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Stochastic Search
An element of randomness and statistics

Hill Climbing:
Min-conflict, Informed Backtrack, GSAT"

Metaheuristic Search: GENET, GLS", GGA"

* Note: not in Tsang 1993
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Why Stochastic Search?

Schedule 30 jobs to 10 machines:

— Search space: 10°° leaf nodes
 Generously allow:

— Explore one in every 10 leaf nodes!

— Examine 10%° nodes per second!

Problem takes 300 years to solve!!!

» How to contain combinatorial explosion?
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Background: " Ingredlents: Example: The Travelling
— Cost tunction
Local Search - Neighournood Salesman Problem (TSP)
. unction
Cost function — [Optional] Strategy
Assume maximization problem for visiting o A(4,10)
neighbours E (10,6)
global max. * eg. steepest ascent Y ®
oz s * Problems: g D (6,6)
— local optimum B (0.5)
Slateau — Plateau ®C(63)
/ — When to stop? - ..
neighbourhood + Ok with satisfiability * Goal: to find shortest route through all cities
* Butnot optimization « Optimization involved: minimization
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Branch & Bound (1)

h=lower bound

Distance Table for an example TSP

AC, AD, AE to be searched

ABE c=16 h=10

[ ABC c=12 h=11 | | ABD c=12 h=11 |

[ABCD c=15h=8 | \  [ABDC c=15 h=8 | | ABDE c=16 h=7 | [N
/_ [mBCEc=17h-7
ABCDEA
Heuristic: ¢=26h=0| | ABCEDA | | ABDCEA ABDECA

¢=25h=0 | | c=27 h=0 ¢=28 h=0
Edward Tsang (Copyright) 6 HERESES v
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Branch & Bound (2)

c=cost
h=lower bound

AB, AC, AE to be searched

[ ADC c=7 h=10] [ ADE c=8 h=13 | [ ADB c=10h=11 |

[ADCE c=12h=10] | [ADEC c=13h=10 || ADEB c=18h=7] ...

/ | ADCB ¢=13 h=8 |
ADCEBA

c=28 h=0 ADCBEA || ADCBEA ADCBEA
¢=30 h=0 || c=30 h=0 ¢=30 h=0
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HC Example: 2-opting for TSP

 Candidate tour: a round trip route

» Neighbour: exchange two edges, change
directions accordingly

A/B\ B~

\ C A

C
g—D E D
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List reversing = 2-Opting

« List representation:
— A list could represent cities in sequence

¢ 2-Opting can be seen as sub-list reversing
— Easy to implement

[1[s]4]sfe[s[2]7] [1]s]4]s[e[s[2]7] @

! !

Breaking points
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Example: Many Local Optimum

 All constraints
require “even
sum” except
CAE

e Only one
solution

« Easy to be
trapped
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Hill Climbing in Action (1)

» Random start ABCDE: {1

A=1,B=2,C=1,D=1,E=2

* Violations: 02 ©
- AB, BC, BD, CE, DE

« Neighbours:
A > 2 satisfies AB, but violates AC and AD
B - 1 satisfies AB, BC and BD, but violates BE
C - 2 satisfies BC and CE, but violates AC and CD
D > 2 satisfies BD and DE, but violates AD and CD
E = 1 satisfies CE and DE, but violates AE and BE
« Move to A=1,B=1,C=1,D=1,E=2
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* Current position:
A=1,B=1,C=1,D=1,E=2
* Violations:
- BE, CE, DE

« Neighbours:
A - 2 satisfies none, but violates AB, AC and AD
B - 2 satisfies BE, but violates AB, BC and BD
C - 2 satisfies CE, but violates AC, BC and CD
D > 2 satisfies DE, but violates AD, BD and CD
E = 1 satisfies BE, CE and DE, but violates AE

« Move to A=1,B=1,C=1,D=1,E=1
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* Current position:
A=1,B=1,C=1,D=1,E=1
* Violations:
- AE

« Neighbours:
A - 2 satisfies AE, but violates AB, AC and AD
B > 2 satisfies nothing, but violates AB, BC, BD and BE
C - 2 satisfies nothing, but violates AC, BC, CD and CE
D - 2 satisfies nothing, but violates AD, BD, CD and DE
E = 2 satisfies AE, but violates BE, CE and DE

* No profitable repair possible = local optimum found
Edward Tsang (Copyright) 113 .m..- J

Guided Local Search >

Min-conflict Heuristic Repair

« Start with a random complete assignment
— May initialise with min-conflict heuristic
* Repeat until all constraints are satisfied or
run out of resources:
— Randomly pick a variable x that is in conflict
— Pick value v in domain of x such that
* <X, V> violates the least number of constraints
* break ties randomly
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MC Heuristic Repair, Example

Solution found
A B CDEF GH

* Start with random
assignments

» C2 attacks G6
D8 attacks E7

* Randomly pick one,
say, E7, to repair

Count number of conflicts
in each square

Randomly pick a square
with least attacks, say, B7

Repeat repair
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Informed Backtrack
(complete algorithm)

 VarsLeft = random complete assignment
— May initialize with min-conflict heuristic
* VarsDone = empty set

» Do until all variables violate no constraints:
— Remove from VarsLeft variable x in conflict
— Assign min-conflict value v to x, but
« only accept v if <x,v> is consistent with VVarsDone
— Add <x,v>to VarsDone
— Backtrack when necessary

Edward Tsang (Copyright) us  [EPRESES v
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Informed Backtrack, Example i

* Step 1:
VarsLeft = {1A, 2C, 3H, 4F,
5B, 6G, 7E, 8D}
VarsDone = {}
* lllegal variable picked: 7E
* Try a value for row 7, say, 7B
* Backtrack if needed
explore 7B, 7A, 7E, ...
* Step2:
VarsLeft = {1A, 2C, 3H, 4F, 5B,
6G, 8D}
VarsDone = {7B}
* lllegal variable picked: 5B
* Pick a value for row 5, but
not any value attacking 7B
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Informed Backtrack, Analysis

» Complete search in nature

— Basically ordering variables dynamically, guided by
constraint violation

— Ordering values by number of conflicts involved
— All values are explored if needed
« Benefit of hill-climbing
— Changing one label at a time
— Chance to hit a solution by chance early
 Perhaps it deserves more research
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The Satisfiability Problem (SAT)

 Boolean variables (true or false)
— i.e. all domains are {0, 1}
« Constraints: in Conjunctive Normal Form:
Xyv=X, VX)AK v Xy vaXg) A
 All CSPs can be translated to CNF
— Each label <x, v> becomes one variable XV
— If XV =1, then x takes value v
— Add clauses to ensure x takes one value only
» Note: given CSP with n variables, m values each:
— The CSP has m" leave nodes to explore
— The equivalent SAT problem will have 2™ leaves
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Satisfiability Problem, Example

¢ Boolean variables
e Suppose we say:

A B,C
’;‘: i e Constraints:
-Av B
C>-A -BvC
which together refutes A _Av —C
* 2-SAT problems are . Ppossible solutions:
tractable (<A,0><B,1><C,1>)

(<A,0><B,0><C,1>)
(<A,0><B,0><C,0>)

e Constraints may be
represented by matrices

Edward Tsang (Copyright) 120 .m..- J Tuesday, 18 March 2014

The GSAT Algorithm

» Parameters: max_tries & max_flips

e Do max_tries
— Do max_flips
* Pick an unsatisfied clause
* Flip a variable that results in min. constraint violation
» Many many variations, including:
— Adding random walks
— Adding weights
— Adding “taboo lists”
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GSAT
E | A | B | C |Violation
Xamp e 1. |A=1|B=0|C=1| (a),(c)
Boolean variables z | Violated constraint picked: (c)
A/B,C = _ =
Constraints: g A=0|B=0 C=1 @
@@ —-AvB @ [ A=1 | B=0 | C=0 (a)
(b) -BvC
€ -Av-C 2. |A=1|B=0|C=0 (@) p
(d AvBv-C _ _ _ _
Random starting point | & § fet B0 e
(A=1, B=0, C=1) 437 |A=1|B=1|C=0 (b) |
Solution found in step 3: _ _ _
(A=0, B=0, C=0) 3. |A=0 | B=0| C=0 -
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GSAT in Local Optimal

 Constraints:

a) Av-B A B C | Violation

c) Bv-C A=1|B=1|C=1 9)

A=0|B=1|c=1| (a), ()

A=1[B=0|C=1| (b), (c)

=

>

<

4

(@]
sinogybiau

« Local optimal: A=1|B=1|C=0]| (e). ()

(A=1, B=1, C=1) All moves are inferior to current
Solution missed: position; unfortunately, the current
(A=0, B=0, C=0) position is not a solution
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Meta-heuristics

Simulated Annealing Tabu Search

GGA

¢ Changing hill
climbing
behaviour

e mainly to escape Hill Climbing
local optima e.g. 2-Optin TSP
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GENET: Network Representation Guided Local Search

{1,2,3} A B c D E » Meta-heuristic Search

— To sit on top of hill-climbing algorithms
* can even sit on top of GAs

o Aims:
3 — Escape from local minima
— Introduce memory in the search process
« Build inhibitory connections — Rationally distribute the search efforts
* Let the network converge to solutions
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GLS: Augmented Cost Function GLS & Filled Function Method

Augmented function to

* ldentifying solution features, e.g. edges used minimize, h' = h + f

 Associate costs and penalties to features

Minimize (augmented)

« Augmented Cost Function function h t
H(s) — G(s) +A -2 P+ 1) Local minimum x*
— where G is original cost function
— A isaparameter to GLS o
. Lol At local minimum, add
— p; is penalty assoc. to feature i, initialized to O filled function f (penalty)
— Ii(s) = 1 if s exhibits feature i; 0 otherwise
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The GLS Algorithm
G LS PseUdo COde H(iS)=G(s)+A* Zp; * 1(s) Meta-heuristic Search

; . I,(s*) = 1 if s*
* |terative local search * |terative local search PSR

¢ = cost of

feature i

« In a local minimum « Inalocal minimum EREUENIES
— Select Features — Select Features C.
« exhibited by the local minimum (search info.) » Maximize utility |. (S*) % _
« incur high costs (problem info.) | 1+ pi

« penalized fewer times in the past (GLS info.) ) )

— Increase penalties (strengthen constraints) — Increase penalties (strengthen constrai S
e

of feature |

* Restart Local Search from Local Minimum * Resume Local Search from Local M ff
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LS in Action (1)

* Local optimum:
A=1,B=1,C=1,D=1,E=1

* Violations:
- AE

« Neighbours:
A - 2 satisfies AE, but violates AB, AC and AD
B > 2 satisfies nothing, but violates AB, BC, BD and BE
C - 2 satisfies nothing, but violates AC, BC, CD and CE
D - 2 satisfies nothing, but violates AD, BD, CD and DE
E = 2 satisfies AE, but violates BE, CE and DE

* No profitable repair possible = local optimum found
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LS in Action (2)

* Local optimum:
A=1,B=1,C=1,D=1,E=1
* Violations:
- AE
Features: Iy, = 1 means constraint on XY is violated
I = true in this case
* Let cost for all features cyy be 1
o Leta=1
* Penalty p,c is incremented (from 0) to 1
Since only AE is violated
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GLS in Action (3)

< Current position:
A=1,B=1,C=1,D=1,E=1

« Violations: AE

e HE)=G@E) +A - Zpi- 1)
=1+1-1=2

« Neighbours:
A > 2 satisfies AE (2), but violates AB, AC and AD (3)

GLS in Action (4)

< Current position:
A=1,B=1,C=1,D=1,E=1

« Violations: AE

e HE)=G@E) +A - Zpi- 1)
=1+1.-2=3

- Neighbours:
A > 2 satisfies AE (3), but violates AB, AC and AD (3)

B - 2 satisfies nothing, but violates AB, BC, BD and BE
C > 2 satisfies nothing, but violates AC, BC, CD and CE
D - 2 satisfies nothing, but violates AD, BD, CD and DE

B - 2 satisfies nothing, but violates AB, BC, BD and BE
C > 2 satisfies nothing, but violates AC, BC, CD and CE
D - 2 satisfies nothing, but violates AD, BD, CD and DE

E > 2 satisfies AE (2), but violates BE, CE and DE (3)
 No profitable repair possible; penalise again
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E > 2 satisfies AE (3), but violates BE, CE and DE (3)
» May make A=2 or E=2, if sideways moves allowed
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GLS in Action (5)

< Current position:
A=1,B=1,C=1,D=1,E=2

« Violations: BE, CE, DE

e HE) =G+ - Zpi- 1)
=3+3-0=3

- Neighbours:
A > 2 satisfies nothing, but violates AB, AC and AD (3),
B - 2 satisfies BE (1), but violates AB, BC and BD (3)
C - 2 satisfies CE (1), but violates AC, BC and CD (3)
D - 2 satisfies DE (1), but violates AD, BD and CD (3)
E - 1 satisfies BE, CE and DE (3), but violates AE (3)

» May make E=1
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GLS in Action (6)

< Current position:
A=1,B=1,C=1,D=1,E=2

« Violations: AE

e HE)=G@E) +A - Zpi- 1)
=3+4-0=3

- Neighbours:
A > 2 satisfies nothing, but violates AB, AC and AD (3),
B - 2 satisfies BE (1), but violates AB, BC and BD (3)
C > 2 satisfies CE (1), but violates AC, BC and CD (3)
D - 2 satisfies DE (1), but violates AD, BD and CD (3)
E - 1 satisfies BE, CE and DE (3), but violates AE (4)

* Local optima reached, change pgg, Peg OF Ppe t0 1
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Features:

GLS on TSP « n? Features

« cost = distance given
* e.g. tour [1,5,3,4,6,2]

 Local search: 2-opting

Fast Local Search (FLS)

« For speeding up local search

>A=axg(t)/n 1/2|3|4|5|6 — through reduced neighbourhood
1 X * Method:
e 2| X — associate activation bit to problem features
to tune, within 3 X — Only active features examined for hill climbing
0,1 . .
0. 4 X  Cost for speed-up: lost of solution quality
t* = first local minimum 5 X R - soluti I d by GLS
Diodliced By locallsearch s Tx * Rescue: solution quality compensated by
g(t*) = cost of t*
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[ocs] Algorithms Performance 220 :
FLs : Remarks: parameters in GLS
on 20 TSPLIB instances P
g ¢ 5 i !
T KA e * Local search strategy
: DEC Alpha 3000/600 — Needed in HC, SA, Tabu Search
= 2
Champions fEE EEEEES * Features, costs
! PO . — Sometimes come naturally from problem spec.
0.0790.0880.1560.1620-22 EREO [

« & <
Fd F s, S L
& & o §'Z”’ o f
o o
TSP algorithm
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J’&Qﬁf

» Main parameter A
— Experimental results sometimes sensitive to A
 Less tuning to do than GA, NN, Tabu (& SA)
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Patrick Mills: GLS+

 Aspiration: if G(s) is better than best so far, then
move to s even if H(s) is inferior
— Work for MaxSAT and QAP but not SAT
— Result generally improved at high A value
* Random moves:
— With probability Pr make random move
— Results improved in QAP at low A value
— No effect on GLS - SAT / MAX SAT
e Combining Aspiration and Randomness:
— GLS performance less sensitive to A in QAP, [Max]Sat
» Where else / when will it work?

Edward Tsang (Copyright) 10 EPRESIS U Tuesday, 18 March 2014

GLS +

S —o— GLSMAXSAT + aspiration
© 5 GLSMAXSAT

Aspiration

Aspiration: if G(s) is
better than best so
far, then move to s
even if H(s) is
inferior

» Work for MaxSAT
and QAP but not
SAT

Average %Relative error of best found solution

* Result generally
improved at high A
Value Lambda

‘ G: Original Cost Function ‘ H: Augmented Cost Function ‘
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GLS +

—+— GLSQAP + Pr(random moves)=0.2 18

| s ‘o Aspiration + 16
Randomness

GLS +
Randomness

——GLS

—8—GLS+A

12 GLS+R —
1 ——GLS+A+R

» With probability Pr
make random move

 Results improved in
QAP at low A value

¢ No effect on GLS >

 Result: performance
is less sensitive to A
value

* Aspiration should
become a standard
feature of GLS

2

Excessover best known solution
o
=3
o

Average Best Found %Relative Error

SAT /| MAX SAT 02 * Randomness 02
« Randomness: whenis | . sometimes helps (EREEE. -
it useful? o1 06 2 7 E) @ » Where/when will fomnoNsewgegeg
Lambda they succeed? Value of Lambda Coefficient
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Guided Genetic Algorithm  £_ _ _ _
Overview £3 Guided Genetic Algorithm
R0
> (TR C/A8 [l SIS (A by * Initialize population
 Using Guided Local Search as T « Repeat
meta-heuristic for Genetic | N S e T ) N
: o | <8 - Run ill best fitness remains unchanged for
ﬁ!gorlthms 3 3 g n generations (n is parameter)
e Aims: by — Pi
— To extend the domain of GLS C J— pick t-he best chromosome X ;
; s . l — Penalize features of X according to GLS
- l'fo CIB rzgrove efficiency & effectiveness | | — Augment cost function
_ To improve robustness of GLS * Until Termination Condition
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Using GLS Penalties in GGA GGA Applications
When penalty of feature F increased to k * Royal Road Function
+k +k +k — More effective than both GA and GLS
J l l Add k to relevant loci * Processors Configuration
Fitness Template (1)(1)(0)(1)3)(0)(2)0) === Affect: * Radl(_) Length Frequency ASSIgnment
Chromosome| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | « Crossover — Gained robustness over GLS
« Mutation

General Assignment Problem
* High value in fitness template = instability
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