
CHAPTER 2

On the Properties of Constraint Satisfaction

Problems

The diverse range of problems which can be solved using constraint satisfaction techniques means

that there is a correspondingly diverse range of constraint satisfaction problems and ZDC

formulations. Different problems will result in different instantiations of Z, D and C. We can use

these differences to identify a range of characteristics, or properties, of ZDC formulations.

In this thesis we are interested in the ability to distinguish between different ZDC formulations of a

given problem, with respect to our expectations of the cost of solving them. The identification of

salient properties of constraint satisfaction problems is an essential part of that ability. In

particular, we should like to be able to identify properties which give us indications of the likely

search costs of a given ZDC formulation.

In this chapter we describe a selection of important properties of CSPs. Our aim is to analyse the

effects of variations in the instantiations of Z, D and C on these properties. We do not claim to

have produced a definitive list since it would be impossible to say when such a list were complete.

However, we believe that the properties we describe give us a clearer understanding of how the

nature of a ZDC formulation is likely to affect the eventual problem solving cost. Furthermore,

they provide a useful basis for aspects of our work in later chapters.



2.1 Properties Relating to Variables and Domains

There are many different properties of ZDC formulations relating to the variables in Z and the

domains in D, which can be observed. These range from the very simple and obvious, to the more

complex. This can be seen if we consider the example constraint satisfaction problem given in

figure 2.1.

In our example, we can see that the total number of variables, n, is equal to four, namely A, B, C

and D. We can also see that the CSP has a maximum domain size of 4, a minimum domain size of

2 and an average domain size of 3. These are denoted as mmax, mmin and m respectively. They are

all observable properties of a CSP, and although they appear to be trivial, they do provide us with

some detail of the topology of the search space. For example, if we have only a few variables,

each having a large domain size, then the search space can be thought of as being shallow and

broad. Conversely, if we have many variables with few values, then the search space can be

viewed as being deep and narrow. This can affect the efficiency of some algorithms.

Figure 2.1 - An example CSP

One very important property of constraint satisfaction problems, which is defined by the variables

and domains in a ZDC formulation, is that of the size of its state space. The finite nature of this

state space could be considered as one of the fundamental characteristic features of a CSP and its

size is a key indicator of the complexity of searching for solutions to the problem.

2.1.1 Search Space Complexity

For a given CSP with n variables, the complexity of its search space, S, is the number of possible

n-compound labels. This is equal to;
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S is clearly an algorithm independent measure which effectively gives us an indication of the worst

case complexity of search by an algorithm in terms of the number of complete candidate

assignments of full compound labels. For a systematic search algorithm such as standard

backtracking, S gives us the number of candidate leaf nodes in the search tree. It also represents

the worst case size of a generate and test search. For example, for the CSP in figure 2.1, the value

of is S equal to AD × BD × CD × DD =72.

The simplicity of S contributes to its importance since it is cheap and easy to calculate accurately,

and hence it is always available for use when analysing the properties of a ZDC formulation. It is

often regarded as being a key target for minimisation when it comes to formulating a problem.

However, it should be noted that it is not always the case that ZDC formulations with the smallest

S are necessarily the best choice.

Observation 2.1: Suppose we are given two ZDC formulations of a problem, f1 and f2, each

having a search space complexity of S1 and S2 respectively. If S1 is greater than S2, it is still

possible for ZDC formulation f1 to be solved at a lower cost than f2.

An example, demonstrating observation 2.1, is seen with the 8-Queens problem. This well known

puzzle problem involves placing eight queens on a chess board such that no queen can attack any

other queen. One natural ZDC formulation of this problem is given by 8Q_1;

8Q_1: Z: 8 variables, v1, v2 ... v8, representing the eight rows on the chess board

D: {A, B, C, D, E, F, G, H} for each variable, representing the position of the

queen in the row

C: no queen may attack any other

A second ZDC formulation of the 8-Queens problem, 8Q_2, is possible if we consider the pairs of

adjacent rows. These pairs of rows then form the basis of variables in our new ZDC formulation.

This is illustrated in figure 2.2.



Figure 2.2 - Effects of using two rows as a single variable

Effectively, our variables in 8Q_2 can be seen as representing the sets of legal positions of queens

in pairs of rows. In figure 2.2, the ticks indicate the legal positions of the queen in row two, with

respect to the queen in row 1, when the queen in row 1 is placed in column C. If we denote the

position of two queens in a given pairs of rows by their column position, then figure 2.2 shows

five legal positions as {(C,A),(C,E),(C,F),(C,G),(C,H)}. In total, there are 42 legal positions for a

pair of queens placed on a pair of adjacent rows if we consider all placements of the two queens in

the two rows. These 42 positions represent the domains of the variables in ZDC formulation

8Q_2.

The constraints in our second ZDC formulation simply state that no queen on the board may

attack any other queen. The complete description of 8Q_2 is summarised as follows;

8Q_2: Z: 4 variables, v1,2 representing the adjacent pair of rows 1 and 2, v3,4 representing

 rows 3 and 4, v5,6 representing rows 5 and 6 and v7,8 rows 7 and 8.

D: for each variable, the 42 legal positions of two queens on adjacent rows. 

e.g.{(A,C), (A,D) .... (H,F)}

C: no queen may attack any other

If we calculate the value of S for these two ZDC formulations we obtain values of 107.2 for 8Q_1,

and 106.5 for formulation 8Q_2. The figures presented in table 2.1 show the actual cost to solve

the two formulations of the problem using the standard backtracking with the natural lexical

search ordering (bt+nat), and forward checking with the fail-first variable ordering (fc+ff)

(Haralick&Elliott 1980).
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Constraint Checks to First Solution

8Q_1 8Q_2

bt+nat 2438 2766

fc+ff 792 888

Table 2.1 - Search costs for solving the 8-Queens problem

As we can see from the results in table 2.1, observation 2.1 is clearly demonstrated. The

ramification of this is that we cannot rely on the use of S as a unique measure for selecting ZDC

formulations.

2.2 Properties Relating to Constraints

As we discussed in chapter 1, the role of constraints is to restrict the sets of legal compound labels

between variables. This is the main mechanism through which a problem solver can incorporate

knowledge about the problem being solved, into the ZDC formulation. This constraint based

knowledge effectively defines the set of solutions to the problem and it helps to guide algorithms

towards those solutions. It is achieved through the inclusion of information about legal and illegal

states in the search space, as defined by the constraints. These states are often referred to as goods

and no-goods.

Definition 2.1: Given a set of k variables, a good is a legal k-compound label over those variables.

æ

Definition 2.2: Given a set of k variables, a no-good is an illegal k-compound label over those

variables.æ

A useful property which describes the level of no-goods in a constraint is that of constraint

tightness. Constraint tightness is often referred to in the literature as p2 (Smith 94)(Prosser 94);

p
N no goods

N compound labels
2 =

( _ )
( _ )

(2-2)
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where, for a constraint with arity k, N(no_goods) is the number of no-goods length k and

N(compound_labels) is the number of possible compound labels length k.

In general, tight constraints are a desirable feature of a ZDC formulation because they provide

algorithms with more, usable information at a  relatively low cost.

2.2.1 Redundancy and the Level of Constraint Based Information

For a ZDC formulation to be meaningful it must define the problem solution set. The solution set

can be defined for a CSP using a minimal amount of constraint-based information, which can be

viewed as the most general specification of the solution set. In other words, it is achieved using as

little constraint based information as possible. However, there is also scope for introducing more

information about intermediate states within the search space, resulting in a more specific

definition. This idea relates to the notion of minimal graphs and minimal problems (Tsang 1993)

(Montanari 1974). Before defining these terms, we need to understand the concept of redundancy.

2.2.1.1  Redundancy

It is possible that some values in the domains of variables never appear in any of the solutions to

the problem. These values are said to be redundant;

Definition 2.3: If a value v from the domain of variable x appears in none of the solutions to that

CSP, we say that v is redundant. æ

If we refer to figure 2.1, there are redundant values in the domain of variable a. This is so because

a must be strictly less than b, according to Cab. This means that the values 2 and 3 can never

appear in solutions, hence they are redundant.

We can also have redundant compound labels in constraints;

Definition 2.4: If a legal compound label, cl, in a constraint is removed and there is no decrease in

the number of solutions to the CSP we say that cl is redundant. æ
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Again referring to figure 2.1, the constraint Cbc is equal to {<1, 2>, <1,3>, <2, 3>}. However, the

only solution to the problem is {(a,1), (b,2), (c,3), (d,4)}. This means the compound labels <1, 2>

and <1,3> are redundant in Cbc because their removal from does not affect the number of solutions

to the problem.

Furthermore, we sometimes find the situation where an entire constraint is redundant and its

removal results in no increase in the number of solutions to the problem. Constraint Cbd in figure

2.1 is one such constraint. These constraints are discussed in detail in chapter 6 and they are

defined in definition 6.1.

2.2.1.2  Minimal and Maximal Problems

Using the concept of redundancy, we can define the notion of a minimal problem;

Definition 2.5: A CSP is called a minimal problem if no domain contains any redundant values

and no constraint contains any redundant compound labels æ

Definition 2.6: A CSP is called a complete minimal problem when a constraint exists for every

possible subset of variables, such that no domain contains any redundant values and no constraint

contains any redundant compound labels æ

We could make the CSP in figure 2.1 a minimal problem by removing all of the redundant values

from the domains of the variables. This would result in the domains of a, b, c and d comprising the

single values 1, 2, 3 and 4 respectively. Further manipulation would make it a complete minimal

problem if we added all other possible redundant constraints such as Cac, Cad and  Cabd.

The effect of a complete minimal problem is to have a maximally specific ZDC formulation of the

problem since every legal intermediate search state is explicitly stated in the constraints. In other

words, we have produced a ZDC formulation with the maximal amount of information regarding

the solution set. The attraction of producing such a ZDC formulation is that we can then find a

solution with backtrack-free search. However, the drawback is that, in general, even finding the

minimal problem of a CSP is NP-Complete (Mackworth 1977) (Montanari 1974).
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At the other end of the spectrum we have what we shall term the maximal problem. This is

defined as;

Definition 2.7: A CSP is called a maximal problem when each constraint includes the maximum

number of redundant compound labels such that no new solutions are added to the problem. In

addition, a maximal problem contains no redundant constraints. æ

Referring again to our example in figure 2.1, we can remove the constraint Cbd since it is

redundant, due to the presence of constraints Cbc and Ccd. The result is a maximal problem

because no other redundant constraints exist and the remaining constraints all contain redundant

compound labels.

A maximal problem can be seen as the most general way of formulating a problem, in terms of the

amount of constraint based information included in it. Effectively, the maximal problem has as

little explicit constraint based information as possible incorporated into the ZDC formulation. This

can be an undesirable quality of ZDC formulations since it means that more work may be required

by search algorithms in order to eliminate certain states in the search space.

In reality, a ZDC formulation is typically somewhere in between these two extremes of minimal

and maximal problems. However, when formulating a problem we should like to have as much

information included into the constraints of a ZDC formulation as possible, but without incurring

the cost of deriving the minimal problem. There is also a cost associated with increasing the level

of constraint based information in some cases, as with the addition of extra constraints, since the

information provided by the redundant constraints must still be checked. Clearly there is a trade

off in this respect - a redundant constraint must contain enough new information to justify the cost

of checking it.

An example of the effects of changing the level of explicit constraint based information in a ZDC

formulation is seen with the magic series problem.
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2.2.1.2.1  The Magic Series Problem

The magic series problem is a simple puzzle which consists of assigning values to a series of

numbers. More specifically, for a series of numbers length n+1, the task is to assign a number,

ranging from 0 to n, to each series position such that the number at each position is equal to the

number of times it appears in the series. For example, if n=3, a legal solution to the problem is (2,

0, 2, 0). This is a solution because the number 0 appears twice, at series positions 1 and 3, and the

number 2 also appears twice, at series positions 0 and 2.

Two simple ZDC formulations are possible, for a magic series problem length n, as shown in

(VanHentenryck 1989). The first is MS_1;

MS_1:  Z: One variable, xi, for each of the n positions in the series

 D: {0, ..., n} for each variable, representing the value at the series position

 C: C1 - n+1 n-ary constraints, one for each series position stating that;

∀ i, 0≤i≤n: xi=occurences( i, {x0, ... xn})

A second formulation, MS_2, is possible if we add a further two constraints, C2 and C3, to MS_1

as follows;

C2 - 
i

i

n

x n
=
∑ +=

0
1

C3 - i x ni
i

n

× =
=
∑ +

0
1

These constraints are known to be a feature of the solution set. As a result they provide

additional, redundant, constraint based information about the problem.

As an illustration of how these changes in the amount of constraint based information can affect

the problem solving cost, we solved the two ZDC formulations MS_1 and MS_2 using the ILOG

Solver (ILOG 94) constraint library. We solved each formulation for the first solution, for a range

of values of n. Our results are plotted in figure 2.3.
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Figure 2.3 - The effect of adding redundant constraints to MS_1

As we can see, the addition of new constraint based information has resulted in a dramatic effect

on the problem solving cost. For the series length 100, the difference is in excess of three orders

of magnitude.

2.2.1.3  Other Properties Reflecting the Level of Constraint Based Information

Realistically, obtaining an accurate picture of how close we are to a complete minimal problem or

a maximal problem is not a simple task. We have already stated that finding a minimal problem is

NP-complete in general. However, some properties can give us an indication of the amount of

constraint based information in a ZDC formulation. For example, the average tightness value of

constraints, p2 , gives us an idea of the proportion of compound labels that are constrained.

Another obvious candidate is the total number of constraints, |C|.

A further measure of the level of constraint based information in a ZDC formulation is the

constraint density. This property gives us the proportion of all possible edges in the constraint

graph which are present in the ZDC formulation. For a binary CSP, the constraint density, or p1 as

it is often referred to in the literature, is given by;

p Edges present Total possible edges C
n n

1
1

2
= = ÷÷ −

_ _ _
( ) (2-3)

Assuming that only one constraint exists per edge. This property has been used by many

researchers, in conjunction with p2  as a means of classifying classes of randomly generated

binary CSPs (Frost & Dechter 1994) (Freuder & Sabin 1994) (Smith 1994) (Prosser 1994).
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2.2.2 Topological Properties

So far we have discussed properties relating to the actual content of constraints. However, the

topological arrangement of constraints can also have a marked impact on the effectiveness of

problem solving techniques. One group of techniques particularly affected by the constraint graph

topology is that of graph based variable ordering heuristics. These include the minimum width

ordering (Freuder 1982), the maximum cardinality ordering (Dechter & Meiri 1989) and the

Brélaz heuristic (Brélaz 1979). An important property used by these heuristics is the degree of

nodes in the constraint graph;

Definition 2.8: The degree of a node, or variable, is equal to the number of constraints connected

to it. We denote the degree of a node to be d.

Two other important properties are the width of a constraint graph and the bandwidth of a

constraint graph;

Definition 2.9: For a given variable in a search ordering, the number variables preceding it in the

ordering and to which it is constrained, gives us the width of that variable. The width of an

ordering is the maximum width of all the variables in the ordering. The width of a constraint

graph, w, is the minimum width of all possible orderings of the variables.

Definition 2.10: For a given variable in a search ordering, the bandwidth of that variable is equal

to the maximum distance from that variable to any other variable by which it is constrained. The

bandwidth of an ordering is the maximum bandwidth of all the variables in the ordering. The

bandwidth of a constraint graph, b, is the minimum bandwidth of all possible orderings of the

variables.

The notion of width is important as it puts an upper bound on the complexity of solving a CSP

(Freuder 1982). The motivation for using the bandwidth as the basis of variable ordering heuristics

is that it tends to group mutually constrained variables closely.

The topology of constraint graphs can also affect the effectiveness of different algorithms. For

example, when the density of the constraint graph is low and few constraints exist between
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variables, there is sometimes more scope for intelligent backjumping algorithms to take advantage

of this. As a result, they often perform well on such problem classes. This was seen in (Tsang et al

95) and (Borrett et al 96).

2.3 Properties Relating to the Number of Solutions

The task of a CSP solving algorithm is to find one, or all solutions to that CSP if solutions exist. If

no solutions exist then the task becomes that of proving that fact. In some problems there may be

many solutions, in others just a few. In insoluble problems there may be many ways of proving

that insolubility, or there may be just a few. The number of solutions in a problem can have a

marked effect on chances of an algorithm finding one efficiently. In general if there are very few

solutions, we can expect an algorithm to spend more effort in trying to find one.

The level of solutions in CSPs relates closely to work on the solubility phase transition

(Cheeseman et al 1991) (Williams & Hogg 1994) (Smith 1994) (Gent et al 1996). If we consider a

class of constraint satisfaction problem which can be classified by a given measure, p, there is a

spectrum of solubility which varies as we vary that measure p. At one end of this spectrum is a

region in which problem instances are under constrained, having many possible solutions. At the

other end there is a region where problems are over constrained and very easy to prove insoluble.

In between these two regions is a phase transition from predominantly soluble instances to

predominantly insoluble instances. The point at which the probability of a problem being soluble is

0.5 is referred to as the phase transition point or crossover point for that class of problem. This is

illustrated in figure 2.4.

Figure 2.4 - The solubility phase transition
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Phase transition is an important phenomenon since it is at the solubility crossover point that we

expect to see the peak in median search cost for a particular class of problem. Furthermore the

peak is algorithm independent, although the exact shape of the search cost curve is likely to vary

across algorithms. There has been extensive work in this area in recent years.

Work on the solubility phase transition is clear evidence for the number of solutions being an

important property in CSPs. It gives important insight to the expected behaviour of search on

classes of CSP. It is also relevant to the properties of different ZDC formulations of a problem.

However, there is a complication with this since different ZDC formulations of a problem are

likely to lead to different classes of CSP. This makes it more difficult to interpret the relative

merits of candidate formulations in terms of solutions since other factors, which define the

difference in the problem classes, may play a role in the effectiveness of solving them.

There have been several important properties proposed which relate the numbers of solutions to

the size of the search space as an indication of problem difficulty. These are described in the

following sections

2.3.1 Tightness

The first attempt to quantify the difficulty of a problem in terms of solution density was given in

(Tsang 93). The term used is the tightness, T, of a CSP and it is defined as;

T
Solutions

S
= (2-4)

where Solutions is the number of solution tuples in the CSP.

The arguments presented in (Tsang 1993) suggest that tighter problems are likely to incur a

greater search cost, when a single solution to the problem is to be found. Tightness is also an

algorithm independent property.
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2.3.2 T-Factor

Formulation tightness is only defined for problems that are soluble. In (Borrett&Tsang 95) the

idea is extended to cover the complete range of both soluble and insoluble problems. This is

achieved by using a qualitative expression which incorporates the degree of insolubility, for

insoluble problems. The result is a property known as T-Factor and it is defined as;

T-Factor = 

E

S
E

E S
E
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(2-5)

where E is the expected number of solutions to the problem.

In (Borrett&Tsang 95) estimates were used for E based on the model for binary CSPs devised in

(Smith 94). In addition, for cases where the number of solutions is actually known, this can be

substituted for E. A further possibility is to use relative numbers of solutions when the relationship

between solution tuples is known. In this way we would obtain a relative T-Factor.

T-Factor is algorithm independent and covers the whole range of CSPs. For a class of CSPs, it

has a minimum when there is only one solution. This correlates to the point of phase transition, or

crossover.

2.3.3 Kappa

Work on the phase transition by Gent et al (Gent et al 1996) has resulted in the development of

another property based on the number of solutions. They call it the constrainedness of search , or

kappa, κ. κ is defined to be;

κ = −1 2

2

log ( )
log ( )
Solutions

S
(2-6)

Where Solutions is the number of solutions in the search space and S is the size of the search

space as defined in equation (2-1).
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Some interesting properties arise from kappa. Its value lies in the range [0,∞) and for a given ZDC

formulation, if κ << 1 then it is likely to be soluble. Correspondingly, if κ >> 1, it is likely to be

insoluble. The point of critical constrainedness, at the phase transition point, occurs when κ has a

value of 1.

As with T-Factor, constrainedness covers the whole range of problem solubilities and is algorithm

independent

2.3.4 A Note on the Limitations of Solution-Based Properties

While properties based on the number of solutions give us an indication of how constrained a

search space is likely to be, they are not necessarily a reliable indicator of ZDC formulation

efficiency. For example, in some cases, the solution density of different ZDC formulations can be

identical while the cost of solving them can be very different. This was the case for the magic

series problem in section 2.2.1.2.

One scenario where reduction in solution density can actually result in an improvement in solving

cost is seen with the removal of symmetry in CSPs. Symmetry exists in CSPs when variables can

be interchanged without affecting the solution set. The existence of these symmetries can result in

futile search being repeated many times.

In (Puget 1993) it was shown that some symmetries in constraint satisfaction problem can be

removed by adding certain constraints to a ZDC formulation that remove permutations of

interchangeable variables. The result of this is to remove some of the solutions to the problem

which involve permutations of a subset, s, of the variables in the problem. These removed

solutions can be obtain from a solution in the new ZDC formulation by permuting the values of the

variable in s.

To illustrate the effectiveness of symmetry removal, Puget used the Schur problem. The Schur

problem involves placing a fixed number of balls into three separate containers. The balls are

numbered from 1 to n, where n is the number of balls, and certain restrictions are applied on the

legal combinations of balls in the containers. These restrictions are that ball i may not appear in
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the same container as ball 2i and that balls i, j and i+j may not appear in the same container. One

possible ZDC formulation for this problem is Schur_1;

Schur_1: Z: one variable, xi for each of the n balls

D: {1, 2, 3} for each variable, representing the three legal containers

C: ∀ i: xi ≠ x2i

∀ i,j: xi ≠ xj∨  xi ≠ xi+j∨  xj ≠ xi+j

However, there is a high level of symmetry in this problem since for any solution, we can

interchange the box values between variables to obtain an equally valid solution. This knowledge

allows us to add two unary constraints to Schur_1 which remove some of this symmetry. These

constraints are;

Cs1: x1=1

Cs2: x2=2

By adding these constraints to Schur_1 we obtain Schur_2. We solved both of these ZDC

formulations of the Schur problem using the ILOG Solver constraint library for varying values of

n. Our results are in figure 2.5.
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 Figure 2.5 - Results for solving different ZDC formulations of Schur problem.

As we can see from figure 2.5, as n increases, the difference in search cost differs significantly. In

fact for n=20, the use of symmetry constraints gives us a gain of about one order of magnitude.
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2.4 Discussion

The aim of this chapter has been to identify a selection of potentially useful properties of

constraint satisfaction problems. These range from the most basic and obvious, such as the

number of variables, to more complex properties such as κ. One application of these properties is

as a means for classifying different types of CSP. This can be used, for example, for the purposes

of mapping problem instances to algorithms best suited to solving them was proposed in (Tsang &

Kwan 1993). These ideas were further developed in (Tsang et al 1995) and (Kwan 1997).

A common technique adopted by many researchers is to use randomly generated binary CSPs in

order to evaluate the performance of particular algorithms (Frost & Dechter 1994) (Freuder &

Sabin 1994) (Smith 1994) (Prosser 1994). One of the attractions of this approach is that the CSPs

are easily generated in well defined classes, defined by four basic properties. Typically these four

properties are the number of variables in the problem, n, the uniform domain size, m, the density

of the constraint graph, p1, and the tightness of the individual constraints, p2.

For the purposes of our work, we are interested in comparing ZDC formulations such that we can

select the one which is likely to have the lowest solving cost. We have demonstrated how

important these decisions can be. Our results for different ZDC formulations of the magic series

problem and the Schur problem resulted in search cost savings measuring orders of magnitude.

However, making use of these many different properties in order to achieve an accurate selection

of the best ZDC formulation is not a straightforward process,

One researcher who has considered this problem is Nadel (Nadel 1990a). Nadel investigated the

task of ranking a selection of different ZDC formulations of the n-Queens problem, in terms of

their expected cost for solving. He initially considered the use of the properties n, m , p2  and |C|

for this purpose. However, Nadel concluded that this approach was not feasible stating that;

Observation 2.2 (Nadel 1990a): “Since all these factors may strongly affect problem-solving

complexity, and yet can contradict each other in their recommendations, we see that even a

semiformal comparison [as presented in the paper] is quite inadequate for ranking

representations”
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In fact, such an observation is to be expected in many respects, since Nadel only considered these

particular properties individually. If this is done, it becomes extremely difficult to observe their

effects on problem solving complexity without other properties also being affected. In other

words, it is more likely that useful relationships between the values of properties and their effects

on complexity will be seen if groups of properties are considered together.

As an alternative, Nadel proposes the use of theoretical estimates of complexity for solving ZDC

formulations. This approach showed some promise, but the work was preliminary in nature. We

believe that the work by Nadel has a significant role to play in ZDC formulation selection and we

have extended his work, as will be seen in chapters 4, 5 and 6. In addition we also believe that

other properties should not be discarded, and that they can have a role to play in the ZDC

formulation selection process. This, too, will become clear in the later chapters.

2.5 Summary

Our contribution in this chapter has been to identify a selection of properties of constraint

satisfaction problems. These properties range from the very simple, to the more complex, and

they can be used to classify different ZDC formulations. They also provide us with insight into

what makes a ZDC formulation more effective, with respect to the cost of solving them. In

addition, we have also given further evidence of the impact of selecting good ZDC formulation, as

was shown with our different versions of the magic series problem and the Schur problem.


