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Abstract: The past decade saw rapid progress toward prominence of 
constraint satisfaction technology. Many practical algorithms have been 
developed to solve larger and larger problems. The degree of maturity in this 
technology begs the support of well-established software engineering tools. 
This paper targets a formal specification language DEPICT 0.1 that can 
aid in the formulation of constraint satisfaction problems and the 
identification of suitable algorithms for their solutions. This paper outlines, 
through a few selected examples, suitable characteristics that DEPICT 0.1 
should possess and concludes with some of the benefits that can arise from 
that. 
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1. BACKGROUND 

 
Constraint satisfaction problems (CSPs) - where appropriate values for problem 
variables are to be found, subject to given constraints - are ubiquitous in a wide 
variety of industrial and scientific situations. This includes many difficult and 
combinatorial applications such as scheduling, resource allocation, vehicle routing, 
channel assignment in telecommunication networks, and structure matching in bio 
molecular databases.  
 
Addressing these kinds of problems often requires multi-disciplinary skills that 
includes, beside the specific knowledge of the domains indicated above, aspects of 
mathematics, traditional computer science, artificial intelligence, operations research, 
numerical computing, automated reasoning, as well as database theory and 
implementation. 
 
Solving these kinds of problems requires the solution of fundamental research 
problems such as understanding how to formulate them and how to select appropriate 
problem solving techniques that can solve them efficiently and how to adapt or 
combine such techniques for variations of the same problem. 
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Many of these problems can be expressed as mathematical programs, and 
subsequently solved using standard efficient and robust algorithms of operations 
research (OR). However, effective mathematical programming is very difficult even 
for application domain experts. Moreover, solving such problems often requires an 
amount of time worse than polynomial in the size of the input data. 
 
One may develop specialized software to solve each individual problem. However, a 
more productive alternative is to develop general-purpose constraint-programming 
languages to allow users to express their problems and use state-of-the-art constraint-
solving techniques developed in support of these languages. 
 
Examples of successful constraint-programming languages include CHIP[16, 
21], ILOG Solver [15] and ECLiPSe[10]. CHIP and ECLiPSe are 
declarative, in the sense that they allow a natural and intuitive formulation of 
constraints, thus relieving the programmer from traditional low-level computing 
obligations. Thus, the programmer can specify what constraints the solution should 
satisfy without having to detail how this solution is to be reached. 
 
This separation of concerns between the what and the how parts has considerable 
advantages, as it allows the programmer to concentrate on one without having a direct 
impact over the other. For instance, the programmer can fine-tune his description of 
what the program is to accomplish without worrying too much about which particular 
problem solving strategy is going to be followed. Furthermore, once this description is 
complete, the programmer can experiment through comparison with any number of 
problem-solving strategies to identify the best solution for that particular problem. 
 
This separation of concerns motivated the development of OPL[22], a front-end to 
ILOG Solver (a C++ based library). It is also a major motivation behind the 
ESRA[7] language and likewise on the minds of the designers of the EaCL[13] 
language. 
 
 
2. THIS PAPER 
 
The research reported in this paper points essentially in the same general direction. It 
presents the preliminary structure of a formal specification language DEPICT 0.1 
for CSPs. Focus herein is mainly on the what part, targeting mostly expressiveness. In 
order to achieve that, this paper resorts to the use of higher-level constructs such as 
functions, relations, sets and types. At the moment, there are just a few languages (e.g. 
CLPS[3], CONJUNCTO[8] and OZ[14]) that can formulate arbitrary constraints 
over sets, which is a source of enormous expressiveness. 
 
This paper concludes with a few insights on how to link the how to the what part. In 
fact, our vision is that the two parts can eventually be completely separated; that is, 
the user will be able to describe the problem without any commitment whatsoever to 
any particular solving strategy. Solver independency is in fact a prime motivation 
behind the research reported in this paper, given a sufficiently expressive language 
and a rich variety of solvers the system can choose from, as it is the case in the CSP 
domain. 
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An early example to go into this direction (with a rather OR perspective) is the 
language ALICE [11], where the system is able to arrive at a rigorous solution 
through the analysis of a purely descriptive statement of the problem. 
 
It is essential to note that the above is not an attempt to downplay the importance of 
efficiency vis-à-vis expressiveness. But so long as we are not talking about real-time 
applications and so long as the problem solving techniques have reasonable 
performance, expressiveness can only come first, as it has a greater part to play in the 
overall usability of the programming system. 
 
On another note, DEPICT 0.1 (as it is currently proposed) targets mostly CSPs. 
The issue of whether this language can be of use in related domains (such as OR or 
even stochastic aspects of such problems) is open at this stage, although many of these 
problems can be (and have been) formulated as CSPs. Having said that, we are by no 
means advocating that all such problems be solved this way. However, we hope that, 
in the future, specifying a problem as a CSP, when it is appropriate to do so, will 
allow the user to reap many of the associated benefits (see last section of this paper). 
 
 
3. DEFINING CONSTRAINT SATISFACTION PROBLEMS 
 
A constraint satisfaction problem (CSP) is entirely specified by the triplet <A, B,C> 
whose components are defined as follows (definition derived from [20]): 
 
- A: a finite set of variables {a1, a2, …, an}. 
- B: a collection (Ba)a∈A, where each Ba is a (normally) finite set of values of 

arbitrary types associated with the variable a. 
- C: a collection of constraints (Cs)s∈S, where S is a set of subsets of A and each 

constraint Cs ties together the variables of the subset s thus restricting the values 
they may simultaneously take. 

 
The specificity of this definition makes CSP an appealing target for the application of 
formal methods, and particularly a formal specification language, as this can bring 
into its development a full range of well-established software engineering tools, with 
all the benefits that arise from that (see below). 
 
3.1. Why Formal Specifications? 
 
An initial benefit of formal specifications resides in allowing a comfortable distance 
of the problem definition not only from the specific details of the implementation 
language, but also from the large variety of candidate algorithms that could possibly 
be used for its solution. In the traditional Software Engineering terminology, this is 
usually referred to as abstraction. 
 
Since constraint satisfaction technology already has a wide range of applications that, 
in many instances, cut across disciplines, abstracting away from implementation 
details has an additional benefit of making constraint technology more widely 
accessible. 
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Moreover, in addition to the usual arguments made in favor of formal methods, such 
as clarity, accuracy and the ability to spot inconsistencies in the initial statement of the 
programming problem, the following remark must also be recorded. Giving a problem 
a CSP identity is the very first step toward determining a constraint-based algorithm 
for its solution. A formal expression of this problem that has a CSP appearance is 
surely a direct way for getting to this conclusion. 
 
Beside solver independency, more arguments specific to the CSP domain can also be 
made in favor of formal specifications (see last section of this paper). 
 
3.2. Why Another Formal Specification Language? 
 
During the past two to three decades, research in formal methods has resulted in a 
wide variety of specification languages (e.g. First-Order Predicate Calculus, the Z 
specification language and Type Theory [1], to name but a few). Some of these have 
proven their usefulness to the general software engineering community in the areas of 
program specification, verification and synthesis. Some have also demonstrated their 
trustworthiness in practically oriented and safety-critical industrial-strength projects. 
 
Given this heritage, the first question that springs to mind is why another formal 
specification language? A possible answer to that resides in observing that while these 
languages are powerful enough to deal with general software engineering projects, 
their generality may constitute a distraction in the CSP context. In fact, what is being 
addressed here is a specific class of problems with distinct formulation and 
requirements. Accordingly, common wisdom suggests the use of a specification 
language that is tailored to fit the specific needs that may arise there. In fact, this 
should be an enormous service done in favor of the goal of synthesizing CSP 
solutions from problem specifications (also see section 5). 
 
 
4. REQUIRED FEATURES OF THE SPECIFICATION LANGUAGE 
 
With the literature accumulating from research in formal methods (see previous 
section), one does not have to go very far to design a specialized language powerful 
enough for dealing with the CSP specification requirements. The main attributes such 
a language should be able to possess are: 
 
- Declarative: e.g. logic based, to allow the symbolic description of the 

programming tasks. 
- Abstract: to allow a comfortable distance from implementation details and 

solution strategies. 
- Intuitive: with constructs that can directly map the concepts of the application 

domains. 
- Expressive: to be able deal with real-world applications. 
 
The best place to start identifying the special requirements for this language is the 
CSP definition itself, as given in the second section. In fact, it is enough that the 
language can deal with the specification of the triplet <A, B, C>; i.e., the variable 
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domain A, the value domains B and the constraints C. This is the line of thinking taken 
in [13], where the user is guided through defining the variables, domains and 
constraints. 
 
4.1. Variable Domain Requirements 
 
In this paper, we limit ourselves to CSPs with finite domains. A CSP specification 
requires variable names, identifiers and/or symbols. It should perhaps be 
mentioned here that a variable needs not necessarily be referred to explicitly through a 
unique name, as it may be referred to implicitly instead; through an index of an array, 
for instance (see examples below). 
 
In conclusion, the notions required here seem to be enumerated types, 
finite sequences of names or symbols, arrays or lists of those, etc. 
 
4.2. Value Domains Requirements 
 
A value domain is a finite set of items not necessarily of the same type. Now, to be 
able to represent and use such domains, the following (or similar) notions are 
required: 
 
- Primitive types similar to those found in conventional programming languages; 

e.g. arbitrary symbols or constants, Boolean, character, 
integer, real, etc. 

- Operations over elements of these types; e.g. arithmetic operations, 
comparison operators, pairing, sub-ranges, arrays and 
lists of these, etc. 

- Sets defined by enumeration as well as by comprehension. 
- Functions and relations (e.g. ordering relations) over sets. 
- The usual set operations; e.g. membership, subset and set equality 

tests, intersection, union, set difference, power set, 
Cartesian product, function sets, etc. 

 
4.3. Constraints Requirements 
 
A constraint is essentially a condition that may require satisfaction. As such, this is 
most naturally expressed as a logical formula. Thus, constraints will be specified 
using some typed predicate calculus expressions, somewhat reminiscent 
of the specification language of Martin-Löf's Theory of Types [1]. These come with 
the usual logical connectives and quantifiers that are found in such contexts. 
 
Furthermore, this notation will be augmented with a predicate definition facility in 
order to make the presentation more modular, and hence amplify its expressive power. 
 
4.4. Further Requirements 
 
The above requirements are of course provided for, in one form or the other, in many 
existing set-based or type-based specification languages, and the account of these 
requirements presented here is by no means exhaustive. Having said that, this account 
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should not deliberately ignore any crucial feature the CSP definition explicitly 
requires. For instance, that definition seems to mention variable-dependent 
sets, which are very much like dependent types in Martin-Löf's Theory of Types. In 
order to support this feature here, programming constructs, such as conditionals 
and loops, will be required to return set or type values. 
 
Furthermore, and in order to add to its power of expression, this specification 
language should be able to represent generic specifications or specification 
schemas. These are specifications dependent on one or more parameters of any type. 
This will enable the language to specify algorithm schemas, which may be 
used to solve variations of the same problem by simple instantiations of its 
parameters. 
 
We close this section with a worthy note. Formal specification and derivation 
techniques usually imply uniform treatment of diverse classes of problems. As is well 
known, this uniformity often results in algorithms that are not adequately efficient. 
But since efficiency is of utmost importance for these algorithms and since heuristic 
information and optimization techniques is the way to boost efficiency, it is 
imperative to reserve a place and a role of that in our specification language (see 
[13]). However, this paper will not address this requirement here. 
 
 
5. SPECIFYING CONSTRAINT SATISFACTION PROBLEMS 
 
A CSP solution consists of finding, for each of the variables a∈A, a value b∈Ba 
satisfying all relevant constraints. That is, the set of pairs {<a, b>; a∈s} must 
satisfy the constraint Cs, for each s∈S, where S is a set of subsets of A. Thus, an 
initial attempt at specifying this problem (see [12] for a related formulation) could 
be: 

(∀ a ∈ A)(∃ b ∈ Ba)C(<a, b>) 
 

However, this is not sufficiently accurate since C is a condition that simultaneously 
applies to all pairs <a,b>∈A×Ba. A more accurate description of this simultaneity 
would be to require the construction of a function f associating every element a∈A 
with an element b∈Ba in such a way that C(f) is satisfied. 
 
Following that, if f/s is taken to be the restriction of f over the subset s of A, then 
C(f) can be specified by: 

(∀ s ∈ S) Cs(f/s) 
 

In the specification language of Martin-Löf’s Theory of Types [1], having dependent 
types and the type constructors Π and Σ, the above specification manifests itself with 
surprising elegance as the type expression: 

 

Σ(Π(A, B), C) 
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However, restricting ourselves to set theory and typed First-Order Predicate Calculus 
as a specification language, if B is taken as the set (∪Ba)a∈A, then this 
specification can still be written as: 

(∃ f ∈ A → B)C(f)    (E) 
 

Note that the latter formulation seemingly loses sight of the fact that f(a)∈ Ba for 
all a∈A, as the initial definition of the problem suggests. At any rate, in the problems 
treated below and in many problems that can arise in practice, these Ba will often be 
found bunched together in one set anyway. However, if the need arises (for the sake 
of efficiency, for example), separating these Ba's can always be considered as a 
constraint, and as such this can be made a part of the constraint expression C itself. 
 
The fact, that an array is nothing more than a function from a finite ordered set of 
indices to a domain of values, can be used to support the use of functions here. In fact, 
in addition to contributing to the conciseness of the specification expression (E), and 
since A is a finite set, a function here is no more than an array whose indices are 
variables from A and whose elements are from the corresponding domains of values. 
 
5.1. A Global Specification Schema 
 
With the introduction of section 4 in mind, the expression representing a general CSP 
specification will take the following form:  
 

{D1, D2, …, Dm} E (P1, P2, …, Pn)     (Ψ) 
 

Where (E) is the logical expression specifying the problem and {D1, D2, …, Dm} are 
the declarations (i.e. relation, function and predicate definitions, etc) that are used in 
(E) and (P1, P2, …, Pn) are the parameters that (E) depends on. Note that the 
distinction and the separation, between parameters and other kind of declarations is 
for the sake of formulating specification schemas. As we said above, this is 
a generic specification whose role is to allow for many instances of the specification 
through suitable instantiations of its parameters. 
 
 
6. REMARKS ON THE NATURE OF SPECIFICATIONS 
 
Following the above-suggested paradigm, the next section develops the specification 
of a few selected problems in our proposed language DEPICT 0.1 (which stands for 
“{Di} E (Pi) In ConstrainTs”). We hope that some of the benefits of this 
language will already be apparent through these examples. However, before we do 
that, it would perhaps be instructive to add a couple of remarks about the nature of 
specifications and their role in the program development process. 
 
6.1. The Complexity Of Specifications 
 
The specification expressions treated below may look more complex than other 
equivalent descriptions found elsewhere in the literature, and there is a good 
justification for that. In fact, these are intended to be self-standing self-contained 
formal expressions of the corresponding problems. As such, their complexity is 
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largely due to having, in explicit form, details (such as typing information, for 
example) that other formulations tend to keep implicit or completely ignore. Yet, 
these details are required in explicit form here in order to make possible further 
treatment and analysis. After all, this is the raison d'être of these expressions. 
 
6.2. Specifications vs Implementations 
 
As is usually defined, a specification is a way of expressing what is to be done 
without having to spell out how to do it. The what part has more or less been ignored 
in the past because it has less details than the how counterpart. Consequently, this is 
expected to be simpler to write down. However, this being the case relies on a couple 
of observations: First of all, it would depend on the expressiveness of the specification 
language. In fact, what may make the what part more cumbersome to formulate and 
express in general, is that it conceptually falls at a higher level of abstraction than the 
how counterpart. 
 
Secondly, it would depend on the degree of awareness the person doing the 
specification has about how the problem can be solved. In fact, except in the most 
ideal of situations, this person cannot be totally oblivious as to how the problem is to 
be solved. Now since, except in the most trivial of specification languages, there is 
almost always more than one alternative in which to express the what part, the 
preference of one alternative over another cannot be totally separated from the degree 
of knowledge of how the problem is to be solved. This last observation is clearly 
reflected in two alternative specifications of the N-Queens problem (see below). The 
impact on the algorithm of the quality of a specification is discussed in Borrett and 
Tsang [4, 5]. 
 
 
7. SAMPLE PROBLEMS SPECIFICATIONS 

 
The complete formal expressions corresponding to each of the problems treated below 
is listed in the appendix. All these expressions are written in a form that respects the 
global specification schema (Ψ) presented in section 5. 
 
 
7.1. The Sorting Problem 
 
This problem has been specified many times over in as many different formal 
languages. Nevertheless, it will still be interesting to see its formulation in our 
notation when seen as a CSP. 
 
The formal specification necessarily starts from an informal definition of the problem, 
which goes as follows: 
 

Given is a domain D of values together with an 
ordering relation (≤) over its elements. Given 
also is an array A of N element of D. The task 
is to find a rearrangement of the elements of A 
that are in ascending order with respect to (≤). 
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The above informal definition can be formulated as a CSP. In fact, ordering can be 
seen as re-indexing the array elements; that is, the variables of the problem (and the 
corresponding values) are the indices of the array and the constraint is just the 
ordering condition that the re-indexed array should satisfy. 
 
This way, the ordering task can be formally specified as follows: 
 

(∃ f∈[1..N]→[1..N]) ORDERED(f) 
 

Note here the tidy way of encoding a permutation enabled through the use of the 
function f. Here ORDERED(f) is simply defined by: 

 
ORDERED(f) ≡  

BIJECTIVE(f)∧(∀ i∈[1..N-1])(A(f(i)) ≤ A(f(i+1))) 
 
And where BIJECTIVE(f) is used to insure that no element of the initial array is 
ignored from the sorting process. One definition of that could be: 
 
BIJECTIVE(f) ≡ (∀ i, j ∈ [1..N]) (i ≠ j ⇒ f(i) ≠ f(j)) 

 
And another possibility is:  
 
BIJECTIVE(f) ≡ (SIZE({f(i); i∈[1..N]}) = N) 

 
Note that the choice of any one these alternatives can have an impact on the problem 
solving strategy that can be associated with the specification, as. In fact, one way or 
the other, any such strategy has to deal with the predicates used to specify the 
constraints. This can perhaps be seen more clearly in the next specification. 
 
7.2. The Map Colouring Problem 
 
The informal definition of the problem goes as follows: 
 

Given a map containing a set of countries CN and 
a set of colours CL, associate each country of 
CN with a colour from CL so that no two 
bordering countries have the same colour. 
 

The map can be represented by a function M that associates each element country 
c∈CN with the set of countries bordering c: M(c)⊆ CN. Additionally, the bordering 
relationship between two countries is simply defined as: 
 

bordering(c1, c2)≡ (c1∈ M(c2))∨(c2∈ M(c1)) 
 
Now, if f is taken to be the function that associates each country with a colour, then 
the constraint on f can simply be specified by the following condition:  
 

∀ c1∈CN ∀c2∈CN bordering(c1, c2) ⇒ f(c1)≠f(c2) 
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7.3. The N-Queens Problem 
 
The informal definition of the problem goes as follows: 
 

Given a strictly positive integer N, find N 
distinct positions of the Queen piece on an N×N 
chessboard, so that no Queen at any of those 
positions can take (or be taken from) any of the 
others.  

 
A First Specification Of The N-Queens Problem 
 
Starting directly from the above definition, without further analysis, the specification 
of the problem will rely on the following definitions: 
 
- N : an integer that is a global parameter of the problem. 
- [1..N]: a range indicating the domain of variables (i.e. N queens). 
- [1..N]×[1..N]: the domain of values of each one of the above variables. That 

is, a value that a variable can have is a pair <i,j> from this domain. 
- TAKES(Q1,Q2) tells when a queen Q1 can take another queen Q2. That is, when 

Q1 and Q2 are in the same row, column or diagonal. Formally: 
 
(1st(Q1) = 1

st(Q2))  
∨ (2nd(Q1) = 2nd(Q2)) 
∨ (1st(Q1) - 2nd(Q1) = 1st(Q2) - 2nd(Q2)) 
∨ (1st(Q1) + 2nd(Q1) =1st(Q2)) + 2nd(Q2)) 
 

- TAKEN(Q, S) tells when a queen Q is taken by at least one queen of the set S of 
queens. That is:  

(∃ Q1 ∈ S) TAKES(Q1,Q) 
 

- SAFE(S) tells when no queen element of S can take any of the other queens in S. 
That is,  

(∀ Q ∈ S) ¬TAKEN(Q, S - {Q}) 
 
In the above terms, the specification will be: 
 

(∃ S ⊆ [1..N]×[1..N]) ((SIZE(S) = N) ∧ SAFE(S)) 
 
 

An Alternative Specification Of The N-Queens Problem  
 
The above formulation of the problem is, in many respects, naïve because it 
deliberately abandons any commitment to what the solution will look like at the end. 
In fact, it seems to ignore useful insights that, not only make the formulation simpler, 
but also render the problem-solving strategy dealing with it more efficient. 
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Among these insights is the fact that the size of the set S should be equal to N. In fact, 
having that in the declaration part (i.e. saying that S is a set of N elements saves the 
problem solving strategy one explicit test.  
 
Moreover, one can observe from the start that each queen will be on a separate row. 
This way, we can assign each queen a distinct row ahead of time. This saves us yet 
another test, simply by confining ourselves to look for the column part of each queen. 
This also confines testing to columns and diagonals only.  
 
Finally, since the relation TAKES(Q1,Q2) is symmetric, we can restrict testing each 
new queen to the already allocated queens without any loss of generality. 
 
With these insights in mind, we can now have a better specification, relying on the 
following definitions: 
 
- N : an integer that is a global parameter of the problem. 
- [1..N]: a range indicating the domain of variables (i.e. queens). 
- Q: a function that associates each distinct row i with a column Q(i) that is an 

integer in the range [1..N]. This way, the pair <i,Q>, will accurately define 
one position for the queen, on row i. 

- TAKES(i,j,Q) tells when a queen <i,Q> can take the queen <j,Q>. Since i 
and j are assumed to be distinct, this can be simplified to: 

 
(Q(i) = Q(j)) 
∨ (i - Q(i) = j - Q(j)) 
∨ (i + Q(i) = j + Q(j)) 
 

- TAKEN(i,j,k,Q) tells when a queen <i,Q> is taken by at least one of the 
queens in the rows [j..k]. Noting that i∉[j..k], we get: 

 
(∃ t ∈ [j..k]) TAKES(i,t,Q) 

 
- SAFE(j,k,Q) tells when no queen in the rows [j..k] can take any of the 

other queens in the same rows. That is, 
 

(∀ i∈[j + 1..k]) ¬TAKEN(i,j,i-1,Q) 
 
In the above terms, the specification will be: 
 

(∃ Q∈[1..N]→[1..N]) SAFE(1,N,Q) 
 
7.4. The Perfect Square Placement Problem 
 
The informal definition of this problem [17] goes as follows. 
 

The perfect square placement problem (also 
called the squared square problem) is to pack a 
set of squares with given integer sizes into a 
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bigger square in such a way that no squares 
overlap each other and all square borders are 
parallel to the border of the big square. For a 
perfect placement problem, all squares have 
different sizes. The sum of the square surfaces 
is equal to the surface of the packing square, 
so that there is no spare capacity. A simple 
perfect square placement problem is a perfect 
square placement problem in which no subset of 
the squares (greater than one) is placed in a 
rectangle. 

 
We will need the following setting for the problem. The main square is of size (i.e. 
edge length) M, we can assume that to be the set [1..M]×[1..M].We assume that 
we have N other smaller squares whose sizes are stored in an array T; that is, each 
square i (i ∈ [1..N])has a size equal to T[i]. Thus, we have the following 
precondition of the problem: 
 

T[1]2 + T[2]2 + … + T[N]2 = M2 

 
Now, the problem consists of finding for each smaller square, a position <x,y> 
within the main square so that the condition of the problem holds. That is, all the 
positions <x,y> should be inside [1..M]×[1..M]. Note that, each square is now 
completely defined by the pairs <i,p> where i is the index of where the size of this 
square resides in T and p is the position of this square on the main square. 
 
In addition to the above, we will need the following auxiliary definitions: 
 
- when two intervals [a..b] and [c..d] intersect. That is: 

 
IINTER([a..b], [c..d]) ≡ MAX(a,c) < MIN(b,d) 

 
- when two squares <i,p> and <j,q> intersect. That is: 
 

SINTER(<i,p>, <j,q>)≡ 
Iinter([1st(p)..1st(p)+T[i]], ([1st(q)..1st(q)+T[j]]) 

 ∧ 
IINTER([2nd(p)..2nd(p)+T[i], [([2nd(q)..2nd(q)+T[j]]) 

 
- a function P that associates each square i with an edge length T[i], with a 

position <x,y> on the main square [1..M]×[1..M]. This way, given an 
index i, the pair <i, P>, will accurately define one square on the main square; 
in fact, <i, P> immediately gives <i, P(i)>. 

 
- INTER(i, j, k, P) tells when a square <i, P> overlaps at least one of the 

squares in the interval [j..k]of T. Noting that i∉[j..k], we get:  
 

(∃ t ∈ [j..k]) SINTER(<i,P(i)>, <t,P(t)>) 
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- SAFE(j, k, P) tells when no square in the interval [j .. k]of T overlaps 

any of the other squares in the same interval. That is, 
 

(∀ i ∈ [j+1..k]) ¬INTER(i, j, i-1, P) 
 
In the above terms, the specification will be: 
 

(∃ P ∈ [1..N] → [1..M]×[1..M]) SAFE(1, N, P) 
 
The similarity between this specification and that of the N-Queens problem presented 
in the previous sub-section allows us to claim that, putting domain-specific heuristics 
aside, the same problem-solving strategy that can solve one of the problems, should 
perform as well on the other. This is another facet of the service that formal 
specification can offer this domain toward the automation of the whole process. 
 
7.5. The Traffic Lights Problem 
 
This problem [23] was originally proposed by [9] as a CSP benchmark example. It 
has several interesting features. It is a real-world problem, not too complex, in that it 
has relatively few constraints. However, each of these is a very tight higher arity (not 
just binary) constraint, showing that local propagation appears to be of little or no 
effect.  
 
Informal Definition 
 
This problem considers a four-way traffic junction with eight traffic lights. Four of 
these are for vehicles and can have the colours red, red-yellow, green and yellow. The 
remaining four are for pedestrians and can have the colours red or green. 
Correspondingly, there are four variables (V1 to V4) with domain {r, ry, g, y} 
and another four variables (P1 to P4) with domain {r, g}. 
 
The constraints are ` odelled by quaternary constraints on the tuples (Vi, Pi, Vj, 
Pj) which, for i∈[1..4] and j = (i+1) mod 4, allow just the corresponding 
values to be tuples from the set {(r,r,g,g), (ry,r,y,r), (g,g,r,r), 
(y,r,ry,r)}. 
 
Problem Analysis 
 
It seems that we have here eight variables (V1,P1,V2,P2,V3,P3,V4,P4), with a 
total of 212 possible assignments, of which only 22 are solutions. These are: 
(r,r,g,g,r,r,g,g), (ry,r,y,r,ry,r,y,r), (g,g,r,r,g,g,r,r) 
and (y,r,ry,r,y,r,ry,r)}. 
 
However, looking at the structure of the tuples (Vi, Pi, Vj, Pj), and the 
tuples in the constraint set above, reveals a strong relationship between the pairs <Vi, 
Pi> for each i in the interval [1..4], and the pairs <Vj, Pj> for j = (i+1) 
mod 4. This relationship alone will make for a simpler specification and drastically 
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reduces the size of the search space, therefore simplifying the whole process of 
finding the solution. 
 
Problem Specification 
 
In fact, assuming the domains: V = {r, ry, g, y} and P = {r, g}, we 
will bunch the eight variables (V1,P1,V2,P2,V3,P3,V4,P4) into four pairs 
<V1,P1>, <V2,P2>, <V3,P3> and <V4,P4>. Thus, we can think of the four 
variables as four elements in the interval [1..4]. Each one of these variables will 
take its values from the domain V×P. 
 
Now, looking at the constraint set above, we will define a new smaller more 
structured set S as follows: 
 

S = {<<r,r>,<g,g>>, <<y,r>,<ry,r>>} 
 

This way, given a function f from the interval [1..4] to the set V×P, we define the 
predicate SAFE(f) as follows: 
 
(∀ i∈ [1..4])  

(∀ j ∈ [1..4])  
  (j = (i+1 mod 4))⇒(<f(i),f(j)>∈S)∨(<f(j),f(i)>∈S) 

 
Thus, the specification of the problem will be: 
 

(∃ f∈ [1..4] → V×P) SAFE(f) 
 

The clarity of this specification should simplify the task of generalising to other types 
of junction (e.g. five roads intersecting) as well as modelling the evolution over time 
of the traffic light sequence. 
 
7.6. The Stable-Marriage Problem 
 
This is a well know CSP benchmark example. As usual, we start by providing the 
informal definition of the problem and then proceed to formalise that in our proposed 
language. 
 
Informal Definition 
 
Given are n men and n women. Given also is that each individual of the two sexes 
has an order of preference of the individuals of the opposite sex. 
 

The problem is to find a one-to-one relation 
that associates each man m with one woman w in 
such a way that no other woman w’ can 
simultaneously satisfy  

 
(1) m prefers w’ over w and 
(2) w’ prefers m over her associated man m’ 
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An Alternative Informal Definition 
 
Eliminating the negation from the above definition will make for a somewhat 
smoother translation to our formal language. The alternative definition goes as 
follows: given are n men and n women. Given also is that each individual of the two 
sexes has an order of preference of the individuals of the opposite sex. 
 

The problem is to find a one-to-one relation 
that associates each man m with one woman w in 
such a way that the for all other women w’ 
either 

 
(1) m prefers w over w’or 
(2) w’ prefers her associated man m’ over m 

 
The above alternative is obviously equivalent to the original definition of the problem. 
 
Formal specification 
 
The degree of difficulty of a specification largely depends on the basic building 
blocks and tools used to construct this specification. For this reason, we start by 
describing these. 
 
Given are two sets M (of men) and W (of women), each containing n element. In 
addition to that, we associate each element x of each of the two sets with a total 
ordering (≤x) of the elements of the other set. The relation (≤x) represents the order 
of preference that x has of the individuals of the opposite sex.  
 
Now, according to the alternative informal definition using the basic building blocks 
specified in the previous paragraph, the specification of the Stable-Marriage problem 
looks pretty straightforward. In fact, the specification is fully described by the 
following logical formula:  
 

(∃ h ∈ W → M) 
  BIJECTIVE(h) ∧ 
  (∀ w ∈ W ∀ w’∈ W  

(w ≠ w’) ⇒((w’ ≤h(w) w) ∨ (h(w) ≤w’ h(w’)))  
 
7.7. The Timetabling Problem 
 
This is a more elaborate example than the previous ones. It addresses a general system 
that can generate school and university timetables. This is a substantial real-world 
practical system that is currently in use for several years now. This system has entirely 
been specified using the same paradigm and the same notation based on the language 
proposed in this paper. It was surprising how few are the primitives required for the 
specification of a substantial task such as the timetabling program. The details of this 
example have been submitted for publication elsewhere [2]. 
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8. DISCUSSION 
 
The next step starting from the research described in this paper will be to make 
specific the constructs of the DEPICT 0.1 language. We intend to gain more 
experience with this language by trying it on further examples to see what other 
features it may still be lacking. When the language is more mature, we shall specify 
its semantics. This should be manageable, considering that it is based on a well-
founded, well-specified formal specification language. 
The existence of a good specification language can open the door to many research 
directions under software engineering: 
 

• Program verification: algorithms and implementations can be verified against 
the formal specification more easily. This is the motivation for formal 
specification in software engineering. 

• Problem transformation: some formulations allow the problem to be solved 
more efficiently as pointed out by Borrett and Tsang [4, 5]. For example, 
some redundant constraints are useful, but some are counter-productive for 
problem solving efficiency. Problem specification under a well-defined 
language potentially allows one to reason with the transformation more 
systematically. 

• Software reusability: DEPICT 0.1 allows one to concentrate on formal 
specification of the problem. One possible research direction is to link a 
specification to constraint programming languages, such as ECLiPSe [10], 
ILOG [15] or EaCL [6, 13]. This way, constraint software engineers 
may use the advanced algorithms developed in these systems without having 
to re-implement them. 

• Software Synthesis: programs (hence solutions) can be generated 
automatically from specifications. This is a long-term aim, but we see it as a 
distinct possibility in the CSP context. 

 
On top of problem specification, heuristics may be formalized as well. If one can do 
that, then constraint software engineering (the process of formulating CSPs to 
developing or finding algorithms to solve them) can be done more systematically. 
Similar insights have been a driving force behind systems like the Kestrel 
Interactive Development systems (KIDS) [18, 19], which 
automatically synthesizes correct programs in the applicative (REFINE) language 
from formal specifications that are also written in REFINE. This is also the core idea 
in programming systems like PROLOG. This line of thinking holds even more 
credibility here when seeing that CSPs have a distinct logical expression, and are 
usually associated with a much richer variety of problem-solving strategies than just 
general depth-first search. 
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APPENDIX 
 
This appendix contains the complete formal expressions of all the examples treated in 
this paper. These are listed in the same order they are treated in the main body of the 
paper and presented in accordance with the general form of the CSP specification 
expression presented in section 6. 
 
1. The Sorting Problem 
 

{BIJECTIVE(f) ≡ SIZE(f([1..N])) = N, 
 ORDERED(f) ≡  

BIJECTIVE(f) ∧  
(∀ i∈[1..N-1]) (A(f(i)) ≤ A(f(i+1)))} 

 
(∃ f ∈ [1..N]→[1..N]) ORDERED(f) 
 
(N∈Ñ, D ∈ Ð, (≤) ∈ Ô(D), A ∈ [1..N]→ D) 

 
Where Ñ is the domain of non-negative integers, Ð is intended to mean the universe 
of all domains, Ô(D) is the set of all ordering relations over the domain D, and 
f([1..N]) is the set {f(i); i∈[1..N]}. 
 
2. The Map Colouring Problem 
 

{BORDERING(c1, c2) ≡ (c1∈ M(c2))∨(c2∈ M(c1)), 
 SAME(c1, c2,f) ≡ BORDERING(c1, c2) ∧ f(c1)= f(c2), 
 SAFE(f) ≡ ∀ c1∈CN ∀ c2∈CN c1≠c2 → ¬SAME(c1, c2,f)} 
 
∃ f ∈ CN→CL SAFE(f) 
 
(N1∈ Ñ, CN ∈ Ð(N1), N2∈ Ñ, CL ∈ Ð(N2), M ∈ CN→P(CN)) 
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Here P(CN) denotes the set of subsets of CN and Ð(N) is used to denote the universe 
of finite domains of size N. 
 
3. The N-Queens Problem 
 

{TAKES(i,j,Q) ≡  
(Q(i) = Q(j)) 

∨ (i - Q(i) = j - Q(j)) ∨ (i + Q(i) = j + Q(j)), 
 TAKEN(i,j,k,Q) ≡ (∃ t ∈ [j..k])TAKES(i,t,Q), 
 SAFE(j,k,Q) ≡ (∀ i∈[j + 1..k])¬TAKEN(i,j,i-1,Q)} 

 
(∃ Q∈[1..N]→[1..N]) SAFE(1,N,Q) 
 
(N ∈ Ñ) 

 
4. The Perfect Square Placement Problem 
 

{IINTER([a..b],[c..d]) ≡ MAX(a,c) < MIN(b,d), 
 SINTER(<i,p>, <j,q>)≡ 

IINTER([1st(p)..1st(p)+T[i]],([1st(q)..1st(q)+T[j]]) 
  ∧ 

IINTER([2nd(p)..2nd(p)+T[i],[([2nd(q)..2nd(q)+T[j]], 
 INTER(i,j,k,P) ≡  

(∃ t ∈[j..k]) SINTER(<i,P(i)>,<t,P(t)>), 
 SAFE(j,k,P) ≡  

(∀ i∈[j+1..k])¬INTER(i,j,i-1,P)} 
 

(∃ P∈[1..N] → [1..M]×[1..M]) SAFE(1,N,P) 
 
(M ∈ Ñ, N ∈ Ñ, T ∈ [1..N] → Ñ) 
 

Obviously, we have to state the following preconditions of the problem: 
 
- all small squares will fit in the main square without overlapping: 
 

T[1]2 + T[2]2 + … + T[N]2 = M2 
 

- all small squares have different sizes for a perfect square placement: 
 

(∀ i∈[1..N])(∀ j∈[1..N]) (i ≠ j)⇒ T[i] ≠ T[j] 
 
5. The Traffic Lights Problem 
 

{V ≡ {r, ry, g, y},  
 P ≡ {r, g}, 
 S ≡ {<<r,r>,<g,g>>, <<y,r>,<ry,r>>}, 
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 SAFE(f) ≡ 
 (∀ i ∈ [1..4])  

(∀ j ∈ [1..4])  
(j = (i+1 mod 4)) ⇒  

(<f(i),f(j)> ∈ S) ∨ (<f(j),f(i)> ∈ S)} 
 

(∃ f ∈ [1..4] → V×P) SAFE(f) 
 
( ) 

 
Note that, as it is stated above, this problem has an empty parameter list. However, if 
a generalization of this specification can be made to an arbitrary number N of traffic 
lights, then N will replace 4 in the specification and will therefore take its place in the 
parameter list. 
 
 
6. The Stable-Marriage Problem 
 
{≤ ≡ ≤WM ∪ ≤MW, 
 BIJECTIVE(h) ≡ SIZE(h(W)) = N} 

 
(∃ h ∈ W → M) 

BIJECTIVE(h) ∧ 
∀ w ∈ W ∀ w’∈ W  
 (w ≠ w’) ⇒ ((w’ ≤h(w) w) ∨ (h(w) ≤w’ h(w’))) 

 
(N∈ Ñ, M∈ Ð(N), W∈ Ð(N), ≤WM ∈ W→Ô(M), ≤MW ∈ M→Ô(W)) 
 
Here, Ð(N) is used to denote the universe of finite domains of size N. Also, the 
expression ≤WM ∪ ≤MW is taken to mean that the resulting ordering relation is over the 
domain M or W depending on whether its arguments are from the first or the second 
domain. 


