
CC484 Constraint Satisfaction Friday, 16 January 2009

Edward Tsang (Copyright) 1

Friday, 16 January 2009Edward Tsang (Copyright) 33

Problem Reduction for Problem Reduction for
Constraint SatisfactionConstraint Satisfaction

Motivations:
1. Reduce problem to easier problems

2. Detect unsatisfiability

Friday, 16 January 2009Edward Tsang (Copyright) 34 PR CS LS F

Problem Reduction Overview

• Node-consistency (NC)
• Arc-consistency (AC)
• Path-consistency (PC)
• (strong) k-consistency
• Directional Arc-consistency (DAC)
• Other Consistency Properties (not covered)

– Directional PC, Adaptive consistency, ...

Friday, 16 January 2009Edward Tsang (Copyright) 35 PR CS LS F

Node-consistency

• Principle of NC:
– If unary constraint Cx exists for variable x
– Remove any value v from Dx if v does not

satisfy Cx

• E.g. Dx: days of the week;
Cx: this job must be done in weekdays

• Simple pre-processing strategy
• Cheap to compute: O(n)

Friday, 16 January 2009Edward Tsang (Copyright) 36 PR CS LS F

Node-consistency (NC), Definition

• Notation: Cx – constraint on variable x
• A CSP is node-consistent iff for all

variables all values in its domain satisfy the
constraints on that variable

• Note:
– The statement “P implies Q” is true if P is false
– Hence if all domains are empty, the problem is

node-consistent (though unsatisfiable)

Friday, 16 January 2009Edward Tsang (Copyright) 37 PR CS LS F

Arc-consistency (AC), Definition

• Notation Cx,y : constraint on variables x & y
• An arc (x, y) is arc-consistent iff

– for every value a in the Dx which satisfies Cx,
– there exists at least one value b in Dy
– such that <y, b> is compatible with <x, a>
In this case, we say <y, b> supports <x, a>

• A problem is arc-consistent iff every arc in
its constraint graph is arc-consistent

Friday, 16 January 2009Edward Tsang (Copyright) 38 PR CS LS F

Maintaining AC, Example

• Variables: x, y, z
• Domains: {1, 2, 3, 4}
• Constraints:

x < y ; y < z

x 1 2 3 4

y 1 2 3 4

z 1 2 3 4

• x<y means <x,4> not supported by
y and <y,1> not supported by x

X

• y<z means <y,4> not supported by z
and <z,1> & <z,2> not supported by y

X X

X X

• Re-check x<y would
delete <x,3> as now
(with <y,4> gone) it has
no support from y

X

CC484 Constraint Satisfaction Friday, 16 January 2009

Edward Tsang (Copyright) 2

Friday, 16 January 2009Edward Tsang (Copyright) 39 PR CS LS F

Maintaining Arc-consistency

• Principle of Arc-consistency:
– If any variable y has no value to support <x, v>
– Then remove v from Dx

• Naïve algorithms:
– Repeat constraint propagation
– Until no more values can be removed

• Advanced algorithms: record supports
– In order to focus on what to propagate
– Complex data structure required

Friday, 16 January 2009Edward Tsang (Copyright) 40 PR CS LS F

Arc-consistency Algorithms

• AC maintenance, lots of research
– AC-1: Naïve but good for parallel processing
– AC-4: Complex, using the concept of support

• Complexity manageable: O(a3ne) to O(a2e)
• MAC: seen to be generally practical

– Keep data structure to record supports
permanently

– No need to maintain AC from scratch

Friday, 16 January 2009Edward Tsang (Copyright) 41 PR CS LS F

Algorithm AC-4

• Efficient algorithm for maintaining AC
– Use data structure to reduce number of checks

• Support S<x,a> records the set of labels that <x,a>
supports
– When <x,a> is removed, all labels in S<x,a> lose support

from <x,a>; they need re-examination
• Counter[(x, y), a] records the number of supports

that y provides to <x,a>
– When counter reduced to 0, remove <x,a>

• M[x,a] = 1 if <x,a> has been rejected; 0 otherwise
Friday, 16 January 2009Edward Tsang (Copyright) 42 PR CS LS F

AC-4 Data Structure, Example
• Variables: x, y, z
• Domains: {1, 2, 3, 4}
• Constraints: x < y ; y < z
• Data Structure:

S<x,3> = {<y,4>}
S<x,4> ={}
S<y,2> = {<x,1>, <z,3>, <z,4>}
S<y,4> = {<x,1>, <x,2>, <x,3>}
…

x 1 2 3 4

y 1 2 3 4

z 1 2 3 4

Counter[(x,y),1] = 3
Counter[(x,y),2] = 2
Counter[(x,y),3] = 1
Counter[(x,y),4] = 0
Counter[(y,x),4] = ? exercise

• When <y,4> is removed:
– S<y,4> points to <x,1>, <x,2>, <x,3>
– Counter[(x,y),3] reduced to 0
– <x,3> is removed

Friday, 16 January 2009Edward Tsang (Copyright) 43 PR CS LS F

Remarks on AC
• AC has been maintained in

this problem
• But it doesn’t mean that all

combinations of the
remaining values are
compatible with each other.

• All it means is every
remaining value is
supported by at least one
value in every other
variable

x 1 2 3 4

y 1 2 3 4

z 1 2 3 4

X

X X

X X

X

Friday, 16 January 2009Edward Tsang (Copyright) 44 PR CS LS F

Example: AC but Unsatisfiable

• This problem is AC
• But unsatisfiable
• Can we detect

unsatisfiability?

X

Y Z

{r, g}

{r, g} {r, g}

≠

≠

≠

CC484 Constraint Satisfaction Friday, 16 January 2009

Edward Tsang (Copyright) 3

Friday, 16 January 2009Edward Tsang (Copyright) 45 PR CS LS F

Path-consistency

• Principle:
– Tightening constraints
– By constraint composition

• Algorithms: PC-1, …, PC-4
• Complexity manageable: O(a3n3)
• Is effort justifiable?

Friday, 16 January 2009Edward Tsang (Copyright) 46 PR CS LS F

Path-consistency (PC), Definition

• Notation CS – the set of all relevant constraints on
the set of variables S

• An path (x, y, z) is path-consistent iff
– for every 2-compound label (<x,a><z,c>) that satisfies

C{x,z},
– there exists a value b in Dy
– such that (<x,a><y,b><z,c>) satisfies C{x,y,z}

• A problem is path-consistent iff every path in its
constraint graph is path-consistent

Friday, 16 January 2009Edward Tsang (Copyright) 47 PR CS LS F

Binary Constraint Representation

• A Binary constraint may be
represented by a matrix, e.g.:

• Dx = Dy = Dz = {1, 2, 3}
• Cxy : X + Y must be even
• Cxz : at least one of X and Z

must be equal to 2

x

y z

{1, 2, 3}

{1, 2, 3} {1, 2, 3}

Ev
en

(X
+Y

)

Even(Y+Z)

X=2 ∨
Z=2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

010
111
010

101
010
101

,,, ZXZYYX CCC

Friday, 16 January 2009Edward Tsang (Copyright) 48 PR CS LS F

Constraint Composition

• Constraint Cxy & Cyz
could tighten Cxz

• Cxz = Cxz ∧ Cxy * Cyz

x

y z

{1, 2, 3}

{1, 2, 3} {1, 2, 3}

Ev
en

(X
+Y

)
Even(Y+Z)

X=2 ∨
Z=20 1 0

1 1 1
0 1 0

1 0 1
0 1 0
1 0 1

1 0 1
0 1 0
1 0 1

∧ *=

1 0 1
0 1 0
1 0 1

0 0 0
0 1 0
0 0 0

∧ ==
0 1 0
1 1 1
0 1 0

Friday, 16 January 2009Edward Tsang (Copyright) 49 PR CS LS F

PC Detecting Unsatisfiability
• Given (<x,r><y,g>),

which satisfies Cx,y
• It has no compatible

value in z
• Hence not PC

x

y z

{r, g}

{r, g} {r, g}

≠

≠

≠

⎥
⎦

⎤
⎢
⎣

⎡
===

01
10

,,, zxzyyx CCC

⎥
⎦

⎤
⎢
⎣

⎡
∗⎥

⎦

⎤
⎢
⎣

⎡
∧⎥

⎦

⎤
⎢
⎣

⎡
=

01
10

01
10

01
10

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∧⎥

⎦

⎤
⎢
⎣

⎡
=

00
00

10
01

01
10

yzzxyxyx CCCC ,,,, *∧=

Friday, 16 January 2009Edward Tsang (Copyright) 50 PR CS LS F

Example: PC but Unsatisfiable

• Problem is PC
• But unsatisfiable
• Can we detect

unsatisfiability?
≠

Z

{r, g, b}
≠

≠

{r, g, b} ≠≠

≠

X

{r, g, b}

W

Y

{r, g, b}

CC484 Constraint Satisfaction Friday, 16 January 2009

Edward Tsang (Copyright) 4

Friday, 16 January 2009Edward Tsang (Copyright) 51 PR CS LS F

k-consistency, Definition

• A problem is k-consistent iff:
– For all (k-1)-compound labels

(<x1, v1> <x2, v2> … <xk-1, vk-1>)
– that satisfies all constraints on x1, x2, …, xk-1

– For every kth variable xk

– There exists a value vk such that all constraints
on x1, x2, …, xk-1 , xk are satisfied

• Note: this is a definition, not every problem is k-C
Friday, 16 January 2009Edward Tsang (Copyright) 52 PR CS LS F

Special Cases of k-Consistency

• AC ≡ 2-Consistency
• For binary problems, PC ≡ 3-Consistency

Friday, 16 January 2009Edward Tsang (Copyright) 53 PR CS LS F

Strong k-consistency

• A problem is strong
k-consistent iff
– it is 1-C, 2-C, …, k-C

• Complexity grows
with k

X

Y Z

{r, b}

{r} {r}

≠ ≠

This problem is 3-C but not 2-C!

Friday, 16 January 2009Edward Tsang (Copyright) 54 PR CS LS F

Directional-arc-consistency

• Observations:
– Variables ordering is often static in a search
– AC is bi-directional

• Principle:
– Given an ordering of the variables
– only remove vx from Dx when
– support does not exist for any future variable y

• Practical, may sit in other algorithms

Friday, 16 January 2009Edward Tsang (Copyright) 55 PR CS LS F

DAC Algorithm

• Given ordering of n variables, x1, x2, …, xn

• For k = n to 1 by –1 DO
For each variable xj where j<k & Ck,j DO

Remove from domain of xj any value
not supported by xk

• Each constraint is checked once only
– Normally cheaper than maintaining AC

Friday, 16 January 2009Edward Tsang (Copyright) 56 PR CS LS F

Maintaining DAC, Example 1
• Under order (x y z)
• Examine y z (even sum)

– <y,1> supported by <z,1>
– <y,2> supported by <z,4>

• Examine x z (x<z)
– <x,1> supported by <z,4>
– <x,2> supported by <z,4>

• Examine x y
– No constraint

z {1, 4}

x

{1, 2}

y

{1, 2}

x<z Even(y+z)

CC484 Constraint Satisfaction Friday, 16 January 2009

Edward Tsang (Copyright) 5

Friday, 16 January 2009Edward Tsang (Copyright) 57 PR CS LS F

Maintaining DAC, Example 2
• Under order (z y x)
• Examine y x

No constraint
• Examine z x (x<z)

<z,1> not supported by x

z {1, 4}

x

{1, 2}

y

{1, 2}

x<z Even(y+z)<z,4> supported by <x,1> and
<x,2>

• Examine z y (even sum)
(<z,1> already deleted)
<z,4> supported by <y,2>

x

Friday, 16 January 2009Edward Tsang (Copyright) 58 PR CS LS F

Maintaining DAC, Example 3

• Under order (y z x)
• Examine z x (x<z)

<z,1> not supported by x

z {1, 4}

x

{1, 2}

y

{1, 2}

x<z Even(y+z)

<z,4> supported by <x,1>, <x,2>
• Examine y x (no constraint)
• Examine y z (even sum)

<y,1> not supported by z
– as <z,1> has been removed
<y,2> supported by <z,4>

x

x

Friday, 16 January 2009Edward Tsang (Copyright) 59 PR CS LS F

Maintaining DAC, Remarks

• To maintain AC, one must
– Remove <z,1> (no support from x)
– Remove <y,1> (no support from z

after <z,1> is removed)
• Maintaining DAC under both

(x y z) and (z y x) does
not obtain AC
– Only <z,1> is removed

• Maintaining DAC under the right
order (y z x) matters

z {1, 4}

x

{1, 2}

y

{1, 2}

x<z Even(y+z)

Friday, 16 January 2009Edward Tsang (Copyright) 60 PR CS LS F

Tree-search Algorithm
• If the constraint graph is a tree T
• Ω: Ordering the variables in T

such that parents always come
before children

• Maintain DAC under Ω
• Then search under Ω

– Such search is guaranteed
backtrack-free!

1

4

2

3 6

5

7

One possible Ω

Friday, 16 January 2009Edward Tsang (Copyright) 61 PR CS LS F

Problem Reduction, Summary

• Aim: reduce problem to one that is easier to solve,
or detect dead-ends

• Concept is simple, procedures could be complex
• General Concept: k-consistency

– NC≡1-C, AC≡2-C, PC≡3-C for binary CSPs
• NC & AC potentially reduce domains
• PC potentially tightens binary constraints
• k-C for k>2 potentially tightens k-1 constraints

