the

start of this project were:

• to gain better understanding of the way in which market efficiency is achieved in
our model.

• to identify the sort of conditions that are necessary to reproduce the stylized facts
of the stock returns with an artificial market.

To help us achieve these goals, we have implemented a Co-evolutionary Heterogeneous

Artificial Stock Market (CHASM) platform which incorporates non-simple agents and a
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behavioural constraint among other important features. We decided to model as close

as possible (but also as generic as possible) the behaviour that the traders present in the

real markets. We did not want to make strong assumptions about the agents’ behaviour,

expectations, rationality or risk perception. Neither we wanted to implement specific

markets. Those are the reasons why the strategic behaviour of our agents is very rich

and non-simple. Additionally, we studied the way in which the wealth is distributed

among the agents as a result of changes in the adaptation and competition between

them.

We considered that technical analysis should be a key feature of our agents’ behaviour,

despite the open debate between some academics and some practitioners about it. To

justify our decision, we are convinced that technical analysis is an important tool for

decision making in financial investments. Besides, there is a strong evidence that technical

analysis is being used extensively in financial markets [109], [157], [186]. Furthermore,

there are numerous studies that support the profitability of technical analysis in financial

markets [5], [34], [38], [212], [61], [63], [64], [62], [103], [158], [159].

With the elements we had at hand, we took the decision of using EDDIE ([41], [195],

[131], [194], [196], [148], [199], [197] ) as the basic framework to design the investment

strategy of our agents. We chose EDDIE because it has been proven to be a successful

tool to support investment decision making. The task seemed to be not too complicated,

considering our experience in financial forecasting using technical analysis and the vast

literature on artificial financial markets. Nevertheless, the price dynamics that our first

models exhibited were not realistic at all and we observed either a monotonous price

behaviour or an always increasing (decreasing) trend on the price.

Early experiments showed us that a straightforward implementation of EDDIE traders

with a simple market mechanism was not sufficient to get stylized facts. Moreover,

reproducing the statistical properties of real financial markets required a lot of work and

the exploration of several characteristics of the model. For that reason we decided to

incorporate some other features into our market. Such phenomena is related to what

147



Edmonds and Moss describe very well in [70].They argue that it is still common in multi-

agent modeling to take an existing algorithm (designed with other purpose in mind) and

use it for the cognition of the agent, regardless of whether this can be justified in terms

of what is known about the behaviour of the modelled entities.

We included another two kinds of market participants: value investors and noise

traders. Additionally, we enhanced the technical traders with some other features. For

example, we included the feature consisting of a fundamental-like behaviour under certain

specific circumstances and also included stop-loss and profit-taking limit orders as part

of a more complete investment strategy.

In our approach, we believe that the source of complexity of the model is the strategic

behaviour of the agents and not the market mechanism or at least that is our intention.

In fact, we did not make any strong assumptions and maintained a very simple market

mechanism during the whole process of modifications. After modifying the model and of a

deep investigation of the behaviour of our market, we arrived to a particular configuration

that we considered to be the base case for the exploration of the characteristics of our

model.

Figure 5-1, in Chapter 5, illustrates the exploration of some characteristics of our

artificial market. At the centre, we can see what we call the base case; such case is

the one in which we successfully observed stylized facts without the agents adapting to

the new conditions of the market (learning). We considered that this case was a good

starting point to explore the other characteristics of the model. From there, we changed

one by one different parameters and mechanisms of the model to observe the changes on

the price and wealth distribution of the agents.

After success with the new enhancements and the discovered configuration of the

market, we decided to create several basic cases to study the impact of the learning

process on the market dynamics. We studied the returns and the wealth distribution of

the agents as well.
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7.2 Experiments summary

As we explained on the previous section, we developed a series of experiments in which we

explored the different parameters of our model and key changes in some other elements

that compose our artificial market. Judging from the results of the experiments described

in Chapters 4, 5 and 6, the most important conclusions that we can make about such

experiments will be explained in detail in the following sections.

7.2.1 Initial training

The initial phase of training was important in order to generate agents with realistic

behaviour. At the beginning of the project we did not put enough emphasis on the

desired rate of return for a given time horizon. Given our chosen rate of return and

time horizon, the classes on the training data were heavily unbalanced. For example, if

we asked an unreasonable high return for an unreasonable short time horizon, the class

with the highest frequency was the HOLD one. Obviously, the kind of decision trees

(investment rules) that were generated by the evolutionary process were trees whose

most likely recommendation was to HOLD. This is a well known problem in machine

learning and we had to solve it before going any further on the research.

Given the experience gained on the importance of the initial training, we decided

to create heterogeneous groups of agents whose desired rate of return and time horizon

caused the training data to be equally split on the three different classes (BUY, SELL

and HOLD). For example, if a trader wants to achieve a 3% return, she must have a time

horizon of at least 5 days because in real financial data changes by 3% over 5 or fewer

days are rare; if she wants to get a 4% return, she must wait at least for 7 days because of

the few cases present in real financial time series. Otherwise, we could have the classes on

the training data highly unbalanced and that would have biased the evolutionary search.
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7.2.2 Learning and wealth

Learning must have helped to improve the trader’s wealth if we were to study its impact

on artificial markets. This was a crucial issue for us. In order to prove the importance

of learning, we conducted a series of experiments in which we replicated one trader and

allowed her to retrain during the simulation of the market. The rest of the traders

remained without changes, i.e. without retraining. Afterwards, we compared the wealth

of both the original trader and the replicated one. To be able to generalize from this

experiments, we performed this task for different traders in different groups. The results

in the majority of the cases proved that learning does help to improve performance on

wealth terms.

In Figure 4.5 we can see some examples of the experiments mentioned above. In such

figure we can see the wealth evolution during the trading of the replicated trader (dashed

line) and the original one (solid line). We can see that in Figure 4-3(a), learning did not

improve the wealth of the replicated trader, even after retraining on the 1000th period.

However, after approximately the 2500th period, the replicated trader is better-off than

the original one. In the rest of the reported examples, the improvement is clearer than in

the previously mentioned example. We can clearly see in Figures 4-3(b), 4-3(c), 4-3(d)

how learning improved the replicated agent’s wealth.

7.2.3 Fitness measure

The fitness function, based on the rate of correctness of the GP mechanism, can be used

to drive the agent’s learning process. This result might sound obvious but it cannot

be assumed to be always true, as the rate of correctness of the agents’ GP mechanism

(working as a classifier) is not necessarily translated into the agents’ wealth. The results

mentioned in the previous section can be used to justify this point, because we used the

rate of correctness for the learning processes.

An alternative GP mechanism is to use the profit as the fitness measure. This type

of fitness measure has been successfully used in some other works like [35], [68], [67].
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7.2.4 Heterogeneity

One of the things that microeconomics teaches you is that individuals are not alike. There

is heterogeneity, and probably the most important heterogeneity here is heterogeneity of

expectations. If we didn’t have heterogeneity, there would be no trade. But developing an

analytic model with heterogeneous agents is difficult. (Ken Arrow, In: D. Colander, R.P.F.

Holt and J. Barkley Rosser (eds.), The Changing Face of Economics. Conversations with

Cutting Edge Economists. The University of Michigan Press, Ann Arbor, 2004, pp 301.)

Heterogeneity is important for the properties of the simulated returns. By using

CHASM we could model heterogeneity in different forms, including: information, com-

puting capability, desired rate of return and time horizon, fundamental-like behaviour,

generation of limit orders, etc.

The different sources of heterogeneity had different effects on the properties of the

price and the returns. The experiments described in Chapters 5 and 6 may give us a

clear idea of such effects. For example, heterogeneity in the information used by the

agents is useful; on the other hand, heterogeneity in computing capability is irrelevant.

We can see as an example the price and log-returns of the experiments performed with

heterogeneous computational capabilities. Figures 6-1(a) and 6-1(b) present executions

in which there is heterogeneity in computing capability and there is no learning. Figures

6-1(c) and 6-1(d) show the same case when learning in fixed periods takes place. Lastly,

Figures 6-1(e) and 6-1(f) show the same configuration when the Red Queen constraint is

in place.

7.2.5 Learning and returns

The learning mechanism does change the statistical properties of the returns. Moreover,

we can observe the implications of programming the traders with fixed and Red Queen

retraining on the results of the experiments described in Chapter 6. We can observe that,

despite the fact that the simulated prices behave closely to the real prices, when learning

happens the properties of the returns reproduce more closely the stylized facts.
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Figures 6-1, 6-4, 6-7 and 6-10 can give us a better idea of the impact that learning

has on the price and return. The Tables 6.3, 6.3, 6.3, 6.3 show the statistics for the cases

illustrated in such figures. In such tables we can observe that the statistics in general are

close to the statistics present in real financial markets and when learning happens, the

dynamics become even more realistic.

7.2.6 The Red Queen Principle

The implementation of the behavioural constraint known in this work as the Red Queen

constraint is an important component of our model. There have been previous attempts

to model the necessity for adaptation to the new conditions on the environment as seen

in [53] and [119]. However, we are convinced that the necessity of adaptation should

be defined endogenously. The results reported in Chapter 6 show the difference on the

statistical properties of the returns without learning, with learning in fixed periods and

with learning driven by the Red Queen constraint. The results show that learning driven

by such constraint has a more beneficial impact on the statistical properties of the log-

returns in relation with the other two cases.

7.3 Contributions

The major contributions of our research are:

• We have implemented a flexible platform called CHASM, to support a wide range

of experiments. It is a comprehensive platform and we have proven its flexibility,

by conducting different kinds of detailed experiments. CHASM allowed us to study

the relevant factors which can lead to certain market dynamics.

• CHASM allows us to model heterogeneous, realistic and non-simple market agents.

In CHASM we can explore the impact of changes on the proportions of different
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types of traders. Additionally, we can change easily the numerous parameters that

rule the technical traders’ behaviour.

• We have studied the impact of agents’ learning in CHASM. Moreover, we have

demonstrated that even in an artificial environment, learning by a GP forecasting

mechanism (EDDIE) can improve an agent’s performance.

• By using CHASM we found a set of conditions under which some stylized facts

emerge under a simple market mechanism even with no fundamental trading taking

place.

• We developed an endogenous behavioural constraint using “The Red Queen prin-

ciple”, that allowed us to model the fierce competition in real financial markets in

the search for profits.

• CHASM has allowed us to carefully study the role of heterogeneity in our model

by allowing us to organize groups with different characteristics and parameters.

In CHASM, we are able to model heterogeneity in information, computational

capability and desired return and time horizon.

We consider that a realistic behaviour in the modelling of artificial agents, hetero-

geneity and behavioural constraints are the main factors to achieve realistic statistical

properties of the endogenously generated price. We obtained some stylized facts even

with a very simple market mechanism. However, some more work is needed to avoid, or

at least to understand, the cyclical behaviour of the price that emerged in the third and

forth study cases reported on Chapter 6.

7.3.1 CHASM

The implemented platform CHASM was designed from the beginning with two important

objectives from the Software Engineering point of view:
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• The platform should be easy to extend and modify

• The platform should be flexible to allow us to model different phenomena.

After several changes and extensions, the platform has proven to achieve the original

objectives. Furthermore, it has even been enriched with a useful Graphic User Interface

(GUI). Therefore, the platform in addition to accomplish its original objectives is easy

to use.

Some other important characteristics of the platform are related to the GP mecha-

nism. First, we had to change our implementation of the GP mechanism from a purist

object oriented one to a more efficient implementation due to the fact that we would

have dozens of such mechanisms running at the same time. Second, we implemented a

very efficient method to avoid bloat and to speed up our simulation, see [164]. Bloat

happens during the evolutionary process, when the trees grow in size but there is little

improvement in fitness, see [116]. Essentially, this means that there are some branches

of the trees that are redundant or even worse, they reduce the fitness of the individual.

We considered that the control of bloat is important because it was necessary for us

to generate realistic investment rules. It would be very difficult for us (and for anyone)

to justify very complex rules being used by the agents.

7.3.2 Agents

The different types of artificial financial markets that currently exist can vary widely on

several aspects: market mechanism, type of agents, learning, time, securities, etc.

We decided to focus our research on what we considered to be two important aspects:

the modelling of realistic traders and the implications of a co-evolutionary principle on

the price formation process.

The debate is still very intense about the role that technical analysis plays in today’s

financial markets but it is undeniable, at least from the practitioners point of view, its
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importance in such markets. In Section 4.5 we have demonstrated that technical analysis

at least helps to improve performance in our artificial market.

The approach that we have followed in this research is on the opposite side of the spec-

trum in relation with the research done in [91] and [184]. We believe and we have demon-

strated it to a certain extent that the plausible modelling of intelligence and adaptation

of our agents create “realistic” price dynamics even with a simple market mechanism.

We are not saying that the market mechanism is not important on the formation on the

price dynamics. However, we believe that the behaviour of the economic agents plays a

significant role as well. Moreover, the continuous adaptation to the new conditions of

the market has an important change on the price properties.

We agree more with the conclusions drawn in [57]. In such work Cliff and Bruten

argue that the success (which seems to be apparent) of zero-intelligence constrained

agents could be predicted by the probabilistic analysis of the system. More behavioural

(justifiable) sophistication should be added to the agents to realistically test the behaviour

of humans in different markets.

7.3.3 Learning in CHASM

In some works in Agent-Based simulations, it is assumed that the agents will be suc-

cessful in the task that they are assigned for or that learning will work on their benefit.

Unfortunately, there are not many works in which the authors can certify that learning is

making them any good (or at least is not doing them any harm). We have conducted very

precise series of experiments in which we could clearly verify that the learning mechanism

is improving the agents’ situation on the environment.

Despite the fact that the price is generated endogenously and that all the environment

is dynamically affected by the agents, the learning mechanism that we have implemented

is doing well the task for which it was designed for.

It is worth saying that we have experimentally proved that a fitness measure based

on the rate of correctness can be translated into wealth improvement of the agents in an
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ever changing environment.

7.3.4 CHASM and Stylized Facts

At the end of our project, we have found a set of conditions under which stylized facts

arise in our model. Such conditions provide us with a clear idea of which are the factors

that matter in the simulation of financial markets. To answer such question is not a

trivial matter, as it has been pointed out in [42] by Caldarelli, Marsili and Zhang:

“It is clear that by no means one can conclude that our model captures all

the relevant aspects of a real market. As already said it misses the effects of

external drive. More importantly, it does not contain adaptive dynamics of

the players strategies. Further studies should answer the question: what are

the essential elements in a model that will reproduce realistic results?”

We performed two sets of experiments. First, we worked in an environment where

the agents did not learn and we found the setting by which the dynamics of the returns

replicated the real markets. Second, we performed the same task in an environment in

which two different frequencies of learning took place; again we found the setting in which

some stylized facts emerged.

7.3.5 The Red Queen principle

The concept of market efficiency is of central importance in the area of Financial Eco-

nomics, see [71] and [72]. The concept is not new and has been changing recently but

it is always under the constant scrutiny due to the empirical evidence that apparently

contradicts such efficiency (or at least some forms of efficiency), see [174], [175]. However,

little is said about how such efficiency is achieved. There exists empirical evidence about

the different degrees of efficiency of the various financial markets in the world and we

believe that fierce competition is at the centre of such property of the markets.
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We have achieved the replication of some of the empirical properties of financial

markets, helped by an ingeniously designed behavioural constraint. We have carefully

investigated the effects of a plausible way of driving the speed of adaptation of the market

participants.

7.3.6 The role of heterogeneity

When some research is argued to be inspired on the Agent-based methodology, it is

inferred that the agents are heterogeneous. However, the degree or forms of heterogeneity

are not easy to determine in most of the cases. In our experience, heterogeneity proved

to be a key factor in the success of our simulation. We can certainly say that (a) the

organization of the market in different types of agents and (b) within those types of agents

the existence of different heterogeneous groups; contributed heavily to the reproduction

of stylized facts in our simulated market.

Interestingly, having heterogeneity on the computing capabilities of the agents, proved

to be against the desired statistical properties of the market. The cases of the simulated

market least successful in reproducing the stylized facts, were those involving heterogene-

ity of the GP mechanism. This again goes against the line of research taken in [91] and

[184]. We believe that the lack of interesting dynamics in the above mentioned experi-

ments is related to the absence of realism in the building of the agents’ strategies, caused

by the limited computing capability endowed to some of the agents.

We are convinced that zero-intelligence agents or agents with a similar type of in-

telligent behaviour, are not the way forward in this field. Some not very gifted traders

are present in real financial markets for sure but it is impossible to model a realistic

market just with such type of agents. In our case, more interesting price dynamics arose

when we included competent enough agents and more heterogeneity between them. In

[88], the authors have also identified the presence of heterogeneity as a key mechanism

to reproduce some of the statistical properties of the financial returns.

The majority of the agent-based markets do not consider heterogeneity on the time
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horizon of the agents. CHASM allows us to model different expectations about the price

(expected return) and different time horizons in which the agents expect such change in

price. In [118], LeBaron suggests that the incorporation of short and long term investors

is desirable to model in a more realistic manner the markets.

To finalize this section lets just say that in real markets and in real life, people commit

mistakes, have different opinions and different forecasts. Such differences might well be

the cause for trading in financial markets. This heterogeneity is difficult to model with

traditional methods in which the common assumptions are that the individuals are fully

rational and have common expectations.

7.4 Future research

One obvious way in which our work can be extended is to model more realistic and

complex market mechanisms. Despite the fact that the artificially generated price satisfies

some of our original requirements, it is necessary to analyze the impact of the market

mechanism in an environment that already satisfies some of the desirable properties

of such type of simulations. More work is needed to get prices that mach closer the

behaviour of real prices. The first natural candidate is the double auction market. Once

such market is implemented with the present agents, a more in deep investigation of the

statistical properties of the generated price could be conducted.

On Market Microstructure is where some of the most intense and challenging re-

search is being made. The comparison between different market mechanisms is always

an attractive line of research. Which sort of market favours more the dissemination of

information? Which market mechanism is more efficient?

Going even further, some other market participants like market makers could be

incorporated into our framework. There is currently some interesting research already

done modelling artificial market makers [47]. Unfortunately, their work is different to

ours on the type of traders used. It is understandable to focus on the modelling of the
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market maker and to make her a realistic and non-simple agent, however we should not

compromise the modelling of the other (the traders) market participants.

More experiments can be conducted to study the co-evolution of the agents or some

other means of interaction between the agents could be provided to study some interesting

behavioural phenomena thought to be present in modern financial markets. Some recent

research has gone along the lines of behavioural finance and artificial markets like in

[35]. We believe that it is an interesting and promising avenue of research. Artificial

Financial Markets can be controlled beyond any experiments with real humans and they

can certainly include non-simple trading techniques that are currently being used in real

markets. Moreover, it is required a flexible and transparent tool to model the behavioural

aspects and learning of the agents. We are convinced that GP is the right tool to do so,

as we have proven in CHASM.

In recent years automatic trading has been increasing dramatically in different mar-

kets and financial markets are not the exception. What are the implications of such

trading in financial markets? What is the effect of increasing intensive computing on the

search for arbitrage opportunities? Is this sort of trading going to increase the volatility

of the prices or to increase the likelihood of financial crashes?

Financial markets are becoming an ever changing environment with automatic trad-

ing using powerful computer hardware and novel algorithms, better heuristics, and new

statistical methods. Can we feel the presence of the Red Queen around? Are not financial

markets the ultimate laboratory for competitive co-evolution?

Those are the sort of questions in which Agent-Based Artificial Financial Markets are

able to provide some understanding beyond the analytical methods. Moreover, those are

the sort of questions that will require heterogeneous agents with a realistic behaviour, a

flexible learning mechanism and biologically inspired endogenous constraints.
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