Industrial Applications of Constraint Satisfaction

Dr. James Borrett

Visiting Fellow, University of Essex &

Global Optimum Ltd.

CE884 - 3rd February 2009

Decision Making in Industrial Applications

- "Industry" has vast numbers of problems to solve.
- We shall define an Industrial Application as;
 "a commercial application involving a degree of non-trivial complexity which can be addressed using software"
- Added dimension here is that it should be suitable for CS techniques.

CE884 - 3rd February 2009

What Does Industry Need?

- 5 Important Goals
 - Reduce Costs -> fewer resources
 - Increase Utilisation ->more business
 - Lower Management overhead
 - Increase Creativity -> new business models/processes
 Reduce any environmental impact
 - Reduce any environmental impact
- Constraint-based systems can help

 Possible?
 - Optimal?
 - Real-time?
 - New Insight?

CE884 - 3rd February 2009

Examples of Inefficiency

- Container-based transport - 40% empty running in UK!
- Transport routes planned manually
 Costly to produce and inefficient (sub-optimal) outcomes

CE884 - 3rd February 2009

• Wine bottles - 500g each on average

Why is CS suited to solving Some Industrial Applications?

- Discrete domains
- Fast response times
- Logical & simple to implement
- Industrial standard toolkits available
- ILOG CP Optimizer (see www.ilog.com)
- Bespoke algorithms which implement CS algorithms.
- From simplest algorithms BT & ACLA
- To most complex stochastic hybrids
- Can use *domain independent* algorithms
 Layered architecture which are important for software engineering

CE884 - 3rd February 2009

Example Application Domains

- Frequency Allocation
- HR Management
- Mobile Workforce Planning
- Configuration
- Production Line Scheduling
- Logistics

CE884 - 3rd February 2009

Frequency Allocation

- Telecommunications industry
- Radio links in a network
- Task is to assign communication frequencies, F, to each link such that we avoid interference
 - $|F_i F_i| > k_{ii}$ These are the constraints
 - Variables: Radio links
 - Domains: the set of frequencies available to a given link
- · Can be expressed as a simple CS problem, but more useful:
 - Minimise number of frequencies used
- Minimise maximum frequency used
- · Well suited to CS techniques

CE884 - 3rd February 2005

Human Resource Management

- Professional Services e.g. accountancy
 - Tasks e.g. VAT return, company audit • Requires resources, timescales, durations, multiple skill levels
 - As a CSP · Variables: <Resource, Time> tuples
 - Domains: tasks
 - Constraints: Time restrictions e.g. HMRC deadlines
 - Different views of the problem
 - More work with same staffing levels
 - Optimal size of the workforce
 - Minimize chargeable staffing for given tasks

CE884 - 3rd February 2009

Timetabling

- Timetabling
 - Course/Lecturer, Room, Time
 - Can formulate as CSP in many ways e.g.
 - · Course is variable
 - <Room, Time> is domain
 - · Constraints to prevent clashes
 - Constraints to prevent too many courses on a given dav

CE884 - 3rd February 2009

Mobile Workforce Planning

- Task is to assign jobs to units of mobile workforce
 - Telephone engineers,
 - White goods engineers
 Farm service providers
- Formulated as a Constraint Satisfaction **Optimization Problem:**
 - Variables: Jobs at farms
 - Domains: Trucks
 - Constraints: Time windows
 - Optimisation criterion: Distance Travelled
- Demonstration

Logistics - A Journey Through the Supply Chain

· Supply chain;

- "the network of retailers, distributors, transporters, storage facilities that participate in the sale, delivery and production of a particular product" (*investorwords.com*)
- Beginning to End there are many opportunities for using CS techniques
- Inbound vs Outbound
- How to optimise products & materials coming in? - How to optimise products going out?
- · Going to trace journey from buyer decisions in UK to Product arrival

The Base Journey

CE884 - 3rd February 2009

CE884 - 3rd February 2009

- Product Stereo System
- Source (China) -> Destination (UK)

CE884 - 3rd February 2009

Stage 1: Assortment Planning A big issue for retailers What to stock?

- When to stock?
- How much to stock?
- What is the lead time?
- What are the prices?

Stage 2: Manufacture

- Production Line Scheduling
 - Different models may have common operations
 - How to sequence production efficiently to fulfil orders

• Warehouse Management

- Where to put what, efficient movement of stock
 - E.g. tescos & picking for home deliveries

Shift Management

- Staffing needs to be acceptable to employees and satisfy rules and regulations.

CE884 - 3rd February 2009

Stage 3: Outbound Logistics

CE884 - 3rd February 2009

- How to pack pallets? (Manufacturer)
 - E.g. Cape Pack (capesystems.com)Maximise items on a pallet
 - Size/weight/orientation?
 - Speed of loading on pallets
- How to load containers FCL/LCL
 - 20ft vs 40ft
 - From perspective of freight forwarder or the Logistics Service Provider
 - Plan now for unloading later to warehouse or direct to customer?

CE884 - 3rd February 2009

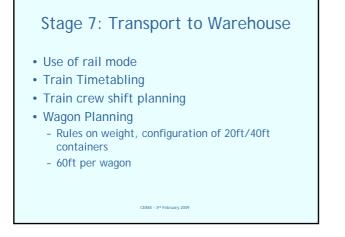
Stage 4: Transportation to Port

Route planning

- Haulage Company scheduling trucks
- Plan the allocation of loads/routes
- Schedule the trucks
- Planning horizon etc.
- Time windows to pick/drop
 Drive times (http://www.opsi.gov.uk/si/si2005/20050639.htm)
- Drive times (http://www.opsi.gov.uk/si/si/si2005/200
 Do we schedule all three together?
- Would take much longer
- Uncertainty!
 - Puncture/sick driver how robust are the plans?

CE884 - 3rd February 2009

Stage 5: At the Port I


- Ship Planning
- Where to put a given container a ship may have several stops Tugs on the docks used to move containers around the port
- Route planning
- Staff scheduling
 Crane scheduling
- Demurrage optimisation & Ship Scheduling
- How much detail too much makes intractable and fragile plans
- Coarse plan with experience based margins gives a practical and robust solution

CE884 - 3rd February 2009

Stage 6: At the Port II

- When the ship arrives at the destination, many similarities
 - Main difference is planning of the use of space to store containers.

CE884 - 3rd February 2009

Stage 8: Arrival of goods

- Warehouse management
- Delivery e.g. DHL, CityLink, UPS...

What to Solve and Why?

- Micro vs. macro planning
- Resilience
- Dynamic planning & scheduling
- How much time have we to solve it?

And there are many more!

CE884 - 3rd February 2009

CE884 - 3rd February 2009

- Satellite Operations Planning
- Airport Gate Planning
- Airport planning!
- Financial applications
- Games
 - See The Times supplements!Solving and generation

Summary

CE884 - 3rd February 2009

- CS an important tool to any business solutions practitioner.
- It makes some solutions possible that would otherwise not have been
- Constraint-based element is often a key part of the overall system

CE884 - 3rd February 2009

• The problems are out there - get solving!