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Adaptive Constraint Satisfaction: The Quickest First
Principle

James E. Borrett, Edward P. K. Tsang and Natasha R. Walsh1

Abstract: The choice of a particular algorithm for solving a given class of
constraint satisfaction problems is often confused by exceptional behaviour of
algorithms. One method of reducing the impact of this exceptional behaviour
is to adopt an adaptive philosophy to constraint satisfaction problem solving.
In this paper we describe one such adaptive algorithm based on the principle
of chaining and designed to avoid the phenomenon of exceptionally hard
problems. Our algorithm shows how the speed of more naïve algorithms can
be utilised safe in the knowledge that the exceptional behaviour is being
bounded, clearly demonstrating the potential benefits of the adaptive
approach.

1. MOTIVATION

The constraint satisfaction problem (CSP) can be defined in terms
of the triple <Z, D, C>, where Z is a set of variables, D is a
mapping of the variables in Z to domains and C is a set of
constraints [1]. The task in solving a CSP is to assign a value to
each of the variables in Z  such that none of the constraints in C
are violated. Given this definition there are many ways in which
different types of CSPs can be classified, in terms of the elements
of Z, D and C.2 This classification can be used as a basis for the
selection of a particular algorithm to solve that class of problems.

There is, however, a significant complication when defining
classes of CSPs. Sometimes particular instances of problems in a
class may exhibit exceptional qualities, in terms of the solving
abilities of the chosen algorithm. One clear example of this is the
phenomenon of exceptionally hard problems in easy CSPs [3,4,5],
or EHPs as they shall be referred to in this paper.

The example of EHPs is illustrative of the dilemma posed to
the problem solver. There is often a clear choice of either using a
naïve algorithm which is likely to solve most instances very
quickly, at the risk of catastrophic encounter with an EHP, or to
choose a more complex algorithm, which has a far lower
probability of encountering EHPs. The reduced susceptibility of
more sophisticated algorithms to EHPs is discussed in [6,7].
However, their use often incurs a higher overhead.

One approach to overcoming this problem is to use parallel
search agents [8]. This was found to be useful for CSPs in the
hard region where the distribution of search costs is high.

In this paper we consider a more flexible approach which we
describe as adaptive constraint satisfaction. It is designed to draw
from the benefits of both simple and complex algorithms. The
notion of adaptive constraint satisfaction can be encapsulated in
the following description:

Adaptive Constraint Satisfaction is a general philosophy for
solving constraint satisfaction problems. It aims to make use
of the many algorithms and techniques available by relaxing
the commitment to a single algorithm when solving a
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2 In [2] the issue of classifying different formulations of the same problem is

considered.

particular CSP, allowing for the active modification or
switching of algorithms during the search process.

We describe a particular instance of the adaptive approach where
we make use of algorithmic chaining. The result is REBA (for
Reduced Exceptional Behaviour Algorithm) which is designed to
avoid the phenomenon of exceptionally hard problems in the so
called easy region for solvable CSPs.

In the next section we discuss further our adaptive strategy. In
section 3 we describe the REBA algorithm in detail. In section 4
the performance of the REBA algorithm is assessed and our
conclusions are discussed in section 5.

2. THE ADAPTIVE STRATEGY

There are many possible strategies that might be used in the
context of adaptive constraint satisfaction. We examine one
particular adaptive strategy, designed to reduce the significance of
EHPs by utilising algorithmic chaining. Algorithmic chaining uses
a set of algorithms, arranged in a pre-determined order, combined
with a switching mechanism. The switching mechanism monitors
the search process of the current algorithm and, should certain
conditions occur, stops the current algorithm, trying again with the
next algorithm in the chain. In this section we discuss these two
elements of the strategy.

2.1 Chain design

As noted in [6,7] the phenomenon of EHPs appears to affect
different algorithms to different degrees. The trend tends to be for
more naïve algorithms, such as simple chronological backtracking
algorithms, to be more susceptible. This presents us with two
potentially useful measures for ranking algorithms. The first is the
cost to solve ‘normal’ occurrences of CSPs (e.g. the median cost),
and the second is the algorithm’s sensitivity to EHPs. An example
of possible differences in ranking is given in Table 1.

Table 1.  How the ranking of algorithms can differ when based on median
cost of solving CSPs, and sensitivity to EHPs.

Rank Algorithm Complexity Median Cost Sensitivity to EHPs
1 X X Z
2 Y Y Y
3 Z Z X

If we can determine rankings similar to those in Table 1, we
would have enough information to design a useful chain for
solving CSPs in the easy region whilst increasing the likelihood of
avoiding the potentially catastrophic effects of encountering an
EHP. The chain can simply be set to an ordering of algorithms
based on the “Quickest First Principle” (QFP), where quickest
indicates the algorithm with the best median performance.

We wanted to design an adaptive algorithm for solving easy
solvable problems. Using QFP means that we always have the
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potential for solving the CSPs quickly. However, if we can detect
that the current algorithm is not working well, we could switch to
the next quickest algorithm, and so on3. As a result we can still
benefit from the speed of the naïve algorithms, while at the same
time, providing the capability to resort to more complex
algorithms in the event that a switch scenario is detected.

While there is some overhead involved in this approach, the
benefits can be considerable. For example, the ability to use a
simple algorithm can result in an order of magnitude gain in
performance over its more complex counterparts. Another
advantage is that in the event of a bad initial choice of algorithm,
we are not stuck with it. Mistakes of this nature will be rectified
when we switch away from the bad choice.

2.2 Switching policy

One vital element to any adaptive algorithm is the ability to
predict when it is profitable to abandon the current algorithm
being used. At the same time, this prediction mechanism must add
only minimal overheads. For REBA this means we need to predict
the thrashing type behaviour associated with EHPs using a simple
and efficient method.

At the heart of the switching mechanism of REBA is the MSL
thrashing predictor which is described in detail in section 3.2.
MSL attempts to predict when thrashing type behaviour is likely
to occur such that only a small portion of any futile sub-search
space is actually explored by the algorithm in question.

3. THE REDUCED EXCEPTIONAL
BEHAVIOUR ALGORITHM (REBA)

Having outlined the basic strategy for our Reduced Exceptional
Behaviour Algorithm, we give more details of its design and the
switching mechanism it uses.

3.1 The REBA algorithm chain

The chain used by REBA consists of a selection of algorithms
with good median performance on low density, easy soluble CSPs,
and a selection of algorithms with good worst case performance.
Having carried out some preliminary investigations, we chose to
use the following algorithms;

BM+MWO - back-marking [10] with the minimum width
ordering [11]
BMCBJ+MWO - back-marking with conflict-directed
backjumping [12] and the minimum width ordering
BMCBJ+MDO - back-marking with conflict-directed
backjumping and the maximum degree ordering4

FCCBJ+BZ - forward checking with conflict-directed
backjumping [12] and the Brélaz ordering [13, 14]
MAC+MDO - maintain arc consistency [15] with the
maximum degree ordering

We chained these algorithms in the following way;

BM+MWO ➙  BMCBJ+MWO ➙  BMCBJ+MDO ➙
FCCBJ+BZ ➙  MAC+MDO

3 In [9] Frost and Dechter suggest a basic form of switching  as a possible
means of reducing the overhead incurred by their more complex Look-
ahead Value Ordering based algorithms, when solving very easy CSPs

4 A static ordering based on  descending  order  of degree.

The reasoning behind this chain is that BM+MWO is very fast for
many easy soluble problems, but very susceptible to thrashing.
However, it might succeed in finding a solution quickly, otherwise
thrashing will be detected. In the event that BM+MWO fails, we
try adding intelligent backjumping to it. If this fails, we try
changing the ordering, since a bad ordering is often a contributing
factor to EHPs [5]. If these simpler algorithms fall victim to an
EHP, we attempt to use forward checking with conflict-directed
backjumping and a dynamic variable ordering. Finally, if this
fails, we resort to another algorithm which has relatively low
susceptibility to EHPs, MAC+MDO.

3.2 The Monitor Search Level (MSL) thrashing
predictor

As a basis for the design of MSL we defined the following
functional specification;

Given a CSP, an algorithm, and a variable ordering, the
predictor should monitor the progress of the search and be
able to predict if thrashing is likely to occur during the
search.

One indication of thrashing is when the search from a particular
level i never proceeds beyond a certain depth, d, and that a large
proportion of the search space between level i and level i+d is
explored (i.e. little pruning takes place between these two levels).
Such a situation  can occur when the culprits of the failure at level
i+d precede the level i. MSL is a computationally inexpensive
method which uses this observation to predict thrashing type
behaviour.

Before discussing MSL in more detail, we must identify three
distinct types of progress which occur during search. These are
presented in figure 1.

Figure 1.  The types of progress during search

The types of progress are defined as;

1. A value is found for the current variable which is
compatible with all past variables, or future variables in
the case of lookahead algorithms.

2. Backtracking occurs after finding no values for the
current variable which are compatible with past variables,
or future variables in the case of lookahead algorithms.
This will be known as a No Assigned Value (NAV)
backtrack. The NAV backtrack occurs at the tail of the
arrow, level i. At the head of the arrow, level i - 1 learns
of an Unsuccessful Subspace Search (USS).

3. Backtracking occurs, but only after at least one value has
been found for the current variable which is compatible
with the assignments of previous variables, or future
variables in the case of lookahead algorithms (meaning
the search must have progressed at least one level further
down than the current one). This will be known as a
Successfully Assigned Values (SAV) backtrack. The SAV
backtrack occurs at the tail of the arrow, level i. At the
head of the arrow, level i - 1 learns of a USS.

1 2 3

level  i - 1

level i
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During the search MSL keeps track of the last level at which a
NAV backtrack occurred. This is considered to be the deepest
level of the current search sub-space. We will refer to this level as
DEEPEST. In addition, for each level in the search, MSL keeps
track of two values. Firstly a count indicating the number of
USS’s which returned to the level with the same value for
DEEPEST. Secondly a record of the value of DEEPEST when this
count is started. We will refer to these values as counti and DLi

respectively, where i is the level to which they refer.
In considering how the count is maintained, we must examine

the seven possible cases. These depend on whether a USS, a
NAV backtrack or a SAV backtrack is occurring, and what the
value of DEEPEST is compared to the value of DLi for the level.
Table 2 illustrates the different actions taken at a given level, i,
depending on these circumstances. DEEPEST and counti are
initialised to 0 and DLi is initialised to i.

Table 2. Possible actions of MSL on DEEPEST, counti and DLi  for level i
(1)

DEEPEST < DLi

(2)
DEEPEST = DLi

(3)
DEEPEST > DLi

(a)
USS

No action Increase counti by 1;
Check counti against
threshold

Set counti to 1;
Set DLi to DEEPEST

(b)
NAV

Set DEEPEST to i Set DEEPEST to i Not Possible

(c)
SAV

Reset counti to 0;
Set DLi to DEEPEST

No action Not Possible

Figure 2.  Example search

Figure 2 illustrates some of the possible situations encountered by
MSL. Each column in Figure 2 represents either an assignment, a
NAV backtrack, or a SAV backtrack together with a USS if
applicable (except the first column). The numbers below the
arrow indicate the values of DL1,...,DL3, count1,...,count3 and
DEEPEST after the actions for that column have been carried out.
The values of the actions indicate which entries in Table 2 applies
to the above arrow5. This includes actions at both the tail and the
head of the arrow. The first column simply shows the initial
values before the search begins.
As an example consider columns 5 to 7. Column 5 shows a simple
assignment to the variable at level 2, action A. No further actions
take place.

Column 6 then shows a NAV backtrack from the variable at
level 3. When the backtrack occurs, DL3 = 3 and DEEPEST = 2,

5 The entry A indicates a successful assignment, no action is taken.

so DL3 > DEEPEST and entry b1 in Table 2 applies to level 3. As
a result DEEPEST is set to the value of i, i.e. DEEPEST =  3. At
the head of the arrow USS entry a3 applies (because DEEPEST =
3 and DL2 = 2) and count2 is set to 1 with DL2 being set to
DEEPEST.

Column 7 shows a SAV backtrack from the variable at level 2.
When the backtrack occurs DL2 = DEEPEST and entry c2 in
Table 2 applies and no action is taken at level 2. At the head of
the arrow USS entry a3 applies and count1 is set to 1 with DL1

being set to DEEPEST.

3.2.1 Effectiveness of thrashing prediction
mechanisms

Having defined the function of the prediction mechanism, we also
define a set of criteria for evaluating its effectiveness. These
criteria are;

1. It should predict as exceptionally hard those problems with
high search cost for the current algorithm.

2. The computational cost of predicting a CSP to be
exceptionally hard should be low and preferably not exceed
the median cost. It should also be cheap in terms of space.

3. It should not be so sensitive that too many problems are
predicted to be exceptionally hard. A high proportion of the
problems with search costs of median or lower should not
be predicted to be exceptionally hard for the current
algorithm.

3.3 The REBA Switching Mechanism

The MSL predictor is used by REBA for its switching mechanism.
This is done by REBA supplying the predictor with a formula for
calculating the threshold. If counti exceeds the threshold at level i,
then MSL suggests that a switch should take place. This causes
REBA to switch to the next algorithm in the chain.

We have experimented with a threshold based on the domain
size of the variables, and the number of levels separating the
current level i and DLi. The base threshold is a multiple of the
domain size. The number of separating levels is taken as DLi - i.
The more separating levels, the lower the threshold has to be for
switching to occur. The formula used is;

Threshold base
n separation

n
= −



* (1)

Where base is the base threshold, which is a linear function of the
domain size, n is the number of variables and separation is the
number of separating levels (DLi - i)

The threshold is adjusted according to separation to improve
the sensitivity of detection when the subspace is only searched
sparsely, as might be the case with intelligent backjumping
algorithms. Note that in the subsequent experiments a suffix is
given to the name of REBA. This suffix indicates the multiples of
the domain size used for the base threshold.

4. EXPERIMENTS

In order to evaluate the overall performance of REBA and the
effectiveness of its switching mechanism we carried out
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experiments on sets of easy soluble CSPs (the class of problems
REBA is designed to tackle).

4.1 Experimental design

The main aim of our experiment was to compare the performance
of REBA with two types of algorithms - those exhibiting good
median performance in the easy soluble region, and those that
have a good worst case performance on easy soluble region. The
actual CSPs we used were based on randomly generated binary
CSPs classified by the tuple <n, m, p1, p2>, where the elements
of the tuple are defined as;

n number of variables
m uniform domain size
p1 density of constraints in the constraint graph
p2 tightness of individual constraints6 i.e. the percentage of

incompatible assignments between the two variables
involved in the constraint

Specifically, we wanted to conduct our experiments on problems
in the easy soluble region where exceptionally hard problems
were likely to occur. As a result, we chose the class <50, 10 , 0.1,
0.35 - 0.5 >. This range of p2 gives us a spread of problems in the
region of interest and it also includes some of the sets of problems
used in [6,7] where EHPs were investigated.

The algorithms we chose for comparison, based on initial tests
of problems in the class described above, were BMCBJ+MWO,
giving a low median performance but a sensitive worst case
performance in the region of interest, FCCBJ+BZ, giving a
relatively high median performance but a good worst case
performance in the region of interest and finally MAC+MDO
giving a relatively high median performance but a good worst
case performance in the region of interest.

The CSPs for our experiments were generated at intervals of p2
of 0.01 and the sample size for each data point was 1000. In order
to limit the impact of EHPs on our experimentation time, we
limited the actual process CPU time for any given run to 30
minutes. Where this time is exceeded, the compatibility check
count up to that time was recorded7. The effect of using such a
limit is that for a few data points, for the BMCBJ+MWO
combination, the limit was reached. This does not detract from the
essence of our results, however, since the effect of any EHP is still
clearly visible. The truncated values are many orders of magnitude
above the median search cost. We also only present CPU time
results for MAC since our implementation is the same as that of
[15] where the compatibility check count is not a true reflection of
the work done by MAC.

4.2 The effectiveness of REBA

The results of our experiment in measuring the effectiveness of
REBA are presented in figures 3-6. They clearly show that the use
of algorithmic chaining in REBA has produced a good worst case
performance where the impact of EHPs has been significantly

6 The original definition, which we have used in our previous work, was
given in [16,17] as being the constraint looseness, or percentage of
compatible labels in the binary constraint relation matrix. The more modern
interpretation such as used in [18,19] has p2 as being the percentage of
incompatible labels in the binary constraint relation matrix.

7 The algorithms were implemented in C++ and run on Sun SPARCstation 5
workstations running at 85 MHz with SunOS 4.1.3

reduced. This is evident in the worst case plots of figures 4 and 6.
REBA even outperforms FCCBJ+BZ in many cases. At the same
time, the median performance of REBA is much better than that
of the more complex algorithms, in most cases. This is
particularly apparent when the CPU time is considered as in
figures 5 and 6.
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Figure 3.   median performance on 50 variable problems in terms of
compatibility checks
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Figure 4.  worst case performance on 50 variable problems in terms of
compatibility checks
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Figure 5.  median cpu time8  performance on 50 variable problems
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Figure 6.  worst case cpu time performance on 50 variable problems

It should be noted that we have tested REBA on easy problems.
This is because we advocate that different types of problem would
be tackled by different algorithms as discussed in [20]. REBA, by
design, appears to be useful in tackling problems in the easy
region on the soluble side of the phase transition. It is the subject
of further work to investigate the applicability of the strategies

8 Where the plot for REBA and BMCBJ+MWO does not exist this means the
median time was less that one clock cycle and hence does not show in the
logarithmic scale
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used in REBA to tackling other problem types such as those in the
phase transition.

4.3 Evaluation of the MSL predictor

To see how effective the MSL predictor was we carried out
further experiments. We ran a version of BM+MWO, which
included the MSL predictor, and monitored where any switch was
predicted. If a switch was predicted, the number of compatibility
checks was recorded and the algorithm was allowed to continue
running to completion to see what the actual outcome would have
been. A problem set of 1000 CSPs was generated with the
specification <50, 10, 0.1, 0.4>, and a base threshold equal to the
domain size was used.

From the sample there were 589 cases where a switch was
predicted and many of these had high cost searches if allowed to
complete. We found that the median cost for predicting a switch
in BM+MWO was always less than the median search cost when
all CSPs are considered. We also found that for this particular
problem set, the 411 CSPs where no switch was predicted were
solved within the median cost.

More comprehensive analysis of  the performance of MSL is
given in [21].

5. DISCUSSION

In this paper we have demonstrated the potential of adaptive
constraint satisfaction. We have outlined a particular application
of the adaptive approach using the technique known as
algorithmic chaining. This technique was incorporated in an
algorithm that we have named REBA, and has been shown to be
effective in reducing susceptibility to exceptionally hard
problems.

The REBA algorithm makes use of a mechanism for predicting
when thrashing type behaviour is likely to occur. This notion of
prediction is one of the keys to the adaptive approach since it is
prediction that allows algorithms to avoid problem search spaces
before they can impact significantly on the overall search. The
MSL mechanism used here is very cheap to implement and it has
been shown to be reasonably accurate.

Experiments with the REBA algorithm, which is specifically
designed to reduce the impact of exceptionally hard problems,
show that it is possible to take advantage of the speed of basic
constraint satisfaction algorithms when solving easy, soluble
CSPs, while at the same time allowing us to bound the
exceptional behaviour of these algorithms when exceptional
problem instances are encountered. The principle of using the
quickest algorithm first means that the best case performance of
the naïve algorithms always has a chance of being achieved. It
also gives the opportunity for fast solutions to be provided in the
event that “exceptionally easy” problems are encountered - this
could be significant if a similar method were to be used on, for
example, hard classes of CSPs.

We believe our work has opened many new areas of future
work. We intend to further investigate the use of chains and
similar methods of choosing appropriate algorithms to switch to in
types of problems other than soluble easy CSPs. We also intend to
look at other methods for detecting when it would be useful to
switch between algorithms. This would involve identifying useful
information that can be gathered during search. The actual process
of switching could also be a source of improvement in efficiency,

with the possibility of transferring information gathered to
successive algorithms.
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