
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

DEPICT: A High-Level Formal Language
For Modeling Constraint Satisfaction Problems*

Abstract: The past decade witnessed rapid development of constraint satisfaction technologies, where algorithms are now able to cope
with larger and harder problems. However, owing to the fact that constraints are inherently declarative, attention is quickly turning toward
developing high-level programming languages within which such problems can be modeled and also solved. Along these lines, this paper
presents DEPICT, the language. Its use is illustrated through modeling a number of benchmark examples. The paper continues with a
description of a prototype system within which such models may be interpreted. The paper concludes with a description of a sample run of
this interpreter showing how a problem modeled as such is typically solved.

Keywords: Constraint Satisfaction Problems and Languages, Formal Specifications, Typed Predicate Calculus, Language Interpreter.

Abdulwahed Abbas, Edward Tsang
 The University of Balamand, Lebanon and The University of Essex, England, U.K.

Ahmad Nasri
The American University of Beirut, Lebanon

1 Introduction
 The past decade witnessed rapid development of constraint
satisfaction technologies2. It is a general framework within
which problems (CSPs) are formulated and solved [23]. A
solution consists of finding appropriate values for problem
variables in associated domains so as to satisfy given
constraints. Such problems are ubiquitous in a wide variety of
scientific and industrial situations. They include (but certainly
not restricted to) scheduling, resource allocation, vehicle
routing, channel assignment in telecommunication networks,
and structure matching in bio molecular databases.

Addressing such problems often requires multi-disciplinary
skills [7], such as mathematics, computer science, artificial
intelligence, automated reasoning, numerical computing,
operations research, as well as database theory and
implementation. One is also faced with fundamental difficulties
when trying to formulate them and to determine appropriate
techniques for their solutions.

Many of these problems3 can be expressed as mathematical
programs, and subsequently solved using standard efficient
and robust operations research (OR) algorithms. However,
effective mathematical programming is very difficult even for
application domain experts. Moreover, solving such problems

often requires amounts of time worse than polynomial in the
size of the input data.

———————

Manuscript received March 9, 2007. This work was supported by Lebanese
National Council for Scientific Research.

*Corresponding author. E-mail address: abbas@balamand.edu.lb
2 The progress of the field can perhaps be measured by observing that many

of the research projects of the field in the early 90’s are now successful
commercial enterprises.

3 The general view of the subject expressed it in this introduction is heavily
influenced by the work of Pierre Flener and his research team in the ASTRA
[14] project, Uppsala University, Sweden. This is also in line with the general
aims of the CSP research group [9], Essex University, England, U.K.

This means that efficiency with which solutions are obtained
is a real issue. This issue may be tackled through specialized
software developed for each individual problem. However, a
more productive approach would be to develop a high-level
special-purpose language (backed up by state-of-the-art
constraint-solving techniques) for modeling (and also solving)
such problems.

Examples of state-of-the-art constraint-based languages and
systems are ECLiPSe [15] and the ILOG Solver [16] (a C++
based library). ECLiPSe is declarative, in the sense that it
allows a natural and intuitive formulation of constraints which
relieves the programmer from traditional low-level computing
obligations. It also enables the programmer to concentrate more
on what constraints the solution should satisfy without being
overly concerned with the details of how these constraints are
to be satisfied. This separation of concerns motivated the
development of OPL [25] (a front-end to the ILOG Solver) and
later on OPL++ [19].

An early language (with a rather OR perspective) that is
worth mentioning here is ALICE [18]. There, a rigorous
solution can be reached through the analysis of a purely
descriptive statement of the problem. Along the same lines, our
vision is that the user can describe the problem without any
commitment to any particular solution. We project that the
solving part can then be completely automated.

2 This Paper
This paper presents DEPICT, a high-level formal language

specifically designed for the purpose of modeling constraint
satisfaction problems. The paper also describes a prototype
system within which such models may be interpreted.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Focus herein is directed primarily toward promoting
simplicity and expressiveness. For this reason, this paper
resorts to the use of higher-level constructs such as functions,
relations, sets and types. At the present time, only a handful of
languages (e.g. CHIP [23], CLPS [8], CONJUNCTO [12],
AMPL [11] and OZ [21]) are able to formulate arbitrary
constraints over sets.

With the existence of the above list of titles, the question that
immediately springs to mind is: why another modeling
language? We give three reasons for that:

2.1 Formalism
Formalism can bring into play a full range of software

engineering tools (e.g. transformation, verification, program
synthesis, etc). One particular benefit of formal specifications
resides in allowing a comfortable distance of the problem
definition from the specific details of the implementation
language and also from the large (and sometimes confusing)
variety of potential solvers. This is referred to in main stream
computer science as abstraction. We shall see that the
specificity of the CSP definition makes it a particularly
attractive target for formal manipulation.

2.2 Expressiveness
Formal methods are usually favored for the clarity, accuracy

and the ability to spot inconsistencies in the initial statement of
the programming problem. In this context, a formal expression
of a problem that has a CSP appearance and that is both clear
and robust should be helpful in identifying a constraint-based
algorithm for its solution.

2.3 Accessibility
The techniques and tools that are nowadays being utilized in

the constraint domain are increasingly becoming out of reach of
the average user. This is because of the inherent difficulty of
the underlying concepts and the high financial cost involved in
trying to make use of them. In this sense, the material used in
the description of DEPICT and its associated interpreter is, on
both counts, more easily accessible. Abstraction can also help
in making constraint technology more widely usable.

3 Constraint Satisfaction Problems
A constraint satisfaction problem (CSP) is entirely specified

by a triplet <A, B, C> defined as follows (definition derived
from [24]):
- A: a finite set of variables {a1, a2,… an}.
- B: a collection of domains (Ba)a∈A, where each Ba is a

(normally) finite set of values of arbitrary types associated
with the variable a.

- C: a collection of constraints (Cs)s∈S, where S is a set of
subsets of A and each constraint Cs ties together the variables
of the subset s thus restricting the range of values they may
take.

3.1 CSP Solving
A CSP solution associates, for each variable a∈A, a value

b∈Ba satisfying all relevant constraints. In other words, a
solution is a set of pairs {<a, b>; a∈A & b∈Ba} simultaneously
satisfying all relevant constraints. This simultaneity can be
concisely described by a function f associating every a∈A with
a value b∈Ba such that C(f) is true. Here, C(f) is succinctly
expressed as (∀ s∈S)Cs(f/s), where f/s denotes the restriction of
the function f over the subset s of A.

This functional view of CSP solutions was first presented in
[2] and later on constituted the core theme of a PhD thesis [13].
This formulation considerably contributes to the
expressiveness of CSP specifications and also to the
development of its associated interpreter.

In Martin-Löf’s Theory of Types [1], using the type
constructors Π and Σ in conjunction with dependent types, a
universal expression for all CSP’s is represented by the type
expression:

Σ(Π(A, B), C)

However, confining ourselves to set theory and typed
First-Order Predicate Calculus, if B is taken to be the set
(∪Ba)a∈A, the above expression will have the form:

 (∃ f ∈ A → B) C(f)
(E)

The latter formulation seemingly loses sight of the fact that
f(a)∈Ba for all a∈A, as stated in the definition of the problem.
However, these Ba's are often found together in the same set.
But when the need arises, separating the Ba's can be looked at as
just another constraint and be made a part of the constraint
expression of the problem.

3.2 A Generic Specification Schema
The expression representing a general CSP specification

takes the following form:

 {D1, D2, …, Dm} E (P1, P2, …, Pn)4 (Ψ)

Where (E) is the logical expression specifying the problem,
(P1, P2, …, Pn) are the parameters that (E) depends on and {D1,
D2, …, Dm} are declarations (e.g. constant, relation, function
and predicate definitions) used to set up the context within
which (E) can be interpreted.

The distinction between parameters and other kind of
declarations allows the formulation of specification schemas.
These are generic specifications that can yield many instances
of the same specification through suitable instantiations of its
parameters.

4 The Specification Language
The basic constructs of this language are determined through

identifying the minimum requirements needed for the
specification of the triplet <A, B, C>; i.e., the variables A, the
domains B and the constraints C [20].

4 The name DEPICT is derived from: “{Di} E (Pi) In ConstrainTs”

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

4.1 The Variables
In this paper, as in most related literature, CSPs are restricted

to a finite number of variables each ranging over a finite
domain. In this context, a variable can be a name, an identifier
and/or a symbol. However, a variable needs not necessarily be
referred to explicitly through a unique name. It can instead be
referred to implicitly through an index of an array, for instance.

In conclusion, the constructs required here are: enumerated
types, sub-ranges, finite sequences of names or symbols, arrays
or lists of those.

4.2 The Domains
A value domain is a finite set of items. Thus, the following

(or similar) notions are required for the representation and use
of such domains:
- Sets defined by enumeration and by comprehension and the

usual set operations: membership, subset, equality,
intersection, union, difference, power set, Cartesian product,
function sets and functions and relations (e.g. ordering
relations) over sets

- Primitive types similar to those encountered in conventional
programming languages: symbols, constants, Booleans,
characters, integers, floats.

- Type operation arithmetic operations, comparison operators,
pairing, sub-ranges, arrays and lists of these.

4.3 The Constraints
A constraint is essentially a condition that requires

satisfaction. Since this can be directly described by a logical
formula, constraints will be expressed using a form of typed
predicate calculus expressions, somewhat reminiscent of the
specification language of Martin-Löf's Theory of Types [1].
These come with the usual logical connectives and quantifiers.
The motivations for selecting this particular language are:

- It is fairly familiar and quite accessible to the average reader.
- Its syntax and semantics are well established and understood.

This will be augmented with a predicate definition facility in
order to further amplify expressiveness.

4.4 Other Elements
The above elements are provided for, in one form or the

other, in many existing set-based or type-based specification
languages, and the account of these requirements presented
here is by no means exhaustive. Having said that, this account
should not deliberately ignore any crucial feature the CSP
definition explicitly requires. In this respect,
variable-dependent sets may be needed for representing
specification schemas (see above).

5 Remarks on the Nature of Specifications
The next section develops the specification of a few selected

problems in DEPICT. However, before doing that, it would
perhaps be instructive to add a couple of remarks concerning
the nature of specifications and their role in the program
development process.

5.1 Specifications versus Implementations
A specification is understood to be a way of expressing what

is to be done without having to say how to do it. As such, the
what part is expected to have less algorithmic details than its
how counterpart and therefore simpler to write down. However,
the what part can actually be more cumbersome to write
because it conceptually falls at a higher level of abstraction than
its how counterpart.

Although we may wish to do without it, the what part is
better formulated with a degree of awareness of the how part. In
fact, except in the most ideal of situations, one cannot be totally
oblivious of how the problem can be solved. This partial
knowledge can only bias one form of specification over
another, provided the specification language is sufficiently
flexible to offer such choice [5].

5.2 Complexity of Specifications
The specification expressions treated below may look more

complex than other equivalent descriptions found elsewhere in
the literature, and there is a good justification for that. They are
intended to be self-standing self-contained formal expressions
of the corresponding problems. Their complexity is largely due
to having, in explicit form, details that other formulations tend
to keep implicit or completely ignore. Such details are required
to be explicit here to make further treatment and analysis
possible.

6 Selected5 Problem Specifications in DEPICT
The methodology followed in developing these

specifications parallel what is usually encountered in a
knowledge representation lecture of an introductory course in
Artificial Intelligence.

All the specifications presented here are developed
following the global specification schema (Ψ) presented above.
These problems are listed in increasing order of complexity.
We mention here that the more complex of these specifications
cannot yet be handled by the interpreter whose structure is
discussed later on in this paper.

At this stage, the syntax of the language used to express these
specifications may seem a little too abstract. However, this
should look more concrete once enough details of the
associated interpreter are presented.

6.1 The N-Queens Problem
Informal statement: given a strictly positive integer N, find N

distinct positions of the Queen piece on an N×N chessboard, so
that the Queen at any of those positions cannot take (or be taken
from) any of the others.

A first attempt at the specification of the problem relies on
the following definitions:
- N : an integer that is a parameter of the problem.
- [1..N]: a range indicating the domain of variables (i.e. N

queens).

5 A good collection of such problems may be found in [26]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

- [1..N]×[1..N]: the domain of values (i.e. possible positions)
of each variable.
However, a second look at the problem reveals that only the

column position of each queen need to be determined, since no
two distinct queens can be on the same row. Consequently, the
domain of values need only be [1..N]. Moreover, since the
relation of one queen taking another is symmetric and
transitive, testing the position of each new queen can be
restricted to only those that have already been positioned.

In conclusion, the specification requires only the following
definitions:
- Q: a function that associates a row i with a column Q(i). This

way, the pair <i,Q> will be sufficient to determine the
position of a queen on row i.

- TAKES(i,j,Q) specifies when a queen <i,Q> can take another
queen <j,Q>.

- TAKEN(i,j,k,Q) specifies when a queen <i,Q> can be taken
by another in a row from the range [j..k], where i∉[j..k].

- SAFE(i,k,Q) specifies that all queens placed on the rows in
the range [i..k] are safe from being taken by one another.
Given that “≡” denotes definitional equality, the complete

formal specification of the problem becomes:

{TAKES(i,j,Q) ≡ (Q(i) = Q(j)) ∨
 (i-Q(i) = j-Q(j)) ∨ (i+Q(i) = j+Q(j)),
 TAKEN(i,j,k,Q) ≡ (∃ t ∈ [j..k])TAKES(i,t,Q),
 SAFE(i,k,Q) ≡ (∀ j∈[i+1..k])¬TAKEN(j-1,j,Q)}

 (∃ Q∈[1..N]→[1..N]) SAFE(1,N,Q)

 (N ∈ Ñ)

Here, Ñ is taken to denote the type of all natural numbers.

6.2 The Map Coloring Problem
Informal statement: Given a map containing a set of

countries CN and a set of colors CL, associate each country of
CN with a color of CL so that no two bordering countries have
the same color.

Given the following definitions:
- M: a function that associates each country with the set of

countries bordering it.
- BORDERING(c1,c2) specifies that c1 and c2 have a common

border.
- CONFLICTING(c1,c2,f) specifies that two countries c1 and

c2 are bordering each other and have the same color
according to a particular coloring f of the map. Here, f is a
function that associates every country c with a color f(c).
Hence, the complete formal specification of the problem

becomes:

{BORDERING(c1, c2) ≡ (c1∈ M(c2)) ∨ (c2∈ M(c1)),
 CONFLICTING(c1, c2,f) ≡ BORDERING(c1, c2) ∧
 f(c1) = f(c2),
 SAFE(f) ≡ ∀ c1∈CN ∀ c2∈CN c1≠c2 ⇒
 ¬CONFLICTING(c1, c2,f)}

 (∃ f ∈ CN→CL) SAFE(f)

 (N1∈ Ñ, CN ∈ Ð(N1), N2∈ Ñ, CL ∈ Ð(N2),
 M ∈ CN→P(CN))

Here P(CN) denotes the set of subsets of CN and Ð(N)
denotes the universe of finite domains of size N each.

6.3 The Magic-Series Problem
Informal statement: Given a natural number N > 0, find a

magic series of length N; i.e., a sequence of numbers S = [k0,
k1,…, kN-1] so that km represents the number of occurrences of
m in S.

The function to be constructed here is the sequence S itself. It
is a function from the domain [0..N-1] to itself, where N is
taken as a parameter to the specification. Thus, the complete
formal specification of the problem becomes:

{ }

(∃ S∈[0..N-1]→[0..N-1])
 (∀ m∈[0..N-1]) (S(m) = SIZE{i∈[0..N-1]; S(i) = m})

 (N ∈ Ñ)

Even though the constraint expression looks simpler, this
problem is more complex than the previous ones because of the
higher degree of abstraction of the structures involved in its
expression.

6.4 The Stable-Marriage Problem
Informal statement: given n men and n women and given

also that each individual of the two sexes has an order of
preference of the individuals of the opposite sex, the problem is
to find a one-to-one relation that associates each man m with
one woman w in such a way that, for all other women w’, either
m prefers w over w’ or w’ prefers her associated man m’ over
m.

The degree of difficulty of a specification largely depends on
the basic building blocks and tools used to construct this
specification. For this reason, we start by describing these:
- M (of men) and W (of women): two sets containing n

element each.
- each element x of each of the two sets is associated with a

total ordering (≤x) of the elements of the other set. The
relation (≤x) represents the order of preference that x has of
the individuals of the opposite sex.

Accordingly, the formal specification of the problem
becomes:

{≤ ≡ ≤WM ∪ ≤MW }
 (∃ h ∈ W → M)
 ∀ w ∈ W ∀ w’∈ W (w≠w’) ⇒
 ((w’≤h(w)w) ∨ (h(w)≤w’h(w’))

 (N∈ Ñ, M∈ Ð(N), W∈ Ð(N), ≤WM ∈ W→Ô(M),
 ≤MW ∈ M→Ô(W))

Here, Ô(S) is the type of total ordering over the set S. The
difficulty here clearly resides in the higher-order construct ≤WM

∪ ≤MW. This is taken to mean the ordering relation over the
domain M and W depending on whether its arguments are from
one domain or the other.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

6.5 The Timetabling Problem
This is a more elaborate example than the previous ones

(details are in [3]). It addresses a general system that can
generate school and university timetables. This is a real-world
practical system that has been operational for several years
now. This system has entirely been specified using the same
paradigm and the same the language proposed in this paper.
Once complete, it was surprising how few are the primitives
that were actually required for the specification of a substantial
task such as that.

7 A Basic Interpreter For DEPICT
Crucial as it may be for expressiveness, formal specification

in a higher-level language does not, on its own, solve a given
problem. This is especially true for the real-life CSPs that are
encountered in practice, as these are usually associated with
algorithms that take too long to execute. Their execution time is
usually much worse than polynomial in the size of the input
data.

7.1 Implementation Approaches
In order to solve such problems, one can translate this

specification into an adequate constraint-based programming
language. Alternatively, one can associate the problem
description with a suitably efficient solving procedure.
Accordingly, implementing a modeling language such as
DEPICT may be achieved using one of the following two
approaches.

The first approach consists of building a suitable translator
that hooks the specification language to an existing language or
solver [10], with the advantages that building a translator takes
less time and the language will benefit from the proven abilities
of the corresponding solver.

However, the following couple of points are worth having in
mind when the specification language (S) is mapped into a
target language (or solver) (T):
- (S) is assumed to be a higher-level language than (T) and,

thus, there is something to be gained from programming in
(S) rather than in (T).

- For (T) to be a suitable end of the translation process, there
must be a one to one mapping between the basic constructs of
(S) and those of (T) or, at least, it must be possible to
automatically generate implementations in (T) of those
constructs of (S) that do not have direct counterparts in (T).
The second approach consists of mapping the constructs of

the specification language directly into a suitable solver. This
approach will have to exhibit distinguishing features for it to be
convincing.

7.2 The DEPICT Interpreter
The interpreter presented in this paper is implemented

following the second of the two approaches discussed above.
Given a specification schema (S) and a list of arguments (A)

intended to replace the list of parameters (P) of (S), the
interpreter returns some or all the solutions of the problem, if
any. As explained above, a solution is precisely a list of values
from the corresponding domains satisfying all the stated
constraints of the problem.

The sequence of transformations undertaken by (S) and (A)
is summarized by the following diagram:

Specification Instance
 Substitution Reduction Solving Solutions

Each step of this sequence will briefly be described below.
1) The Implementation Language

Several benefits can be gained from embedding the
interpreter within a symbolic Language such as LISP:
- Any question concerning syntax and semantics as well as

concerning the primitive constructs of DEPICT is decided by
what LISP has to offer. This is also delimited by the working
context of the specification language (see appendix for a
summary).

- Constants, variables, functions and other data are defined and
evaluated in LISP. The specification formula will be managed
in the context of the accompanying list of predicate
definitions.

2) Formal Logic and Substitution
Given the choice of the particular implementation language

and also the choice of typed predicate calculus as a
specification language, substitution of parameters, variables,
function and predicate calls within the main specification
expression is done symbolically.

Moreover, quantified logical formulae are substituted as
follows: (Exists (x in D)(P x)) is substituted by (or (P d1)(P
d2)…(P dn)), and (Forall (x in D)(P x)) is substituted by (and (P
d1)(P d2)…(P dn)), where D = (d1 d2 … dn). Clearly, this scheme
is possible only because all domains are assumed to be finite.
As an exception, the main function f of the specification will be
left as is in the main specification expression.
3) Reduction to Clausal Form

Substitution turns the specification into a single logical
expression (E) containing no variables except the constraint
variables coming from A. We shall be interested in instances of
those variables that exists under the form (f a). Each (f a)
represents the yet unknown value from the domain Ba to be
associated with the variable a.

Moreover, the only predicate or function calls that remain in
this expression should be predefined in LISP. This way, when
(E) is reduced to clausal form, it will look like: (and C1 C2 …
Cm), where Ci is a clause of the form (or D1 D2 … Dn) and Di is
a call to a primitive LISP predicate or the negation of a call to a
primitive LISP predicate. Again, no unknowns are left in Di
except those of the form (f a).

This reduction phase should be reminiscent of
resolution-based theorem proving in formal logic, and
therefore of the PROLOG programming language. However,
compared to that, the substitution phase described above
obviates the need for the unification algorithm.
4) Solving: constructing the function f

Each unknown (f a) is automatically associated with values
from Ba. This association is used to decide which of those
values to keep and which ones to reject, depending on the truth
value of the primitive predicates Di. This way, running through
the clauses (or D1 D2 … Dn) along the constraint store (and C1
C2 … Cm) will complete the construction of the function f,
which will be a solution of the problem.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Note that not all the constraint variables need to have
associated values for all the constraints to be satisfied.
Accordingly, the function f might turn out to be a partial
function, depending on the specification being interpreted.

A sample run of the interpreter is briefly described in the
appendix.

8 Conclusions and Further Work
The basic results reported in this paper can be summarized as

follows:
- An elegant formal language specific for modeling constraint

satisfaction problems.
- Elegance comes through adopting a so-called functional view

of a CSP solution. This has the benefit of unifying the
representation of the constraint variables under the umbrella
of a single function name.

- Elegance also comes through adopting formalization and
symbolism using typed first order predicate calculus over
finite types.

8.1 DEPICT vs. Other Similar Languages
Comparing and contrasting DEPICT with other existing

similar languages in this domain has already been done in [2]
and [3]. We provide here a brief summary.

The first language that comes to mind is OPL [25], which is a
front-end to ILOG Solver [16]; a very powerful, commercial
constraint solver. While OPL is a quite rich language designed
for engineers, DEPICT is designed for mathematicians and
logicians who would be more at home with DEPICT's style.

In the same context, ESRA [14] is a constraint modeling
language. Hnich [13] extended ESRA and introduced function
variables for constraint programming. These are both
expressive. By contrast, building on a formal logic, DEPICT is
designed with program verification as future development in
mind.

8.2 Extensibility
There are two possible meanings of this term:
First, DEPICT is a specification language. Therefore,

scalability could mean how complex the language is, and
whether it can be used to specify large problems. In this
context, the existence of quantifiers helps DEPICT to express
complex problems in a more compact way, see examples 6.3
and 6.4 below. Without the existence of the higher-order
constructs, one would be at loss of how to formally specify the
problems, indeed.

Second, in as far as the scalability in the DEPICT interpreter
is concerned, DEPICT does not reduce the complexity of a
problem. Constraint satisfaction problems are NP-hard in
nature. Some formulations may be easier to solve than others
by certain heuristics [22, 24], but the complexity of the problem
does not change. What can be sure is that the expressiveness of
DEPCIT does not hinder problem formulation.

8.3 Further Work
The features of DEPICT enabled the development of a

compact interpreter, which leaves plenty of room for
embodying many of the known features of CSP solving.

Correspondingly, plenty of work remains to render practical a
theoretically transparent framework:
1) At the level of the specification language: there is work to

be done in implementing more types in the language
(relations, sets and functions) to enable it to express more
complex types. We are at the moment toying with initial
ideas for implementing set-based constraint expressions and
also higher-order expressions of constraints involving
functions and relations.

2) At the level of the interpreter: there is work to be done to
make it more time and space efficient. This can follow from
reducing the size of the constraint store and also from
reducing the sizes of the value domains through
implementing the equivalent of problem reduction and
constraint propagation mechanism of traditional
constraint-based solvers.

3) The uniformity with which the constraint store is
represented should have some role to play within the overall
automation of the process. This should have some impact on
the techniques that are traditionally used to boost efficiency:
e.g. parallelism.

4) The uniformity of the functional view of constraint solving
will bring with it plenty of supporting (and well understood
tools). These should have some role to play in the variety of
complex situations that can arise in practice (e.g. default and
redundant constraints).

5) This uniformity often results in algorithms that are not
adequately efficient. But since efficiency is a major concern
and since heuristic information and optimization techniques
is a universally agreed way for boosting efficiency, it is
imperative to reserve a role of that in our specification
language (see [4], [6] and [17]).

We conclude the paper with a technical note. Since the
current interpreter can return all possible solutions of the
problem, one direction that is worth following is to add to the
specification an optimization function then direct the
interpreter to return the best one of the solutions accordingly.

Acknowledgment
The authors are deeply indebted to Pierre Flener for his

elaborate comments and for the references that helped in filling
background gaps that existed in an initial version of this paper.
The idea of providing solver-independent specifications
originates from Dr Carmen Gervet.

References
[1] A. Abbas, Programming With Types and Rules In Martin-Löf's Theory Of

Types, Ph.D. Thesis, Queen Mary College, University Of London, U.K.,
1987.

[2] A. Abbas and E. Tsang, Toward a General Language for the Specification
of Constraint satisfaction Problems, Proceedings of CP-AI-OR 2001
workshop, Imperial College, London, England, April 2001.

[3] A. Abbas & E. P. K. Tsang, Software Engineering aspects of
constraint-based timetabling – a case study, Information & Software
Technology Journal, Vol. 46, 2004, 359-372

[4] J. E. Borrett, Formulation selection for constraint satisfaction problems: a
heuristic approach, PhD Thesis, Department of Computer Science,
University of Essex, Colchester, UK, 1998

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

[5] J. E. Borrett and E.P.K. Tsang, A context for constraint satisfaction
problems formulation selection, Constraints, Kluwer Academic
Publishers, Vol.6, No.4, 2001, 299-327

[6] P. Dasgupta, P. P. Chakrabarti, A. Dey, S. Ghose and W. Bibel, Solving
Constraint Optimization Problems from CLP-Style Specifications Using
Heuristic Search Techniques, IEEE Transactions on Knowledge and Data
Engineering archive, Vol.14, Issue 2, 353-368, 2002.

[7] R.Detcher, Constraint Processing, Morgan Kaufmann Publishers, 2003.
[8] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi, A Language For

Programming In Logic With Finite Sets, Journal of Logic
Programming,1996.

[9] cswww.essex.ac.uk/csp
[10] R. Fourer, Hooking a Constraint Programming Solver to an Algebraic

Modeling Language, CP-AI-OR'01, Wye College, Kent, U.K., 2001.
[11] R. Fourer, D. M. Gay and B. W. Kernighan, , AMPL: A Modeling

Language for Mathematical Programming Duxbury Press / Brooks/ Cole
Publishing Company, 2002

[12] C. Gervet, Conjuncto: Constraint Logic Programming with Finite Set
Domains. In ILPS'94, November 1994.

[13] B. Hnich, Function Variables for Constraint Programming. PhD Thesis,
University of Uppsala, Sweden 2003.

[14] www.it.uu.se/research/group/astra
[15] www.icparc.ic.ac.uk/eclipse
[16] www.ilog.com
[17] F. Laburthe and Y. Caseau, SALSA: A Language for Search Algorithms,

Proceedings of the 4th International Conference on Principles and
Practice of Constraint Programming, Lecture Notes In Computer
Science, Vol. 1520, 310-324, 1998.

[18] J. L. Lauriere, ALICE: A Language and a Program for Solving
Combinatorial Problems, Artificial Intelligence, Vol. 10, 1978, pp 29 -
127.

[19] L. Michel and P. Van Hentenryck, OPL++ A Modeling Layer for
Constraint Programming Libraries, CP-AI-OR'01, Wye College, Kent,
U.K., 2001.

[20] P. Mills, et al., EaCL 1.5: An Easy Abstract Constraint Optimization
Programming Language, Technical Report CSM-324, Department of
Computer Science, University of Essex, U.K., 2000..

[21] www.ps.uni-sb.de/oz2
[22] F. Rossi, P. van Beek & T. Walsh (ed.), Handbook of Constraint

Programming, 2006, Elsevier pubs.
[23] H. Simonis, The CHIP system and its applications, in Montanari, U. and

Rossi, F. (ed.), Proceedings, Principles and Practice of Constraint
Programming (CP'95), Lecture Notes in Computer Science, Springer
Verlag, Berlin, Heidelberg & New York, 1995, 643-646

[24] E. P. K. Tsang, Foundations of Constraint Satisfaction, Academic Press,
1993.

[25] P. Van Hentenryck, The OPL Optimization Programming Language, The
MIT Press, 1999.

[26] T. Walsh, World Wide Web, CSPlib home page.

Appendix
A. Syntax and Semantics of DEPICT: a brief summary

As it currently stands, DEPICT specification formulation is
fundamentally based on typed predicate calculus over finite
types. Furthermore, since the interpreter is implemented in
LISP, it was natural to import all the syntactical mode of
expression from there.

As a result, all questions on the semantics of the constructs
used in DEPICT should be answered from the semantics of the
two languages referred to above, which is both widely
accessible on both counts

Furthermore, the syntax of depict is best summarized through
a specification schema as follows:

 (;; predicate declarations, each possessing the following form
 (Define P (<parameter list>)
 < typed predicate formula written according to LISP syntax>)

 ;; main specification expression

 (Exists (F (Function (Variables …) (Domains ...)))
 (< typed predicate formula written according to LISP
syntax>)
))

;; parameters list: the parameters are to be used as global
;; variables anywhere in the predicate definitions or
;; the main specification expression
;; these parameters will be suitably instantiated before the
;; the schema is being interpreted

;; predefined or user-defined LISP predicates and functions
;; can be used anywhere in this schema.
;; In particular, Variables and Domains are user-defined LISP
;; function written to respectively return the list of variables
;; and the corresponding list of domains of the problem
;; expressions

;; the particular use of this schema is illustrated in sections
;; B and C of this appendix

B. Specifying the N-Queens Problem
 (;; local declarations
 (Define Takes (i j Q)
 (or (= (Q i) (Q j))
 (= (- i (Q i)) (- j (Q j))) (= (+ i (Q i)) (+ j (Q j)))))
(Define Taken (i j k Q)
(Exists (t (Interval j k)) (Takes i t Q)))

 (Define Safe (i k Q)
(ForAll (j (Interval (+ i 1) k)) (not (Taken (- j 1) j k Q))))
 ;; specification

 (Exists (Q (Function (Variables n) (Domains n))) (Safe 1 n
Q))
;; parameters
((n N))
)
;; (Interval m n) returns the list (m m+1 m+2 … n) ,
 assuming m ≤ n.
;; (Variables n) returns (Interval 1 n)
;; (Domains n) returns a list containing n instances
 of the list (1 2 … n)

C. Interpreting the N-Queens Problem

We will now briefly describe a trace of the interpretation
process of the above specification schema. This trace assumes
that the associated parameter n is equal to 4. In fact, given that
Q∈[1..N] [1..N]:
;; starting point
1-SAFE(1, 4, Q)
;; substitution
2. (ForAll  j∈[2..4]) (Not TAKEN(j-1, j, 4, Q))
 ;; substitution
3. (And  (Not TAKEN(1,2,4,Q)) (Not TAKEN(2,3,4,Q))  (Not

TAKEN(3,4,4,Q)))
;; substitution
4. (And (Not (Exists t ∈ [2..4]) TAKES(1,t,Q))

 (Not (Exists t ∈ [3..4]) TAKES(2,t,Q))
 (Not (Exists  t ∈ [4..4]) TAKES(3,t,Q)))

;; substitution

http://iems.nwu.edu/~4er/
http://netlib.bell-labs.com/netlib/att/cs/home/gay.html
http://www.cs.princeton.edu/~bwk/
http://www.duxbury.com/
http://www.brookscole.com/
http://www.brookscole.com/
http://www.ilog.com/
http://www.ps.uni-sb.de/oz2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

5. (And (Not TAKES(1,2,Q)) (Not TAKES(1,3,Q))
 (Not TAKES(1,4,Q)) (Not TAKES(2,3,Q))
 (Not TAKES(2,4,Q))  (Not TAKES(3,4,Q)))
;; reduction
6. (And (Q(1)≠Q(2)) (1-Q(1) ≠ 2-Q(2)) (1+Q(1) ≠ 2+Q(2))

 (Q(1)≠Q(3)) (1-Q(1) ≠ 3-Q(3)) (1+Q(1) ≠ 3+Q(3))
 (Q(1)≠Q(4)) (1-Q(1) ≠ 4-Q(4)) (1+Q(1) ≠ 4+Q(4))
 (Q(2)≠Q(3)) (2-Q(2) ≠ 3-Q(3)) (2+Q(2) ≠ 3+Q(3))
 (Q(2)≠Q(4)) (2-Q(2) ≠ 4-Q(4)) (2+Q(2) ≠ 4+Q(4))
 (Q(3)≠Q(4)) (3-Q(3) ≠ 4-Q(4)) (3+Q(3) ≠ 4+Q(4)))

;; solving
7. Q(1) ≠ Q(2) gives the solutions
 <Q(1), Q(2)> = {<1,2>,<1,3>,<1,4>, <2,1>,<2,3>,<2,4>,

<3,1>,<3,2>,<3,4>, <4,1>,<4,2>,<4,3>}
 Same for Q(1) ≠ Q(3), Q(1) ≠ Q(4), Q(2) ≠ Q(3), Q(2) ≠

Q(4) and Q(3) ≠ Q(4)
;; solving
8. 1-Q(1) ≠ 2-Q(2) gives the solutions
 <Q(1), Q(2)> = {<1,1>,<1,3>,<1,4>,<2,1>,<2,2>,<2,4>,

<3,1>,<3,2>,<3,3>,
<4,1>,<4,2>,<4,3>,<4,4>}

 Same for 1-Q(1) ≠ 3-Q(3), 1-Q(1) ≠ 4-Q(4), 2-Q(2) ≠ 3-Q(3),
2-Q(2) ≠ 4-Q(4) and 3-Q(3) ≠ 4-Q(4)

;; solving
9. (1+Q(1) ≠ 2+Q(2)) gives the solutions
 <Q(1), Q(2)> = {<1,1>,<1,2>,<1,3>,<1,4>,<2,2>,<2,3>,

<2,4>,<3,1>,<3,3>,<3,4>,<4,1>,<4,2>,
 <4,4>}
 Same for 1+Q(1) ≠ 3+Q(3), 1+Q(1) ≠ 4+Q(4),
 2+Q(2) ≠ 3+Q(3), 2+Q(2) ≠ 4+Q(4)
 and 3+Q(3) ≠ 4+Q(4)
;; solutions
10. The only compatible solutions that are left for <Q(1), Q(2),

Q(3), Q(4)> are {<2,4,1,3>, <3,1,4,2>}

Abdulwahed M. Abbas is an Associate Professor in the Department of
Computer Science in the University of Balamand (Tripoli, Lebanon). He took
his BSc Degree in Pure Mathematics from the Lebanese University in Beirut in
1979, an MSc Degree in Computer Studies from the University of Essex
(England) in 1982 and a PhD in Computer Science from Queen Mary College
(London) in 1987. He spent six years teaching Computer Science at the
University of Queensland (Australia). He helped founding the Department of
Computer science at the University of Balamand, where he currently is. His
major research interests are: Computer Aided Geometric Design (CAGD) and
Constraint Satisfaction Problems (CSP) and Languages.

 Edward P. K. Tsang is a Professor in Computer Science at University of
Essex. He is also the Deputy Director of Centre for Computational Finance and
Economic Agents. Edward Tsang has broad interest in artificial intelligence,
including heuristic search, computational finance and economics, constraint
satisfaction, combinatorial optimization, scheduling and evolutionary
computation.

 Ahmad H. Nasri is a professor in computer graphics and chair of the
computer science department, American University of Beirut, Lebanon. He
received a BS degree in Mathematics from the Lebanese University (Lebanon)
in 1978, a qualifying degree in Computer Science from Essex University, U.K.,
in 1982, and a PhD degree in Computer Graphics from the University of East
Anglia, U.K., in 1985. He was a research visitor at MIT, Arizona State
University, Purdue University, Brigham Young University, Seoul National
University (Korea), Cambridge University (UK), City Hong Kong University,
and Bremen University (Germany). He is a member of the Board of directors of
the Lebanese National Council for Scientific Research. He is also on the
editorial board of the International Journal of CAD/CAM, the Journal of Shape
Modeling, the Computer-Aided Design and Applications Journal, and the

Lebanese Scientific Journal. He has served on the PC committee of several
international conferences. With Malcolm Sabin he co-edited a special issue of
the Journal of Visual Computer on Subdivision surfaces, 2002. Since 1982 he
has been involved in promoting subdivision surfaces and its use in computer
graphics, geometric modeling and animation. His research interests include
Recursive Subdivision in Animation, Computer Graphics, Geometric Modeling,
Data Visualization, and the use of Computer Graphics in Education and digital
arts.

	(Introduction
	This Paper
	Formalism
	Expressiveness
	Accessibility

	Constraint Satisfaction Problems
	CSP Solving
	A Generic Specification Schema

	The Specification Language
	The Variables
	The Domains
	The Constraints
	4.4 Other Elements

	Remarks on the Nature of Specifications
	Specifications versus Implementations
	Complexity of Specifications

	Selected� Problem Specifications in DEPICT
	The N-Queens Problem
	The Map Coloring Problem

	The Magic-Series Problem
	The Stable-Marriage Problem
	The Timetabling Problem

	A Basic Interpreter For DEPICT
	Implementation Approaches
	The DEPICT Interpreter
	The Implementation Language
	Formal Logic and Substitution
	Reduction to Clausal Form
	Solving: constructing the function f

	Conclusions and Further Work
	DEPICT vs. Other Similar Languages
	Extensibility
	Further Work

	Acknowledgment
	References
	Appendix

