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Abstract

This paper reports a case study in applying

Constraint-Satisfaction techniques to university and

school timetabling. It involves the construction of

a substantial, carefully speci�ed, fully tested and

fully operational system. The software engineering

aspect of Constraint-Satisfaction is emphasized in this

paper. Constraint-Satisfaction problems are expressed

in a language more familiar to the formal software

engineering community. This brings Constraint-

Satisfaction one step closer to formal speci�cation,

program veri�cation and transformation; issues ex-

tensively studied in software engineering. In problem

formulation, explicit domain constraints and heuristic

information are made explicit. Moreover, the user's

needs are considered more closely; for instance, when

the program fails to �nd a solution, useful indications

are produced to help in relaxation or reformulation of

the problem.

Keywords: Constraint-Satisfaction, timetabling, soft-

ware engineering.

1. Introduction

Timetabling is an instance of task scheduling, which
is a practical and hard problem that attracted re-
searchers from a variety of di�erent backgrounds and
disciplines [3]. The study of the timetable genera-
tion process is important because of the sensitive role
timetables play speci�cally in the management of peo-
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ple intensive institutions such as hospitals and univer-
sities.

This process is looked at in the literature from many
di�erent angles (see [8] for a good overview and more
references). Correspondingly, there have been many
approaches to the realization of these views using a
wide variety of problem-solving paradigms (see [9] and
[13] for sample instances). In comparison, constraint-
satisfaction techniques �gure prominently.

2. The Context

This paper reports a case study in the application
of Constraint-Satisfaction techniques to timetabling, in
the context of a small and young university, where stu-
dents come from a variety of di�erent backgrounds.

This context provides a particularly �tting test for
Constraint-Satisfaction techniques, because students
taking the same kind of courses are seldom a signi�-
cant majority in any one class. Without taking this
variety into consideration, a timetable will very likely
prevent a meaningful number of students from taking
intended courses due to time conict.

In this context, students go at the start of every
semester through a pre-registration period, where they
choose the classes they would like to attend during the
semester. Administrators would then gather enroll-
ment information and try to piece together a timetable
that would suit instructors, students and other univer-
sity requirements, resources and facilities.

The task of producing by hand, a satisfactory,
conict-free timetable is always a tedious, time-
consuming process. The main diÆculty is the ab-
sence of any dependable idea for doing that, beyond
an exhaustive search of all available alternatives. This
means plenty of trial-and-error attempts. What makes
matters worse is that, in the absence of adequate plan-
ning, the essentially random pre-registration process
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would very often result in unresolvable conicts be-
tween various student choices.

3. A Software Engineering Approach to

Constraint Satisfaction

The Timetable Generator project was initiated in re-
sponse to this problem. The �rst period of the project
was spent investigating the possibility of bene�ting
from several techniques such as the best-�rst search al-
gorithm. However, later implementations had more to
gain from Constraint-Satisfaction techniques [10], thus
resulting in a much more usable program.

Most research on Constraint-Satisfaction is focused
in algorithms. In fact, Constraint Programming is
already mature enough for real life applications [12].
Therefore, more attention should be paid to its soft-
ware engineering aspect, in which very little has been
done apart from the CHIC project [1, 11].

In this context, we shall introduce a formal language
for specifying Constraint-Satisfaction problems. This
will be used to formalize timetabling as a Constraint-
Satisfaction problem before deciding on an algorithm
for its solution. This approach carries more weight
speci�cally in the context of ongoing research on high-
level Constraint-based programming [2, 4, 7].

3.1. Specifying A ConstraintSatisfaction Problem

A Constraint-Satisfaction Problem (CSP ) can be
de�ned by the following three components (de�nition
modi�ed from [10]):

� a �nite set of variables A = fa1; a2; � � � ; ang.

� a collection B = (Ba)a2A, each of its elements is
a �nite set of values of arbitrary types that the
corresponding variable a is associated with.

� a set S of subsets of A over which a collection of
constraints C = (Cs)s2S is speci�ed. Each con-
straint Cs ties together the variables of the subset
s in such a way as to restrict the values they may
simultaneously take.

A CSP solution has to �nd, for each of the variables
a 2 A, a value b 2 Ba satisfying all relevant constraints;
that is, the set of pairs f< a; b >; a 2 s^ b 2 Bag must
satisfy the constraint Cs, for each s 2 S. An accurate
description of the task that reects this simultaneity
would be to require the construction of a function f

that associates every element a 2 A with an element
b 2 Ba in such a way that C(f) is satis�ed:

CSP � (9f 2 A! B)C(f)

3.2. Solving A ConstraintSatisfaction Problem

A general algorithm that can solve this class of prob-
lems starts from the CSP speci�cation above and, at
the end, returns a result that is a solution or a failure.

Result � Solution _ Failure

A solution would be the function f mentioned in the
CSP speci�cation above. However, since A is assumed
to be �nite, this function may also be viewed as a list
of pairs < a; b >2 A � Ba, chronologically ordered
according to the time they are generated (earliest �rst).
On the other hand, a failure arises when no solution
can be generated because the constraints are too tight
or contradictory.

//A: variables, B: values, C: constraints
Result SCHEDULE (A, B, C) f
// the timetable initially empty
timetable = ;;
// fx 2 A;:scheduled(x)g 6= ; initially
scheduling = true;
// select a variable
a = highestpriority(fx 2 A;: scheduled(x)g);
while (scheduling) ^(fx 2 A;:scheduled(x)g 6= ;)f
// select a value
b = mostsuitable(fy 2 Ba;:considered(y)

^ C(timetable+ < a; y >)g);
// Successful selection
if found(b) f

add(< a; b >, timetable);
a = highestpriority( fx 2 A;:scheduled(x)g);g
// Unsuccessful selection, dead end,

else f
// select a backtracking point
t = mostsensible(fx 2 A; scheduled(x)g);
if found(t) f // backtracking point found

erase(a .. t, timetable); a = t;g
else scheduling = false;gg // general failure

return(( fx 2 A;:scheduled(x)g = ;)? timetable :
failure);
g

A General CSP Algorithm

The pseudo code above basically implements
Gaschnig's BackJumping algorithm [5]. However, a
couple of remarks are due to clarify the underlying as-
sumptions:

� For any given a 2 A and during the process of lo-
cating b, constraints are checked with respect to
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already scheduled elements of A only. When b is
found, it is marked as considered to leave it out
of consideration, in case of backtracking for an al-
ternative value in Ba. Moreover, unsuccessful at-
tempts at locating b are recorded on a failure table

as it is used in Gaschnig's Backmarking algorithm
[5]. This table is used, in case backtracking is re-
quired, for determining the most sensible point t
to backtrack to. This failure table is reconstructed
from scratch for every new a 2 A, and the size of
this table is of the order of the size of Ba.

� The existence of this failure table reduces the pro-
cess of �nding t to a simple linear scan. After �nd-
ing t, all elements a0 2 A between a and t have to
be marked as not scheduled and all the b0s in the
corresponding Ba0 's as not considered. These B0

a

are in fact going to be searched again. This clearly
has negative e�ects on the eÆciency of the algo-
rithm. The extent of that may be reduced by an
intelligent choice of the next a to schedule [6].

Any further elaboration on the above outline will
have to await domain-speci�c information with regard
to the variables, values and constraints (see below).

4. The Timetabling Problem Speci�ca-

tion

On the basis of the discussion of the previous sec-
tions, the requirements of the problem can be captured
in the following speci�cation:

T imetabling �
(9f 2 Courses! T imes)Suitable(f)

Suitable(f) �
(8c; c0 2 Courses)(c 6= c0)) :Conflict(c; c0; f)

Conflict(c; c0; f) �
(9x 2 Students)c 2 s(x) ^ c0 2 s(x)
^ < c; b >2 f^ < c0; b0 >2 f ^ b \ b0 6= ;

where s is a function returning the set of courses
taken by the student x.

4.1. Variables and Values

The variables are obviously the courses on o�er. In
case the same course is given to more than a single
group of students (i.e. a multiple-section course), each
section will need to be considered as a distinct variable.

This makes sense because each section will generally
have its own distinct timetabling requirements. More-
over, the role of an instructor vis-�a-vis the timetable
generation process is no di�erent from that of a stu-
dent. For this reason, we will only mention students
without any loss of generality.

The space of values is the space of all available teach-
ing times during the week. The unit value is a time slot.
A time slot is de�ned as a time interval over one day
of the week. This is speci�ed by a triplet: < d; t; h >,
where d is a number denoting one day of the week, t is
a number denoting the starting time of the slot and h is
the length of a slot; i.e. number of half-hours this slot
consists of. For example, the triplet < 1; 1; 3 > denotes
the time interval on Monday, between 8 : 00AM and
9 : 30AM . Hence, the �rst constraint that a slot value
< d; t; h > should respect is:

C0 �WD(d) ^ ([t::t+ h] �WH(d)g

Where WD(d) means that d is a working day and
WH(d) represents the set of working hours of day d.

4.2. Composite Values

Each course is associated with a number of credits.
This number is used to indicate the number of teach-
ing hours associated with this course, the number of
slots that those hours may be distributed over, and the
constraints this distribution has to respect.

Credit Hrs. Slot Slots
No. No. No. length
1 3 1 6
2 2 1 _ 2 4 _ (2,2)
3 3 2 _ 3 (3,3) _ (2,4) _ (2,2,2)
4 4 2 _ 3 (4,4) _ (2,2,4) _ (2,3,3)

Course-Slot Distribution Table

Thus, depending on its number of credits, a course
might be associated with a composite value (i.e. a set
of slots). For example, a 1-credit course is given over a
single 3-hour slot. A 2-credit course is given over one
2-hour slot or two 1-hour slots. A 3-credit course can
be given over two 1.5-hour slots or three 1-hour slots,
etc. A 4-credit course is given two 2-hour slots, etc (see
table above).

This table is used to make sure that only slots of the
right size are ever considered for courses of a given type:
i.e. number of credits. Hence the second constraint:
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C1 � size(slot)

Multiple-slot courses are subject to an additional
constraint that any two di�erent slots < d; t; h > and
< d0; t0; h0 >, associated with the same course, should
start at the same time during the day. Moreover, these
slots should be separated by a gap of one day at least:

C2 � (< d; t; h >6=< d0; t0; h0 >)) (t = t0)

C3 � (< d; t; h >6=< d0; t0; h0 >)) (kd� d0k > 1)

4.3. Ordering and Generators

Seeing the complexity of these values and in order
to make their management easier, we impose a total
ordering on them. Given two slots < d; t; h > and
< d0; t0; h0 >, we de�ne:

(< d; t; h > � < d0; t0; h0 >) �
(d < d0) _ ((d = d0)((t � t0))

Such an ordering may be used as the basis of a value
generator (V G). This approach has a number of ad-
vantages, since the values of a domain will generally
be too numerous to store explicitly. For instance, this
value generator may be used to produce a next value
of a slot every time this value is needed. Accordingly,
earlier values are considered �rst. Furthermore, when
a current value is being considered, earlier ones are im-
plicitly marked as considered and later ones are still
as yet not considered.

In addition to that, each slot of each course can have
its own generator (SG), which produces values of the
appropriate type. Obviously, to be useful, this genera-
tor should be able to generate all valid values without
neither missing nor repeating any.

Following this line of reasoning, any single course (a
slot set) constitutes a miniature-timetabling problem,
having its own variables, values and constraints. Thus,
a miniature program (SSG) has been constructed.
This can generate a composite value for each such a
set, respecting all relevant constraints.

4.4. The Constraints

A timetable is considered unsuitable if there any stu-
dent is enrolled in di�erent courses whose times over-
lap, or if this course overlaps with the times this stu-
dent cannot attend the course. Such information comes
from a set � of records for every student of the insti-
tution. Each record is a pair < cs; ss > de�ned as
follows:

� cs is the set of courses taken by the student.

� ss is the set of slots during which the student can-
not attend classes.

A course generator (CG), that produces the highest-
priority course to schedule, is assumed here. The or-
dering relation (<) over courses is de�ned with respect
to the time at which each such course is so produced.
Details of this generator will be explained in the next
section.

Now, a slot s being considered for a course c will
cause no conict if the following conditions hold for
every record < cs; ss >2 �:

C4 � (c 2 cs)) (s \ ss = ;)

C5 � (c 2 cs))
(8c0 2 cs(c0 < c)) (8s0 2 time(c0)(s \ s0) = ;)

Here, the function time, applied to an already sched-
uled course, will return the set of slots allocated for this
course. We also have the following de�nitions:

(s \ ss) = ; � 8s0 2 ss((s \ s0) = ;)

< d; t; h > \ < d0; t0; h0 >= ; �
(d = d0)) max(t; t0) � min(t+ h; t0 + h0)

Another constraint that should be satis�ed by a slot
is that no student should have too much load on any
single day. That is, the total load per day should not
exceed a certain given maximum M . That is, a slot <
d; t; h > for a course c causes no conict if the following
condition holds for every record < cs; ss >2 �:

C6 � (c 2 cs))

sum(flengthd(c0); c0 2 cs(c0 � cg) �M

where lengthd(c) � (9 < d; t; h >2 time(c)? h : 0)

5. Details of the Timetabling Algorithm

One major task the algorithm is doing at every it-
eration is choosing the next course to schedule. A
good choice here will obviously have a major impact
on its global eÆciency. The general strategy is based
on choosing the course judged hardest to schedule; i.e.
the course with the tightest constraints. The following
are the factors that are judged to reduce most the ease
with which a course c is scheduled:
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� the number of slots this course is currently taking:
size(time(c))

� the length of time this course will occupy during
the week: sum(fh;< d; t; h >2 time(c)g)

� the total number of student records this course
belongs to: size(fcs;< cs; ss >2 � ^ c 2 csg)

� the number of courses belonging to each one of
these records:
sum(fsize(cs);< cs; ss >2 � ^ c 2 csg)

� the length of time constraints associated with each
one of these records:
sum(fsum(fh;< d; t; h >2 ssg);
< cs; ss >2 � ^ c 2 csg)

5.1. The Backtracking Scheme

The current path the algorithm is following to sched-
ule the current course may reach a dead end. Repairing
this failure can be attempted if it can be traced back
to a decision related to a previously scheduled course.
This way, undoing that decision might make further
progress possible. Here, we are interested in the most
critical pamount of work left to be done, before the �-
nal solution is oint to backtrack to. This is for the sake
of minimizing the reached, or before hope in �nding
any solution is totally lost.

When selecting a fresh course c to schedule, a fresh
failure table is created along with it. The number of
entries of this table is the number of all possible slot
values associated with this course. Now, while schedul-
ing the course and for each slot value that is considered,
the corresponding entry on the table will have records
of all courses whose interaction with c caused that en-
try to fail.

5.2. The Backtracking Point

When c fails to schedule, we go through a minimiza-
tion process that leaves, at each entry of the table, the
earliest of all courses listed at that entry, then, through
another maximization process, we go through all en-
tries determining the latest of all courses left on the
table. If found, that will be the course to backtrack to.
This can be nicely expressed by the following:

max(f
min(fc0; (c0 < c) ^ (v \ time(c0) 6= ;)g);

v 2 [ftimes; s 2 time(c)gg)

Where times is used to denote the set of all possible
values of the slot s (see [10], for more details on this
minmax process).

5.3. Constraint Ordering

A closer look at the CSP algorithm reveals that al-
most all the work that it is doing is spent on Constraint
Veri�cation. Therefore, at least an equivalent amount
of e�ort should be invested in optimizing Constraint
Veri�cation.

The insight into that resides in the following key
idea: since local failure is unavoidable in general, it
is best to catch it early. In fact, we have seven key
constraints: C0; C1; � � � ; C6 are being used, through a
chain of processes, exactly to �lter out values from the
initial rough domain of all possible slot values, till these
become valid course times at the end.

In order to optimize the amount of work done
to achieve this task, the application of these con-
straints along this chain is ordered as follows:
C0; C1; C3; C2; C6; C4 and C5. The guiding intuition
behind this ordering is: a bad value, travelling along
this chain, should be detected and eliminated from fur-
ther consideration as early as possible, and with the
least amount of computation.

6. Constraint Optimization

The list � of student records, fed to the program,
does not guarantee that the underlying constraints are
automatically satis�able. In such a situation, the pro-
gram will simply return failure. For these reasons,
we looked into the idea of a timetable with tolerable
conicts. The idea is to attach weights (i.e. costs) to
each of the constraints. After that, the objective of the
algorithm is altered in the following way: instead of
having to satisfy all constraints, a course is added to
the timetable if its conict costs are a�ordable.

7. Program eÆciency

The general CSP algorithm implements BackJump-
ing [5], which is complete for satis�ability problems, in
the sense that it will not miss a solution if one exists.
In theory, the algorithm has a worst-case situation, in
the sense that it can sometimes run for too long before
it gives a solution or before it can say that no solution
exists. Two escape routes have been devised to avoid
this situation:

� Plenty of care is paid to the design of the initial
input data, in order to eliminate from considera-
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tion many of the intractable situations that may
arise in practice.

� An escape option that allows the program to exit
without a solution (if that appears to be taking
too long) but with useful indications supplied to
ease the constraints for a more successful run.

8. Concluding Summary

This paper reports a successful application of con-
straint technology. The software engineering as-
pect of Constraint-Satisfaction is emphasized in this
project. We have taken a formal approach to spec-
ify a timetabling problem. A university and a school
have used the timetable generation program presented
in this paper, which is well tested and fully operational.
The problem that we have speci�ed is general enough,
and therefore our experience should be useful to other
researchers with similar applications.
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