
CHAPTER 6

Evaluation Heuristics for Redundant

Constraints

Redundant constraints provide a widely recognised technique for improving the efficiency of

constraint satisfaction problem solving. A classic example of this is seen in (Dincbas et al 1988)

and (van Hentenryck et al 1992) where redundant constraints are added to an initial ZDC

formulation in order to improve the cost of solving car sequencing problems. The effect of their

use was significant since it allowed for many problems to be solved which were previously

believed to be beyond the capabilities of some computational techniques. (Smith 1996) also

discusses this approach.

In some cases it can be advantageous to remove redundant constraints. This was seen in (Dechter

& Dechter 1987) where the motivation for removing redundant constraints was to alter the

topology of the constraint graph. In this way, they found that considerable savings in search cost

could be achieved for certain problem classes.

The manipulation of redundant constraints can be an extremely powerful tool. At the same time,

decisions about how to use them are not always straightforward. When redundant constraints are

added, they offer the potential for eliminating futile sections of the search space. However, the

addition redundant constraints introduces an overhead to search algorithms since the total number



of constraints which actually need to be checked is increased. A trade off in these effects must

therefore be achieved.

In this chapter we investigate the idea of selectively adding redundant constraints to ZDC

formulations of binary CSPs. Our approach follows on from the work in chapters 4 and 5, by

further extending the use of theoretical complexity measures of search cost. We develop a set of

new ZDC formulation evaluation heuristics for use with the standard backtracking, backjumping

and forward checking algorithms. These heuristics are important because the idea of selective

addition of redundant constraints to ZDC formulations has not previously been investigated. As

we shall show, our approach represents a major step forward in the this area.

6.1 Redundant Constraints

In chapter 1 we described the process of problem formulation. We said that once the Z and D

structure of a ZDC formulation has been fixed the role of the constraint set, C, is to restrict the set

of legal, fully assigned, compound-labels to be the solution set. This can often be achieved with

one of a selection of different possible constraint sets. For example, consider the problem in figure

6.1.

P < Q < R

Figure 6.1 - A simple arithmetic problem, where P, Q and R are
digits in the range 1 to 10.

A straightforward and natural ZDC formulation of this problem is to have three variables in Z, p, q

and r, corresponding to P, Q and R. Each of these variables is then given a domain of {1...10}.

Having made these decisions, we now need to define the constraints in C. One obvious possibility

would be to have two constraints corresponding to the inequalities;

Cpq: p < q (6-1)

and

Cqr: q < r (6-2)



By further analysing the original problem, we note that the sum of Q and R is also greater than P.

We can incorporate this additional knowledge of the problem into our ZDC formulation by adding

the constraint;

Cpqr: p < q + r (6-3)

The addition of constraint Cpqr moves the ZDC formulation closer being a complete maximal

problem, as described in chapter 2. This is valid, though not necessarily useful, because its

presence or absence in the ZDC formulation does not affect the number of possible solutions.

Because of this we say that constraints such as Cpqr are redundant;

Definition 6.1 (Tsang 1993) - A k-constraint in a CSP is redundant if it does not restrict the k-

compound labels of the subject variables further than the restrictions imposed by the other

constraints in that problem. This means that the removal of it does not change (increase) the set of

solution tuples in the problem. æ

As we have already described, the addition, or removal of redundant constraints can have a

marked effect on the efficiency of search in a particular ZDC formulation. This was also seen in

chapter 2 where the search costs of solving different ZDC formulations of the magic series

problem varied by several orders of magnitude as a result of the addition of redundant constraints.

As a further illustration, we show the effects of adding redundant constraints to the ZDC

formulations of the edge-numbering problem.

6.1.1 Solving the Edge-Numbering Problem

The task in the edge numbering problem is to label each edge of a cube with a different number

from 1 to 13 in such a way that the following conditions are satisfied;

i. the sum of the three edges meeting at each vertex is a constant, x

ii. the sum of the four edges round each face is constant, y

A possible solution to this problem is given in figure 6.2, where x is 21 and y is 28.
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One possible ZDC formulation of the edge-numbering problem is to have a variable for each of the

edges and two additional variables representing the “constants” x and y. Constraints are then

added to ensure that all the edges are different and that the face and vertex conditions are

satisfied. This gives us ZDC formulation ENP_1;

ENP_1: Z: 12 variables to representing the individual edges and two additional variables to

represent the face and vertex sums x and y.

D: {1..13} for the edge variables. Dx = {1...39} and Dy {1...42}1

C: One constraint stating that all the edges are different.

Eight constraints stating the vertex conditions.

Six constraints stating the face conditions.

On inspection of the edge-numbering problem, we also notice that the sum of the eight vertex

constants is equal to the sum of the six face constants, since each edge is represented twice in each

total. This gives us a redundant constraint;

Cxy: 8 × x = 6 × y

We use this redundant constraint by adding it to ENP_1, forming a modified version which we call

ENP_2.

Given these two ZDC formulations of the edge numbering problem, we implemented and solved

both using the ILOG Solver programming language (ILOG 1994). The results for finding the first

solution, which is depicted in figure 6.2, were 147mS for ENP_1 and 80 mS for ENP_2. Since the

formulations, and hence the implementations, are identical except for the one redundant

constraint, we can conclude that the redundant constraint, Cxy, is responsible for this 83% gain in

solving efficiency2.

                                        
1 The maximum domain size of x and y is based on the maximum total of the variables they constrain
2 Using a DEC Alpha 3000 AXP machine running at 175MHz.
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Figure 6.2 - A solution to the edge-numbering problem with x=21 and y=28

6.2 Generating Redundant Constraints

If we have an initial ZDC formulation, there are two basic ways in which redundant constraints

can be generated and hence added. The first, and probably the most common, is through

knowledge of the problem being solved. For example, in the problem described in figure 6.1, we

used our knowledge of the arithmetic expression in order to derive the redundant constraint Cpqr.

Another, more practical, example of this approach is seen in (Dincbas et al 1988). There, sets of

redundant constraints are generated using knowledge of the nature of the car sequencing problem.

The second way in which redundant constraints can be obtained is using knowledge free,

automatic, generation. For example, consider an original ZDC formulation having a core

constraint graph, such as the graph indicated by the solid edges in figure 6.3. Without any

knowledge of the actual nature of the problem being solved, we know that there are potential

redundant binary constraints for all of the dashed edges in the graph. If the content of these

constraints can be determined, then we have potentially useful redundant constraints.

Figure 6.3 - An example constraint graph with some candidate

redundant edges shown as dashed
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One particular method which we can use to automatically generate redundant constraints is to

identify composition constraints. These are described in detail in the following section and it is the

intelligent, selective addition of these constraints to ZDC formulations that we investigate in the

remainder of this chapter.

6.3 Redundant Composition Constraints

The problem described in figure 6.1 can be viewed as two individual arithmetic expressions. This

view of the problem resulted in the two constraints Cpq and Cqr for our original ZDC formulation.

In addition, we can also derive a further expression from the problem which is the composition of

these two base expressions. This composition expression is;

P<R (6-4)

The above composition expression represents further implied knowledge about the problem which

was determined by a simple rule of arithmetic. We can use the same approach to determine

redundant composition constraints. These constraints are important because for any group of

three variables, a redundant composition constraint can always be found, provided two of the

three possible binary constraints between the variables exist. So in the example problem of figure

6.1, a redundant composition constraint Cpr exists.

In this section we investigate the properties of redundant composition constraints. We first look at

how their usefulness is affected by the imposition of variable orderings, when used with systematic

search algorithms. We then present a detailed analysis of how the effectiveness of search is

affected by their inclusions for three systematic search algorithms - standard backtracking,

backjumping and forward checking.

6.3.1 Redundant Constraints Under a Search Ordering

While redundant constraints clearly provide us with potential benefits, they are not an essential

part of any given ZDC formulation in the sense that they have no effect on the solution set. The

additional constraint-based information a redundant constraint provides gives explicit details of

illegal states in the search space which are already implicit in the original ZDC formulation. For

systematic search algorithms this means that the usefulness of any redundant constraint is
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dependent on it bringing forward the possibility of using the explicit constraint-based information

it provides. If a redundant constraint brings forward knowledge of a no-good in the search, this

can be useful to an algorithm. However, if it does not, then the additional constraint simply

presents itself as a further constraint which needs to be checked without providing any benefit. As

a result, one factor which affects the usefulness of a redundant constraint is the order in which

variables are labelled, and hence the variable ordering heuristic used.

The complication when using redundant constraints is that we do not always know when they are

bringing forward explicit knowledge of new no-goods. This is because the content of a given

redundant constraint can be the result of effects of many different combinations of other

constraints in the ZDC formulation. However, with redundant composition constraints, we have

the benefit of knowing where their content comes from - it results from the composition of two

other known constraints. This is illustrated in figure 6.4.

Figure 6.4 - Possible scenarios for redundant composition constraints

under search ordering O

If any two of the constraints Cpq, Cpr and Cqr in figure 6.4 exist, then we have the opportunity to

generate the third as a composition constraint. As we shall show in the remainder of this section,

which of the three possible redundant composition constraints is useful, under a given search

ordering, O, is dependent on the particular algorithm being used to solve the ZDC formulation.
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6.3.2 Characteristics of Redundant Composition Constraints

As well as the algorithm and variable ordering, other factors affect the usefulness of a given

redundant composition constraint. One of these factors is the tightness of the constraint. Clearly if

the tightness, or p2 value, is 0, which means it disallows no compound labels, then it will restrict

the search space no further. Such a constraint serves no useful purpose, while it introduces the

overhead of extra constraint checking. In contrast, if the constraint has a very high tightness value,

we have more chance that a check of that constraint will result in elimination of futile search

space, giving a reduction in the overall search cost.

Another factor affecting the usefulness of a constraint is the amount of search effort it is likely to

save in the event that it causes a backtrack. This effort can be expressed in several ways. For

example, we may consider the number of nodes in the search space saved, or the number of

constraint checks saved.

From our analysis we see that there are some positive and some negative aspects to adding a

redundant constraint. On the positive side, there are potential gains in avoiding portions of the

search space. On the negative side, whenever the redundant constraint is checked there is an extra

cost incurred. We now detail the effects of redundant composition constraints in terms of their

effects on the number of nodes visited and the number of constraint checks performed during

search.

6.3.2.1 Effects of Composition Constraint Cpq

Referring to figure 6.4, when constraints Cpr and Cqr exist, we can generate a redundant constraint

Cpq by composition. In this section we consider the effect of this redundant constraint on standard

backtracking, backjumping and forward checking.

For standard backtracking the introduction of constraint Cpq can only result in fewer, or at worst

the same number of nodes being visited by the algorithm. This leads us to proposition 6.1;

Proposition 6.1: The addition of redundant composition constraint Cpq results in the same or

fewer nodes being visited by standard backtracking, when a static variable ordering is used. Cpq

never increases the total number of nodes visited.
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Proof: The constraint Cpq is first checked by standard backtracking when the search reaches level

q. For all previous search levels, the algorithm visits the same nodes as it would do in an original

ZDC formulation which does not include Cpq. When Cpq is checked at level q, if no compatible

values are found, a backtrack will occur and no further nodes are expanded in that particular sub-

search space. For the case of the original ZDC formulation, a backtrack resulting from the

composition of conflicts with variables p and r will not take place at this point and it is deferred,

possibly until the search reaches q. As a result, the addition of Cpq can only result in the same or

less nodes being visited. æ

For backjumping the effect of introducing redundant composition constraint Cpq is similar, but it is

complicated by possible interactions with the effectiveness of the jumping mechanism. This leads

to proposition 6.2;

Proposition 6.2: The addition of redundant composition constraint Cpq results in the same, fewer

or more nodes being visited by backjumping, when a static variable ordering is used.

Proof: The effect of Cpq on the number of nodes visited by backjumping depends on whether or

not there are constraints which exist between any variable prior to p and any variable between q

and r. We denote case 1 to be the case where no such constraints exist and case 2 to be the case

where one or more does.

case 1: As with standard backtracking, for backjumping the constraint Cpq is first checked

when it reaches level q. For all previous search levels, the algorithm visits the same

nodes as it would do in a ZDC formulation not including Cpq. When the constraint is

checked at level r, if no further compatible values are found, a backtrack to the

previous level, or a backjump to level p will occur in the case where no compatible

value at all were found, and no further nodes are expanded in that particular sub-

search space. For the case of the original ZDC formulation, a backtrack resulting

from the composition of conflicts with variables p and r will not take place at this

point and it is deferred until the search reaches q. As a result, for this situation, the

addition of Cpq can only result in the same or fewer nodes being visited.
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case 2: If a constraint exists between a variable i, which is prior to p, and a variable j which

lies between q and r, it is always possible that a jump could occur from j back to i,

resulting in a section of the search space being eliminated. However, for the case

where redundant composition constraint Cpq is added, backtracks at level q due to

that redundant constraint mean that possible jumps from j to i are avoided, or

delayed. As a result, sections of futile search can occur due to a culprit decision at

level i and this means that more nodes could be visited than would have been the case

without Cpq.

Given that both case 1 and case 2 are possible situations, the overall effect of redundant

composition constraint Cpq can be for the same, fewer or more nodes being visited by

backjumping, when a static variable ordering is used. æ

The effect of redundant composition constraint Cpq on the number of nodes visited by forward

checking is similar to that for standard backtracking. This gives us proposition 6.3;

Proposition 6.3: The addition of redundant composition constraint Cpq results in the same or

fewer nodes being visited by forward checking, when a static variable ordering is used. Cpq never

increases the total number of nodes visited.

Proof: The constraint Cpq is first checked by forward checking when the search reaches level p.

For all previous search levels, the algorithm visits the same nodes as it would do in a ZDC

formulation not including Cpq. When the constraint is checked at level p, values may be pruned

from the domain of variable q. If values are removed from the domain of q, then this can result in

earlier domain wipe-out in the search levels between p and q, compared to the original ZDC

formulation. This can only result in the same or fewer nodes being visited. æ

Propositions 6.1-6.3 gives us the effects of redundant composition constraint Cpq on the number

of nodes visited. The effect of Cpq on the of number of constraint checks performed by these three

algorithms is less easily identified. If less nodes are visited then this should result in a reduction in

the number of checks performed. However, countering this gain, there is the overhead of actually

performing the check of the new constraint, as we have previously indicated. As a result, we can
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say that the addition of Cpq to an original ZDC formulation can have both beneficial and

detrimental effects on the number of constraint checks performed.

A summary of our findings in this section is given in table 6.1

Algorithm Nodes visited Compatibility Checks

bt The same or fewer nodes
visited

Can be more or less

bj The same, fewer of more
nodes visited

Can be more or less

fc The same or fewer nodes
visited

Can be more or less

Table 6.1 - The effects of adding redundant composition constraint Cpq

6.3.2.2  Effects of Composition Constraint Cqr

Referring to figure 6.4, when constraints Cpr and Cpq exist, we can generate a redundant constraint

Cqr by composition. In this section we consider the effect of this redundant constraint on standard

backtracking, backjumping and forward checking.

For standard backtracking, the introduction of Cqr has no effect on the number of nodes visited.

This gives us proposition 6.4;

Proposition 6.4: The addition of redundant constraint Cqr has no effect on the number of nodes

visited by standard backtracking, when a static variable ordering is used.

Proof: The constraint Cqr is first checked by standard backtracking when the search reaches level

r. At this level the algorithm would have also checked Cpq. Since Cqr is the composition of the

constraints Cpq and Cpr, it rules out no further compound labels at or after level r because it can

provide no effect different to that of checking Cpr. As a result, we can therefore say that the same

number of nodes are expanded in ZDC formulations with or without constraint Cqr. æ

It follows from proposition 6.4 that we cannot gain in terms of the number of constraint checks

when Cqr is added.
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Proposition 6.5: The addition of redundant constraint Cqr can only increase the number of

constraint checks performed by standard backtracking, when a static variable ordering is used.

Proof: The number of nodes is unaffected by the addition of Cqr. Since its addition increases the

number of constraints checkable at level r, provided it is checked at least once, Cqr must result in

the total number of constraint checks being the same or greater than for the original ZDC

formulation. æ

In a similar way, Cqr also has no effect on the number of nodes visited by backjumping. This gives

us proposition 6.6;

Proposition 6.6: The addition of redundant constraint Cqr has no effect on the number of nodes

visited by backjumping, when a static variable ordering is used.

Proof: We can apply the same line of reasoning as used in the proof of proposition 6.4.

Furthermore, no backjumps from level r to level q can occur as a result of Cqr. This is because for

values in the domain of r to fail against constraint Cqr, they would also have to have failed against

constraint Cpr. This is the case since Cqr is the composition of Cpr and Cpq. As a result, jumps to p

would always take precedence and hence Cqr has no effect on the jumping mechanism. æ

It follows from proposition 6.6 that the number of constraint checks can never be less for

backjumping when Cqr is added;

Proposition 6.7: The addition of redundant constraint Cqr can only increase the number of

constraint checks performed by backjumping, when a static variable ordering is used.

Proof: As for proposition 6.5. æ

The forward checking algorithm also fails to gain from Cqr.
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Proposition 6.8: The addition of redundant constraint Cqr has no effect on the number of nodes

visited by forward checking, when a static variable ordering is used

Proof: Cqr is first checked by forward checking when the search reaches level q. However, any

pruning on the domain of r would have already taken place at level p through the combined effect

of constraints Cpr and Cpq. This results in the same performance as would have been seen with the

original ZDC formulation. æ

Proposition 6.9: The addition of redundant constraint Cqr can only increase the number of

constraint checks performed by forward checking, when a static variable ordering is used.

Proof: As for proposition 6.5. æ

The conclusion of the above analysis is that composition constraint Cqr never benefits any of our

three algorithms, when a static variable ordering is used. This is summarised in table 6.2.

Algorithm Nodes visited Compatibility Checks

bt The same nodes visited Can be more
bj The same nodes visited Can be more
fc The same nodes visited Can be more

Table 6.2 - The effects of adding redundant composition constraint Cqr

6.3.2.3  Effects of Composition Constraint Cpr

Referring to figure 6.4, when constraints Cpq and Cqr exist, we can generate a redundant constraint

Cpr by composition. In this section we consider the effect of this redundant constraint on standard

backtracking, backjumping and forward checking.

For standard backtracking, the introduction of Cpr has no effect on the number of nodes visited.

Proposition 6.10: The addition of redundant constraint Cpr has no effect on the number of nodes

visited by standard backtracking, when a static variable ordering is used.
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Proof: The constraint Cpr is first checked by standard backtracking when the search reaches level

r. At this level the algorithm would have already checked Cpq. Since Cpr is the composition of the

constraints Cpq and Cqr, it rules out no further compound at or after r because its effect can

provide no effect different to that of checking Cqr. We can therefore say that the same number of

nodes are expanded in ZDC formulations with or without constraint Cpr. æ

It follows from proposition 6.10 that we cannot gain in terms of the number of constraint checks

when Cpr is added.

Proposition 6.11: The addition of redundant constraint Cpr can only increase the number of

constraint checks performed by standard backtracking, when a static variable ordering is used.

Proof: The number of nodes is unaffected by the addition of Cpr. Since its addition increases the

number of constraint checkable at level r, provided it is checked at least once, Cpr must result in

the total number of constraint checks being the same or greater than for the original ZDC

formulation. æ

For the backjumping algorithm redundant composition constraint Cpr can be beneficial;

Proposition 6.12: The addition of redundant composition constraint Cpr result in the same or

fewer nodes being visited by backjumping, when a static variable ordering is used. Cpq never

increases the total number of nodes visited.

Proof: When  a backjump is detected at level r, if the reason for that backjump is a conflict due to

the combined effect of Cpq and Cqr, then that reason must also be detected in Cpr, by composition.

In the original ZDC formulation, the resulting jump would be from r to level q. However, the

addition of Cpr means that the jump could take the search all the way back to level p. This means

that the nodes that backjumping would have had to cover to get back to that same reason for

failure in the original ZDC formulation are eliminated. As a result, there is a possible reduction in

the number of nodes visited. æ
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In terms of constraint checks, we do not know whether the increases in jumping effectiveness will

compensate for the cost of checking the additional constraint. The net effect of Cpr could be for

more or less checks to be performed.

For forward checking, there is also the potential for a reduced number of nodes to be visited when

Cpr is added.

Proposition 6.13: The addition of redundant composition constraint Cpr results in the same or

fewer nodes being visited by forward checking, when a static variable ordering is used. Cpr never

increases the total number of nodes visited.

Proof: The constraint Cpr is first checked by forward checking when the search reaches level p.

For all previous search levels, the algorithm visits the same nodes as it would do in a ZDC

formulation not including Cpr. When the constraint is checked at level p, values may be pruned

from the domain of variable r. If values are removed from the domain of r, then this can result in

earlier domain wipe-out in the search levels between p and q, compared to the original ZDC

formulation. This can only result in the same or fewer nodes being visited, since forward checking

backtracks chronologically. æ

The effect of Cpr on the number of constraint checks performed by forward checking is less well

defined. If less nodes are visited after its addition, then this should result in a reduction in the

number of checks performed. However, countering this gain, there is the overhead of actually

performing the check of the new constraint, as we have previously indicated. As a result, we can

say that the adding Cpr to an original ZDC formulation can have both beneficial and detrimental

effects on the number of constraint checks performed.

The above analysis is summarised in table 6.3.

Algorithm Nodes visited Compatibility Checks

bt Same nodes visited Can be same or more
bj Never more nodes visited Can be more or less
fc Never more nodes visited Can be more or less

Table 6.3 - The effects of adding redundant constraint Cpr
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6.3.2.4  Summary of Effects of Redundant Composition Constraints

The above analysis is important because it identifies occasions when redundant composition

constraints are never likely to be useful. It also identifies scenarios where they may prove useful.

In terms of the context for ZDC formulation selection which we described in chapter 3, we can

regard propositions 6.1-6.3, 6.12 and 6.13 as ZDC formulation suggestion heuristics, Hs. They

suggest to us when we might gain from using these constraints. In the next section, we describe a

set of evaluation heuristics, He, which can be used in conjunction with these suggestion heuristics.

6.4 Evaluation Heuristics for Redundant Composition Constraints

We have seen how some redundant composition constraints can be useful for certain algorithms.

In order to take advantage of this important opportunity for reducing search costs, we need to

develop a heuristic for evaluating the actual expected impact of these constraints. If this can be

achieved, it will allow us to selectively modify an original ZDC formulation by adding those

redundant constraints which show promise.

In section 6.3 we said that there is a trade off which must be considered before adding a redundant

constraint. On the one hand we need to take into consideration the cost of checking the constraint

in question, while on the other, we need to assess the amount of search space it is expected to

eliminate. One approach which takes both of these factors into account is the theoretical

complexity techniques used in chapters 4 and 5. In this section we adopt a similar approach.

However, there is a significant complication with redundant constraints which needs to be

addressed.

Equation (4-15) showed us that, using the theoretical complexity model, the expected number of

solutions is given by;
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This is an algorithm independent property which must hold for our three algorithms, standard

backtracking, backjumping and forward checking. However, when a redundant constraint is

added, provided the tightness is non-zero, the 
ij

i j n
p

< ≤
∏









 part of equation (4-15) will always be

reduced. As a result, the expected number of solutions would be reduced. Clearly this should not

be the case since redundant constraints, by definition, do not affect the number of solutions in a

ZDC formulation. A similar effect is seen with the expected number of nodes at a given search

level. In this section we overcome this problem by building on the work of chapter 4. The

modifications we present, allow us to develop a set of ZDC formulation evaluation heuristics for

redundant composition constraints, based on theoretical complexity estimates.

6.4.1 An Evaluation Heuristic for Standard Backtracking, ρρbt

In this section we develop an expression for standard backtracking which tells us whether or not a

given redundant composition constraint is likely to be useful. In section 6.3 we found that only the

redundant composition constraint Cpq could have a beneficial effect on the search cost. Our

evaluation heuristic therefore applies to this constraint. We call our heuristicρbt;

ρbt(Cpq) < 1.0  ⇒   the addition of redundant composition constraint Cpq is likely to

be useful

and

ρbt(Cpq) ³  1.0  ⇒  the addition of redundant composition constraint Cpq is not likely

to be useful

Referring to figure 6.4, according to proposition 6.1, when redundant composition constraint Cpq

is added to a ZDC formulation it can only affect the number of nodes expanded by standard

backtracking at search levels q to r-1, relative to the number of nodes expanded using the original

ZDC formulation. As a result, when calculating the number of nodes expanded for search levels 1

to r-1 we can use the same approach as (4-7) and simply include Cpq in the calculation. We call the

number of nodes expanded when Cpq is present n_red, for “nodes redundant”. Using (4-7) we

have;
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(6-5a)

For the case where search has progressed to level r and beyond, Cpq has no effect on the number

of nodes since its effect is the composition of Cpr and Cqr. We can therefore ignore Cpq when

calculating the number of nodes at levels greater than or equal to r. This gives us;
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(6-5b)

Our expression for calculating the expected number of constraint checks remains unaffected by the

redundant constraint - the constraint Cpq is simply included in the calculation and hence will reflect

the cost element of adding the constraint. As a result we can use (4-8) to calculate this value. We

can combine (6-5) and (4-8) to give us an expected search cost, c_red(bt);

( )c red bt c bt k n red bt k
k

n

_ ( ) ( , ) _ ( , )= ×∑
=1

(6-6)

We can combine our expression for c_red(bt) with the expression for c(bt) to give us ρbt;

ρbt(Cpq) = c_red(bt) / c(bt) (6-7)

Using (6-7), when the expected cost after adding Cpq is less than the expected cost of the original

ZDC formulation, we have ρbt < 1.0 which fits the definition of ρbt given at the start of this

section.

6.4.2 An Evaluation Heuristic for Forward Checking, ρρfc

The analysis in section 6.3 showed that two redundant composition constraints, Cpq and Cpr, can

have a beneficial effect on the search cost of forward checking. The evaluation heuristic we

describe in this section therefore applies to these two constraints. We call our heuristic ρfc;
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ρfc(c, TYPE) < 1.0  ⇒   the addition of redundant composition constraint c is

likely to be useful

and

ρfc(c, TYPE) ³  1.0  ⇒  the addition of redundant composition constraint c is not

likely to be useful

where TYPE indicates the actual constraint being considered, having possible values {PQ, PR}.

Considering the complexity estimates we developed for forward checking in chapter 4, the

addition of composition constraints affects three main elements of the calculation directly. These

elements are the number of nodes visited, the survival probability and the future domain size of a

variable. Furthermore, the actual search levels which can be affected by the constraints are from

level p to q-1 for both of the possible redundant constraints since at levels higher than p, the

constraints have no influence and at levels q or lower, the redundant information becomes

duplicated by the original constraints. This knowledge can be used to modify the theoretical

complexity estimates, so allowing us to use the approach after any redundant composition

constraints have been added.

We first develop an expression for the number of nodes visited to incorporate the effects we

outlined above. We call the number of nodes at level k with redundant constraints n_red. It is

calculated by modifying (4-11) to ensure that the effects of the redundant constraints only occur at

the relevant levels;

( )n red fc k TYPE D p
i

i k
ij

i j k f k
x

A A F
S k f TYPE k k q_ , , ( , , ) :=






















 −










 ∀ <

∈ < ∈ − ∈
∏ ∏ ∏

1

1           (6-8a)

( )n red fc k TYPE D p
i

i k
ij

i p j q
i j k

f k
x

A
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F
S k f TYPE k k q TYPE PQ_ , ,

( )

( , , ) :=
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
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1      (6-8b)

( )n red fc k TYPE D p
i

i k
ij

i p j r
i j k

f k
x

A
A

F
S k f TYPE k k q TYPE PR_ , ,
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1       (6-8c)
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A similar modification is used to obtain a revised expression for the survival probability of future

variables since the redundant constraints can bring forward pruning in future variables. We also

change the notation used for survival probability from f
k

S  which was used in (4-10) to s(k, f,

TYPE). This means the survival probability of future variable f, given current search level k and

the inclusion of redundant composition constraint TYPE. (6-9b) and (6-9c) exclude the constraint

affecting the calculation since their effect is the composition of two other constraints which are

included in the calculation. This gives us;

( )s k f TYPE p
fD

fi
i kA

k k q, , := − ∀ <− ∏




∈

1 1 (6-9a)

( )s k f TYPE p

fD

fi
i p f q

i kA

k k q TYPE PQ, ,
( )

:= − ∀ ³ ∧ =− ∏















¬ = ∧ = ∧

∈

1 1 (6-9b)

( )s k f TYPE p

fD

fi
i p f r

i kA

k k q TYPE PR, ,
( )

:= − ∀ ³ ∧ =− ∏















¬ = ∧ = ∧

∈

1 1 (6-9c)

In order to calculate the reduced domain size of future variable f, given search level k, we adopt a

similar approach to the survival probability. This means we modify (4-12) to ignore the

composition constraint when its has no effect. We also change the notation to incorporate the

notion of TYPE. In place of k
f

D we use ds(f, k, TYPE) which denotes the reduced domain size of

future variable f given current search level k and redundant composition constraint TYPE. This

gives us;

ds f k TYPE
D p

S

f
A

fj
j k

f
k k k q( , , ) ( ) :=













∀ <
∈ −

−

∏
1

1    (6-10a)
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ds f k TYPE

D p

S

f fj
j p f q

j kA

f
k

k k q TYPE PQ

( , , )

( )

( )
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ds f k TYPE
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S

f fj
j p f r
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(6-10c)

The notation used for estimating the number of constraint checks is also modified slightly in order

to incorporate these new expressions for the survival probability and the domain size of future

variables. We use c_red(fc, k, TYPE) to denote the expected number of constraint checks for the

forward checking algorithm at search level k, given redundant constraint TYPE. By modifying (4-

13) to this notation we have;

    ( )c red fc k TYPE ds g k TYPE
s k g TYPE

s k g TYPEik
jk

jk

G

j

i

i

k

_ , , ( , , )
( , , )

( , , )
=











−∏∑

=

−

= 11

1

1

    (6-11)

We can now complete our expression for the total estimated search cost in terms of constraint

checks;

( )c red fc TYPE c red fc k TYPE n red fc k TYPE
k

n

_ ( , ) _ ( , , ) _ ( , , )= ×∑
=1

(6-12)

We can combine our expression for c_red(fc, TYPE) with the expression for c(fc) to give us ρfc;
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ρfc(c, TYPE) = c_red(fc,TYPE) / c(fc)   (6-13)

Using (6-13), when the expected cost after adding a redundant constraint is less than the expected

cost of the original ZDC formulation, we have ρfc < 1.0 which fits the definition of ρfc given at the

start of this section.

6.4.3 An Evaluation Heuristic for Backjumping, ρρbj

As with the forward checking algorithm, the analysis in section 6.3 showed that the redundant

composition constraints Cpq and Cpr can have a beneficial effect on the search cost of

backjumping. The evaluation heuristic we describe in this section therefore applies to these two

constraints. We call our heuristicρbj;

ρbj(c, TYPE) < 1.0  ⇒   the addition of redundant composition constraint c is

likely to be useful

and

ρbj(c, TYPE) ³  1.0  ⇒  the addition of redundant composition constraint c is not

likely to be useful

where TYPE indicates the actual constraint being considered, having possible values {PQ, PR}.

In order to allow us to use the theoretical complexity estimates for backjumping when redundant

composition constraints are added to a ZDC formulation we must modify the way we calculate the

number of nodes expanded at level k in the search. Referring to figure 6.4, when a redundant

composition constraint is added to a ZDC formulation, a constraint of type PQ directly affects the

number of nodes visited by backjumping at search levels q to r, relative to the number of nodes

visited using the original ZDC formulation. However, the effects of constraint PR are only seen in

terms of jumping, which is reflected in the calculation of eds(xi), later in this section. This means

that PR should not be directly included in the calculation of n_red(bj, k, TYPE), the number of

nodes expanded at level k for the backjumping algorithm with redundant constraints added. This

leads us to modify (4-16) to take these factors into account;
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n red bj k TYPE eds x pi
A Ai k

ij
i j k

k k r TYPE PQ_ ( , , ) ( ) :=
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    (6-14a)

n red bj k TYPE eds x pi
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A
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A
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i p j r

i j k

k TYPE PR_ ( , , ) ( )
( )

:=




























∀ =
∈ ¬ = ∧ = ∧

< ∈ −

∏ ∏
1

(6-14c)

The second modification to our theoretical estimate for backjumping relates to the probability of

jumps occurring at level q back across search levels between p and q, and at level r back across

search levels between p and r. Both beneficial types of redundant composition constraint can

affect backjumping and as a result we must include them in the calculation of p(jump_at(j,i),

TYPE), the probability of a jump occurring at level j, given current search level i and redundant

composition constraint TYPE. However, we note that the jumping effects of redundant constraint

Cpr should only by applied in this calculation for jumps to levels between p and q, since jumps

across levels between q and r already apply to any existing constraint Cqr. This means we need to

modify equation (4-20);

( )p jump at j i TYPE p jxD

lj
l i

l l q TYPE PR( _ ( , ), ) := ∀ < ∧ =−∏
<

1   (6-15a)

( )p jump at j i TYPE p jxD

lj
l p l i

l l q TYPE PR( _ ( , ), )
( )

:= ∀ ³ ∧ =− ∏
¬ = ∧ <

1     (6-15b)

( )p jump at j i TYPE p jxD

lj
l i

l TYPE PQ( _ ( , ), ) := ∀ =−∏
<

1     (6-15c)
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Furthermore we must ensure that the effect of each constraint on the probability of being at a

specific level is only applied to the relevant levels of search. This is because the effects of the

composition constraint are only different to the original constraints for levels between p and r. In

fact, only Cpq has any effect on this probability and this is the case where adverse effects of

redundant composition constraint Cpq, as highlighted in the proof of proposition 6.2, are taken

into account. The expression for p(at(j,k),TYPE), the probability of being at search level j, given

current search level k and redundant composition constraint TYPE, is obtained by modifying (4-

19) such that the redundant constraints are only included at levels where they have effects;

p at j k TYPE pl m
k l j

m l

l l r TYPE PQ( ( , ), ) ,
:= ∀ < ∧ =

≤ <
< <

∏
1

(6-16a)

p at j k TYPE pl m
m p l q
k l j

m l

l l r TYPE PQ( ( , ), ) ,
( )

:= ∀ ³ ∧ =
¬ = ∧ = ∧

≤ < ∧
< <

∏
1

(6-16b)

p at j k TYPE pl m
m p l r
k l j

m l

l TYPE PR( ( , ), ) ,
( )

:= ∀ =
¬ = ∧ = ∧

≤ < ∧
< <

∏
1

(6-16c)

The modifications described in (6-15) and (6-16) allow us to calculate the value of eds(xi). This

means we have all the elements for the expected number of nodes as given in (6-14). Using this,

we can now complete an expression for the expected number of constraint checks by substituting

(6-14) into (4-22) to give;

( )c red bj TYPE c bj k n red bj k TYPE
k

n

_ ( , ) ( , ) _ ( , , )= ×∑
=1

(6-17)

We can combine our expression for c_red(bj, TYPE) with the expression for c(bj) to give us ρbj;

ρbj(c, TYPE) = c_red(bj,TYPE) / c(bj) (6-18)
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Using (6-18), when the expected cost after adding a redundant constraint is less than the expected

cost of the original ZDC formulation, we have ρbj < 1.0 which fits the definition of ρbj given at the

start of this section.

6.5 Evaluation of the ρρ Heuristics

Having developed a set of heuristics for evaluating the addition of redundant composition

constraints, in this section we assess their accuracy. We have stated in chapter 3 that for any

evaluation heuristic, He, to be useful, it should have an accuracy of at least 50%. In other words, it

should show some improvement on simply making arbitrary decisions about changes to ZDC

formulations. For the addition of redundant composition constraints this means that we want to

selectively add constraints such that an improvement in search efficiency is seen more than 50% of

the time. Furthermore, we should also like to see an improvement in performance relative to the

uninformed addition of the constraints.

In the remainder of this section we describe a set of experiments, using randomly generated binary

CSPs, aimed at testing this criterion. We do so for the evaluation heuristics ρbt, ρbj and ρfc.

6.5.1 Experimental Method

In chapters 4 and 5 we used randomly generated binary CSPs and 3-colouring problems for the

purposes of assessing evaluation heuristics. However, for 3-colouring problems and colouring

problems in general, all of the constraints are the same - the “not equals” constraint. We notice

from this that the composition of two “not equals” constraints is the null constraint. In other

words it constrains no tuples and has a tightness of 0. As a result, the addition of redundant

composition constraints is never effective in colouring problems and so we only use the randomly

generated binary CSPs for our assessment of the evaluation heuristics ρbt, ρbj and ρfc.

Our approach is similar to the one used for assessing the α heuristics in chapter 5. We generated

several sets of random binary CSPs, each having different characteristics, using the problem

generator described in appendix A.2. These CSPs are defined using the 4-tuple <n, m, p1, p2>

where n is the number of variables in the problem, m is the uniform domain size of the variables,

p1 is the density of the constraint graph and p2 is the tightness of the individual constraints.
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For each instance generated, we call that ZDC formulation R1. We then applied the redundant

composition constraint transformation, given in figure 6.5, to that ZDC formulation in order to

generate a second ZDC formulation, R2. The transformation algorithm looks at candidate

redundant constraints and adds them according to evaluation heuristic He. It was applied using

several different instantiations of, He, at lines 9 and 14 of the algorithm. Six cases were used;

i. He = 1.0 - uninformed addition for standard backtracking

ii. He = ρbt

iii. He = 1.0 - uninformed addition for backjumping

iv. He = ρbj

v. He = 1.0 - uninformed addition for forward checking

vi. He = ρfc

The reason for including cases i, iii and iv was to test our “informed” evaluation heuristics against

this uninformed baseline. We call the ZDC formulation resulting from these transformations R3.

Figure 6.5 - The Redundant Composition Constraint Transformation

1  Given a CSP(Z, D, C), algorithm alg and a variable v in ordering O:
2  BEGIN
3      FOR i = 1 to i = |Z|
4          FOR j = i+1 to j = |Z|
5               FOR k = j+1 to |Z|
6                   IF (CONNECTED(vi, vk) ∧
7                         CONNECTED(vj, vk) ∧
8                         ¬CONNECTED(vi, vj))
9                       IF He < 1.0
10                           ADD_COMPOSITION(vi, vj)
11                  IF (CONNECTED(vi, vj) ∧
12                        CONNECTED(vj, vk) ∧
13                        ¬CONNECTED(vi, vk) ∧  (alg=fc ∨  alg=bj) )
14                      IF He < 1.0
15                         ADD_COMPOSITION(vi, vk)
16              k++
17          j++
18      i++
19  END
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For each problem class considered, we generated 100 instances and each was solved using

standard backtracking, backjumping and forward checking. In addition, all six of the above R2 and

R3 formulations were created for each of those instances. We then solved each of these using the

corresponding algorithm.

Our expectation was that the use of the uninformed evaluation heuristics should show good

performance with some problem classes and bad in others. The reason for this is that for problem

classes where the redundant composition constraints are relatively tight, these constraints have a

high chance of being useful. However, such a naive approach should break down when the

redundant composition constraints become looser. If our ρ evaluation heuristics are effective, then

we should expect them to perform well over a wide range of problem classes, thus enabling them

to take advantage of useful redundant composition constraints while rejecting those which are not.

Our results are presented in the next section.

6.5.2 Results

For each of our three algorithms, standard backtracking, backjumping and forward checking, we

had a cost measure for each problem instance;

cc(R1) - the cost of solving the original ZDC formulation

cc(R2) - the cost of solving the output of figure 6.5 using cases ii, iv and vi

cc(R3) - the cost of solving the output of figure 6.5 using the uninformed

 cases i, iii and v

In a similar way to the approach taken in chapter 5, each of these cost measures was determined

for each of the three algorithms, standard backtracking, backjumping and forward checking. Our

results, over a range of problem classes, were processed with a view to observing both qualitative

and quantitative aspects of performance.

In order to assess the qualitative performance of our ρ heuristics, for each problem class tested,

we divided the results into three categories;
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cat. 1 - Instances where cc(R2) was less than cc(R1) by a margin of significance -i.e. a

  benefit was seen from the using the transformation. These results are given in 

    columns 3 and 5 in tables 6.3-6.5

cat. 2 - Instances where cc(R2) was greater than cc(R1) by a margin of significance -

  i.e. using the transformation resulted in a degradation in performance. These

  results are given in columns 4 and 6 in tables 6.3-6.5

cat. 3 - Instances where the difference between cc(R2) and cc(R1) is within the

  margin of significance - i.e. using the transformation resulted in no significant

  change in performance.

By partitioning the results in this way we are able compare the frequency of improvement and the

frequency of degradation when using the transformation. For example, if there are more category

1 instances than category 2 instances, then we can say we are seeing a benefit from using the

transformation in that we are gaining more often than we are losing. In fact, if the number of

category 1 instances is greater than category 2 then we can say that the 50% criterion outlined in

chapter 3 is satisfied, which is a good result. Conversely, if the number of category 2 instances is

greater than the number of category 1 instances then  the 50% criterion is violated and such a

result is considered bad. For the ideal case, we should like to see as many category one instances

as possible and as few category 2 as possible.

Processing the results as we have outlined above we can asses the performance of the redundant

composition constraint transformation when combined with each ρ heuristic used. However, we

should also like to be able to assess how much improvement our ρ heuristics provide over the

uninformed addition of redundant composition constraints. To see this effect we need to compare

the number of instances in each category for ZDC formulations R2 and R3. The results for R3 are

given as the figures in brackets in tables 6.3-6.5. If the ρ heuristics are performing well and

providing an improvement on the uninformed approach, then we should see more instances in

columns 3 and 5 and fewer in columns 4 and 6.

As an example of reading the tables of results, let us consider the results for backjumping with

problem class <40, 5, 0.1, 0.52> given in table 6.4. For a margin of significance of 5%, we see

that for 85% of the problem instances, ZDC formulation R2 gives a better performance than ZDC
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formulation R1, when ρbj is used. Only 7% cases were found where R1 is better than R2, so the

50% criterion is satisfied. This compares well with the case where uninformed addition of

redundant composition constraints was applied, where only 45% of the problem instances resulted

in ZDC formulation R3 giving a better performance than ZDC formulation R1 and 49% giving a

worse performance. As a result, the uninformed approach actually fails the 50% criterion.

In the tables some of the cells are shaded grey. This is to highlight the cases where the uninformed

addition of redundant constraints resulted in cc(R3) being higher than cc(R1) more often than not.

This effectively says that the 50% criterion is violated. At the same time, the results for our ρ

heuristics in these cells show much better performance, easily satisfying that criterion.

6.5.2.1 Conclusion

On inspection of the results in tables 6.3-6.5, we see that for some cases, the use of uninformed

addition of redundant composition constraints leads to satisfaction of the 50% criterion given in

chapter 3. An example of this is for the problem class <20, 10, 0.10, 0.81> where the criterion is

satisfied for each of the algorithms considered. However, there are also many cases where

arbitrary addition leads to the generation of ZDC formulations where the search performance is

degraded more often that it is improved as seen for the class <20, 10, 0.30, 0.60>, for each

algorithm. Further examples of these classes are indicated as the dark grey cells in the tables. This

contrasts greatly with gains we see from using the ρ heuristics which provide excellent all round

performance.

The results are promising and they suggest that our modified theoretical complexity estimates can

be used reliably for analysing the effects of adding redundant constraints to ZDC formulations for

the problem classes considered. We can say this because, with the use of the ρ heuristics, the

number of cases where the 50% criterion was violated was reduced to just a single problem class -

<20, 10, 0.30, 0.50> for ρbj, and even then the performance of ρbj  was still an improvement on the

uninformed approach. Furthermore, the range of problem classes used includes many which have

very low constraint graph densities. This reinforces the observation that there are many cases

where the theoretical complexity approach can be used on low density ZDC formulations.
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Accuracy with 5% margin
(%instances)

Accuracy with 15% margin
(%instances)

Class Algorithm+
Heuristic

cc R

cc R

( )

( )
.

2

1
0 95≤ cc R

cc R

( )

( )
.

2

1
105³ cc R

cc R

( )

( )
.

2

1
0 85≤ cc R

cc R

( )

( )
.

2

1
115³

<20, 5, 0.10, 0.72> bt+nat 99 (100) 0   (0) 99 (99) 0   (0)
<20, 5, 0.10, 0.76> bt+nat 100 (100) 0   (0) 100 (100) 0   (0)
<20, 5, 0.10, 0.80> bt+nat 100 (100) 0   (0) 100 (100) 0   (0)
<20, 5, 0.10, 0.84> bt+nat 99 (100) 0   (0) 98 (100) 0   (0)
<20, 5, 0.30, 0.32> bt+nat 75 (73) 1   (14) 62 (68) 0   (7)
<20, 5, 0.30, 0.36> bt+nat 91 (95) 0   (1) 81 (84) 0   (0)
<20, 5, 0.30, 0.40> bt+nat 98 (98) 0   (1) 95 (94) 0   (1)
<20, 5, 0.30, 0.44> bt+nat 100 (100) 0   (0) 97 (98) 0   (0)
<20, 10, 0.10, 0.81> bt+nat 94 (99) 0   (0) 94 (99) 0   (0)
<20, 10, 0.10, 0.86> bt+nat 92 (96) 0   (0) 92 (96) 0   (0)
<20, 10, 0.10, 0.91> bt+nat 98 (99) 0   (0) 98 (99) 0   (0)
<20, 10, 0.30, 0.50> bt+mwo 3   (7) 0   (84) 1   (3) 0   (71)
<20, 10, 0.30, 0.55> bt+mwo 11 (7) 0   (78) 4   (1) 0   (51)
<20, 10, 0.30, 0.60> bt+mwo 12 (12) 0   (53) 2   (3) 0   (14)
<40, 5, 0.10, 0.44> bt+mwo 37 (91) 0   (3) 24 (87) 0   (1)
<40, 5, 0.10, 0.48> bt+mwo 47 (98) 0   (1) 34 (93) 0   (0)
<40, 5, 0.10, 0.52> bt+mwo 48 (92) 0   (1) 36 (86) 0   (0)
<40, 5, 0.30, 0.20> bt+mwo 8   (59) 0   (12) 5   (39) 0   (0)
<40, 5, 0.30, 0.24> bt+mwo 12 (36) 0   (41) 5   (23) 0   (19)

Table 6.3 - Results of adding redundant composition constraints

using ρbt - uninformed figures are in brackets
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Accuracy with 5% margin
(%instances)

Accuracy with 15% margin
(%instances)

Class Algorithm+
Heuristic

cc R

cc R

( )

( )
.

2

1
0 95≤ cc R

cc R

( )

( )
.

2

1
105³ cc R

cc R

( )

( )
.

2

1
0 85≤ cc R

cc R

( )

( )
.

2

1
115³

<20, 5, 0.10, 0.72> bj+nat 97 (98) 2   (1) 96 (98) 2   (1)
<20, 5, 0.10, 0.76> bj+nat 99 (99) 1   (1) 99 (99) 1   (1)
<20, 5, 0.10, 0.80> bj+nat 96 (96) 3   (3) 96 (96) 3   (3)
<20, 5, 0.10, 0.84> bj+nat 97 (97) 3   (3) 95 (95) 3   (3)
<20, 5, 0.30, 0.32> bj+nat 56 (33) 31 (58) 43 (21) 20 (53)
<20, 5, 0.30, 0.36> bj+nat 84 (44) 13 (50) 70 (27) 10 (43)
<20, 5, 0.30, 0.40> bj+nat 92 (47) 5   (38) 87 (43) 2   (26)
<20, 5, 0.30, 0.44> bj+nat 98 (74) 1   (18) 94 (67) 1   (14)
<20, 10, 0.10, 0.81> bj+nat 99 (100) 1   (0) 97 (100) 0   (0)
<20, 10, 0.10, 0.86> bj+nat 98 (100) 1   (0) 98 (99) 0   (0)
<20, 10, 0.10, 0.91> bj+nat 98 (98) 1   (1) 96 (97) 1   (1)
<20, 10, 0.30, 0.50> bj+mwo 30 (0) 40 (100) 11 (0) 2   (100)
<20, 10, 0.30, 0.55> bj+mwo 45 (0) 7   (100) 19 (0) 1   (100)
<20, 10, 0.30, 0.60> bj+mwo 37 (0) 12 (97) 9   (0) 0   (92)
<40, 5, 0.10, 0.44> bj+mwo 86 (48) 8   (50) 79 (45) 5   (40)
<40, 5, 0.10, 0.48> bj+mwo 96 (61) 3   (34) 92 (54) 1   (28)
<40, 5, 0.10, 0.52> bj+mwo 85 (45) 7   (49) 83 (38) 3   (42)
<40, 5, 0.30, 0.20> bj+mwo 56 (27) 11 (50) 26 (17) 1   (32)
<40, 5, 0.30, 0.24> bj+mwo 60 (9) 14 (88) 34 (2) 3   (83)

Table 6.4 - Results of adding redundant composition constraints

using ρbj - uninformed figures are in brackets
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Accuracy with 5% margin
(%instances)

Accuracy with 15% margin
(%instances)

Class Algorithm+
Heuristic

cc R

cc R

( )

( )
.

2

1
0 95≤ cc R

cc R

( )

( )
.

2

1
105³ cc R

cc R

( )

( )
.

2

1
0 85≤ cc R

cc R

( )

( )
.

2

1
115³

<20, 5, 0.10, 0.72> fc+nat 89 (90) 7   (9) 83 (89) 3   (7)
<20, 5, 0.10, 0.76> fc+nat 92 (97) 4   (3) 92 (95) 2   (3)
<20, 5, 0.10, 0.80> fc+nat 86 (94) 2   (4) 84 (91) 0   (2)
<20, 5, 0.10, 0.84> fc+nat 83 (86) 0   (5) 81 (84) 0   (5)
<20, 5, 0.30, 0.32> fc+nat 5   (10) 1   (81) 4   (7) 0   (74)
<20, 5, 0.30, 0.36> fc+nat 1   (21) 1   (70) 0   (9) 0   (58)
<20, 5, 0.30, 0.40> fc+nat 4   (24) 0   (66) 0   (15) 0   (56)
<20, 5, 0.30, 0.44> fc+nat 4   (40) 0   (49) 1   (26) 0   (36)
<20, 10, 0.10, 0.81> fc+nat 88 (91) 3   (8) 87 (90) 1   (5)
<20, 10, 0.10, 0.86> fc+nat 98 (97) 1   (1) 97 (97) 0   (1)
<20, 10, 0.10, 0.91> fc+nat 93 (96) 1   (2) 92 (95) 0   (2)
<20, 10, 0.30, 0.50> fc+mwo 0   (0) 0   (100) 0   (0) 0   (100)
<20, 10, 0.30, 0.55> fc+mwo 1   (0) 0   (99) 0   (0) 0   (100)
<20, 10, 0.30, 0.60> fc+mwo 0   (0) 0   (100) 0   (0) 0   (99)
<40, 5, 0.10, 0.44> fc+mwo 50 (42) 9   (54) 36 (36) 3   (49)
<40, 5, 0.10, 0.48> fc+mwo 51 (48) 6   (45) 34 (39) 0   (38)
<40, 5, 0.10, 0.52> fc+mwo 42 (29) 0   (68) 16 (24) 0   (62)
<40, 5, 0.30, 0.20> fc+mwo 0   (29) 0   (42) 0   (8) 0   (12)
<40, 5, 0.30, 0.24> fc+mwo 0   (1) 0   (98) 0   (0) 0   (94)

Table 6.5 - Results of adding redundant composition constraints

using ρfc - uninformed figures are in brackets

6.5.3 Quantitative Performance

The qualitative performance of our heuristic was very good, with high levels of accuracy seen. In

order to see the quantitative performance, we show results in figures 6.6-6.8 for the performance

of ρbt, ρbj and ρfc on problem class <40, 5, 0.10, 0.48>.  These results show the a scatter plot of the

ratio of cc(R2) and cc(R1) for a sample of 500 instances. This gives us a useful indication of the

actual savings that can be expected through the use of our new ZDC formulation evaluation

heuristics.

These results demonstrate how our approach allows us to obtain significant savings in search cost

from the addition of redundant composition constraints. There are several instances where order

of magnitude gains are seen, especially for backjumping. In addition, we see that, while there are a

few instances where degradation in performance is seen, and the ratio cc(R2)/cc(R1) is greater
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than 1, the magnitude of that degradation is very small. This gives further evidence of the

robustness of our approach.
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Figure 6.6 - Search costs on ZDC formulations R1 and R2 using ρbt
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Figure 6.7 - Search costs on ZDC formulations R1 and R2 using ρbj

- sample size of 500
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Figure 6.8 - Search costs on ZDC formulations R1 and R2 using ρfc

- sample size of 500
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6.6 Discussion

The results in section 6.5 show that the new evaluation heuristics we have developed in this

chapter perform well on randomly generated binary CSPs. Several interesting observations arise

from the results of our experiments.

6.6.1 Sensitivity to Class Variations

For a ZDC evaluation heuristic to be effective, it must perform well over a wide range of problem

classes. Our results demonstrate that the ρ heuristics are sensitive enough to include redundant

composition constraints when they are useful, while not including them when they are not useful.

We saw this effect in tables 6.3-6.5 where only one pair of cells, class <20, 10, 0.30, 0.5> for

backjumping, shaded light grey, show a qualitative performance which violates the 50% criterion

outlined in chapter 3. This contrasts with the results obtained when candidate redundant

constraints are always added, as indicated by the cells shaded both light and dark grey in the

tables. The ρ heuristics prove to be far more selective, demonstrating the flexibility of the

theoretical complexity approach.

6.6.2 Accuracy with Low Density Constraint Graphs

In chapter 4 we noted that the theoretical complexity model is less accurate in predicting search

costs in CSPs with low density constraint graphs. However, we also noted that this does not

necessarily preclude the approach from being useful when comparing ZDC formulations since for

ZDC formulation comparison we are interested in the qualitative relationship in search costs.

Many of the problem classes used in this chapter have low density constraint graphs, such as <20,

5, 0.10, 0.72> and <40, 5, 0.10, 0.52> where the constraint graph density is 0.1. Good

performance on such problem classes is seen for all three of our evaluation heuristics. This

suggests that there the scope of useful application of the theoretical complexity approach can be

extended using the techniques we have described.

6.6.3 Searching for a Single Solution

The searches performed in all of the experiments in this chapter were for finding the first solution

to the problems in question. This relies on the relaxation of assumption A_4.1. However, despite

this relaxation, the ρ heuristics have been successfully applied when searching for a single
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solution. This further demonstrates how the scope of theoretical complexity estimates can be

extended.

6.6.4 Exceptionally Hard Problems

The quantitative performance of our approach shows a useful and consistent gain in search costs

for the transformed ZDC formulation, as indicated in figures 6.6-6.8. Furthermore, some

significant gains are also seen in some instances within the problem class used. The process of

adding redundant constraints nearly always results in a reduction in the number of nodes visited by

the search algorithms we have considered, as we showed from our analysis in section 6.3. The

reason for this is that redundant constraints, when they are useful, bring forward the elimination of

regions of futile search space.

We conjecture that for some classes of CSP, bringing forward the elimination of such regions of

futile search space could reduce the frequency of exceptionally hard problems (Smith & Grant

1995).

6.6.5 Effective Evaluation Heuristics for Constant Solution Density

The work in this chapter has concentrated on the development of effective suggestion and

evaluation heuristics for the addition of redundant composition constraints. An important point to

note about the addition of redundant constraints in general is that they have no effect on

properties such as such as T-Factor or kappa, κ, which are sensitive to the solution density of a

ZDC formulation. The reason for this is that redundant constraints do not affect the number of

solutions in a ZDC formulation, or the dimensions of the search space, S. Modified theoretical

complexity measures such as the ones we have described in this section can overcome this

problem and provide a measure sensitive to the variations in this important property.

6.6.6 Extension to of Measure Vector

The evaluation heuristics we have described are based on the use of the single property of

theoretical complexity. Our results show that this is a feasible approach. However, we believe that

combinations of theoretical complexity with other measures may further enhance the performance

of the ρ heuristics.
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6.7 Summary

The use of redundant constraints is a well known technique which can bring significant reductions

in problem solving efficiency. Methods for automatically evaluating the usefulness of candidate

redundant constraints have not previously been developed. Such methods are essential if we are to

take full advantage of redundant constraints as a tool for improving search costs since while

redundant constraint addition can be good, there are also examples where it can prove detrimental

to search cost. In this chapter we have developed a new and original approach which uses the idea

of ZDC formulation evaluation heuristics. Our work has made several important contributions;

• We have presented a thorough analysis of the usefulness of redundant composition constraints

with respect three systematic search algorithms. This analysis forms the basis of a ZDC

formulation suggestion heuristic, avoiding the futile addition of constraints while identifying

the opportunities for gains.

• We have modified the theoretical complexity equations presented in chapter 4 and used these

modifications to develop a set of new ZDC formulation evaluation heuristics; ρbt, ρbj and ρfc.

• Extensive experiments were performed to evaluate the ρ. These experiments demonstrated

that our approach does indeed provide us with a flexible method for selectively adding

redundant composition constraints.

The ρ heuristics we have devised demonstrate a how the automatic, a priori, assessment of the

likely effect of a given redundant constraint on the search cost can be achieved. Furthermore, the

theoretical complexity approach we have adopted provides an accurate, low cost method for

achieving this.


