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Abstract EDDIE is a genetic-programming based system for channelling expert
knowledge into forecasting. FGP-2 is an implementation of EDDIE for
financial forecasting. The novelty of FGP-2 is that, as a forecasting tool,
it provides the user with a handle for tuning the precision against the
rate of missing opportunities. This allows the user to pick investment
opportunities with greater confidence.
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1. Introduction

1.1 The Forecasting Problem and Its Difficulties

In machine forecasting, one is often given a series of observations
over a set of monitored variables{x1, x2, · · · , xn}, and asked to find the
regularity in the data in order to predict the value of a dependent variable
y. For example, given three years’ of records of the daily closing prices,
trade volumes, changes in interest rate, market indices, etc., one may
attempt to predict whether a share price will rise or fall in the following
week. This prediction task is difficult for many reasons. In our research,
we focus on the following two:
1. Variables identification: Can the observed variables explain

the dependent variables? In other words, is y determined by a function
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of the xi’s? Taking more variables into consideration may incur higher
observation cost. Finding the right xi’s in a domain is a problem for
the human expert. Can the expert be helped to do his/her job more
efficiently?
2. Variable interactions: Even if we are sure that y is a function

of the xi’s, how could this function be found? Many machine learning

techniques are designed to address this problem. Real life forecasting
problems are difficult because the xi’s are rarely independent of each
other. For example, a company’s share price may be affected by, among
many other things, the interest rate and the company’s sales volume;
the sales volume could be affected by money supply, which is affected by
the interest rate. Combinatorial explosion prevents one from examin-
ing combinations of all the factors and all possible interactions between
them.

1.2 EDDIE - A Forecasting Tool

EDDIE (which stands for Evolutionary Dynamic Data Investment
Evaluator) is an interactive tool, designed at University of Essex, to
help analysts to search the space of interactions and make financial de-
cisions [Tsang et al 1998]. Given a set of variables, EDDIE attempts
to find interactions among variables and discover non-linear functions
(addressing point 2 above). By using genetic programming, EDDIE
generates decision trees, which can be understood by human experts.
Human expertise is channelled into EDDIE through human feedback
to the system. In this process, EDDIE helps the human expert to ex-
periment with different variables (xi’s) more easily (addressing point 1
above).
FGP is an implementation of EDDIE for financial forecasting. FGP

has been applied to a variety of financial forecasting problems with
demonstrated accuracy [Li & Tsang 1999; Tsang et al 2000]. It gen-
erates Genetic Decision Trees (GDTs), which enables the program to
explain how a forecast was arrived at. This allows the users to judge
whether the reasons for the prediction are sound or not.
An example GDT generated for daily valuations of S&P 500 is shown

below:
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(IF (NOT (PMV 50 > −38.974922) )

(IF (V ol 50 > 26.432180)

(IF (AND (NOT (OR (TRB 50 > −124.212029) (V ol 50 < 42.150013) ))

(AND (PMV 12 < 31.534222) (NOT (Filter 63 > 104.841507))));

Buy ;

Don’t Buy );

Buy );

Don’t Buy )

In this GDT, PMV 50, V ol 50 , PMV 12 and Filter 63 are technical
indicators (e.g. V ol 50 is ”50 days volatility”, measured by standard
deviation of the last 50 day’s closing prices). Details of these indicators
will not be elaborated here as The main aim of this paper is to argue
that EDDIE is a useful forecasting tool. Whether the rules generated
are good or not depends on the quality of the input indicators, and this
GDT was generated using low quality text-book indicators. 1

In this paper, we focus on a novel feature of FGP-2, in that it provides
the user with a handle for tuning the precision against the rate of missing
opportunities, as it will be explained below.

2. Forecasting Performance Criteria

Prediction accuracy is naturally important to forecasting. In this
section, we define precision and explain why it is important in some
forecasting applications. As a forecasting tool, FGP-2 is designed to
give the user control over the precision of a forecast.
Without lost of generality, we shall describe a specific forecasting task.

We shall use it to describe the criteria for measuring forecasting success.
Suppose one is asked to forecast whether an index will rise by r% within
the next n periods. Each day can be classified into a positive position,
where the target return will be achieved, or a negative position, where the
target return will not be achieved. Given a prediction and the reality (in
hindsight), one may construct a contingency table as shown in table 1.1.
The following analysis applies to all two-class classification prediction
problems in general.
Here we define some measures of success in forecasting. The rate of

correctness (RC) in a prediction is the number of all correct predictions
over the total number of predictions. The rate of failure (RF) is the
proportion of positions that were wrongly predicted positive (FP) over
the number of positive predictions (N+). The precision is 1 - RF, i.e. the
proportion of positive positions that were correctly predicted. The rate
of missing chances (RMC) is the number of wrongly predicted negative
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Table 1.1. A contingency table for a two-class classification prediction problem

# of True Negative # of False Positive Actual Negative
(TN) (FP) O−=TN+FP

# of False Negative # of True Positive Actual Positive
(FN) (TP) O+=FN+TP

Predicted Negative Predicted Positive Total # of Predictions
N−=TN+FN N+=FP+TP T=N++N−=O++O−

(FN) over the number of actual positives (O+):

RC =
TP + TN

T
; RF(1− precsion) =

FP

N+
; RMC =

FN

O+

Ideally one would like RC to be 1. How close RC could approach 1 is
limited by the nature of the data (e.g. are all the relevant variables used?
is there noise?) as well as the quality of the forecasting algorithm.
In financial forecasting, a positive prediction may lead to investment.

If this prediction is wrong, the investor will not be able to achieve the
return desired. Such mistakes could be costly. Therefore, we assume that
the user would want control over RF, if possible. (In other applications,
it may be important not to miss any opportunities, hence reduce FN.)
It should be noted that RF may trivially be reduced to 0 if the sys-

tem makes no recommendation to buy. However, a system that never
recommends any ”buy” will not be useful to any investor. Therefore,
in reality, one would like to reduce RF (the principle goal) without sig-
nificantly increasing RMC (which is seen as a constraint to the target
forecasting system). FGP-2 was built with the following mission: FPG-2
Mission: to enable the user to reduce RF by increasing RMC, or vice

versa, without significantly affecting RC. In other words, RC will not
be used as the objective function here. The objective is to reduce RF.
However, RC is considered by EDDIE as a constraint.

3. FGP-2 -Trading Precision with the Rate of
Missing Opportunities

3.1 FGP-1: Brittle Results with a Linear
Fitness Function

In a forecasting problem, RC is what one would like to improve. In
previous papers, we have presented the effectiveness of FGP-1, an early
implementation of EDDIE, in achieving reasonably high RC [Li & Tsang
1999; Tsang & Li 2000]. In the preceding section, we explained that RC
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may not be the only criterion for measuring forecasting performance. In
some applications, one may want to reduce RF (or 1 - precision).
FGP-1 used f(1) (Equation (1.1)) as its fitness function. It allows

the users to reflect their preference by means of adjusting the weights
w rc, w rmc and w rf.

f(1) = w rc ∗RC − w rmc ∗RMC − w rf ∗RF (1.1)

One possibility of achieving low RF is to assign a high value to w rf in
FGP-1, which we studied thoroughly at an early stage. We fixed w rc to
1 (to prevent FGP-1 from reducing RF to 0 by generating rules that pro-
duce no ”buy” signals) and w rmc to 0. (We have tried an alternative,
which is to set w rmc to 1; no better results were found). We attempted
to vary w rf to a value between 0 and 1. Our experiments show that
FGP-1’s performance can be very sensitive to the three weights; in other
words, performance of FGP-1 was brittle. This is elaborated below.
We found in our experiments that if the value that we choose for w rf

is too close to 1, FGP-1 achieved lower RF by making no positive rec-
ommendations at all; we shall refer to this as the ”no-positive-prediction
problem”. If the value that we choose for w rf is too low, the perfor-
mance of FGP-1 is no different from FGP-1 that sets w rf to 0; we shall
refer to this as the ”no-effect problem”.
There is often some constant a (0.62 in our experiments) such that if

the value of w rf deviates slightly from a on either side, one of the above
two problems occur. When w rf was set to the fine-tuned critical value
(0.62), FGP-1 did not generate effective decision trees reliably. In our
experiments, only two out of ten runs generated a few correct positive
positions on the test period; the remaining 8 runs either showed the
no-positive-prediction or the no-effect problem.
According to our experience, the weighted fitness function is satisfac-

tory. Firstly, it is likely that the critical value for w rf varies from one
data set to another. We found this value (0.62) for the test data set,
but there is no guarantee that it will work for unseen data. Secondly, as
explained above, even when w rf is set to the fine tuned critical value,
some of the GDTs generated suffered from the no-positive-prediction and
some suffered from the no-effect problem. Therefore, if one picks one of
these GDTs and apply it to unseen data, its performance is difficult to
predict (because the sensitive w rf that is good for the test data may or
may not be good for the unseen data). Ideally, one would like a system
that generates GDTs which performance is not too sensitive to param-
eter setting. Besides, one would hope that given one set of parameters,
the system generates GDTs with similar (reliable) performance.
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3.2 FGP-2: Putting Constraints into EDDIE

Our mission is to reduce RF, possibly at the price of RMC. To do so,
we introduced a new parameter to FGP, <= [Pmin, Pmax], which defines
the minimum and maximum percentage of recommendations that we
instruct FGP to make in the training data (like most machine learning
methods, the assumption is that the test data exhibits similar charac-
teristics). We call the new fitness function f(2).
If one aims to make accurate forecasts for a given series, then choosing

appropriate values for < and the weights for f(2) remains a non-trivial
task. In this paper, our focus is to first examine whether RF can be
reduced by any choice of <. Then we shall see if RF can be adjusted
without affecting the overall forecasting correctness (RC).
Efficacy of the constraint in fitness function is first demonstrated by

the following experiment, where we took < = [35%, 50%], w rmc = 0
and w rf = 1. We ran FGP 10 times. Results are showed in Table
1.2. With f(2), FGP-2 does not exhibit the brittleness in FGP-1, as
demonstrated by the relatively small standard deviation (STD) in RC.
For reference, we have included the AARR (Average Annualised Rate
of Return) and RPR (Ratio of Positive Returns) in Table 1.2. RPR
measures the proportion of times when FGP-2’s recommendation gives
a positive return, even when the target r% has not been achieved. Both
AARR and RPR are for reference only, as they are not used to train
FGP-2.

Table 1.2. FGP-2 results on test data using the constrained fitness function with
< = [35%, 50%]

RULES RF RMC RC AARR RPR Number of
Recommendations

GDT 1 40.34% 64.02% 53.92% 60.68% 70.59% 357
GDT 2 41.22% 62.67% 53.66% 63.83% 67.55% 376
GDT 3 40.12% 66.22% 53.66% 61.98% 70.96% 334
GDT 4 40.06% 66.39% 53.66% 62.60% 70.78% 332
GDT 5 40.25% 67.40% 53.39% 64.02% 69.66% 323
GDT 6 41.03% 59.46% 54.27% 58.26% 69.29% 407
GDT 7 41.47% 66.39% 52.95% 62.99% 67.35% 340
GDT 8 39.94% 68.75% 53.30% 63.98% 69.16% 308
GDT 9 39.82% 66.55% 53.74% 63.41% 71.73% 329
GDT 10 36.40% 69.59% 54.63% 72.02% 72.44% 283

MEAN 40.06% 65.74% 53.72% 63.38% 69.95% 338.9
STD 1.41% 2.99% 0.48% 3.53% 1.67% 34.7
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Table 1.3. FGP results on test data using the general fitness function (w rc =
1, w rmc = w rf = 0)

RULES RF RMC RC AARR RPR Number of
Recommendations

GDT 1 41.11% 44.59% 56.56% 57.82% 66.61% 557
GDT 2 43.89% 44.93% 54.10% 52.40% 66.09% 581
GDT 3 42.35% 53.55% 54.27% 55.04% 68.97% 477
GDT 4 45.02% 43.07% 53.22% 54.96% 64.60% 613
GDT 5 44.09% 44.09% 54.01% 52.33% 63.68% 592
GDT 6 44.58% 52.53% 52.69% 54.02% 65.88% 507
GDT 7 43.33% 50.51% 53.92% 54.90% 65.57% 517
GDT 8 43.61% 38.85% 55.07% 60.34% 66.36% 642
GDT 9 43.36% 45.27% 54.54% 53.82% 65.21% 572
GDT 10 43.79% 50.34% 53.57% 55.09% 65.58% 523

MEAN 43.51% 46.77% 54.19% 55.07% 65.86% 558.1
STD 1.11% 4.71% 1.07% 2.42% 1.39% 51.7

To see the effect of the constrained fitness function, we compare the
above results with those generated by FGP using RC only as the fit-
ness function (i.e. f(1) with w rmc = w rf = 0). Results are listed
in Table 1.3. From Table 1.3, we can see that by using f(2), the mean
RF is reduced from 43.51% to 40.06%. For reference, the mean AARR
rises from 55.07% (Table 1.3) to 63.38% (Table 1.2) and the mean RPR
rises from 65.86% to 69.95%. The price to pay for a lower RF is that
more opportunities were missed: the mean RMC rises from 46.77% to
65.74%. The mean RC only slightly decreases from 54.19% to 53.72%.
To determine whether result differences are statistically significant, the
two-tailed paired t-test was applied on the null hypothesis that the mean
performances of two groups were not statistically different under each of
the five criteria. Shown in Table 1.4 are t-values and their corresponding
p-values under each criterion. The results indicate that by using the con-
strained fitness function with <= [35%, 50%], FGP-2 generates decision
trees with statistically better RF, AARR and RPR at a significant level
of α = 0.001, though they have statistically worse RMC. These decision
trees do not show any statistically different for RC (p-value is 0.2612).
That is, RC has not been compromised as RF is reduced.
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Table 1.4. t-statistics for comparing mean performances of two groups (Using RC
only versus using the constrained fitness function with < = [35%, 50%])

Criteria For For For For For
RF RMC RC AARR RPR

t values -4.64 6.33 -1.16 4.69 4.71
p values(α = 0.001 ) 0.0002.5 0.000005 0.261247 0.000182 0.000175

4. Empirical evaluation of the constrained
function

4.1 Objective of the experiments

To test FGP-2’s usefulness as a tool for tuning precision against miss-
ing opportunities, we tested it on historic data. We should re-iterate
that FGP-2’s prediction accuracy is limited by whether or not the pre-
dicted value is a function of the observed variables (as we pointed out in
Section 1.1, point 1). When no such function exists, neither FGP-2 nor
any other comparable algorithms would be able to make accurate pre-
dictions. The primary objective of the test results presented below is not
to demonstrate that FGP-2 can predict DJIA accurately. (In fact, the
results presented below do not represent the most accurate predictions
that FGP-2 has ever made.) Instead, the primary objective is to observe
whether FGP-2 can be used to trade precision with the rate of missing
opportunities. We would only conclude that FGP-2 achieves what it is
designed to achieve if one could instruct it to improve precision at the
cost of increasing the rate of missing opportunities, or vice versa.

4.2 Experimental Data

In this section, we present a typical set of test results by FGP-2, based
on daily closing prices of the Dow Jones Industrial Average (DJIA) In-
dex. Other indices and share prices have been used with similar results.
Experiments presented in this paper were carried out on DJIA daily
closing index from 07/04/1969 to 09/04/1981, a total of 3,035 trading
days, as illustrated in Figure 1.1. We took the data from 07/04/1969 to
11/10/1976 (1,900 trading days) as training data, and the period from
12/10/1976 to 09/04/1981 (1135 trading days) as testing data. For the
purpose of analysis, we chose r = 2.2 and n = 21 days, which give
roughly 50% of positive positions in both the training and test periods.
Details of the experiemental setup are shown in table 1.5
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Figure 1.1. Dow Jones Industrial Average (DJIA) index daily closing prices from
07/04/1969 to 09/04/1980 (3035 trading days)

Table 1.5. Parameters used in FGP-2 for experiments

Target To find GDTs with low RF, with return of 2.2% with 22 days

Input terminals Six technical indicators plus Real as thresholds

Prediction terminals {0, 1}: 1 representing ”Positive”; 0 representing ”Negative”.

Non-terminals If-then-else , And, Or, Not, >,≥, <,≤, = .

Crossover rate 0.9

Mutation rate 0.01

Population size 1,200

Maximum no. of generations 30

Termination criterion Generation limit or Time limit, whichever reached first

Selection strategy Tournament selection, Size = 4

Max depth of individual programs 17

Max depth of initial individual programs 4

Maximum run time (hours) 2

Hardware and operating system Pentium PC 200MHz running Windows 95 with 64M RAM.

Software Borland C++ (version 4.5)

4.3 Experimental Results

To further explore the impact of the constraint < on reducing RF, we
took five additional non-overlapping <s in the fitness function respec-
tively. The five mutually exclusive <s are [5%, 10%], [10%, 15%], [15%,
20%], [20%, 35%] and [50%, 60%]. For each <, we run FGP-2 ten times
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using the parameters w rc = w rf = 1 and w rmc = 0. We calculated
the mean performances on test data with respect to RF, RMC, RC,
RPR, AARR and the mean number of positive recommendations. All
experimental results are showed in Table 1.6. The results are visualised
in Figure 1.2.

Table 1.6. The effect of the constraint < on the mean performances of FGP-2

< [% %] RF RMC RC AARR RPR

Number of
Recommendation

[5, 10]

Mean

SD

13.48%

14.85%

99.14%

0.63%

48.19%

0.26%

224.03%

229.24%

92.22%

10.86%

6.2

4.8

[10,15]

Mean

SD

28.60%

6.22%

94.05%

1.65%

49.70%

0.76%

136.81%

30.52%

82.95%

4.40%

49.3

13.1

[15,20]

Mean

SD

31.02%

5.21%

85.69%

6.41%

51.74%

1.67%

99.58%

25.50%

79.02%

5.47%

125.1

62.7

[20,35]

Mean

SD

36.00%

2.59%

75.25%

5.50%

53.41%

1.19%

75.68%

9.55%

73.61%

3.41%

229.8

55.1

[35,50]

Mean

SD

40.06%

1.41%

65.74%

2.99%

53.72%

0.48%

63.38%

3.53%

69.95%

1.67%

338.9

34.7

[50.65]

Mean

SD

46.73%

1.37%

45.47%

10.40%

51.31%

1.64%

52.26%

1.63%

62.57%

1.67%

606.2

115.4

Figure 1.2 shows that RF decreases gradually as < is reduced. The
lowest RF (13.48%) is obtained by using the smallest < [5%, 10%]
whereas the highest RF (46.73%) is obtained by using the biggest <
[50%, 65%]. The six mean RFs in the graph suggest that tightening the
constraint (<) in the fitness function may lead to a lower RF. Reduction
in RF obviously benefited RPR and AARR in the test data. RPR rises
from 57.16% to 92.85%. AARR increases dramatically from 40.32% to
300.33%. The results obtained by using the tightest constraints [5%,
10%] provide the most reliable recommendations, with a failure rate of
13.48%. The price to pay for using a constraint of this tightness is that
it makes fewer positive recommendations, which leads to higher rate
of missing chances (RMC). If we reduce < beyond a certain point, no
positive recommendations will be made by FGP-2. Results in this ex-
periment suggest that < is a useful handle for tuning RF against RMC
in FGP.
We also tested FGP-2 on different market conditions, namely, (a)

down-trend period from 12/10/1976 to 12/04/78 (378 trading days);
(b) side-way-trend period from 13/04/1978 to 27/03/1980 (496 trading
days); and (c) up-trend period from 28/03/1980 to 09/04/81 (261 trad-
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Figure 1.2. Visualization of the effect of the constraint < on the mean performances
of FGP-2

ing days), as illustrated in Figure 1.1. Results obtained were consistent
with those shown above. FGP-2 was tested extensively in other data
sets. For simplicity, details of values are not presented here.

5. COMPARISON STUDY

Up to this point, we only tested FGP-2 with the constrained fitness
function on a financial index. Should it still be effective and applicable to
individual stock data? How does FGP-2 compare with other methods?
To partially answer these questions, we referred to Saad et al (1998)
in which three specially developed Neural Networks, (i.e. Time Delay
(TDNN), Recurrent (RNN) and Probabilistic (PNN)), and a linear clas-
sifier were employed to address a similar prediction problem. They also
have the goal of achieving low false alarm.
We compared performances based on predictions with r = 2% and

n = 22; i.e. daily predictions on whether a return of 2% or more can
be achievable within the next 22 trading days. We tested the above
algorithms on ten stocks:

Apple (AAPL), IBM(IBM), Motorola(MOT), Microsoft (MSFT):
representing the technology group which generally has high volatil-
ity



12

American Express(AXP), Well Fargo (WFC): representing the banks

Walt Disney Co. (DIS), McDonald (MCD): representing consumer
stocks

Public Svc New Mexico (PNM), Energras (V.EEG): representing
cyclical stocks

These data series vary in their starting dates, but all ended by 06/03/1997.
Following [Saad et. al 1998], the last 100 days were chosen as the test
data for each stock.
In the experiments, we ran FGP-2 10 times for each data set. For

each run, we took 500 trading days just before the final 100 days as
training data, and took a constraint < = [20%, 30%] for most data sets
except for AAPL, PNM and V.EEG, for which we took a constraint <
= [10%, 20%]. The < values were chosen to reflect the percentage of
positive positions in the data. The termination condition was set to 50
generations. Since FGP-2 is a probabilistic technique, it was run ten
times for each share. For each share, we picked the best decision tree
generated in FGP-2’s ten runs for the purpose of comparison, as the
same was done for the three different neural networks reported in [Saad
et. al 1998].
Table 1.7 lists the performance of the three different NNs, a linear

classifier and FGP-2 on 10 stocks. The ”Total” column summarises
the total number of predicted positive positions on all 10 stocks. The
last column, ”Ave.”, reports the average rate of failure over 10 stocks.
On average, the NNs out-performed the linear classifier in RF (7.56%,
3.05% and 3.61% as opposed to 18.62%). The average RF for all the
GDTs generated was 5.08% (much better than the RF achieved by the
linear classifier, 18.62%). The average RF by the best GDT was 1.29%,
which was lower than any of the NNs 2. The best-found GDT found
385 positive signals totally, which is slightly more than 372 found by the
linear classifier. This shows that RMC has not been compromised by
FGP-2 in its attempt to reduce RF. On individual shares, the RF by the
best GDT found by FGP-2 was at least as good as the RF found by the
NNs in 8 out of the 10 shares.

6. Conclusion and future research

How accurate a forecasting program can be is limited not only by the
algorithm that it uses, but also by the quality of the data. In previous
papers, we have reported the capability of FGP-2 in finding patterns in
historical data when patterns exist. In this paper, we argue that, de-
pending on the application, a user may want a forecasting program to
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Table 1.7. Performance comparisons among NNs., a linear classifier and FGP-2 in
terms of RF and N+ (the total number of predicted positive positions)

sacrifice investment opportunities for high precision, or vice versa. Our
mission is to develop a forecasting tool to help users achieve their pre-
ferred performance. FGP-2 allows us to favour precision or investment
opportunities through adjusting the tightness of a constraint in the ob-
jective function. The effectiveness of FGP-2 in influencing the precision
is supported by our experiments.
Many other issues are relevant to the practicality of FGP-2. First of

all, it must be established that in the series to be predicted, past patterns
will repeat themselves in the future. Secondly, predictions only improve
one’s odds statistically. One needs to know how to use the predictions
to invest one’s money, so as to reduce risk. Moreover, if EDDIE were to
be asked to recommend buying cautiously, one must have a viable policy
for investing one’s capital when it is idle. These issues will be left to
future research.
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Notes

1. For the record, this rule recommended 33 ”buy” over 500 trading days between 22 May
1998 and 21 April 2000. All 33 occasions resulted in a gain of 4the target return during the
training over the preceding 1000 days.

2. The favourable results by FGP may be partly due to the rather bullish market over
test period in which over 50% of the position are positive for all the shares; e.g. 87% of the
positions were positive for MSFT and 92% for AXP.
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