
A Memetic Genetic Programming with Decision
Tree-based Local Search for Classification Problems

Pu Wang and Ke Tang
NICAL

School of Computer Science and Technology
University of Science and Technology of China

Hefei, Anhui 230027, China.
Email: wuyou308@mail.ustc.edu.cn

ketang@ustc.edu.cn

Edward P.K. Tsang
Department of Computer Science

University of Essex
Wivenho Park, Colchester CO4 3SQ

Email: edward@essex.ac.uk

Xin Yao
CERCIA

School of Computer Science
University of Birmingham

Edgbaston Birmingham B15 2TT, U.K.
Email: x.yao@cs.bham.ac.uk

Abstract—In this work, we propose a new genetic program-
ming algorithm with local search strategies, named Memetic
Genetic Programming(MGP), for classification problems. MGP
aims to acquire a classifier with large Area Under the ROC Curve
(AUC), which has been proved to be a better performance metric
for traditionally used metrics (e.g., classification accuracy). Three
new points are presented in our new algorithm. First, a new
representation called statistical genetic decision tree (SGDT) for
GP is proposed on the basis of Genetic Decision Tree (GDT).
Second, a new fitness function is designed by using statistic in-
formation from SGDT. Third, the concept of memetic computing
is introduced into SGDT. As a result, the MGP is equipped with a
local search method based on the training algorithms for decision
trees. The efficacy of the MGP is empirically justified against a
number of relevant approaches.

Index Terms—Genetic Programming; Memetic Algorithm;
AUC; Classification

I. INTRODUCTION

Classification is an important data mining task, with roots
in machine learning [1–3]. It predicts the categorical attribute
(class attribute) which contains two or more groups also called
classes based on the values of other attributes (predicting
attributes). The training set is a data set used to induce a clas-
sifier while the test set is a data set used to measure the quality
of the classifier obtained. There are many different kinds
of approaches to induce classifiers, such as Artificial Neural
Networks [4, 5], Learning Classifier Systems [6], Support
Vector Machines [7], decision trees [8, 9], and Evolutionary
Algorithms (EA) for learning [10–13].

Genetic programming (GP) is an evolutionary learning
approach [14]. There are a large quantity of work on GP for
classification problems [13]. One of the main advantages of
GP is its flexibility that allows a classification system to be
represented in different ways. Linear or graphic structures can
be used to construct the GP individuals. However, tree is the
most common general data structure for GP representation.
Tree-like structure can also be expended for three purposes.
The first is GP for extracting decision trees, the second is
learning Rule-Based systems, the last is learning discriminant
functions [3]. Li invented Genetic Decision Tree (GDT),
which is a meta-structure combines decision tree and rule

based system [15] and used in the series of Evolutionary
Dynamic Data Investment Evaluator (EDDIE). EDDIE is one
of GP learning systems[16]. Li expended EDDIE to the third
version, Financial Genetic Programming (FGP) [15] which
is a successful algorithm to solve some financial forecasting
problems, also works on the classification problems.

Though EDDIE and FGP are successful on some problems
such as horse racing and financial forecasting, there are some
weaknesses in them. First of all, the fitness functions of
EDDIE and FGP guide the search towards a classifier with
good overall accuracy. However, accuracy itself has been
demonstrated to be an inappropriate performance metric [17].
Instead, the Area Under the ROC Curve(AUC) is now well
acknowledged as a better performance metric because it is
insensitive to class distribution and misclassification costs
[18]. Given their fitness functions, EDDIE and FGP might be
ineffective for producing classifiers with large AUC. Second,
the fitness function in FGP cannot evolve GDTs efficiently for
a long generation. Typically, the algorithm stops generating
better solutions after a few number of generations. The last is
that hill-climbing in FGP is not good enough for local search.
Local search in FGP just adjusts the cut surfaces by moving
them following their previous direction in the sample space.
It is limit to help us to divide the whole sample space into
the positive and negative sample subspaces. We need the local
search which has the strong power at cutting sample space.
A splitting operator is used to enhance the local search in the
search process.

To further improve FGP and adapt it to achieve classifiers
with large AUC, we proposed the Memetic GP (MGP) in
this paper. First, we modify GDT into statistic GDT (SGDT)
which gives output by the information collected in the training
phase. Second, collected information is used to design new
fitness function which has stronger positive relationship with
AUC. Third, Memetic [19] idea is emphasized in this paper.
A splitting operator strengthens the exploitation in the search
process to make up for the hill-climbing (shifting operator) in
FGP. The efficacy of MGP has been evaluated and compared
with FGP and three other algorithms.

This paper is organized as follows: Section II gives an

917978-1-4244-7835-4/11/$26.00 ©2011 IEEE

edward
Typewritten Text
P. Wang, K. Tang, E.P.K. Tsang, X. Yao, A memetic genetic programming with decision tree-based local search for classification problems, in Proceedings of the 12th IEEE Congress on Evolutionary Computation (CEC’11), 2011, pp. 917–924
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5949716



introduction of some related work. In Section III , we show
our new representation for our algorithm. Section IV describes
the new fitness function which is designed for the new
representation and traditional decision tree. Section V will
show the new local search operator for SGDT. Section VI
gives our algorithm. Experiments and results are described
in Section VII. In Section VIII, we give the conclusions and
future work.

II. RELATED WORK

Using GP to evolve classifiers has been developed over 15
years. Since 1995, Evolutionary Dynamic Data Investment E-
valuator (EDDIE) [16] had been invented as a system using GP
to evolve decision rules to help investors with the evaluation of
investment opportunities. EDDIE is an umbrella under which
a number of programs have been developed. EDDIE-1 is the
first implementation invented by Butler and Tsang, and be used
for forecasting in horse racing [16]. Tsang and Li [15, 20]
enhanced EDDIE and applied it to financial forecasting, to
obtain the third EDDIE release, FGP-1 (also called EDDIE-
3). FGP-1 used GP to evolve the GDT as the classifier that
syncretizes decision tree and rule.

Fig. 1 to Fig. 3 show three kinds of representations. They
are discriminant function [3], classification rule [1, 21, 22] and
decision tree [14, 23]. All of them can be used for classification
problems. Here, Ai is the attributes in the data sets, and Cj is
the label or class (0 ≤ i ≤ number of attributes in the training
data, 0 ≤ j ≤ number of classes in the training data).

Discriminant function is a mathematical expression in which
different kinds of operators are applied to the attributes of
a data instance that must be classified. Classification rule
is also a formalism for representing classifiers that contain
logical conditions. Decision tree is one of that most common
representations as a classifier which combines several clas-
sification rules. For binary classification problems, a single
discriminant function with a threshold can be enough, or a
single classification rules or a single decision tree. To solve
the n-class classification problem, we need n−1 discriminant
functions or classification rules. We also can use a single
discriminant function with n−1 thresholds or a single decision
tree. However, all of these classifiers will return a class label
for a test instance.

GDT is the combination of decision tree and classification
rule. Fig. 4 shows a GDT which has several selector branches.
And a test instance will get a class label from a GDT classifier.
GDT can be split into several decision trees, it means GDT can
be efficacy as several decision trees and is better than decision
tree. Though GDT has its advantages, it also returns a class
label to a test instance, that is weak for getting a good AUC
[9]. As mentioned in Section I, it will use SGDT to give every
test instance a probability score which a instance is classified
to positive class with.

Guiding the evolutionary search in FGP-1 is a cost sensitive
fitness function which is designed for the inventors to make
financial investment strategies. But it is not suitable for the
classifier to get a large AUC. AUC is considered to be more

+

/*

- +

A2 15 A3 A1 25 A3

+ A5

Fig. 1. GP individual represent-
ing a discriminant function

Fig. 2. GP individual represent-
ing a classification rule

Fig. 3. GP individual representing a decision tree

appropriate than accuracy in comparing learning algorithms
[18, 24]. In this work, we will introduce AUC into FGP in
order to improve its performance and result quality. Many
metrics are involved as the fitness function to evolve the GP
classifier such as accuracy, G-mean and F -measure [3].

The C4.5 algorithm by Quinlan [8] is a famous tool for
classification. Traditional decision tree is encoded as the C4.5
classifier which is constructed by greedy algorithm, and it is
much faster than most other classification approaches. C4.5
utilizes information gain as the heuristic search strategy which
leads to pure leaf nodes. This costs much less computation
time than AUC. On the other hand, information gain has
positive relationship with AUC, so there is an idea to design
a new fitness function from the information gain. The new
fitness function has strong positive relationship with AUC and
costs less time. It will be talked about this in Section IV.

Memetic Algorihtms (MA) not only pay attention to evo-
lution but also emphasize individual learning. In recent years,
many dedicated MAs have been exploited to solve different
kinds of problems [25, 26]. FGP-1 used hill-climbing as its
local search operator which is not very effective, so we will
develop a new local search operator to enhance the search
process. The construction of C4.5 also has a splitting strategy
which are more focused on deep exploiting. We also involve
the splitting strategy in our new algorithm. It is used to divide
the search space into more subspaces and get better results.
Because of our novel design, a SGDT’s fitness is expected to
be better when the splitting strategy works on it successfully.

918



III. NEW REPRESENTATION-SGDT

SGDT has the same structure as GDT, and the only differ-
ence between them is that SGDT will not give a categorical
class label to a test instance. The SGDT will collect the
information while it is trained. Every decision leaf node
records the instances which have fallen into it, and the SGDT
estimates the probability to the test instances according to
these information. Such a minor change facilitates our proposal
of a novel fitness function for FGP. Fig. 5 shows a SGDT.

Fig. 4. A GDT individual

Fig. 5. A SGDT individual

IV. FITNESS FUNCTION

Fitness function plays an important role in evolutionary
algorithms (EAs). It represents how an individual adapts to
the requirements. Selection operator in EAs most takes the
basis of the fitness function, so fitness function can guide the
search and decide the final result to a certain degree. There
are several metric from confusion matrix such as accuracy,
precision, recall, specificity, rf and rmc , they are referred
to [15, 22]. Many fitness functions for GP are designed by
using these metrics. F -measure, introduced in [27], is the
harmonic mean of precision and recall. G-mean [28] is the
geometric mean of specificity and recall. Fcs is the linear
combination of accuracy, rf and rmc.

F −measure =
2× recall × precision

recall + precision
(1)

G−mean =
√

recall ∗ specificity (2)
Fcs = w1 ∗ accuracy + w2 ∗ rf + w3 ∗ rmc (3)

Eq. 2, Eq. 3 are very common metrics as the fitness function to
evaluate the performance of the classifier, and Eq. 3 is a cost
sensitive method. These are arbitrary prediction based metrics.
Taking them as the fitness function to evolve the classifier,
it is hard to get a good result, because they have so weak
relationship with AUC.

A. Our new fitness function

AUC are not taken as the fitness function though it is our
target object, because it costs a lot of time to compute AUC
of an individual. The upper bound of complexity of AUC
computation is O(mlogm), where m is the size of data set [24]

p(l, k) =
P (l)[k]
2∑

i=1

P (l)[i]

(4)

FE(x) =

∑
∀leaves l∈x

(
1 +

2∑
k=1

p(l, k) log2 p(l, k)

)(
2∑

k=1

P (l)[k]− 1

)
|A| − |leaves ∈ x|

(5)
We want to design a fitness function which has a strong
positive relationship with AUC and also has a low computation
complexity. A fitness function based on the entropy method
from the traditional decision tree was invented. The range of
Eq. 5 is from 0 to 1. When FE(x) = 1, the x has the maximum
AUC with 1, FE(x) = 0 means x is a random classifier, here
x is a SGDT, P (l)[i] is the number of the instances with label
i (i = 1 or 2 ) have fallen in the lth leaf in classifier x.
The computation complexity of this FE(x) is O(m + n), n
is the size of decision leaf nodes in x, |A| is the size of
training data set. Every instance will get a score from the
SGDT by the information of the decision leaf node which
it has arrived at, and the score measures the probability of
the instance belonging to a certain class. FE(x) pays more
attention on the detail of the partition of the sample space
and the probability of the output. This leads to a stronger and
positive relationship with AUC than F -measure, G-mean
and Fcs.

V. LOCAL SEARCH

In the left hand of Fig. 6, the circles are positive instances,
and the crosses are negative instances. A classifier (SGDT) is
instant of two blue solid lines which divide the sample space
into three subspaces. All the instances in S1 belong to positive
set, where S1 is a pure space, and so is S3. S2 is not so
pure because positive and negative instances are mixed. Our
target is to divide the data space into several subspaces, make
every subspace as pure as possible and minimize the number
of subspaces.

A. Shifting

In the left hand of Fig. 7, it does shifting operators twice,
and the solid lines are moved to dotted lines. In the right
hand of Fig. 7, in the red circle, it does a shifting operator on
a SGDT. Shifting is the hill-climbing operator in [15]. Hill-
climbing operator in FGP is used to adjust the thresholds in

919



GDT or SGDT. In Fig. 7 threshold T4 is modified as T ′
4, this

operator is expected to make every subspace more pure by
adjusting the cutting surfaces.

B. Splitting

Fig. 6. Original SGDT

Fig. 7. Shifting on SGDT

Fig. 8. Splitting on SGDT

Splitting is another local search operator. It is used to split a
subspace into two or more subspaces. It works on one subspace
and keeps others. In the left hand of Fig. 8, it does shifting
operators once, a dotted lines divides S2 into two subspaces
which are pure. In the right hand of Fig. 8, a splitting operator
is done on a SGDT that in red circle. Splitting operator is
the reinforcement of shifting. When shifting operator is not
efficient for an individual, splitting operator will be used to
divide the subspace which lead to increment of subspaces
number.

Generally, the space with more instances has more prob-
ability to be selected to do splitting operator. When a space
with fewer instances is divided into several subspaces; , it will
result in overfitting for the classification problems easily. On
the other hand, a pure space is not necessary to be divided,
so it needs to define how pure a space is should to be done
by splitting operator. If a space has information gain greater
then ST (ST = 0.1 in our paper), the splitting operator will
be called.

A splitting operator works on a subspace or a decision leaf
node. It adopts splitting ideas from C4.5. There are several
instances in the decision leaf node, and splitting operator
can choose the likely feature and threshold which can get
the maximum information gain. The fitness of a SGDT will
increase when splitting operator is worked on it successfully.

VI. MGP ALGORITHM

The proposed on SGDT, we have designed a new fitness
function which has a positive relationship with AUC, and
also involve some memetic techniques to improve SGDT
performance. A Memetic Genetic Programming (MGP) for
classification problems is described as Algorithm 1.

Algorithm 1 MGP(M ,D)
Require: M ≥ 0 ∨D ̸= null

1: M is the maximum generation
2: D is the data set

Ensure: MGP
3: Let gen = 0
4: Initialize the population using the ramped-half-and-half

method
5: while gen ≤ M do
6: Evaluate fitness(FE(x)) of each individual
7: Update the best individual TBest
8: Survival Selection + Crossover
9: Shifting operator

10: Splitting operator
11: gen = gen + 1
12: end while

Algorithm 1 is similar as the common GP algorithms. It uses
ramped-half-and-half method [14] to initialize the population.
This method can ensure the diversity of the initial population.
The evaluation of the individual or classifier is using our
new fitness function FE(x) in Section IV. Survival selection
and crossover are combined to construct the son population.
Shifting operator and splitting operator are adopted on the son
individuals. Every individual does deep exploiting by these
two local search operators and is kept as the new parent
individual in the next generation. MGP always keep the best
individual in the evolving process and take the best one as the
final classifier to class the test instances.

920



VII. EXPERIMENTAL STUDIES

A. Data Sets

Ten Data sets are selected from UCI [29] and described
in Table I. In this paper, we focus on the binary classification
problems, so all the data sets are 2-class problems. Haberman,
german, hepatitis, spambase and bands are imbalanced data
sets, others are balanced data sets.

TABLE I
10 UCI DATA SETS

Data Set No. of Class
features Distribution

haberman 3 81:225
german 24 700:300
hepatitis 19 32:123
monks-1 36 1669:1527

hill-valley 100 612:600
spambase 57 1813:2788

mammographics 5 445:516
bands 36 228:312

crx 15 307:383
heart 13 150:120

B. Experimental Design

To evaluate our ideas on new fitness function FE and
the splitting operator, we compare our new algorithm with
three other algorithms. They are showed in Table III. All
the algorithms have the same framework of GP. FGP comes
from Li’s work [15]. We design GGP (G-mean GP) and EGP
(Entropy GP) to make the proof procedure more clear and
smooth. The difference between EGP (Entropy GP) and FGP
or GGP is the encoding of individuals and fitness function. FE

is better than Fcs or FGmean when the result of EGP is better
than FGP and GGP. The efficiency of the splitting operator
can be proved by comparing MGP with EGP. C4.5 is the tree
structure classifier, and the original idea of our fitness function
and splitting operator, so it is taken in the compared list. In
Table II, it provides the parameters of the four algorithms
configurations used.

1) Fixed Generations Experiment: To briefly evaluate the
performance of MGP over the other compared algorithms,
we simply run all the algorithms with the same generations
(150 in our study). And every algorithm runs 5-fold cross-
validation 20 times on all data sets. It should be noted that
different algorithms may need different number of generation
to obtain the optimal solution (i.e., classifier). By using the
same number of generations for all the compared algorithms,
we aim to analyze the whole evolutionary behavior of them
rather than simply comparing the quality of the best classifiers
achieved by each algorithm. All the final results are shown
from Fig 9 to Fig. 18. The blue lines with crosses represent
the performance of MGP, the green lines with circle markers
stand for EGP, the cyan lines with plus markers belong to
GGP and the red lines with snow markers are results obtained
with FGP. From these figures, it can be found that our MGP
performs significantly better than other algorithms on all the

TABLE II
PARAMETERS FOR FOUR ALGORITHMS

Objective Find decision trees
which has the higher AUC

Terminals 0,1with 1 representing ”Positive”;
0 representing ”Negative”

Function set If-then-else , And,
Or, Not, >, < , =.

Data sets 10 UCI data sets
Algorithms C4.5 ,FGP-1 , GGP ,

EGP, MGP
Crossover rate 0.9
Mutation rate 0.1

Parameters for GP P(Population size) = 100;
G (Maximum generation) = M

Number of Runs :
5 fold crossvalidation 20 times

Termination criterion Maximum of G of
generation has been reached

Selection strategy Tournament selection, Size = 4
Max depth of

individual program 17
Max depth of

initial individual program 3

TABLE III
FOUR ALGORITHMS TO BE COMPARED

Encoding Fitness function Shifting Splitting
FGP GDT Fcs Yes No
GGP GDT G-mean Yes No
EGP SGDT FE Yes No
MGP SGDT FE Yes Yes

training data sets. Furthermore, it can also be observed that
our MGP performs better than other algorithms on most of
the test sets in two points: First, the process of converging
to the obtained best solutions of MGP is much shorter than
others. Second, the best AUC obtained by GP among the pre-
defined generations is always the largest of all the compared
algorithms.

Though MGP can get the best solutions quickly on all of the
test data sets, except the haberm data set, it could be found
that the overfitting of MGP exists on several data sets (e.g.
german, crx and haberman). The reason of the overfitting is
our splitting operator which divides the subspace into several
smaller subspaces. It means that splitting operator leads to
increment of subspaces and decrement of number of instances
in one subspace. The overfitting comes out when there are
too many decision leaf nodes with few training instances.
The parameter ST in Section V is used to decide whether
the splitting operator work on a decision leaf node. If ST is
too strict small like 0, splitting operator will be done on all
decision leaf node, that is not so good. If ST is too large like 1,
splitting operator will not be done at all, and MGP equals EGP.
There are three methods can be used to avoid the overfitting.
The first is that we can adjust ST which controls the search
depth of the splitting operator. Pruning strategy in C4.5 also
can be employed for preventing the overfitting which is the
second method. It is not necessary for different algorithms to
run with the same generations. Generation number M is

921



TABLE IV
PERFORMANCE ON 10 DATA SETS I

C4.5 EGP FGP GGP MGP
bands 0.7456 ± 0.0021 0.7004 ± 0.0505 0.5399 ± 0.0556 0.6488 ± 0.0489 0.7412 ± 0.0553

crx 0.8551 ± 0.0016 0.9068 ± 0.0249 0.8591 ± 0.0357 0.8636 ± 0.0332 0.9073 ± 0.0254
german 0.6536 ± 0.0022 0.7081 ± 0.0342 0.5175 ± 0.0351 0.6714 ± 0.0536 0.7180 ± 0.0336

haberman 0.6396 ± 0.0043 0.6297 ± 0.0763 0.5066 ± 0.0425 0.6398 ± 0.0668 0.6127 ± 0.0744
heart 0.7854 ± 0.0046 0.8220 ± 0.0584 0.7564 ± 0.0659 0.7624 ± 0.0646 0.8178 ± 0.0540

hepatitis 0.6438 ± 0.0168 0.7285 ± 0.1093 0.5908 ± 0.1054 0.7050 ±0 0.1202 0.7299 ± 0.1099
hill-valley 0.5000 ± 0.0000 0.5018 ± 0.0215 0.5009 ± 0.0139 0.4990 ± 0.0325 0.5765 ± 0.0092

mammographic 0.8766 ± 0.0005 0.8896 ± 0.0197 0.8276 ± 0.0360 0.8473 ± 0.0346 0.8846 ± 0.0247
monks1 0.7522 ± 0.0048 0.8596 ± 0.1196 0.5121 ± 0.0996 0.7503 ± 0.0525 1.0000 ± 0.0000

spambase 0.9372 ± 0.0001 0.8393 ± 0.0508 0.7614 ± 0.0716 0.7658 ± 0.0430 0.9543 ± 0.0063

Fig. 9. bands result

Fig. 10. crx result

Fig. 11. german result

Fig. 12. haberman result

Fig. 13. heart result

Fig. 14. hepatitis result

Fig. 15. hill-valley result

Fig. 16. mammographic result

922



Fig. 17. monks1 result

Fig. 18. spambase result

taken as a normal parameter in our paper and adjust it
to different algorithms for different data sets. This is the
third strategy, actually it is adopted into MGP as our next
subsection.

2) Dynamic Generations Experiment: In this experiment,
M (number of generations of GP) is not taken as a fixed
parameter in these algorithms. M is a normal parameter in
MGP. Different M should be used to MGP to solve different
data sets. There is a very common method in machine learning
to adjust the parameter for classifier that can use it to choose
the suitable M for MGP. 5-fold cross-validation 20 times are
done on all data sets. 80% instances are stratified sampling
as the new data set(SD) then do 5-fold cross-validation once
on D and take parameter (M ) with best result in SD as the
final parameter to do the 5-fold cross-validation 20 times on
the whole data set. Table V gives the terminal generations for
four algorithms by above idea.

Table IV describes the AUC of five algorithms on 10 data
sets. Every grid contains an average value on of 100 results
and its standard deviation. The bold number is the best in the
row. Table VI is the result by using wilcoxon test [30] with a
significance level of 5%. A x − y − z in a grid of Table VI
means the algorithm in column is worse than algorithm in the
row z times, betterx times, and there is no difference between
them y times.

From Table IV, if we assign a score S to the algorithms
on these data sets, score equals number of top1 divides
the total number of data sets, S(C4.5) = 0.1, S(EGP ) =
0.2, S(FGP ) = 0, S(GGP ) = 0.1, S(MGP ) = 0.6. For
these data sets, we can claim that MGP is better than EGP,
EGP is better than GGP and C4.5 which are better than FGP,
and MGP is the best algorithm.

In Table VI, we want to prove two things: one is the fitness

TABLE V
TERMINAL GENERATIONS FOR FOUR ALGORITHMS

FGP EGP MGP GGP
bands 51 82 78 45

crx 8 95 14 36
German 9 51 20 34

haberman 25 70 67 11
Heart 49 27 18 30

hepatitis 50 38 13 8
hill-valley 15 125 143 72

mammographic 20 93 70 38
monks1 25 49 72 21

spambase 112 134 145 112

TABLE VI
PERFORMANCES ON 10 DATA SETS II

C4.5 EGP FGP GGP MGP
C4.5 2-2-6 8-1-1 4-3-3 1-2-7
EGP 9-1-0 7-3-0 1-5-4
FGP 0-4-6 0-0-10
GGP 0-1-9
MGP

function 5 is efficient and the other is that our splitting operator
is good in the search strategy. The grid of 9 − 1 − 0 with
column FGP and row EGP, and the grid of 7 − 3 − 0 with
column GGP and row EGP show EGP is much better than
FGP and GGP. The only difference between EGP and FGP or
GGP is the fitness function (also the encoding of individual).
This means that our new fitness function 5 works in the GP
for classification problems. The next grid of 1 − 5 − 4 with
column MGP and row EGP means MGP loses 1 goal, wins
4 goals and draws 5 goals in 10 matches, also means MGP
is better than EGP. Splitting operator is adopted in MGP but
EGP and there is no difference between them except this. We
can argue that splitting operator is an efficient and successful
operator in our paper.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an improved version of FGP,
namly MGP. In comparison to FGP, MGP is equipped with
three novel components. First, SGDT is the new tree structure
for GP to construct individuals for classification problem. The
second is our new fitness function FE which comes from
information gain in C4.5 and the statistic information from
the SGDT individual. The third is the splitting operator which
also uses the splitting strategy in C4.5.

To verify the efficacy of FE and splitting operator, EGP,
FGP, GGP and MGP are compared in the experimental section.
According to the results, EGP is better than FGP and GGP,
which means FE can work in the GP for classification prob-
lems. Splitting operator is also good because MGP is better
than EGP.

In this paper, we found that MGP will fall into overfitting
more easily than other GP-based algorithms. The reason is that
we take the splitting operator which is a strong local search.
The cross-validation method had been used to overcome the

923



overfitting, and it worked well in partial data sets in the second
experiment. The criteria of splitting should be an important
parameter in the search process. In the future work, some
pruning techniques are simple and efficacy methods which can
be adopted into the MGP.

ACKNOWLEDGMENTS

This work was partially supported by the Nation-
al Natural Science Foundation of China under Grants
60802036, U0835002, and 61028009, and by the Engineer-
ing and Physical Sciences Research Council (EPSRC Grant
EP/D052785/1).

REFERENCES

[1] J. Han and M. Kamber, Data mining: concepts and
techniques. Morgan Kaufmann, 2006.

[2] P. Tan, M. Steinbach, V. Kumar et al., Introduction to
data mining. Pearson Addison Wesley Boston, 2006.

[3] P. Espejo, S. Ventura, and F. Herrera, “A survey on
the application of genetic programming to classification,”
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 40, no. 2, pp. 121–
144, 2010.

[4] C. Bishop, Neural networks for pattern recognition.
Oxford University Press, USA, 1995.

[5] B. Ripley, Pattern recognition and neural networks.
Cambridge Univ Pr, 2008.

[6] J. Holland, L. Booker, M. Colombetti, M. Dorigo,
D. Goldberg, S. Forrest, R. Riolo, R. Smith, P. Lanzi,
W. Stolzmann et al., “What is a learning classifier
system?” Learning Classifier Systems, pp. 3–32, 2000.

[7] N. Cristianini and J. Shawe-Taylor, An introduction to
support Vector Machines: and other kernel-based learn-
ing methods. Cambridge Univ Press, 2000.

[8] J. Quinlan, C4. 5: programs for machine learning. Mor-
gan Kaufmann, 1993.

[9] F. Provost and P. Domingos, “Tree induction for
probability-based ranking,” Machine Learning, vol. 52,
no. 3, pp. 199–215, 2003.

[10] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles
with negative correlation learning,” Evolutionary Compu-
tation, IEEE Transactions on, vol. 4, no. 4, pp. 380–387,
2002.

[11] W. Au, K. Chan, and X. Yao, “A novel evolutionary data
mining algorithm with applications to churn prediction,”
Evolutionary Computation, IEEE Transactions on, vol. 7,
no. 6, pp. 532–545, 2004.

[12] P. Wang, E. P. Tsang, T. Weise, K. Tang, and X. Yao,
“Using gp to evolve decision rules for classification
in financial data sets,” Special Session on Evolutionary
Computing of the 9th IEEE International Conference on
Cognitive Informatics (ICCI 2010), pp. 722–727, Jul. 9
2010.

[13] A. Freitas, “A survey of evolutionary algorithms for
data mining and knowledge discovery,” Advances in
Evolutionary Computation, pp. 819–845, 2002.

[14] J. Koza, Genetic programming: on the programming of
computers by means of natural selection. The MIT
press, 1992.

[15] L. Jin, “FGP: A genetic programming based financial
forecasting tool,” 2000.

[16] E. Tsang, J. Li, and J. Butler, “EDDIE beats the bookies,”
Software: Practice and Experience, vol. 28, no. 10, pp.
1033–1043, 1998.

[17] G. Hughes, “On the mean accuracy of statistical pattern
recognizers,” Information Theory, IEEE Transactions on,
vol. 14, no. 1, pp. 55–63, 2002.

[18] C. Ling, J. Huang, and H. Zhang, “AUC: a better mea-
sure than accuracy in comparing learning algorithms,”
Advances in Artificial Intelligence, pp. 991–991, 2003.

[19] Y. Ong, M. Lim, N. Zhu, and K. Wong, “Classification
of adaptive memetic algorithms: A comparative study,”
Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 36, no. 1, pp. 141–152, 2006.

[20] E. Tsang, P. Yung, and J. Li, “EDDIE-Automation, a
decision support tool for financial forecasting,” Decision
Support Systems, vol. 37, no. 4, pp. 559–565, 2004.

[21] A. Freitas, Data mining and knowledge discovery with
evolutionary algorithms. Springer Verlag, 2002.

[22] A. Garcıa-Almanza, E. Tsang, and E. Galván-López,
“Evolving Decision Rules to Discover Patterns in Fi-
nancial Data Sets,” Computational methods in financial
engineering: essays in honour of Manfred Gilli, p. 239,
2008.

[23] E. Tsang, J. Li, S. Markose, H. Er, A. Salhi, and
G. Iori, “EDDIE in financial decision making,” Journal
of Management and Economics, vol. 4, no. 4, 2000.

[24] T. Fawcett, “An introduction to ROC analysis,” Pattern
recognition letters, vol. 27, no. 8, pp. 861–874, 2006.

[25] Y. Ong, P. Nair, A. Keane, and K. Wong, “Surrogate-
assisted evolutionary optimization frameworks for high-
fidelity engineering design problems,” Knowledge In-
corporation in Evolutionary Computation, pp. 307–332,
2004.

[26] M. Lim, Y. Yuan, and S. Omatu, “Extensive testing
of a hybrid genetic algorithm for solving quadratic
assignment problems,” Computational Optimization and
Applications, vol. 23, no. 1, pp. 47–64, 2002.

[27] N. Jardine and C. van Rijsbergen, “The use of hierarchic
clustering in information retrieval,” Information storage
and retrieval, vol. 7, no. 5, pp. 217–240, 1971.

[28] M. Kubat and S. Matwin, “Addressing the curse of
imbalanced training sets: one-sided selection,” in Proc.
of 14th Intl. Conf. on Machine Learning. Citeseer, 1997,
pp. 179–186.

[29] UCI, “Uc irvine machine learning respository,” 2009.
[Online]. Available: http://archive.ics.uci.edu.c/ml

[30] F. Wilcoxon, “Individual comparisons by ranking meth-
ods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

924




