
CHAPTER 4

Theory Based Estimates for ZDC

Formulation Evaluation Heuristics

In chapter 3 we described a context for the heuristic selection of ZDC formulations. As part of

that work we identified one major area of research which is yet to be explored, namely the

development of effective heuristics for evaluating the relative merits of different ZDC formulations

of a problem. These heuristics are known as evaluation heuristics, He, and their main function is to

resolve vectors of properties which reflect the expected search cost of individual ZDC

formulations.

One property which we believe has a significant role to play in the composition of any vector of

measures is that of estimated complexity of a ZDC formulation. This property has been considered

by several researchers in the past, with differing motivations. For example, Knuth (Knuth 1975)

uses a monte-carlo based technique for estimating the size of a backtrack tree. In a similar way,

Purdom (Purdom 1978) describes an algorithm for predicting search costs. Their motivation was

to obtain a view on how long a particular search was likely to take. The approaches of both Knuth

and Purdom involve a degree of sampling of the search space.

Nadel describes an alternative approach by developing a selection of theoretically derived

equations for estimating the search costs of CSPs (Nudel 1982, 1983a, 1983b) (Nadel 1990a,

1990b, 1995). His motivation covered various aspects of CSP solving including the prediction of



search costs, algorithm selection and the design of effective variable ordering heuristics.

Importantly, Nadel was also the first researcher to suggest that this approach could be used for

comparing the relative merits of alternative ZDC formulations of a problem (Nadel 1990a).

The work by Nadel on comparing alternative representations of a problem was significant, but

preliminary in nature. His work looked solely at different ZDC formulations of the n-Queens

problem, using values 3, 4 and 5 for n. His approach was also only applied to two algorithms.

However, it did provide a useful measure, based on theory, which is relatively cheap to compute

and which, unlike the approaches of Knuth and Purdom, involves no sampling of the search space.

In this chapter we make two important contributions. First we demonstrate how Nadel’s work can

be applied to other algorithms by extending his theories to the backjumping algorithm (Gaschnig

1979). This is important because backjumping belongs to the class of intelligent backtracking

algorithms which have been shown to provide improvements in search efficiency (Kondrak & van

Beek 1995). Our second contribution is to carry out an extensive evaluation of Nadel’s approach,

as well as our extension of it. This has not been done previously and so our work provides other

researchers with a greater understanding of the applicability of the approach. Together, these

contributions demonstrate how theoretical complexity estimates have a major role to play in the

design of ZDC formulation evaluation heuristics.

In the next section we give an overview of previous work relating to theoretical complexity

estimates. In section 4.2 we detail the important aspects of Nadel’s approach and then in section

4.3 we present our extension to it. Sections 4.4 and 4.5 give the details of our evaluation of the

theoretical complexity approach. The chapter is then concluded with a discussion of our work.

4.1 Probability Models for Constraint Satisfaction Problems

One of the first attempts to develop a probabilistic model for constraint satisfaction problems was

presented in (Haralick & Elliott 1980). Haralick and Elliott devised a very simple model for

problem classes defined by K(n, m) where n is the number of variables and m is the uniform

domain size of all n variables. They also assume that for a given pair of variables any pair of

labellings to them is consistent with probability p, p being independent of which variables or which

labels. Using this model, Haralick and Elliott developed equations for estimating the number of



solutions to CSPs defined by a given class. They also derived expressions for the expected number

of compatibility checks and the expected number of nodes expanded for the standard backtracking

and forward checking algorithms. A summary of some of their most important expressions is

given in equations (4-1) - (4-3).

The expected number of solutions for class K(n, m) is effectively given by the product of search

space complexity and probability that all the constraints between all the variables are satisfied.

This gives;
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where p is the probability of compatibility between any pair of labels.

For the standard backtracking algorithm, the expected number of nodes expanded at level k is

found by multiplying the number of possible labellings at that level and the probability of satisfying

all constraints in previous search levels. This gives us;
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The expected number of consistency checks at level k for standard backtracking is then found by

multiplying the expected number of nodes at level k by the expected number of constraint checks

that are likely to be performed for each node ;
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Haralick and Elliott also present corresponding equations for the forward checking algorithm in

(Haralick & Elliott 1980).



It is clear that the class of problems defined by K(n, m) is very restricted in its scope. For example,

many CSPs have different domain sizes for different variables and Haralick & Elliott’s model

cannot be applied to these. We also often find different compatibilities between different labellings

of different variables. However, Haralick and Elliott’s results are significant since their analysis

does allow a theory-based comparison of the nature of the performance of different algorithms.

This was demonstrated with theory-based analysis of the contrasting search profiles of forward

checking and standard backtracking algorithms (Haralick & Elliott 1980).

Nadel’s early research (Nudel 1982, 1983a, 1983b) was concerned with improving the ideas

presented by Haralick and Elliott in terms of the resolution of problem class being considered. He

observes that;

Observation 4.1:  The more detail one chooses to ignore about CSPs, the coarser is the

corresponding partition and the easier it is to carry out a (worst case or expected) complexity

analysis over a generic equivalence class - but the less relevant it becomes for an individual

problem.

One of Nadel’s prime motivations was to be able to make estimates of the expected complexity of

solving individual CSPs.

Nadel develops a hierarchy of probability models which increase in their level of refinement. He

refers to the model of Haralick and Elliott as the level-0 model (Nudel 1983a). His first refinement

was to allow variables to have different domain sizes and to allow for different probabilities of

satisfaction to exist between different pairs of variables. This gave us the level-1 model which

applies to problem classes K(n, m), where m is a vector of domain sizes for the individual

variables. The level-1 model also relaxes the restriction on the probability of compatibility of any

given pair of labels being fixed at p. Instead, we have a compatibility between the values of any

pair of variables, i and j, defined to be pij.

A further refinement leads to the level-2 model. This can be applied to problem classes K(n, m,

[Iij]). Here the additional parameter defining the class, Iij, is a matrix of the counts of compatible



labels between any given pair of variables, i and j. The addition of this parameter allows us to

define classes of CSPs to the level of individual constraints between variables.

A summary of the different models is given in Table 1. It is based on the overview given in (Nudel

1983a).

Model Level CSP Domain Satisfiability Model1

0 K(n, m) Prob(Tijkl=1) = p

1 K(n, m) Prob(Tijkl=1) = pij

2 K(n, m, [Iij]) All selections of Iij value-pairs
from the mi×mj possible pairs
are equally likely

Table 4.1 - Summary of Nadel’s models.

Nadel develops complexity estimates using the level-1 and level-2 models. His work shows how

level-2 is more complex than level-1, but that it is acceptable to use expressions developed for

level-1 in place of those for level-2 if we set pij to be the satisfiabilities of the constraints in the

particular instance. More specifically if we set;
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ij

i j
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The advantage of this observation is that the resulting expressions for the expected number of

nodes and the expected number of compatibility checks at a given level in the search, which Nadel

derives for standard backtracking and for forward checking, are simpler to compute.

Other researchers have also looked at probability models for CSPs. Van Hentenryck (Van

Hentenryck 1989) summarises much of the work done by Haralick and Elliott. He presents further

evidence, supporting their results, which shows how theory-based complexity equations are

sufficient to suggest that forward checking is better than backtracking for large and hard

problems.

1 The term Tijkl is the 0/1 value of entry in the constraint relation matrix between variables i and j having values k
and l respectively.



Smith (Smith 1994) presents work in which she attempts to estimate the number of solutions for

randomly generated binary CSPs. Her model is a modification of that used by Haralick and Elliott

whereby not all variables in the problem are required to be constrained.

Dent and Mercer (Dent & Mercer 1996) define a more sophisticated model than that of Haralick

and Elliott. Their model also allows individual constraint tightnesses and they incorporate

information relevant to the constraint graph topology into their theories. In a similar way (Kwan et

al 1997) use a model for randomly generated binary CSPs for predicting the proximity of an

instance to the phase transition in solubility (Cheeseman et al 1991).

4.2 Nadel’s Complexity Equations

In this section we present the significant parts of Nadel’s work which provide enough detail of his

theoretical complexity equations for us to make use of them. For more details of the derivation of

these equations, we refer the reader to (Nudel 1983a). Throughout the presentation, the following

symbols are used;

k - a search level, ranging from 1 to n, the number of variables in the CSP

Ak - the set of assigned variables at level k

Fk - the set of future variables at level k

Gk - the set of previous2 variables constrained by the variable at level k;

these are in a fixed order

gjk - the jth variable in the set Gk

c(alg) - the expected number of constraint checks for algorithm alg

c(alg, k) - the expected number of constraint checks for algorithm alg at level k

n(alg) - the expected number of nodes expanded for algorithm alg

n(alg, k) - the expected number of nodes expanded for algorithm alg at level k

ixD - the domain size of the variable at level i

pij - the looseness or satisfiability of the constraint between variables i and

j. It is the opposite of tightness and is equal to 1-p2

2 future variables for forward checking



Before giving the detail we outline a set of assumptions which have been made. It is important to

be aware of these assumptions so that we can assess the usefulness of the Nadel’s work for cases

where they might be relaxed.

4.2.1 Working  Assumptions

There are four main assumptions which Nadel applied during the development of his models.

These working assumptions are;

A_4.1 The models and equations presented are applicable to binary CSPs.

A_4.2 The satisfiability of any constraint Cxy is independent of any constraint Cwz and

independent of the values assigned to variables x and y.

A_4.3 The expressions for the expected numbers of checks and expected number of nodes

are for finding all solutions.

A_4.4 The level-1 model is an accurate representation of the level-2 model when (4-4) is

applied.

These assumptions are the same as the ones used by Haralick and Elliott (Haralick & Elliott 1980)

with the exception of A_4.4 since the model used there was only for level-0 classes of problem.

Assumption A_4.4 is adopted in line with (Nudel 1983a).

4.2.2 Application to the Standard Backtracking Algorithm

The standard backtracking algorithm (bt), also known as chronological backtracking, is one of the

simplest systematic algorithms used for solving constraint satisfaction problems. The pseudo code

for the algorithm3 is given in figure 4.1.

3 This pseudo code is a recursive version taken from (Tsang 1993).



Figure 4.1 - The standard backtracking algorithm

In general, for a given search algorithm, alg, the total number of nodes visited during search is

equal to the sum of nodes expanded at each level, k, in the search;
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The total number of constraint checks carried out during the search is equal to the sum the

expected number of constraint checks performed at each level, k, in the search. This is given by ;
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These expressions give us the top level calculation required for estimating nodes and constraint

checks for specific algorithms, when finding all solutions. For the standard backtracking algorithm

in particular, the expected number of nodes at level k is effectively the number values that the

algorithm attempts to label at that level. This is determined by multiplying the product of the

domains of all variables up to the search level k, by the probability that all constraints connected

between variables at search levels preceding k were satisfied. That probability is given in (4-7a).

PROCEDURE BT(Z, D, C)
BEGIN
    BT_k(Z, {}, D, C);
END

PROCEDURE BT_k(UNLABELLED, COMPOUND_LABEL, D, C)
// UNLABELLED is a set of variables to be labelled
// COMPOUND_LABEL is a set of labels already committed to
BEGIN
    IF(UNLABELLED={}) THEN return(COMPOUND_LABEL);
    ELSE BEGIN
        Pick one variable x from UNLABELLED;
        REPEAT
             Pick one value v from Dx;
             Delete v from Dx;
             IF (COMPOUND_LABEL + {<x,v>} violates no constraints)
             THEN BEGIN
                  Result ← BT_k(UNLABELLED-{x}, COMPOUND_LABEL +
                                                                                            {<x,v>}, D, C);
                  IF(Result ≠ NIL)THEN return(Result)
             END
        UNTIL (Dx={});
        return(NIL);              // No solution
    END
END
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Using (4-7a), we obtain (Nudel 1983a);
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The expected number of checks per node is dependent on how many constraints are connected to

the variable at the current search level, k. Furthermore, we only continue checking the constraints

if all previous checks against the current assignment are successful. The total expected number of

constraint checks at level k is therefore equal to the sum of the probabilities of each constraint

between xk and previously assigned variables is checked, multiplied by the number of nodes

expanded at that level;
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Combining (4-6), (4-7) and (4-8), we obtain an estimate for the total number of constraint checks

performed by standard backtracking;
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4.2.3 Application to the Forward Checking Algorithm

The forward checking algorithm (fc) uses the concept of lookahead in order to detect futile

regions of the search space (Tsang 1997). The increased sophistication associated with lookahead

can lead to more effective problem solving and has been used as the basis for some commercial



constraint programming languages (ILOG 1994) (Dincbas et al 1988). The pseudocode for

forward checking is given in figure 4.2.

One key difference for the forward checking algorithm, when compared with standard

backtracking, is that we have the notion of a survival probability for a future variable f at level k,

where k is less than f. This is equal to 1 minus the probability of all values in a domain being

rejected and is given by;
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where Df is the domain of future variable f. Nadel shows that the number of nodes at level k is

then obtained by combining the product of the domain sizes of variables up to level k by the

probability that all constraints on those variables are satisfied and the probability that no future

variable incurred a domain wipe out at the previous level. This gives us;
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Figure 4.2 - the forward checking algorithm

In order to calculate the number of constraint checks made per node, we first need an expression

for the expected reduced domain size of future variable f at level k. This is dependent on the

original domain size of the variable and its compatibility with past variables. Nadel defines it to be;
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Finally Nadel defines the number of constraint checks performed at level k by multiplying the

number of nodes at that level by the sum of probabilities that each constraint with future variables

is checked. This gives;

PROCEDURE FC(Z, D, C)
BEGIN
    FC_k(Z, {}, D, C);
END

PROCEDURE FC_k(UNLABELLED, COMPOUND_LABEL, D, C)
BEGIN
    IF(UNLABELLED={}) THEN return(COMPOUND_LABEL);
    ELSE BEGIN
        Pick one variable x from UNLABELLED;
        REPEAT
             Pick one value v from Dx;
             Delete v from Dx;
             D`← Update(UNLABELLED - {X}, D, C,
                                                                    COMPOUND_LABEL+{<x,v>});
             IF (no domain in D` is empty)
             THEN BEGIN
                  Result ← FC_k(UNLABELLED-{x}, COMPOUND_LABEL +
                                                                                               {<x,v>}, D`, C);
                  IF(Result ≠ NIL)THEN return(Result)
             END
        UNTIL (Dx={});
        return(NIL);              // No solution
    END
END

PROCEDURE Update(W, D, C, COMPOUND_LABEL)
BEGIN
    D` ← D;
    FOR each variable y in W DO;
        FOR each value v in Dy` DO;
            IF(<y, v> is incompatible with COMPOUND_LABEL with respect
                 to constraints on y +COMPOUND_LABEL)
            THEN Dy`← Dy` - {v};
    return(D`);
END
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Using (4-6), (4-11) and (4-13) we now have a complete expression for estimating the total

constraint checks performed by forward checking;
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4.2.4 The Expected Number of Solutions for Standard Backtracking and

Forward Checking

The expected number of solutions to a problem can be viewed as the expected number of nodes

remaining at the bottom of the search tree. From equation (4-7) for the standard backtracking

algorithm we see that this reduces to;
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The same result is found if we reduce equation (4-11) for the forward checking algorithm. This is

to be expected since the number of solutions to a problem is an algorithm independent property of

a CSP. We also note that if the domain size is fixed and pij is set to p, then (4-15) reduces to (4-1).

4.3 Extensions to Backjumping

The expected complexity work by Nadel was concerned with two algorithms which backtrack

chronologically. This means that on detection of a dead end in the search these algorithms

backtrack to the previous choice point. This mechanism has a major flaw in that it is prone to the

pathological behaviour known as thrashing. Thrashing involves the repeated futile search of



regions in the search space which are bound to fail, due to some culprit decision prior to the

backtrack point.

A major class of algorithms which alleviates the phenomenon of thrashing, to varying degrees, is

that of intelligent backjumping algorithms. The idea of intelligent backjumping is to identify the

reason, or culprit decision, which caused a backtrack to take place. Of course, this process comes

with some overhead and the more sophisticated the culprit identification mechanism, the greater

the overhead we can expect. However, it has been shown that the use of intelligent backjumping

can guarantee a reduction in the cost of search in terms of the number of constraint checks

performed (Kondrak & van Beek 1995). An example of one such algorithm is backjumping. The

pseudocode for backjumping is given in figure 4.3.

In the remainder of this section we present a significant extension of Nadel’s work. We  develop

an expression for the expected cost of searching binary CSPs using the backjumping algorithm.

This is important as it allows us to make comparisons of the expected search costs of different

ZDC formulations of problems with respect to that algorithm.



Figure 4.3 - the backjumping algorithm.

As a working example and to aid the clarity of our presentation, we shall refer to the CSP in figure

4.4.

Figure 4.4 - An example CSP

PROCEDURE BJ(Z, D, C)
BEGIN
    BJ_k(Z, {}, D, C, 1);
END

PROCEDURE BJ_k(UNLABELLED, COMPOUND_LABEL, D, C, L)
BEGIN
    IF(UNLABELLED={}) THEN return(COMPOUND_LABEL);
    ELSE BEGIN
        Pick one variable x from UNLABELLED;
        Level_of[x] ← L; TDx ← Dx;
        REPEAT
             v ← any value from TDx;
             TDx ← TDx - {v};
             IF (COMPOUND_LABEL + {<x,v>} violates no constraints)
             THEN BEGIN
                  Result ← BT_k(UNLABELLED-{x}, COMPOUND_LABEL +
                                                                                      {<x,v>}, D, C, L+1);
                  IF(Result ≠ backtrack_to(Level))
                  THEN return(Result);
             END
        UNTIL ((Tdx={}) OR (Result=backtrack_to(Level) AND Level<L));
        IF(Result=backtrack_to(Level) AND Level < L)
        THEN return(backtrack_to(Level));
        ELSE BEGIN
            Level ← Analyse_bt_level(x, COMPOUND_LABEL, Dx, C, L);
            return(backtrack_to(Level));              // No solution
        END
    END
END

PROCEDURE Analyse_bt_level(x, Compound_label, Dx, C, L)
BEGIN
    Level ← -1;
    FOR each (a∈  Dx) DO
    BEGIN
        Temp ← L-1; NoConflict ← True;
        FOR each <y,b> ∈  Compound_label DO
            IF NOT satisfies((<x,a><y,b>), Cx,y)
            THEN BEGIN
                Temp ← Min(Temp, Level_of[y]);
                NoConflict ← False;
            END
        IF(NoConflict) THEN return(Level_of[x] - 1);
    END
    return(Level);
END

w
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4.3.1 The Effects of Backjumping

As we have mentioned, one of the problems with standard backtracking is that it suffers from the

pathological behaviour known as thrashing. In our example CSP, consider the scenario where we

have a partial assignment over the variables v, w, x and y such that there is no compatible value

which can be assigned to z. Standard backtracking will progress and attempt to assign a value to

variable z. This will fail for each of the values in the domain of z and once all candidates are

exhausted, a backtrack is made such that a new value is assigned to y. The algorithm then repeats

its attempt to assign a value to z. Clearly this will not succeed since z is not constrained by y. As a

result, futile attempts to assign a value to z are continually repeated until the algorithm eventually

backtracks far enough so that the reason for its incompatibility is changed.

Backjumping can reduce the level of thrashing by noting the first order reasons for failure.

Referring again to our example, when it is found that no value exists for variable z, which is

compatible with the previous assignments, the algorithm jumps back to either variable x or

variable w depending on the exact reason for failure. This simple improvement can result in

significant savings in the overall search costs.

4.3.2 Extending Theoretical Complexity Estimates to Backjumping

The key difference between backtracking and backjumping is the ability to detect a reason for

failure when no compatible value can be found for a particular variable. In doing this, the

backjumping algorithm reduces the number of times a particular sub-search space is needlessly

expanded. We can see this effect more clearly if we again consider our example CSP in figure 4.4.

Taking a constraint in isolation, Cvy, say, if we ignore the effect of all other constraints then any

backjumping which takes place from y to v will result in a reduction in the number of times values

from the domains of variables w and x are expanded. This is so because the jump back means any

remaining values in their domains are skipped. We can view this process as reducing the effective

domain size of those affected variables, and this manifests itself through a reduction in the number

of nodes expanded, relative to those expanded by standard backtracking. We indicate the effective

domain size of variable xi with eds(xi).



Our first aim in terms of estimating the expected complexity of backjumping is to determine an

expression for the expected number of nodes at each level k in the search, thus allowing us to use

(4-5) in order to calculate the total number of nodes explored. The number of nodes at level k can

be seen as the set of possible values for the variable at that level, ready to be expanded further to

the next level. It can be expressed in a similar way to that of standard backtracking (4-7) but this

time we include the notion of effective domain size of variable xi, eds(xi);

n bj k eds x pi
Ai k

ij
i j k

( , ) ( )=






 ×













≤ < ∈ −

∏ ∏
1

(4-16)

There are several factors which need to be taken into account in order to evaluate the effective

domain size of a variable. To help clarify our reasoning, consider the single constraint Cwy in figure

4.4, while ignoring all other constraints in the problem. Backjumps arising from this constraint

have the potential of affecting the effective domain size of variable x - i.e. the variable spanned by

the constraint. There are two factors which affect this effective domain size. These are;

• The current search level - if the current search level is at variable x or variable y, then the

constraint Cwy can reduce eds(x). However, for search levels below variable y, this constraint

only has the same effect as with standard backtracking since only labels consistent with that

constraint can be extended. Since it is clearly a function of the current search level, we modify

our notation for the effective domain size of variable xi, given a current search level k, to be

eds(xi, k), where i<k.

• The probability of jumping back across the variable - if we reach level k in the search, then

this probability is the net effect of all possible jumps originating at variable xk and all future

variables. In our example scenario, if the current search level is x, then if a compatible value is

found for x, we could proceed to y and then jump back over level x. When considering the

nodes expanded at level y, the potential exists for a jump to occur when all the values of y fail.

We denote this probability of jumping across a particular level i, given a current search level k,

from future level j to be p(jump(i, j, k)), where i<k≤j. When there are constraints at many

future levels, we must consider the net effect of all their probabilities. Given a current search

level k, the net probability of jumping across a particular level i, from xk or its future variable,

is denoted as  p(jump(i, k)).



Taking the above factors into account, we can now give an initial expression for the effective

domain size of a variable, given current search level k;

( )eds x k D p jump i ki xi
( , ) ( ( , ))= + −



 × −





1 1 1 (4-17)

Equation (4-17) says that the effective domain size of a variable, given current search level k, is

equal to 1, an initial value, plus the remainder of the domain, which is expanded with the

probability that no jump occurred back across the first value. We also notice that the value of

p(jump(i, k)) is the same for all members of the domain of xi since it is determined by assignments

to variables in the search previous to xi.

To obtain the value of p(jump(i, k)), we need to consider all of the possible jumps from levels at

j³ k. We can say that p(jump(i, k)) is equal to 1 minus the probability of no jump occurring from

levels k of later. This is given by;

p jump i k p jump i j k
j k

( ( , )) ( ( ( , , )))= − −∏




³

1 1 (4-18)

The final part of our expression for eds(xi, k) is to develop an expression for p(jump(i,j,k)). This

probability comprises two parts. The first is the probability of actually getting to level j, given that

we have already reached level k and we denote this to be p(at(j, k)). In order to reach level j there

must be at least one compatible value at each of the levels between i and j. This only occurs if all

constraints between these variables and past assignments are satisfied. p(at(j, k)) is therefore equal

to the grand product of the constraints between those variables and other past variables;

p at j k pl m
k l j

m l

( ( , )) ,
=

≤ <
< <

∏
1

(4-19)



The second part of p(jump(i,j,k)) is the probability of a jump occurring from level j to a level

above level i. We call the probability of these jumps p(jump_at(j, i)). They occur when all of the

values in the domain of xj are incompatible with a variable at levels higher than i;

( )p jump at j i p jxD

lj
l i

( _ ( , )) = −∏
<

1 (4-20)

Combining (4-19) and (4-20) we get the overall expression for p(jump(i,j,k));

( )p jump i j k p p
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k l j
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jxD
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<

1

1 (4-21)

Equations (4-16) to (4-21) give us all the components we need in order to calculate n(bj, k).

Notice that if all the p(jump(i,j,k)) values are equal to 0 then eds(xi, k) becomes equivalent to

ixD  and hence the value of n(bj, k) becomes equal to n(bt, k).

In terms of constraint checks per node at a level k, the method of calculation is the same for both

backtracking and backjumping since the same constraint checks have to be made. We can

therefore use (4-8) for the purposes of backjumping.
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Combining equations (4-6) and equations (4-16) and (4-22) we have our expression for the total

number of constraint checks performed by backjumping;
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One further important consideration is the expected number of solutions to the problem. This is

equal to the number successful nodes at level n, or the number of nodes at level n+1. Since no

jumping can occur across this level, p(jump(i,j,k)) is reduced to 0 for all j, and hence the effective

domain size is equal to the actual domain size for all variables. The result of this is that (4-16)

reduces to (4-15), hence the expected number of solutions is the same for backjumping as for

standard backtracking and forward checking. This is important because we should expect this

property to be algorithm independent.

4.4 The Accuracy Of Theoretical Estimates

So far we have only described the theoretical aspects of Nadel’s work. These provide us with a

tool for making estimates of search costs. We now need to consider the accuracy of this approach.

No work has been published which provides any evaluation of the usefulness of the theoretical

complexity estimates other than the work of Nadel. In the remainder of this chapter we present an

important assessment of the approach.

Nadel makes an observation about the observed accuracy of his equations, stating he had found

that;

Observation 4.2 (Nadel 1990b): About 85% of the instances within a problem class have exact-

case complexity of solution within 15% of the expected class average.

In this section we look to assess this observation and consider two aspects of the accuracy of the

theory-based estimates given in sections 4.2 and 4.3

1. The accuracy of the complexity models on a class of problems.

2. The general accuracy of the complexity models.

The first of these is important because it dictates our chances of making a prediction which is

approaching the mean for that class of problem. The second is important because it impacts on the

possibility of using the approach more widely.



4.4.1 Accuracy Within a Problem Class

4.4.1.1 Motivation

Nadel’s level-2 model applies to classes of problems defined by the tuple K(n, M, [Iij]). He refers

to this as a constraint- or c-class of problems because it is defined to the level of the actual detail

of the constraints. Clearly there is likely to be some degree of variance in the search costs within a

given class of problems and as a result this will affect the proximity of any expected complexity

value, which is applicable to the problem class, and the actual cost of solving a particular instance

within that class. The essence of observation 4.2 is that the major proportion of instances are

reasonably close to the expected complexity value.

For a given c-class, the number of possible instances that can exist within that class definition is

dependent on the number of different ways of choosing the Iij compound labels of each constraint

from the mi×mj possible compound labels between the pairs of variables. This is given by;

|K(n, m, [Iij])| = 
ij
i j

i j I
m m×

<




∏ (4-24)

This allows for a significant range of possible instances. As an illustration of how instances of the

same c-class might vary, let us consider the CSPs in figure 4.5. There, three of the possible CSP

instances from the class K(3, [3, 3, 3], [5/9, 4/9]) are shown. Equation (4-15) gives us the

expected number of solutions for this class of problems to be 6.6. However if we look at the

actual number of solutions, there are 7 for scenario 1, 2 for scenario 2 and 12 for scenario 3. Of

course this is only a very small sample of the full range of possibilities for this particular c-class.

However, it serves to demonstrate how the range of values for a given c-class of CSPs can vary,

and this can be expected to apply to the number of solutions, nodes expanded during search and

the number of compatibility checks performed.



Figure 4.5 - Instances of the same c-class K(3, [3, 3, 3], [5/9, 4/9])

If the variance in complexity values for a c-class is high then we may have to question the

reliability of any estimate, when applying it to a particular instance of that c-class, since the

probability of a particular instance being near to the predicted c-class average is reduced. The

basis of Nadel’s observation was empirical data generated using a restricted selection of very small

problems. We believe that further evidence was required in order to investigate the accuracy of

theoretical complexity estimates more widely. In order to achieve this we carried out a series of

experiments on randomly generated binary CSPs.

4.4.1.2 Experimental Details

Our approach was to randomly generate sets of binary CSPs defined by the tuple <n, m, p1, p2>

where n is the number of variables, m is the uniform domain size, p1 is the density of the

constraint graph and p2 is the tightness of the constraints as defined in chapter 2. For each given

class of problems defined by this tuple we generated 100 instances with different random

constraint matrices4. Our aim was to look at the variation in actual search costs over a range of

constraint graph densities and for different problem sizes. These were then compared with the

actual complexity estimate of the classes.

For the problem class <10, 10, 1.0, 0.4> we ran the standard backtracking, backjumping and

forward checking algorithms. The natural lexical variable ordering (nat) was used. Figures 4.6-4.8

show the distributions of the actual search costs for the 100 instances. Each of these figures also

has an indication of the location of the expected c-class average.

4 Full details of our problem generator are given in appendix A1
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A similar set of experiments was carried out with problems classes having 20 variables. For these

problems we only consider the forward checking and backjumping algorithms since the cost in

finding all solutions on these larger problems with standard backtracking can become prohibitive.

Table 4.2 shows our results for the experiments with both 10 and 20 variables.

In table 4.2, the third and fourth columns show the actual observed mean cost of solving the

instances and the expected class average, as given by the theoretical complexity estimates. In the

fifth and sixth columns, we calculate the percentage of individual instances that show an actual

search cost within 15% of the measured mean, or the expected class average. This gives us a

direct comparison with observation 4.2.

Problem Class Algorithm Mean
constraint

checks

Expected
c-class
average

% instances
within 15% of

mean

% instances
within 15% of

expected
c-class average

<10,10,0.2,0.88> bt 27465 28871 72 67
<10,10,0.5,0.63> bt 48968 48402 71 68
<10,10,1.0,0.40> bt 48459 47689 67 70
<10,10,0.2,0.88> bj 9988 9546 58 57
<10,10,0.5,0.63> bj 13887 19362 44 20
<10,10,1.0,0.40> bj 31594 28807 71 65
<20,10,0.2,0.63> bj 2.7 × 108 4.1 × 108 35 15
<20,10,0.5,0.38> bj 3.0× 107 3.7 × 107 60 28
<20,10,1.0,0.21> bj 2.3× 107 2.3 × 107 74 74
<10,10,0.2,0.88> fc 2732 2888 51 45
<10,10,0.5,0.63> fc 2426 2434 79 79
<10,10,1.0,0.40> fc 11433 11122 94 90
<20,10,0.2,0.63> fc 8.8× 106 9.0 × 106 26 29
<20,10,0.5,0.38> fc 1.0× 106 995565 65 65
<20,10,1.0,0.21> fc 3.1× 106 3.0× 106 87 79

Table 4.2 - Estimated and actual means for selected class of problem, using the natural lexical

ordering for each algorithm. 100 instances were generated per c-class.

4.4.1.3 Analysis of Results

Our results in figures 4.6-4.8 and in table 4.2 show that there is indeed a distribution of

complexities within a c-class which has a concentration of instances having values close to the c-

class average. This is particularly the case for the problem classes which have fully connected,

high density constraint graphs, such as classes <20, 10, 1.0, 0.21> and <10, 10, 1.0, 0.40>.



The aim of the experiments in this section was to investigate Nadel’s observation. It is clear from

our results that with the problem classes used here, observation 4.2 does not hold in general,

especially for CSPs with lower density constraint graphs. The ramification of this observation is

that if we are given a single CSP instance and wish to use the complexity equations for estimating

the expected cost of solving a particular instance, we should expect relatively poor accuracy for

some classes, especially for those classes with lower density constraint graphs.

One other observation from our results is that our estimate for backjumping performs with an

accuracy comparable with the estimates for forward checking and standard backtracking.

However, it should be noted that the spread of actual costs within a given c-class appear to be

greater for backjumping than the other algorithms. This suggests that, especially for CSPs with

lower density constraint graphs, the accuracy of c-class estimates using (4-23) is likely to be

reduced.

4.4.1.4 Conclusions

The observations above, particularly with reference to the accuracy of our estimates on low

density CSPs, are similar to results in previous work where probabilistic models of CSPs were

found to be less accurate as the constraint graph density becomes very low (Kwan et al 1996)

(Dent & Mercer 1996). However, this still leaves a significant group of problem classes where

equations (4-9), (4-14) and (4-23) are reasonably accurate. In the next section we consider the

general accuracy of these equations when used to estimate the complexity of single problem

instances.

The results in table 4.2 also show the importance of not rejecting other properties of ZDC

formulations when developing evaluation heuristics as we conjectured in chapter 3. In particular,

they suggest that expected complexity measures in conjunction with constraint density are strong

candidates for playing a significant part of such heuristics.

4.4.2 General Estimation Accuracy

We have seen in the previous section how the complexity over a given c-class can vary. In this

section we look at the general accuracy of Nadel’s estimations for standard backtracking and for

forward checking, as well as for our new expression for backjumping. Our approach is to consider



three different types of problem; randomly generated binary CSPs, graph colouring problems and

the n-Queens problem.

4.4.2.1 Accuracy with Randomly Generated Binary CSPs

Since equations (4-9), (4-14) and (4-23) are derived from a probabilistic model, randomly

generated CSPs are a good candidate for assessing their underlying accuracy - if they are not

accurate for random problems, then it is unlikely that they will be accurate for non-random ones.

For our experiments we used a range of binary random CSPs defined by the tuple <n, m, p1, p2>,

as in section 4.4.1 in order to do this. However, for this particular experiment we used a different

c-class for each instance - i.e. a different constraint graph was used for each one.

The sample size for each set of parameters used was 100, and for each instance in a given set all

three algorithms were run using the minimum width variable ordering heuristic (Freuder 1982).

The heuristic was used in order to reduce the amount of time taken to solve the CSPs5. The

observed cost for solving each instance was recorded and then compared with the estimated

number of constraint checks.

In order to give a concise overview of our results we analysed each set with respect to four

parameters;

i. minimum ratio of expected and measured search cost

ii. maximum ratio of expected and measured search cost

iii. mean ratio of expected and measured search cost

iv. standard deviation of ratio of expected and measured search cost

The above parameters give a good indication of the worst case accuracy of our estimate, together

with a typical accuracy. The complete set of results are given in table 4.3.

5 This is acceptable since our complexity equations can be used with any static variable ordering.



Expected Cost / Measured Cost

Algorithm Problem Class Minimum Maximum Mean Standard
Deviation

bt <10,10,0.2,0.88> 0.31 3.59 1.42 0.77
bj <10,10,0.2,0.88> 0.22 4.94 1.30 0.84
fc <10,10,0.2,0.88> 0.29 3.84 1.20 0.60
bt <10,10,0.5,0.63> 0.49 1.48 1.02 0.20
bj <10,10,0.5,0.63> 0.43 1.50 0.95 0.21
fc <10,10,0.5,0.63> 0.66 1.68 1.00 0.16
bt <10,10,1.0,0.40> 0.70 1.52 1.02 0.15
bj <10,10,1.0,0.40> 0.64 1.43 0.95 0.13
fc <10,10,1.0,0.40> 0.81 1.22 0.99 0.08
bt <20,10,0.2,0.63> 0.24 17.00 2.1 2.28
bj <20,10,0.2,0.63> 0.27 17.97 2.9 3.14
fc <20,10,0.2,0.63> 0.26 4.28 1.35 0.84
bt <20,10,0.5,0.38> 0.62 1.90 1.06 0.24
bj <20,10,0.5,0.38> 0.62 2.04 1.16 0.26
fc <20,10,0.5,0.38> 0.71 1.44 0.99 0.16
bt <20,10,1.0,0.21> 0.57 1.50 1.03 0.18
bj <20,10,1.0,0.21> 0.51 1.31 0.88 0.14
fc <20,10,1.0,0.21> 0.63 1.16 0.95 0.11
bt <30,10,0.2,0.52> 0.42 5.67 1.27 0.67
bj <30,10,0.2,0.52> 0.58 7.70 1.75 0.86
fc <30,10,0.2,0.52> 0.47 2.60 1.10 0.36
bt <30,10,0.5,0.26> 0.49 1.72 1.12 0.28
bj <30,10,0.5,0.26> 0.58 1.96 1.30 0.31
fc <30,10,0.5,0.26> 0.59 1.49 1.00 0.18

Table 4.3 - General accuracy of estimated complexities for bt, bj and fc with

randomly generated binary CSPs. A sample size of 100 problems per class was used.

Our results are significant in that they show a reasonable degree of accuracy for all of the

expected complexity expressions, except for those with the lower density problems. However,

only the two sets of results, which are shaded grey, showed an average worse than a factor 2

error. This is in line with the results obtained in section 4.4.1. Most estimates of the worst case

search costs are well within a factor 2 of the observed cost, for all of the algorithms. The average

ratio of estimated to measured is much closer to 1.0 in most cases.

4.4.2.1.1 Conclusions

These results, combined with those in section 4.4.1, suggest that we can use the complexity

estimates reliably for randomly generated binary CSPs with high density constraint graphs.

Furthermore, our estimate for backjumping is seen to perform in line with those for standard

backtracking and forward checking. This again gives us a high degree of confidence in its

correctness.



4.4.2.2  Accuracy in Graph Colouring Problems

The second type of problem that we used to investigate the accuracy of the expected complexity

equations was graph-colouring problems. These were chosen because they differ significantly form

the previous sets of problems in that the constraints are all exactly the same - i.e. they are all “not

equals” constraints. This reduces the level of randomness in the problem structure which is

implicit in the probabilistic nature of Nadel’s models. As a result we can expect the level of

accuracy of the theoretical complexity estimates to be reduced. If the estimates are generally

applicable, then we should expect them to be reasonably accurate despite this reduction in

randomness.

In order to test this conjecture we used randomly generated graph colouring problems based on

the tuple <n, m, c> where n is the number of nodes in the graph, m is the number of colours used

and c is the average connectivity of each node in the graph. Two combinations of these

parameters were used with a sample of 100 problems for each. As in section 4.4.2.1, all three of

our algorithms, combined with the minimum width variable ordering heuristic, were used to solve

the instances for finding all solutions. Our results were processed in the same way, as shown in

table 4.4.

Expected Cost / Measured Cost

Algorithm Problem Class Minimum Maximum Mean Standard
Deviation

bt <50,3,4.5> 0.32 3184.91 191.43 529.01
bj <50,3,4.5> 0.05 477.45 37.22 96.15
fc <50,3,4.5> 0.08 141.94 8.33 23.23
bt <25,5,9.6> 6.23 9787.54 589.95 1740.59
bj <25,5,9.6> 2.47 3602.63 233.26 631.62
fc <25,5,9.6> 2.97 474.58 48.06 75.35

Table 4.4 - General accuracy of estimated complexities for bt, bj and fc with

graph colouring problems. A sample size of 100 problems per class was used.

4.4.2.2.1 Conclusions

Clearly, table 4.4 shows that our complexity expressions are not accurate for these types of

problem. For the average case, the level of inaccuracy is in excess of an order of magnitude in

most cases. There are two possible reasons for this. The first is that these problems have



extremely sparse constraint graphs. Relatively poor performance was also seen for such classes in

the previous section, although not on the same scale as seen here. The second possibility is that

the reduction in randomness in the structure of the constraints has affected the validity of the

estimates.

4.4.2.3 Accuracy with the n-Queens Problem

The third group of problems we used to assess the general accuracy of the theoretical complexity

estimates was the n-Queens problem. The reasons for using this problem are twofold;

1. To extend the experiments by Nadel (Nadel 1990a) which looked at estimates

for the n-Queens problem, but only up to n=5.

2. The n-Queens problem is another example of one having non-random,

structured, constraints. This allows us to further investigate the effect of

reducing the level of randomness in problems, this time with a fully connected

graph.

The 8-Queens problem is described in detail in chapter 2. For n-Queens, we parameterise the

number of queens to be placed. The problem is therefore to place n queens on an n × n chess

board. The formulation we used to represent the problem for this experiment was analogous to

8Q_1;

nQ_1: Z: n variables, v1, v2 ... vn, representing the eight rows on the chess board

 D: {A, B, C,...} for each variable, representing the position of the

queen in the row - e.g. for 8-Queens the domain would be {A, B, C, D, E, F, G, H}

 C: no queen may attack any other

We ran the same three algorithms on problems for n=3 to n=12 and compared the results with the

expected complexity values for the c-classes to which the n-Queens instances belong. The variable

ordering used was the natural, lexical variable ordering (nat). Our results are given in figure 4.9 -

4.11.
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Figure 4.11 - Accuracy of estimation for forward checking

on n-Queens problems

4.4.2.3.1 Conclusions

The problems used for this experiment violate the random nature of the probability model assumed

for the complexity estimates. However, despite this violation, the results suggest reasonable



accuracy when predicting the complexity for our three algorithms, especially for the lower values

of n where the estimates are consistently within an order of magnitude of the actual observed

value.

As n increases, it appears that the accuracy of the estimates does degrade. One possible reason for

this is that the constraints for n-Queens become extremely loose as n grows large. As a result,

there is greater potential for large groups of legal compound labels to occur. This may exaggerate

any adverse effects of reducing the level of randomness implied in the probability models.

4.4.3 Conclusions on the Accuracy of Theoretical Estimates for Predicting

Search Costs

From our experiments in this section we have gained more insight into the usefulness of

theoretical complexity estimate for estimating search costs of three algorithms. The main findings

from these experiments were;

1. The accuracy of the estimates for predicting instance search costs within a

problem class is not generally as good as that suggested in observation 4.2.

However, we do see that there is a clustering of instance costs about the

predicted complexity for the class. We found this clustering to be greatest for

problem classes with higher density constraint graphs.

2. The general accuracy of the theoretical complexity estimates is good for

randomly generated binary CSPs, especially for those with higher density

constraint graphs.

3. Reductions in the level of randomness in the structure of constraints in

problems appears to reduce the accuracy of the estimates.

These findings show promise, indicating that the use of theoretical complexity estimates is

possible for the purposes of estimating the search cost of algorithm for some problem classes. As

a result they have the potential for playing a significant role in the design of ZDC formulation

evaluation heuristics. In the next section we investigate the direct usefulness of this approach

when comparing different ZDC formulations of a given problem.



4.5 Applying Theoretical Estimates as ZDC Formulation

Evaluation Heuristics

In the previous section we considered the use of theoretical complexity estimates for predicting

the search costs of solving CSP instances, with respect to their solving by a particular algorithm.

One important application of such estimates is with the comparison of different ZDC formulations

of a problem, as suggested in (Nudel 1983a) (Nadel 1990a). If the theoretical complexity

estimates give a good indication of the actual cost of solving a given CSP, then they provide us

with a candidate for use as an evaluation heuristic.

Furthermore, the purpose of an evaluation heuristic is to identify the relative expected search cost

of a given pair of formulations. This means that even if the estimates are not particularly accurate

in terms of predicting the cost of particular instances, they may still be useful, provided they

accurately reflect the relative cost. We should remember that what we are looking for is

evaluation heuristics which give us this relationship. The important point is the qualitative

relationship and not necessarily the exact quantitative nature of it. This is analogous to Nadel’s

use of estimates to obtain “optimal” search orderings (Nudel 1983a). His results there showed that

the estimates accurately reflected the qualitative nature of varying the search ordering.

In the remainder of this section we investigate the application of our theoretical complexity

measures to ZDC formulation evaluation heuristics. As with previous sections, we consider three

types of problem; randomly generated binary CSPs, colouring problems and the n-Queens

problem.

4.5.1 Randomly Generated Binary CSPs

The first group of problems that we used for the purposes of assessing the usefulness of equations

(4-9), (4-14) and (4-23), as the basis for an evaluation heuristic, was that of randomly generated

binary CSPs. We required two different formulations of each problem instance considered before

any comparison could be made. As the first ZDC formulation we used CSPs generated in the same

way as we did in section 4.3, using the 4-tuple <n, m, p1, p2>. We denote this formulation to be

R1;



R1 - Z: The n variables

D: {1..m} for each variable.

C: p1×n(n-1)/2 random binary matrix constraints each having tightness p2.

Our second formulation was based on the idea of taking an R1 instance and transforming it by

replacing pairs of constrained variables with a new variable which is generated by merging the

original pair. For example, given a pair of variables xa and xb which are constrained by Cab, the

domain of the new merged variable, xab, is given as the set of legal tuples in the constraint Cab. An

example of this process is given in figure 4.12.

Figure 4.12 - An example of variable merging for the case where

the constraint Ca-b is “not equal”.

In order to create an alternative ZDC formulation we arrange the variables of R1 in the search

ordering we propose to use for R1. We then systematically take a single pass through that

ordering and merge consecutive pairs of variables which are constrained by each other. Full details

of this aggregation transformation we used are given in chapter 5. The result of the transformation

process is a new ZDC formulation of the problem which we call R2;

R2: Z: A mixture of merged and non-merged variables. If variables vi and vj from R1 are merged, 

then they form a single variable vi,j in R2, as indicated in figure 4.12.

D: Either {1...m} for non-aggregated variables or the set of legal tuples given by an aggregation 

constraint

C: A combination of original constraints and constraint which have been modified to 

accommodate the aggregated variables.
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For our experiments we used samples of 100 problems for each n, m, p1, p2 class. We looked at

the relative merits of the two candidate ZDC formulations, R1 and R2, for each algorithm. We

also used the minimum width variable ordering for the larger problems. For these cases, as we

described above, we pass through the variables in the search ordering used when solving R1 when

we decide which pairs of variable are to be merged for ZDC formulation R2. This ensures that we

effectively visit the variables in the same order for both formulations6. The important point is that

we have two ZDC formulations which we can expect to have differing search costs.

The results of our experiments are shown in table 4.5. For each instance in a given problem class

we compare the expected complexity values of R1 and R2 which we call ec1 and ec2 respectively.

If we find these expected costs to be within a specified percentage of each other, called margin,

then we regard the two formulations as having the same expected cost in solving and we make no

prediction as to which is likely to be the best ZDC formulation of the two. Such instances

contribute to the “% no prediction” column in table 4.5. For cases where the difference is

predicted to be greater than the specified percentage, we make a prediction of the actual instance

search costs based on the estimates ec1 and ec2. If the actual measured values show the same

qualitative relationship as the predictions, we regard it as being a correct prediction. Otherwise, it

is regarded as being incorrect.

4.5.1.1 Conclusions

As we can see from the data in table 4.5, equations (4-9), (4-14) and (4-23) were seen to be

effective in selecting between ZDC formulations R1 and R2. We can say this since the number of

times the selections were correct or did not make a prediction was greater than 50% for all

problem sets, which was the base criterion laid out in chapter 3. In other words selections based

on our theoretical complexity estimates give better results than simply picking one of the two

formulations at random. In fact our heuristics performed considerably better than this.

A further, important observation that we can make from table 4.5 is that our heuristics are also

effective on problems with low density constraint graphs. This is important because we have

previously noted that our complexity equations are less accurate in estimating the actual search

cost of algorithms for lower density problems. Our results suggest that when we use different

6 Issues relating to how variable ordering heuristics should be applied are discussed in detail in Chapter 5.



formulations of a problem, the qualitative nature of the relative complexity values is reflected

more reliably.

Heuristic Accuracy  -
 margin=5%

Heuristic Accuracy  -
margin=15%

Algorithm +
Heuristic

Problem Class %correct %incorrect % no
prediction

%correct %incorrect % no
prediction

bt+nat <10,10,0.2,0.88> 73 10 17 60 6 34
bj+nat <10,10,0.2,0.88> 66 17 17 60 15 25
fc+nat <10,10,0.2,0.88> 69 11 20 64 7 29
bt+nat <10,10,0.5,0.63> 77 7 16 62 2 36
bj+nat <10,10,0.5,0.63> 69 14 17 58 6 36
fc+nat <10,10,0.5,0.63> 85 5 10 80 2 18
bt+nat <10,10,1.0,0.40> 100 0 0 100 0 99
bj+nat <10,10,1.0,0.40> 100 0 0 100 0 0
fc+nat <10,10,1.0,0.40> 100 0 0 100 0 0
bt+mwo <20,10,0.1,0.88> 64 29 5 60 27 13
bj+mwo <20,10,0.1,0.88> 64 30 6 61 23 16
fc+mwo <20,10,0.1,0.88> 72 23 5 64 19 17
bt+mwo <10,10,0.2,0.63> 62 23 15 58 19 23
bj+mwo <10,10,0.2,0.63> 80 16 4 71 8 21
fc+mwo <10,10,0.2,0.63> 84 13 3 73 10 17
bt+mwo <10,10,0.5,0.38> 100 0 0 100 0 0
bj+mwo <10,10,0.5,0.38> 100 0 0 100 0 0
fc+mwo <10,10,0.5,0.38> 100 0 0 100 0 0
bt+mwo <30,10,0.07,0.85> 98 2 0 95 2 3
bj+mwo <30,10,0.07,0.85> 98 1 1 98 1 1
fc+mwo <30,10,0.07,0.85> 100 0 0 100 0 0
bt+mwo <30,10,0.2,0.52> 72 22 6 66 19 15
bj+mwo <30,10,0.2,0.52> 71 26 3 64 23 13
fc+mwo <30,10,0.2,0.52> 78 19 3 77 19 4

Table 4.5- summary of formulation comparison for randomly generated

binary CSPs. 100 problem instances generated per problem class.

4.5.2 Graph Colouring Problems

The second formulation comparison we carried out was with 3- and 5-colouring problems. The

aim here was to observe the effect of having all the constraints exactly the same, in this case the

“not equal” constraint. As with the previous experiment, two formulations were considered. The

first formulation used was the base graph colouring problem which was generated in the same way

as those in section 4.3. Problem sets were defined by the tuple <n, m, c>. We denote this first

formulation to be GC1;



GC1: Z: The n variables

D: {1...m} for each variable

C: n × c randomly allocated “not-equal” constraints, where c is the average connectivity of the 

variables.

Our second formulation was generated by carrying out the same variable aggregation

transformation described in section 4.5.1. This resulted in ZDC formulation GC2 which is the

corollary of ZDC formulation R2.

GC2: Z: A mixture of merged and non-merged variables. If variables vi and vj from GC1 are merged, 

then they form a single variable vi,j in GC2, as indicated in figure 4.12.

D: Either {1...m} for non-aggregated variables or the set of legal tuples given by an aggregation 

constraint

C: A combination of original constraints and constraint which have been modified to 

accommodate the aggregated variables.

Sets of 100 instances were generated for two classes of graph colouring problem. For each

problem, ZDC formulation GC1 was solved using standard backtracking, backjumping and

forward checking, all with the minimum width variable ordering. As with the previous experiment,

ZDC formulation GC2 was generated with the variables pre-ordered using the variable ordering

before carrying out the transformation. GC2 was then solved with the same algorithms. We also

evaluated the theoretical complexity estimates for GC1 and GC2.

The results of our experiments are shown in table 4.6. We use the same approach for analysing the

results as we did in section 4.5.1. Table 4.6 therefore reads in the same way as table 4.5.

Heuristic Accuracy  -
 margin=5%

Heuristic Accuracy  -
margin=15%

Algorithm +
Heuristic

Problem Class %correct %incorrect % no
prediction

%correct %incorrect % no
prediction

bt+mwo <25,5,9.6> 7 93 0 7 93 0
bj+mwo <25,5,9.6> 8 92 0 8 92 0
fc+mwo <25,5,9.6> 39 61 0 39 61 0
bt+mwo <50,3,4.5> 36 64 0 36 64 0
bj+mwo <50,3,4.5> 55 43 2 53 36 11
fc+mwo <50,3,4.5> 67 31 2 63 30 7

Table 4.6- summary of formulation comparison for graph colouring

problems. 100 problem instances generated per problem class.



4.5.2.1 Conclusions

From the results in table 4.6 it is clear that there are significant errors encountered when using the

complexity equations as a prediction mechanism for the relative suitability of graph colouring

problems for the two formulations considered. The results for 5-colouring are particularly

significant since the predictions give more than 50% as incorrect for all three algorithms, which is

worse than can be expected from arbitrary selection of formulations.

We saw in section 4.4 how the accuracy of equations (4-9), (4-14) and (4-23) was least effective

when used with graph colouring problems. Our conjecture there was that this is consistent with

the reduction in the random nature of the constraints. The effect of this conjecture is likely to be a

cause of the results seen in this experiment. This is particularly the case for the 5-colouring

problems since the tightness of these constraints is lower than that of the 3-colouring problems.

This means that larger regions of the constraint matrix consisting purely of goods exist in 5-

colouring problems, thus exaggerating the reduction in randomness.

4.5.3 The n-Queens Problem

In (Nadel 1990a) different formulations of the n-Queens problem were used to assess the accuracy

of (4-9) and (4-14) in ranking these ZDC formulation with respect to the actual cost of solving

them. He used values of n=3, 4 and 5. In this section we carry out an experiment using three

formulations similar to those used by Nadel. Our aim was to see if Nadel’s observation still holds

for larger values of n, and also to further assess the complexity estimate for backjumping given by

(4-23).

The first ZDC formulation we used, nQ_1, is the representation which we used in section 4.4.2.

Our second ZDC formulation, nQ_2, is based on the merging of pairs of rows on the board. This

was described in detail in chapter 2 and section 4.5.1. Our third ZDC formulation is based of the

transformation of nQ_1 using the dual transformation (Dechter & Pearl 1989). This

transformation was described in detail in chapter 3. The result of transforming nQ_1 in this way is

nQ_3;



nQ_3: Z: One variable, z, corresponding to each constraint in the nQ_1

D: For each variable, z, the domain is the set of legal compound labels defined in the 

associated original constraint.

C: In order to ensure equivalence between nQ_1 and nQ_3, constraints are added 

between variables in nQ_3 which originate from constraints in nQ_1 having 

common variables stating that the identical label is used for the common variable.

For each value of n, we calculated the theoretical complexity for each algorithm combined with

the natural lexical variable ordering, for each of the three ZDC formulations generated. We then

solved each ZDC formulation, for all solutions. The results obtained are plotted in figures 4.13-

4.15.
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Figure 4.13 - The theoretical and actual performance of standard backtracking

on the various formulations of n-Queens, for finding all solutions
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Figure 4.14 - The theoretical and actual performance of backjumping

on the various formulations of n-Queens, for finding all solutions
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Figure 4.15 - The theoretical and actual performance of forward checking

on the various formulations of n-Queens, for finding all solutions

As a further experiment, we also looked at how good the complexity equations were at predicting

the suitability of ZDC formulations with respect to solving for a single solution only. This

effectively means relaxing assumption A4_3. The results for forward checking are given in figure

4-16.
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Figure 4.16 - Accuracy with forward checking when a single solution is found

4.5.3.1 Conclusions

The results in figures 4.13 - 4.16 lead to several interesting observations regarding the usefulness

of the theoretical complexity estimates. The clearest of these is that formulation nQ_3 is

consistently predicted to be the costliest ZDC formulation to solve, for all n greater than 3, with a



margin over the other formulations that grows with n.7 This is consistent with the results

published in (Nadel 1990a) for standard backtracking and forward checking. Note also that the

results for finding only one solution show the same ranking of the ZDC formulations. This

suggests that relaxing assumption A4_3 can be reasonable approach to extending the applicability

of the complexity estimates.

Another observation from these results is that predictions of the relative merits of nQ_1 and nQ_3

are consistently incorrect. However, while this result is disappointing, the differences in the

estimates for nQ_1 and nQ_3 are relatively small, well within an order of magnitude. Furthermore,

since the actual solving costs are also very close to each other, we might expect errors in the

prediction to occur, as our previous results have shown. The ramifications of an incorrect

prediction for these two formulations is relatively minor as a result. In general, we can conclude

that the theoretical complexity estimates produce more reliable predictions when the difference in

actual complexity is large.

Finally, we see that the rankings for backjumping, based on (4-23) are comparable in quality to

those for standard backtracking and forward checking. This again gives us further confidence in

the correctness of (4-23).

4.6 Discussion

The primary motivation for the work in this chapter was to investigate the suitability of theory-

based estimates of search complexities as a basis for ZDC formulation evaluation heuristics. This

is attractive to us since they provide us with a relatively cheap, instance specific technique for

evaluating the merits of different ZDC formulations of a problem. To this end we have built on

previous work by first extending it to the important class of intelligent backtracking search

algorithms. We then carried out a major evaluation of the effectiveness of theoretical complexity

estimates.

We have investigated the accuracy of the both Nadel’s and our estimates of search complexity.

Accurate estimates have obvious attractions. For example, if we know before hand the expected

7 the results for nQ_3 for n > 8 are not shown since the cost of finding all solutions for bt+nat grows exponentially
for values greater than 8 this becomes prohibitive. Despite this, the trend is very clear - see section 4.6



cost of searching with a range of candidate algorithms, we can choose the one most suited to the

specific problem being solved. Domains of dominance are known to exists as was shown in (Tsang

et al 1995). Our results show that for some classes of CSP, for example randomly generated CSPs

with high density constraint graphs, these estimates can be reasonably accurate. However, we also

found that for classes of CSPs having lower density constraint graphs, the accuracy of the

estimates was reduced. Reducing the level of randomness in the constraint structure was also seen

to affect this accuracy.

The work in this chapter also shows that theoretical estimates of search complexity can be even

more effective when giving qualitative relationships of the expected search costs of different ZDC

formulations of a problem. Our approach was shown to be useful, even for some classes of

problem which have low density constraint graphs. We also noted that when the differences in

actual search cost were large, the use of our estimates was particularly effective.

The use of theoretical estimates of search complexity is an algorithm specific approach. However,

we have used such estimates for three different classes of algorithm. Furthermore, by

demonstrating the extensibility of the method, coverage of more algorithms should be possible,

thus allowing problem solvers to choose among the algorithms covered. For example there are

many hybrid algorithms possible from the combination of intelligent backtracking and lookahead

techniques (Prosser 1993).

We believe that our work shows how theoretical complexity estimates have a major role to play in

the development of ZDC formulation evaluation heuristics. As we mentioned in section 4.4.1,

even for classes of CSP for which the estimates are less reliable, further properties could be used

in conjunction with the estimates, in order to improve the accuracy of heuristic decision making.

4.6.1 The Concept of Constancy

One further observation from our work is the concept of constancy. If we consider the results in

section 4.5.3, we see that for n-Queens problems, as n varies, the ranking of different ZDC

formulations changes. The important point to observe is that after a certain value of n, the ranking

of the ZDC formulations becomes clear and fixed, although the differences between them may

grow. In other words, after some given point we gain a constant ranking. If such a constant



ranking can be found, this can be extremely useful for predicting the relative merits of such

problems in general. For example, we can predict with a high degree of confidence that

formulation nQ_3 is likely to continue to be a bad choice for values of n higher than 12.

The principle of constancy is applicable to problems which can be defined in terms of a particular

parameter, provided we have enough sample estimates to reveal the trends in formulation ranking.

Another example of this was seen in chapter 2 where different ZDC formulations of the magic

series problem were solved. A constant relationship between the solving costs candidate ZDC

formulations was observed and a clear trend was visible. We could reasonably predict in that case

that larger problem sizes would fit the same pattern.

4.7 Summary

In this chapter we have made two significant contributions;

• We have extended Nadel’s approach of generating theoretical complexity estimates for

selected algorithms to a member of an important class of algorithms - intelligent backtracking.

The results of experiments in this chapter gives us a high level of confidence in their

correctness.

• We have performed a major evaluation of the usefulness of theoretical complexity estimates.

Such a comprehensive evaluation has not previously been undertaken. Our evaluation has

shown the potential of the approach and how it can play an important role in ZDC formulation

selection.

In the next two chapters, we further develop the application of theoretical complexity estimates to

ZDC formulation evaluation heuristics.


