
CHAPTER 5

Evaluation Heuristics for Variable

Aggregation

Given a ZDC formulation, provided there are at least two variables in Z, there is one ZDC

formulation transformation that can always be applied to it in order to generate further ZDC

formulations - the variable aggregation transformation. As the name suggests, variable

aggregation involves the merging of domains of variables and it can result in large reductions in

the overall complexity of the search space. This, in turn, can lead to large reductions in the search

cost for some problem classes. These characteristics make variable aggregation a useful ZDC

transformation which has an major role to play in improving the overall cost of problem solving.

In Chapter 3 we said that reducing the search space complexity is a potentially useful ZDC

formulation suggestion heuristic, Hs. The use of such a heuristic, when traversing the space of

possible ZDC formulations, would point to the variable aggregation transformation as a suitable

move operator. However, as we pointed out in chapter 2, reducing the complexity of the search

space, S, does not always result in improved search costs. For some problem classes it can actually

result in a degradation in search cost. This is to be expected since reducing S is only a heuristic.

As a result, while aggregating variables can lead to large reductions in search cost, in some cases

it can lead to increases. What is required for variable aggregation to be effective is a good

evaluation heuristic, He, which helps to identify both good and bad aggregations.



In this chapter we investigate evaluation heuristics specific to the variable aggregation

transformation. We build on the general evaluation heuristic discussed in chapter 4, and present an

important new set of heuristics which use knowledge about the nature of the variable aggregation

transformation in order to improve its effectiveness. Our heuristics are designed for ZDC

formulations that are to be solved with the standard backtracking, backjumping and forward

checking algorithms and we present results demonstrating significant improvements in the

effectiveness of the transformation.

5.1 The Variable Aggregation Transformation

The basic principle of variable aggregation was described in Chapter 4. It is a simple ZDC

formulation transformation where a pair of variables, xa and xb, in an original ZDC formulation f1,

is aggregated to form a single variable, xab, in the new formulation f2. The domain of xab is defined

by the set of distinct 2-compound labels formed when selecting a value from each of the original

domains. These variables may or may not be constrained to each other. If they are not, then the

domain of the new variable becomes the complete set of these 2-compound labels. However,

when there is a binary constraint between variables xa and xb, the domain of xab is reduced to the

set of legal compound labels which define that constraint. This is illustrated in figure 5.1 where the

number of variables is reduced from 3 to 2 and where the search space complexity, S, is reduced

from 27 to 18.1

Figure 5.1 - An example aggregation where Cab and Cac are both “not equal”.

The reduction in S shown in figure 5.1 can be magnified when applied to larger problems where

more pairs of variables are available for merging. As a result, as we have previously mentioned,

this ZDC transformation presents a significant opportunity for improving problem solving

1 The original value of S was |Da|×|Db|×|Dc|=3×3×3=27. For the new formulation S is |Dab|×|Dc|=6×3=18.

ab

 c

Cab,c

{1, 2, 3}

{(1,2), (1,3), (2,1),
  (2,3), (3,1), (3,2)}

 a

 b c

Cab Cac

{1, 2, 3}

{1, 2, 3} {1, 2, 3}



efficiency. In order for us to take advantage of such opportunities, the merging of variables can be

applied in a systematic fashion. One such algorithm for achieving this is given in figure 5.2.

Figure 5.2 - the basic variable aggregation transformation

For this particular algorithm, pairs of variables are only aggregated if they are connected by a

constraint, as defined at line 4. If this were not the case, then there would be no reduction in

search space complexity, which is counter to our motivation for carrying out such aggregations.

An example of the application of the basic variable aggregation transformation is with the well

known zebra problem (Smith 1992) (Prosser 1993). The zebra problem involves solving a puzzle

where five people of different nationalities are to be assigned to five different houses, to have a

different pet and to be assigned a different drink and brand of cigarettes, all subject to certain

constraints. The full problem is given in figure 5.3.

Figure 5.3 - the zebra problem.

1  Given a CSP(Z, D, C) and a variable x in ordering O:
2  BEGIN
3    FOR i = 1 to i = |Z|-1
4       IF CONNECTED(xi, xi+1)
5               AGGREGATE(xi, xi+1)
6               i += 2
7               CONTINUE
8       ELSE
9           i++
10          CONTINUE
11  END

1. The Englishman lives in the red house.
2. The Spaniard owns the dog.
3. Coffee is dunk in the green house.
4. The Ukrainian drinks tea.
5. The green house is immediately to the right of the ivory house.
6  The Old Gold smoker keeps snails.
7. Kools are smoked in the first house on the left.
8. Milk is drunk in the middle house.
9. The Norwegian lives in the first house on the left.
10. The Chesterfield smoker lives nest to the fox owner.
11. Kools are smoked next to the house with the horse.
12. The Lucky Strike smoker drinks orange juice.
13. The Japanese smokes Parliament.
14. The Norwegian lives next to the blue house.

The question to be answered is;

Who drinks water and who owns the zebra?



There are many possible ZDC formulations of this problem. One natural ZDC formulation for the

zebra problem is Z1;

Z1: Z: five variables, a1-a5, for the colours

five variables, b1-b5, for the nationalities

five variables, c1-c5, for the pets

five variables, d1-d5, for the drinks

five variables, e1-e5, for the cigarette brands

D: the five possible houses that can be assigned, i.e. {1...5}

C: constraints 1 to 14 as defined in figure 5.3

set of binary constraints between all variables a1-a5 stating that they have different houses

set of binary constraints between all variables b1-b5 stating that they have different houses

set of binary constraints between all variables c1-c5 stating that they have different houses

set of binary constraints between all variables d1-d5 stating that they have different houses

set of binary constraints between all variables e1-e5 stating that they have different houses

We applied the aggregation transformation described in figure 5.2 to Z1, so obtaining a second

ZDC formulation, Z2. These were then solved using standard backtracking, backjumping and

forward checking combined with the minimum width variable ordering (Freuder 1982)2. The

results are given in table 5.1. They show that this is a case where aggregation proves to be

beneficial.

Checks for Z1 Checks for Z2
bt+mwo 8929 6598
bj+mwo 3623 2190
fc+mwo 2936 1375

Table 5.1 - the effects of aggregation on the zebra problem

In terms of our context, which we described in chapter 3, it is possible to categorise the various

elements of the aggregation transformation as follows;

2 The minimum width ordering was used as O in the aggregation. To ensure the variables in Z1 and Z2 are visited
by the algorithms in effectively the same order, we actually use the natural, lexical ordering when solving Z2. In
this way we see directly the effects of the aggregations.



1. We have a suggestion heuristic, Hs, which tells us to assume that decreasing

the size of the search space complexity, S, is good.

2. Our move operator for generating new ZDC formulations is the aggregation of

variable pairs.

3. We have a naive evaluation heuristic, He, which simply says that we should

“always accept” the aggregated output.

This approach can result in substantial improvements in search cost. However, as we showed in

chapter 2, there are some problem classes where this is not the case. In other words, the variable

aggregation is effective on some classes of CSP but not on others. We can increase its useful

scope by developing more effective evaluation heuristics, He.

Before we proceed with the design of any new evaluation heuristics we need to have a thorough

understanding of the transformation to which it is being applied. In the next section we present a

detailed analysis of the effects of variable aggregation.

5.2 Analysis of the Effects of Variable Aggregation

We have seen how there are cases where the effects of the variable aggregation transformation

can be both beneficial and detrimental to the cost of search. In this section we undertake a detailed

analysis of what actually happens when pairs of variables are merged to form a single variable.

Our motivation for this analysis is to gain knowledge that will help us to develop more effective

evaluation heuristics, which in turn will lead to improvements in the output of the transformation.

By fully understanding the nature of the effects of the variable aggregation, we can ensure that our

evaluation heuristics take these factors into account.

The analysis we present identifies ways in which gains and losses can be encountered, when pairs

of variables are merged. The aim of this section is to identify the ways in which three algorithms,

standard backtracking, backjumping and forward checking, can gain and lose from the

aggregation of a given pair of variables in a binary ZDC formulation. We demonstrate the

usefulness of this knowledge in section 5.4.



In order to aid the clarity of this section we shall refer to the example in figure 5.1. For systematic

search algorithms there are two different scenarios in which aggregation can be viewed. These are

illustrated in figure 5.4.

Figure 5.4 - Two search scenarios for the formulation f2

Furthermore, our analysis is based on the assumption that only variables which are adjacent in the

search ordering are aggregated, as described in the algorithm in figure 5.2;

Assumption A_5.1: Aggregated pairs of variables are assumed to be adjacent in

the search that would have taken place with the original formulation.

5.2.1 Gains for Standard Backtracking

There are two basic ways in which standard backtracking can gain when two variables are

aggregated.

5.2.1.1  Gains Due to Nodal Elimination, g1bt

When two variables are aggregated to form a new variable we effectively carry out a once-off,

localised, search of the space of possible compound-labels between those two variables. In normal

backtracking search in the original ZDC formulation we have the potential of visiting 
axD ×

bxD

nodes to exhaustively explore this sub-tree. In the aggregated variable, provided it involves a non-

null constraint, we will always reduce the number of nodes covered in the new search space

attributable to the two variables. An example of this was shown in figure 5.1 where the maximum

number of nodes that can be visited in the “ab” sub-search space is reduced from 9 to 6. This
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represents a potential gain of 3 nodes through the reformulation and applies to both scenario 1 and

scenario 2 of figure 5.4, assuming all of the nodes in the ab space are visited. It follows that the

more often the ab subspace is expanded, the more the actual total gain that can be made for any

given search. We shall refer to gains attributable to this effect as g1bt.

g1bt is an effect relative to the search that would have been carried out had xa and xb been adjacent

in any search performed in the original formulation f1, as given by assumption A_5.1. If A_5.1 did

not hold then the g1bt can be greater since any intermediate search that would have taken place

between xa and xb been could have been eliminated. Conversely, there is also the possibility that

the search would not have even reached variable xb.

5.2.1.2  Gains Through Constraint Merging, g2bt

In ZDC formulation f1 there is no constraint between variables b and c. Had this been the case

then we would have had a second constraint in the new ZDC formulation, f2. These two

constraints would be on the same edge of the constraint graph. Checks could be saved by simply

merging the two constraints, resulting in a single, tighter constraint3. It is likely that checking

against this single constraint would be more efficient than having the two separate constraints4.

We shall refer to gains due to this effect as g2bt. The total gain attributable to g2bt is a function of

the number of times that these constraints are checked.

5.2.2 Losses for Standard Backtracking

There are three basic losses which can be incurred by standard backtracking when aggregation

takes place. Before we proceed with the description of these losses we need to familiarise

ourselves with the important concept of information potential.

5.2.2.1 Information Potential

In chapter 2, we discussed the idea of goods and no-goods in the search space of a ZDC

formulation. One way of viewing goods and no-goods is as pieces of information about the nature

of that search space. For example, a constraint between two variables provides us with

3 This is expected to be the case because it is probable that there will be more no-goods resulting from the merge,
and there cannot be less.
4 This assumes the new constraint is not less efficient to test than the original constraints - see l3bt



information about the set of goods between them. More generally, when we consider a set of k

variables, a possible state in the space of full assignments to those variables is represented by a k-

compound-label. We call such a compound label a base unit of information for that search space;

Definition 5.2 - Given a set of k variables, a base unit of information is defined to be any possible

k-compound-label  which can be assigned to those variables. æ

For example, if we have two variables xa and xb we see that they represent 
axD ×

bxD  different 2-

compound-labels. We say that each 2-compound-label {<xa,vi>, <xb,vj>} represents a base unit of

information between them.

Let us now consider the variables xa and xb under a search ordering O. If O orders xa before xb

then it is possible that values in the domain of xa are eliminated without extending the search

further to xb. For an algorithm such as standard backtracking, if a value in xa is rejected, then the

algorithm does not progress to xb
 and another value is tried for xa.

5 The result of this rejection of a

single value in the domain of xa is that 
bxD  base units in the “xa-xb” space are eliminated. We

refer to this power of elimination of base units of information as the information potential of an

assignment;

Definition 5.2 - Given a set of k variables under a search ordering O, the information potential of

any l-compound label, such that l<k, is the number of base information units that can be expressed

by extending that compound label to include all k variables. æ

In the case of our two variable example with xa and xb, we have k=2 and l=1. This means that

there are 
bxD base units of information that can be expressed by extending the 1-compound label

to a 2-compound label.

Information potential is a useful concept in systematic search. For example, it explains why we

should like to backtrack high in the search space. This is the case because at higher levels in the

                                        
5 This is known as a posteriori pruning in (VanHentenryck 89)
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search, assignments have higher information potential in terms of the set of variables in Z, hence

they have the potential to eliminate greater sections of the search space.

5.2.2.2 Losses Through Reduced Information Potential, l1bt

A major inefficiency which arises for standard backtracking following variable aggregation is that

due to a reduction in information potential of the combined domain of variables xa and xb. It

occurs because, assuming an original ordering xa<xb, in terms of the “xa-xb” space, all values in the

domain of xab have an information potential of 1 base unit. This contrasts with the pre-aggregated

case where the information potential of values in the domain of xa is 
bxD . When there is more

than one value in 
abxD for each member of the 

axD there is the possibility of the aggregated ZDC

formulation being less efficient. However, this inefficiency is only realised when members of

abxD are incompatible with previous assignments.

The magnitude of efficiency reductions, due to a decrease in information potential, is dependent

on the number of duplications of individual values in 
abxD and the tightness of the constraints

connecting xab to previous variables in the search. We refer to this source of loss to standard

backtracking as l1bt.

5.2.2.3 Other Losses for Standard Backtracking

There are two further ways in which losses can be experienced by the standard backtracking

algorithm. The first arises when only one of the merged variables is constrained to another past

variable. For example, in figure 5.1 only xa is constrained by xc. When considering scenario 2, the

constraint Cac must be checked for each of the six values in the domain of xab. This contrasts with

it only needing to be checked against the three values of xa in formulation f1. We call losses due to

this effect l2bt.

A further loss, l3bt, is also possible when constraint merging takes place. If constraints are merged

it may be the case that the cost of checking the resulting constraint is higher than the cost of

checking the individual original constraints.
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5.2.3 Gains for Forward Checking

There are three basic gains that can be made by the forward checking algorithm when pairs of

variables are aggregated.

5.2.3.1 Gains Through Increased Consistency, g1fc

The effect of forward checking on two aggregated variables is actually more than just simple

forward checking when mapped back to the original formulation. Whenever a forward check is

made against the aggregated variable, the algorithm is effectively checking the path xc-xa-xb or xc-

xb-xa for consistency. This can result in backtracks higher up the search tree due to earlier dead-

end detection and hence sections of the search space that would otherwise have been visited can

be eliminated. The total effect, which we shall refer to as g1fc, is a function of the number of

forward checks made against the aggregated variable and the amount of search effort eliminated

through the early detection of the dead-end.

5.2.3.2  Gains Through Reduced Lookahead Effort, g2fc

Considering scenario 2, in the case of the original ZDC formulation, f1, if xc is assigned first then

the forward checking algorithm would make a maximum of 
axD + 

bxD = 6 constraint checks

against the values in the domains of xa and xb. However, if 
abxD  in f2 is less than 

axD +
bxD , then

in the worst case forward checking makes fewer constraint checks than would have occurred in f1.

On further inspection it becomes clear that this effect can also go into deficit and result in a loss

(see loss l1fc). The total effect, which we shall refer to as g2fc, is function of the number of

forward checks made against the aggregated variable.

5.2.3.3  Gains Through Constraint Merging, g3fc

Again considering our example in figure 5.1, had there been a constraint Cbc in our original ZDC

formulation, then there would have had an additional constraint in f2. These two constraints would

be on the same edge of the constraint graph and checks could be saved by simply merging the two

constraints, resulting in a single, tighter constraint, as with g2bt. We call this gain g3fc.
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5.2.4 Losses for Forward Checking

In this section we analyse the possible losses from aggregating pairs of variables. There are three

basic losses which can be incurred by forward checking when variable aggregation takes place.

5.2.4.1  Losses Through Increased Lookahead Effort, l1fc

As we mentioned in section 5.2.3.2, if 
abxD  in f2 is greater than 

axD +
bxD , then g2fc actually

becomes a loss. We call this type of loss l1fc and it is the corollary of g2fc.

5.2.4.2  Losses Through Reduced Information Potential, l2fc

When there is more than one element in the domain xab for each member of the domain xa we see

possible losses due to a reduction in information potential, l2fc. This is only realised when

members of that domain are incompatible with previous assignments since assignments with the

same reason for failure are repeated due to the absence of any information gain. The magnitude of

this inefficiency is therefore dependent on the number of duplications of values in xab and the

tightness of the constraints connecting xab to previous variables in the search.

5.2.4.3  Other Losses for Forward Checking

A third and less significant loss is also possible when constraint merging takes place. If constraints

are merged it may be the case that the cost of checking that constraint increases due to increased

complexity, as with l3bt. We refer to this as l3fc.

5.2.5 Gains and Losses for Backjumping

The basic gains and losses for the backjumping algorithm arise in the same way as those for the

standard backtracking algorithm. This gives us two gains, g1bj and g2bj, corresponding to g1bt and

g2bt. Similarly, we have potential losses l1bj, l2bj and l3bj which correspond to the three losses, l1bt,

l2bt and l3bt. However, other interactions can occur for backjumping following a variable

aggregation, whereby the effectiveness of culprit detection is affected. This results in a further

potential gain and a further potential loss for backjumping.

5.2.5.1  Gains Through Greater Jumps Back, g4bj

In figure 5.5 we show a possible merging scenario. Taking the pre-aggregated case, if we find at

some point in the search that all of the values in the domain of xa are incompatible with the
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assignment to xj, the algorithm will jump back to that past variable since it is the reason for search

failing to progress. Suppose also that all the values in the domain of xb are also incompatible with

the assignment to xi. This does not affect the algorithm in the pre-aggregated case until we find a

compatible past assignment for xa. However, if we take the aggregated case, we have to test all of

the values in the new domain before backjumping takes place. This also means that the tuples in

the domain of xab are tested against variable xi. Since all of these tuples fail against that variable’s

assignment, a jump can take place back to xi. As a result, the algorithm could jump back to xi

much earlier than is the case for the pre-aggregated ZDC formulation. This has the obvious benefit

of eliminating more futile search space and hence reducing the search cost. We refer to this

potential gain as g4bj.

Figure 5.5 - Examples of how jumping efficiency is affected by aggregation

5.2.5.2  Losses Through Smaller Jumps Back, l4bj

The second scenario in figure 5.5 shows us the constraints after xab in the search ordering. If we

consider the pre-aggregated case, if no value can be found for variable xj which is compatible with

the assignment of xa, the algorithm would jump back over xb and try a new assignment for xa.

However for the aggregated case, when the corresponding jump would take us back to xab and the

algorithm would try a new value from that domain. Since the values from the original domain of xa

can appear in several of the tuples in the domain of xab, we could end up with an assignment at xi

failing again for the same reason as before. Effectively we could say that we are only jumping back

as far as variable xb if the aggregated case is mapped back to the original ZDC formulation. We

refer to this potential loss as l4bj.
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5.2.6 Other Losses

The gains and losses described above are direct effects of the content of the constraints and

domains of the variables in the original problem formulation. However, there is a significant

additional effect on search performance which should be considered whereby variable ordering

heuristics become confused. An example of how this can happen is with the fail first (ff) dynamic

variable ordering heuristic, based on the smallest domain size (Haralick&Elliott 1980). When an

aggregation is carried out between two variables, the result is often a larger domain size.

According to the ff heuristic this new variable will be selected late on in the search due to its

larger domain size, even if a substantial amount of pruning is done. The result can mean a variable

which is likely to fail not being assigned early on in the search and a sub-optimal ordering.

A second example of the effect aggregation can have on variable ordering heuristics is with the

minimum width ordering (mwo) (Freuder 1982). mwo uses graph based information to generate a

static variable ordering. When aggregation takes place, the structure of the constraint graph is

affected. This can be beneficial as shown in (Dechter&Pearl 1989) with the tree clustering

technique. However, the aggregation can also confuse graph-based heuristics, resulting in a less

effective variable ordering.

The net effect of aggregation in both of the above examples is not easy to quantify. It could

outweigh any gains from the other beneficial effects of aggregation, since heuristics play an

important part in effective problem solving (Tsang et al 1995). However, the effects may also be

beneficial, or they may be insignificant. One possible way to avoid the negative effects on static

variable orderings is to set the ordering before aggregation takes place. For the purposes of our

work we make the assumption that the same variable ordering is used before and after the

transformation.

A_5.2: The same ordering of variables is used before and after the aggregation

transformation.
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5.3 Theoretical Complexity Based Evaluation Heuristics for

Variable Aggregation

Our analysis in section 5.2 showed that there are many different ways in which algorithms can gain

and lose from the use of variable aggregation. In order to be able to assess the relative merits of

aggregating a given pair of variables we should like to be able to take all of these factors into

account. If this can be achieved then we have the basis of an effective evaluation heuristic for the

variable aggregation transformation.

One approach to considering the net effect of many different properties of different ZDC

formulations is to use the theoretical complexity approach described in chapter 4. The use of such

estimates is still valid following the aggregation of a pair of variables since no further violations of

the assumptions described in chapter 4 are incurred. As a result the use of theoretical complexity

estimates can be reasonably applied to both the original and transformed ZDC formulations.

In the remainder of this section we use equations (4-9), (4-14) and (4-23) as the basis for three

evaluation heuristics which can be applied to standard backtracking, backjumping and forward

checking respectively. Using such heuristics, we modify the transformation algorithm described in

figure 5.2, by adding line 4b, so that it is more selective in deciding whether or not an aggregation

should be performed. This revised transformation is given in figure 5.6. We investigate the

suitability and effectiveness of our heuristics for use with our modified variable aggregation

transformation.

 Figure 5.6 - The modified variable aggregation transformation

1  Given a CSP(Z, D, C) and a variable x in ordering O:
2  BEGIN
3    FOR i = 1 to i = |Z|-1
4       IF CONNECTED(xi, xi+1)
4b          IF HHe < 1.0
5               AGGREGATE(xi, xi+1)
6               i += 2
7               CONTINUE
8       ELSE
9           i++
10         CONTINUE
11  END
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5.3.1 Evaluation Heuristic αα1bt

By design, we should like our evaluation heuristic, α1bt, to have a value such that it is less than 1.0

for cases where the aggregation of a given pair of variables is expected to prove beneficial to the

algorithm. Effectively, it gives us an indication of the expected relative effect of any aggregation

on the search cost. This is summarised as;

α1bt(xa, xb)<1.0  ⇒   the aggregation of variables xa and xb is likely to be useful

and

α1bt(xa, xb)³ 1.0  ⇒  the aggregation of variables xa and xb is not likely to be useful

Let Costbt(f1) be a function that uses (4-9) to generate the expected complexity for a given ZDC

formulation, f1, and Costbt(f2) be the expected complexity after variables xa and xb have been

aggregated. What we want is for our evaluation heuristic to accept an aggregation if the expected

complexity after the aggregation is lower than the expected complexity before the aggregation.

We use this idea to give;

bt a b

bt

bt

x x
Cost f

Cost fα1 2

1

( , )
( )
( )

= (5-1)

If Costbt(f2) is less than Costbt(f1), then α1bt has a value less than 1.0.

5.3.2 Evaluation Heuristic αα1fc

Following the line of reasoning we did for α1bt, we have

fc a b

fc

fc

x x
Cost f

Cost fα1 2

1

( , )
( )
( )

= (5-2)

where Costfc(f1) is a function that uses (4-14) to generate the expected complexity for a given

ZDC formulation, f1, and Costfc(f2) is the expected complexity after variables xa, xb have been

aggregated, for the forward checking algorithm.
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5.3.3 Evaluation Heuristic αα1bj

Again, following the same line of reasoning as we did for α1bt, we have

bj a b

bj

bj

x x
Cost f

Cost fα1 2

1

( , )
( )

( )
= (5-3)

where Costbj(f1) is a function that uses (4-23) to generate the expected complexity for a given

ZDC formulation, f1, and Costbj(f2) is the expected complexity after variables xa, xb have been

aggregated, for the backjumping algorithm.

5.3.4 Effectiveness of Evaluation Heuristics αα1bt, αα1bj and αα1fc

We have proposed a set of heuristics which evaluate the likely usefulness of aggregating a given

pair of variables, for a given ZDC formulation. We stated in chapter 3 that for any evaluation

heuristic He to be useful, it should have an accuracy of at least 50%. In other words, it should

show some improvement on making an arbitrary choice. For the aggregation of pairs of variables

this means that we want to selectively merge these variables such that an improvement in search

efficiency is seen more than 50% of the time.

We now describe a set of experiments, using randomly generated binary CSPs, aimed at testing

this criterion for evaluation heuristics α1bt, α1bj and α1fc.

5.3.4.1 The Use of Randomly Generated Binary CSPs

The use of randomly generated binary CSPs as a tool for evaluating new constraint satisfaction

techniques has been widely adopted. For example, it has been used in (Prosser 1994) (Gent et al

1996) (Sabin & Freuder 1994) (Smith & Grant 1996) (Sakkout et al 1996) (Williams & Hogg

1995) for investigating various aspects of CSP solving. Clearly such problems are highly

abstracted from real life problems. However, they do provide us with a useful, controllable

framework in which to evaluate new ideas. As a result we have adopted a similar approach to

those researchers in order to demonstrate the principles of our work.
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5.3.4.2  Experimental Method

The aim of this experiment was to assess the effectiveness of α1bt, α1bj and α1fc over a range of

classes of randomly generated binary CSP. We generated our problem sets using the problem

generator described in appendix A.2. These CSPs are defined using the 4-tuple <n, m, p1, p2>

where n is the number of variables in the problem, m is the uniform domain size of the variables,

p1 is the density of the constraint graph and p2 is the tightness of the individual constraints. In

order to cover a range of problem characteristics, the problem sets we used included some which

were close to the solubility phase transition(Cheeseman et al 1991) and others which were in the

so-called “easy” regions.

For each instance generated, we denote the ZDC formulation output by the generator to be AG1.

This formulation was solved using each of our three algorithms, standard backtracking,

backjumping and forward checking. We then applied the variable aggregation transformation,

described in figure 5.6, to AG1 in order to generate a second ZDC formulation, AG2. For each

problem instance, the transformation algorithm was applied using α1bt, α1bj and α1fc as

instantiations of the evaluation heuristic, He, at line 4b. These new formulations were then solved

using the relevant algorithm. For the heuristics to have been effective, there must be an

improvement in the cost of searching AG2, relative to the cost of searching AG1. This process

was repeated on 100 instances for each problem class considered.

Furthermore, for each of the instances we generated a baseline formulation to see how effective

our heuristics were compared to the naive application of variable aggregation. The baseline we

chose was to run the algorithm given in figure 5.2 on each instance’s AG1 formulation. The

output of this we called AG3. We then solved AG3 using the same algorithms as we used for

solving AG1 and AG2.

5.3.4.3  Results

For each of our three algorithms, standard backtracking, backjumping and forward checking, we

had a cost measure for each problem instance;

cc(AG1) - the cost of solving the original ZDC formulation

cc(AG2) - the cost of solving the output of figure 5.6 using the α heuristics
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cc(AG3) - the cost of solving the output of figure 5.2 using the uninformed

  aggregation

Each of these cost measures was determined for each of the three algorithms, standard

backtracking, backjumping and forward checking. Our results, over a range of problem classes,

were processed with a view to observing both qualitative and quantitative aspects of performance.

In order to assess the qualitative performance of our α heuristics, for each problem class tested,

we divided the results into three categories;

cat. 1 - Instances where cc(AG2) was less than cc(AG1) by a margin of significance -

  i.e. a benefit was seen from the using the transformation. These results are

  given in columns 6 and 8 in tables 5.2-5.4

cat. 2 - Instances where cc(AG2) was greater than cc(AG1) by a margin of

  significance - i.e. using the transformation resulted in a degradation in

  performance. These results are given in columns 7 and 9 in tables 5.2-5.4

cat. 3 - Instances where the difference between cc(AG2) and cc(R1) is within the

  margin of significance - i.e. using the transformation resulted in no significant

  change in performance.

By dividing the results in this way we are able compare the frequency of improvement and the

frequency of degradation when using the transformation. For example, if there are more category

1 instances than category 2 instances, then we can say we are seeing a benefit from using the

transformation in that we are gaining more often than we are losing. In fact, if the number of

category 1 instances is greater than category 2 then we can say that the 50% criterion outlined in

chapter 3 is satisfied, which is a good result. Conversely, if the number of category 2 instances is

greater than the number of category 1 instances then  the 50% criterion is violated and such a

result is considered bad. For the ideal case, we should like to see as many category one instances

as possible and as few category 2 as possible.
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By processing the results as we have outlined above we can asses the performance of the variable

aggregation ZDC transformation when combined with each α heuristic used. However, we should

also like to be able to assess how much improvement our α heuristics provide over the

uninformed aggregation of variables as given by the algorithm in figure 5.2. To see this effect we

need to compare the number of instances in each category for ZDC formulations AG2 and AG3.

The results for AG3 are given as the figures in brackets in tables 5.2-5.4. If the α heuristics are

performing well and providing an improvement on the uninformed approach, then we should see

more instances in columns 6 and 8 and fewer in columns 7 and 9, compared with the figures in

brackets.

To illustrate how we process the results, let us consider columns 6 and 7 for problem class  <20,

5, 0.30, 0.45> in table 5.2. These figures show that, with the 5% margin of significance, 60% of

the instances showed that using the variable aggregation transformation in conjunction with α1bt

resulted in an improvement in search cost and only 2% of instances showed a degradation. This

contrasts with uniformed aggregation where the figures were 33% of instances showing a gain and

44% showing a loss. Columns 8 and 9 are read in the same way.

In the tables some of the cells are shaded grey. This is to highlight the cases where uninformed

aggregation resulted in cc(AG3) being higher than cc(AG1) more frequently than it was lower.

This effectively says that such an approach is failing the 50% criterion. At the same time, the

results for our α heuristics in most of these cells show much better performance, easily satisfying

that criterion, as indicated by the dark grey. The lighter grey cells indicate cases where this is not

the case.

The quantitative performance of our heuristics is shown in columns 3, 4 and 5 of the tables. Here,

we present the minimum, mean and median ratio of cc(AG2) and cc(AG1). This information is

calculated over the entire sample of 100 instances and it gives an indication of how much gain we

are likely to achieve from using the variable aggregation transformation. For example, considering

the problem class <20, 5, 0.10, 0.80> in table 5.2, there we see that the minimum ratio is 0.21

with a mean of 0.8 and a median of 0.89.
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1
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cc AG

( )
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0 85≤ cc AG

cc AG

( )

( )
.

2

1
115³

<20, 5, 0.10, 0.70> bt+nat 0.21 0.90 1.00 35  (40) 2  (9) 25  (27) 0  (3)
<20, 5, 0.10, 0.75> bt+nat 0.25 0.88 0.95 49  (52) 0  (2) 31  (34) 0  (0)
<20, 5, 0.10, 0.80> bt+nat 0.21 0.80 0.89 55  (59) 0  (1) 45  (46) 0  (1)
<20, 5, 0.30, 0.35> bt+nat 0.70 0.96 0.98 29  (13) 0  (71) 4    (2) 0  (62)
<20, 5, 0.30, 0.40> bt+nat 0.56 0.94 0.96 44  (15) 3  (64) 13  (3) 0  (43)
<20, 5, 0.30, 0.45> bt+nat 0.51 0.90 0.91 60  (33) 2  (44) 27  (17) 0  (26)
<20, 10, 0.10, 0.80> bt+nat 0.18 0.91 1.00 31 (28) 4  (2) 23  (15) 2  (1)

Table 5.2 - Results of applying the aggregation transformation using

the α1bt evaluation heuristic
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( )

( )
.
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<20, 5, 0.10, 0.70> bj+nat 0.0013 0.80 0.97 48   (53) 5    (8) 41   (46) 3   (3)
<20, 5, 0.10, 0.75> bj+nat 0.0053 0.70 0.85 57   (57) 1    (5) 50   (49) 1   (2)
<20, 5, 0.10, 0.80> bj+nat 0.0010 0.65 0.76 59   (61) 1    (2) 54   (43) 0   (0)
<20, 5, 0.30, 0.35> bj+nat 0.34 0.92 0.97 45   (39) 12  (41) 22   (20) 4   (31)
<20, 5, 0.30, 0.40> bj+nat 0.41 0.92 0.97 45   (32) 9    (50) 22   (22) 3   (37)
<20, 5, 0.30, 0.45> bj+nat 0.19 0.89 0.90 63   (49) 6    (30) 42   (31) 2   (19)
<20, 10, 0.10, 0.80> bj+nat 0.0013 0.79 1.00 38   (25) 7    (6) 31   (20) 7   (5)
<30, 10, 0.10, 0.70> bj+mwo 0.077 1.00 1.00 38   (33) 39  (54) 22   (20) 25 (35)
<30, 10, 0.10, 0.75> bj+mwo 0.091 0.94 0.94 51   (48) 24  (36) 28   (30) 12 (24)
<30, 10, 0.10, 0.80> bj+mwo 0.48 0.74 0.71 96   (79) 1    (10) 82   (58) 0   (4)
<30, 10, 0.10, 0.85> bj+mwo 0.45 0.65 0.64 99   (96) 0    (1) 96   (85) 0   (1)
<40, 10, 0.10, 0.60> bj+mwo 0.30 1.29 1.29 9     (15) 83  (82) 8     (13) 72 (75)
<40, 10, 0.10, 0.65> bj+mwo 0.74 1.13 1.11 15   (4) 59  (96) 5     (2) 41 (87)
<40, 10, 0.10, 0.70> bj+mwo 0.52 0.92 0.93 63   (2) 8    (88) 16   (1) 2   (73)
<40, 10, 0.05, 0.80> bj+mwo 1.4 e-04 0.96 0.97 37   (52) 23  (32) 15   (27) 14 (26)
<40, 10, 0.05, 0.85> bj+mwo 3.4 e-05 0.82 0.89 67   (72) 15  (18) 35   (56) 9   (10)
<40, 10, 0.05, 0.90> bj+mwo 0.15 0.50 0.49 100 (98) 0    (1) 100 (98) 0   (1)
<40, 5, 0.10, 0.48> bj+mwo 0.0014 1.00 1.02 32   (20) 41  (66) 20   (13) 24 (48)
<40, 5, 0.10, 0.52> bj+mwo 0.47 0.97 0.98 37   (34) 23  (49) 20   (24) 8   (25)
<40, 5, 0.10, 0.56> bj+mwo 0.44 0.81 0.82 83   (54) 4    (27) 59   (24) 2   (11)
<40, 5, 0.05, 0.62> bj+mwo 1.2 e-06 1.01 0.95 48   (65) 27  (27) 17   (44) 22 (21)
<40, 5, 0.05, 0.66> bj+mwo 1.9 e-04 0.86 0.94 57   (75) 12  (19) 21   (54) 7   (14)
<40, 5, 0.05, 0.70> bj+mwo 1.8 e-04 0.71 0.82 81   (80) 9    (8) 60   (69) 7   (5)

Table 5.3 - Results of applying the aggregation transformation using

the α1bj evaluation heuristic
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<20, 5, 0.10, 0.70> fc+nat 0.0026 0.79 0.99 47   (57) 3   (6) 41  (42) 2   (4)
<20, 5, 0.10, 0.75> fc+nat 0.012 0.77 0.93 52   (58) 4   (5) 45  (49) 2   (4)
<20, 5, 0.10, 0.80> fc+nat 0.096 0.79 0.93 53   (66) 1   (2) 40  (54) 0   (1)
<20, 5, 0.30, 0.35> fc+nat 0.53 0.95 1.00 34   (35) 16 (47) 23  (22) 3   (34)
<20, 5, 0.30, 0.40> fc+nat 0.56 0.94 1.00 29   (27) 5   (54) 17  (17) 1   (37)
<20, 5, 0.30, 0.45> fc+nat 0.50 0.92 1.00 33   (33) 6   (51) 26  (24) 0   (37)
<20, 10, 0.10, 0.80> fc+nat 6.0 e-04 0.77 0.97 48   (40) 8   (6) 44  (35) 2   (1)
<30, 10, 0.10, 0.70> fc+mwo 0.07 1.01 1.07 30   (36) 51 (54) 23  (25) 32  (43)
<30, 10, 0.10, 0.75> fc+mwo 0.03 0.92 0.94 54   (32) 27 (52) 34  (27) 14  (33)
<30, 10, 0.10, 0.80> fc+mwo 0.26 0.78 0.79 90   (51) 4   (34) 63  (31) 1    (23)
<30, 10, 0.10, 0.85> fc+mwo 0.35 0.70 0.68 88   (81) 2   (11) 84  (72) 2    (5)
<40, 10, 0.10, 0.60> fc+mwo 0.31 1.22 1.23 16   (29) 71 (65) 10  (26) 55  (55)
<40, 10, 0.10, 0.65> fc+mwo 0.55 1.05 1.03 19   (14) 39 (80) 8    (7) 23  (73)
<40, 10, 0.10, 0.70> fc+mwo 0.51 0.95 0.99 39   (6) 16 (88) 20  (2) 3    (73)
<40, 10, 0.05, 0.80> fc+mwo 1.2 e-05 1.02 1.00 19   (32) 36 (44) 14  (20) 22  (28)
<40, 10, 0.05, 0.85> fc+mwo 1.0 e-04 0.92 0.97 44   (47) 31 (39) 27  (36) 17  (29)
<40, 10, 0.05, 0.90> fc+mwo 0.13 0.56 0.54 98   (95) 1   (2) 91  (91) 0    (0)
<40, 5, 0.10, 0.48> fc+mwo 0.023 0.95 0.99 44   (26) 33 (60) 32  (16) 20  (43)
<40, 5, 0.10, 0.52> fc+mwo 0.47 0.98 0.99 31   (24) 26 (62) 14  (17) 13  (38)
<40, 5, 0.10, 0.56> fc+mwo 0.42 0.83 0.86 71   (28) 6   (54) 47  (20) 2    (37)
<40, 5, 0.05, 0.62> fc+mwo 8.5 e-06 1.03 1.00 22   (43) 35 (41) 9    (18) 19  (32)
<40, 5, 0.05, 0.66> fc+mwo 3.6 e-04 0.91 0.96 48   (56) 27 (32) 30  (30) 16  (22)
<40, 5, 0.05, 0.70> fc+mwo 0.001 0.93 0.90 54   (52) 25 (34) 33  (44) 17  (29)

Table 5.4- Results of applying the aggregation transformation using

the α1fc evaluation heuristic

5.3.4.4 Conclusions

The results presented in tables 5.2-5.4 show several interesting aspects. In terms of qualitative

performance, the use of the aggregation transformation, when combined with the α1 heuristics,

resulted in many more ZDC formulations being improved in terms of search cost than being made

worse. This is the case for the majority of problem classes considered. Furthermore, the α1

heuristics show significant improvements on the use of uninformed aggregation. This is seen in

many problem classes such as <40, 5, 0.10, 0.56>, in table 5.4. There, we see that with a 5%

margin of significance, only 28% of instances showed an improvement when naive aggregation

was used and 54% showed a degradation in performance. This contrasts with the use of α1fc

which resulted in 71% of instances showing an improvement and only 6% showing a degradation.
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In general, the qualitative performance of variable aggregation transformation is seen to be more

robust when the α1 heuristics are used. This is seen more clearly if we look at the problem classes

where fewer numbers of instances show an improvement than degradation in search cost. For the

α1 heuristics, these classes are indicated by the cells shaded light grey in the tables. This contrasts

significantly with the number of classes where naive aggregation shows poor performance, as

indicated by both the light and dark grey cells.6

If we consider the actual values of the ratios of search cost, we note that, quantitatively, there are

some spectacular gains to made following the transformation. This is particularly the case for

backjumping and forward checking. An example is the problem class <20, 5, 0.10, 0.80> where

we see gains of 82% for standard backtracking, 770% for backjumping and 1700% for forward

checking in the best case. Gains of this magnitude are exceptional, but they are made possible as a

result of improved backjumping with g4bj and through the higher level of lookahead with g1fc.

While tables 5.2-5.4 show promising results for variable aggregation combined with the α1

heuristics, there are still some problem classes where performance was actually degraded. It is

these inaccuracies, indicated by the cells shaded light grey in the tables, that we attempt to reduce

in the next section.

5.4 Knowledge Based Evaluation Heuristics

In the previous section we investigated the use of theoretical complexity equations as the basis for

evaluation heuristics to be used with the variable aggregation transformation. Our results showed

that the heuristics α1bt, α1bj and α1fc prove effective in most of the problem classes tested, but

that there were several classes where the performance was not as good as we should like. One

possible reason for this is that, as we showed in chapter 4, the reliability of theoretical complexity

estimates appears to degrade to some degree for problem classes which have low density

constraint graphs.

                                        
6 With the single exception of class <40, 5, 0.10, 0.62>
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The use of theoretical estimates as the basis for our evaluation heuristics means that each ZDC

formulation is analysed without any consideration of the similarities between them. The theoretical

complexity model treats the ZDC formulations, before and after a pair of variables is aggregated,

as distinct problem classes.

However, when using a ZDC transformation we have the advantage of knowing about the

relationship between the input and output ZDC formulations. In particular, for the variable

aggregation we have detailed knowledge of its effects on search with certain algorithms, as shown

in section 5.2. Using a knowledge free approach ignores this potentially useful relationship.

A possible approach to improving on the pure use of theoretical complexity estimates as the basis

for evaluation heuristics is to use a modification which only considers the parts of the ZDC

formulation which have changed. In this section we adopt such a knowledge based approach and

develop a second set of evaluation heuristics for use with the variable aggregation transformation

we described in figure 5.6. Our new heuristics are still based on the models described in chapter 4,

and we continue to use the assumptions A_4.1 - A_4.4. There is a further assumption we make

concerning the merging of constraints;

Assumption A_5.3: There are no losses due to constraint merging. This means that

we ignore losses l3bt, l3bj and l3fc.

We believe this assumption is reasonable since any additional cost that is incurred through

merging is likely to be small when compared to the other gains and losses. Furthermore, we are

intending to develop heuristics which are, by there very nature, approximations. The key is to

develop good approximations.

In the remainder of this section we investigate this new approach to see if improvements on the

results in section 5.3 can be obtained. Our new evaluation heuristics, α2bt α2bj and α2fc, are

designed for use with the variable aggregation transformation for standard backtracking,

backjumping and forward checking.
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5.4.1 Standard Backtracking

We should like our evaluation heuristic for standard backtracking to take as an input the particular

ZDC formulation being considered and the pair of variables being proposed for aggregation. We

call our heuristic α2bt such that;

α2bt(xa, xb) < 1.0  ⇒   aggregation of xb and xb is likely to be useful

and

α2bt(xa, xb) ³ 1.0  ⇒   aggregation of xa and xb is not likely to be useful

We are interested in developing heuristics based on the differences in the two ZDC formulations.

This means that we are interested in the cost attributable to searching the variables xa and xb in the

original ZDC formulation, f1, and variable xab in the transformed ZDC formulations, f2. To achieve

this we use modifications of the theoretical estimates described in chapter 4. The first step in the

derivation of our expression for α2bt is therefore to say that ;

α2bt(xa, xb) = bt ab

bt b

Cost f x
Cost f x xa

( , )

( , ),
2

1

(5-4)

where Costbt(f1, xa, xb) represents the cost in terms of the expected number of checks to

exhaustively cover the variables xa and xb in the original ZDC formulation, f1. Costbt(f2, xab)

represents the expected number of checks to exhaustively cover the variable xab in the transformed

ZDC formulation, f2. This is all we need to consider in order to take account of the effects of the

variable aggregation since the sub-search space for variables below xb or xab are the same, once

the effects of constraint merging have been ignored.

In order to determine the two cost functions, we make use of the ideas and notation described in

chapter 4. Given a set of previously assigned variables, the expected number of constraint checks

against each value of the domain of a variable xk is equal to the sum of probabilities of checking

each constraint with previous assignments against that value. Following the line of (4-8), this gives

us;
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Assuming we attempt to assign all values in the domain of variable xk, the total cost in expanding

the values of that variable is found by multiplying the checks per value by the domain size of the

variable;

checks per variable x D pk x
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i
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=
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=
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1

1

1

      (5-6)

By substituting xab into equation (5-6) this allows us to express part of the detail of α2bt, namely

the expression for Costbt(f2,xab). The final part requires us to develop an expression for the

expected number of checks for two adjacent variables. Given that variable xa is followed by xb, we

can say that the expected cost for covering the whole of the sub-search space between those

variables is a function of the expected number of checks against variable xa, the number of

successful assignments at xa and the expected number of checks against variable xb;

Costbt(f1,xa,xb) = checks_per_variable(xa) +

                                                      |Compatiblebt(xa)| × checks_per_variable(xb)       (5-7)

where Compatiblebt(xa) gives us the set of compatible values for variable xa, since the domain of

variable xb can only be expanded for each successfully assigned value of variable xa. The expected

size of this set of values is determined by multiplying the domain size of xa by the probability of all

constraints with all previous assignments being satisfied . This gives us;

bt a iai

a

Compatible x D pa x g a

G

( ) = ×
=
∏

1

      (5-8)

Cost(f1,xa,xb) can now be expressed fully;
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By combining equations (5-4), (5-6) and (5-9) we have the final expression α2bt, for a given

ordered pair of variables xa and xb.
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From inspection we can see that equation (5-10) incorporates all of the gains and losses we have

described in section 5.2 for the standard backtracking algorithm.

5.4.2 Forward Checking

As with standard backtracking, we should like to develop an evaluation heuristic which takes as

its inputs the particular ZDC formulation being considered and the pair of variables being

proposed for aggregation. In this section we develop an expression which tells us whether or not

we can expect an aggregation to be beneficial for forward checking. It is a conservative heuristic

providing a sufficient condition which, if satisfied, tells us that we can expect the aggregation to

be beneficial. If the heuristic is not sufficiently positive, then no decision is made. We call our

heuristic α2fc;

α2fc(xa, xb) < 1.0  ⇒   aggregation of xa and xb is likely to be useful

and

α2fc(xa, xb) ³ 1.0  ⇒   usefulness of aggregation of xa and xb is not determined

In contrast to the approach we took for the α2bt heuristic we define a sufficient condition for

accepting the aggregation of a variable pair. Using the knowledge we gained in section 5.2, this

can be achieved if we can show that there are effectively no losses, i.e. they are all less than 1.0.

Following assumption A_5.3, we have two significant loss effects for the forward checking

algorithm, l1fc and l2fc, which can result in losses. The initial, sufficient condition for aggregation

using forward checking is;
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α2fc(xa, xb) = max(l1fc, l2fc) (5-12)

assuming l1fc and l2fc are expressed as relative losses such that, if they are less than 1.0, they

actually result in a gain. In words, provided both l1fc and l2fc are less than 1.0 then we should

accept the transformation.

Taking the first of these potential losses, l1fc, we have already stated that for the average case,

there will only be loss if 
abxD , in the ZDC formulation f2, is greater than 

axD + 
bxD . An

expression for l1fc is therefore;

fc
ab

a b

l
D

D D

x

x x

1 =
+

(5-13)

It should be noted that this loss is only applicable if there are constraints connecting the

aggregated variable to past variables in the search. In a similar way, l2fc only applies when there

are constraints between the aggregated variable and future variables.

In order to obtain an expression for the l2fc we make use of some of the ideas discussed in chapter

4. In a similar way to the expression we devised for α2bt, we begin the derivation of l2fc by saying;

l2fc = fc ab

fc a b

Cost f x
Cost f x x

( , )

( , ),
2

1

(5-14)

where Costfc(f1, xa, xb) represents the cost to exhaustively cover the variables xa and xb in the

original ZDC formulation, f1, in terms of the expected number of checks once search has reached

this point. Costbt(f2, xab)  represents the expected number of checks to exhaustively cover the

variable xab in the transformed ZDC formulation, f2.
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Following the line of the previous section, the expected number of constraint checks against each

value of the domain of a variable at a search level k, is equal to the sum of probabilities of each

constraint with future variables being checked. From 4-13 we can say;

checks per value k D
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(5-15)

The total cost attributable to the traversing the entire domain of variable xa is equal to the

expected number of remaining values of that variable times the expected checks per value. The

expected number of values remaining in the domain xa, which we call a
a

m , is given by the

probability that all constraints with past variables are satisfied multiplied by the original domain

size and the probability that all future variables survived at the previous search level. This gives;
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Combining equations (5-15) and (5-16) we obtain an expression for the number of checks per

variable;
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(5-17)

We can use this expression to find an expression for Costfc(f2, xab) by substituting xa for xab.

The final part requires us to develop an expression for the expected number of checks for two

adjacent variables. Given that variable xa is followed by xb, we can say that the expected cost for

covering the whole of the sub-search space between those variables is a function of the expected

number of checks against variable xa, the number of successful assignments at xa and the expected

number of checks against variable xb;

Costfc(f1,xa,xb) = checks_per_variable(xa) +

                                                     |Compatiblefc(xa)| × checks_per_variable(xb) (5-18)
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where Compatiblefc(xa) gives us the set of compatible values for variable xa, since the domain of

variable xb can be expanded for each successfully assigned value of variable xa. The size of this set

of values, is found in the same way as a
a

m  except this time we need the probability of survival of

all of future variables given that the search was at variable xa. This gives us;

fc a a ia
i a

f
a

f a

Compatible x D p Sx
A F

( ) = × ×












= − =
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1

  (5-19)

Combining equations (5-16)-(5-19) we obtain;

Costfc(f1,xa,xb) = checks_per_variable(xa) +

 
fc aCompatible x( ) ×checks_per_variable(xb)    (5-20)

Given the series of equations outlined above, we can now fully determine the value of our

formulation heuristic α2fc(f1,xa,xb) for any given pair of adjacent variables for the forward

checking algorithm. We expect this to be a conservative estimate because it only considers the

losses incurred by forward checking, when a pair of variables is merged.

5.4.3 Backjumping

In Section 5.2 we saw that the gains and losses for backjumping are similar to those experienced

by standard backtracking, with the exception of g4bj and l4bj, which are related to culprit

detection. As a result we adopt a similar approach for designing an evaluation heuristic α2bt. We

start by stating that;

α2bj(xa, xb) < 1.0  ⇒   aggregation of xa and xb is likely to be useful

and

α2bj(xa, xb) ³ 1.0  ⇒   aggregation of xa and xb is not likely to be useful

Considering the losses due to l4bj, we notice that the effect is likely to be relatively small due to

two factors. First, any loss only involves the difference in one level of search since l4bj represents

the effects of jumping back one level less than would otherwise been the case. The magnitude of

any losses are also further reduced by the reduction in the “ab” space. The second reason is that
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its effect is conditional on search progressing to levels deeper in the search than that of the

aggregation level. As a result, for the purposes of this heuristic, we ignore effects due to l4bj.

In contrast to l4bj, g4bj can have more significant effects because it can result in jumps across many

levels of search. We should therefore consider its effect as part of α2bj. Our approach is to

consider the effect at the aggregation level of search only. Analysis of the estimate for

backjumping as a whole will show that in fact these jumping effects can affect the number of

checks performed at other past search levels. However, for the purposes of our heuristic, provided

we include g4bj effects for the aggregation level, we should obtain a good indication of the effects

of the aggregation on the backjumping mechanism, and hence the expected search cost. Ignoring

the effects on previous levels makes our heuristic more conservative in nature.

The first step in the derivation of our expression for α2bj is to say that ;

α2bj(xa, xb) = bj ab

bj a b

Cost f x

Cost f x x

( )

( , )

,
,
2

1

(5-21)

where Costbj(f1, xa, xb) represents the cost in terms of the expected number of checks to

exhaustively cover search over the variables xa and xb in the original ZDC formulation, f1. Costbj(f2,

xab)  represents the expected number of checks to exhaustively cover the variable xab in the

transformed ZDC formulation, f2. Unlike the situation with standard backtracking, in order to

include the effects of g4bj, we need to include the effective domain sizes of previous variables. We

therefore use (4-20) as the basis of our calculation of the cost functions. We have;

Costbj(f1,xa,xb) = n(bj, a) × c(bj, a) + n(bj, b) × c(bj, b) (5-22)

and

Costbj(f2,xab) = n(bj, ab) × c(bj, ab) (5-23)

where n(bj, k) and c(bj, k) are taken from chapter 4. We can then use (4-22) and (4-23) to

calculate (5-21).
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5.4.4 Effectiveness of Evaluation Heuristics αα2bt, αα2bj and αα2fc

Having devised a second set of evaluation heuristics for use with the variable aggregation

transformation we performed a similar evaluation to the one we used for heuristics α1bt, α1bj and

α1fc. In addition we carried out a further evaluation of our heuristics using 3-colouring problems

and the 8-Queens problem.

5.4.4.1 Randomly Generated Binary CSPs

In order to assess the effectiveness of our second set of ZDC formulation evaluation heuristics we

used the same method and problem classes described in section 5.3. Our results for the three

evaluation heuristics are given in tables 5.5 - 5.7.

The results in tables 5.5-5.7 show that the combination of knowledge of the aggregation

transformation and the restricted use of theoretical complexity estimates improves the reliability of

our evaluation heuristics in terms of the number of classes where more ZDC formulations are

improved than degraded. This is particularly striking for the backjumping results where there is

only one class showing this undesirable effect, <40, 10, 0.05, 0.80>, as indicated by the light grey

cells in table 5.6. This gives us further confidence in the correctness of the model we have

developed for backjumping in chapter 4.

Similar results are seen for forward checking, with only two problem classes showing more

instances where a degradation in performance was observed - <20, 5, 0.30, 0.40> and <20, 5,

0.30, 0.45>. Note also that the conservative nature of α2fc results in an increase in the number of

occasions where no benefit is seen. These cases are indicated in bold type in table 5.7 and are due

to the domination of the l1fc term. In general, however, we see that the α2 heuristics perform

much more robustly when compared with the naive variable aggregation transformation.

If we look at the quantitative results, we also see a general improvement when compared with the

α1 evaluation heuristics used in section 5.3. For example, comparing the results in tables 5.3 and

5.7, if we look at the median performance for standard backtracking, the ratio of cc(AG2) and

cc(AG1) is consistently lower for the α2 case. This means we can expect a greater gain when

using the α2 heuristics, for the average case. Similar results are seen for backjumping and forward

checking.
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( )

( )
.

2

1
115³

<20, 5, 0.10, 0.70> bt+nat 0.21 0.89 0.99 39   (40) 0   (9) 25  (27) 0   (3)
<20, 5, 0.10, 0.75> bt+nat 0.25 0.86 0.95 51   (52) 0   (2) 35  (34) 0   (0)
<20, 5, 0.10, 0.80> bt+nat 0.21 0.79 0.88 59   (59) 0   (1) 46  (46) 0   (1)
<20, 5, 0.30, 0.35> bt+nat 0.70 0.95 0.97 39   (13) 0   (71) 8    (2) 0   (62)
<20, 5, 0.30, 0.40> bt+nat 0.56 0.92 0.94 56   (15) 0   (64) 13  (3) 0   (43)
<20, 5, 0.30, 0.45> bt+nat 0.51 0.88 0.90 71   (33) 0   (44) 33  (17) 0   (26)
<20, 10, 0.10, 0.80> bt+nat 0.18 0.89 1.00 33   (28) 1   (2) 23  (15) 0   (1)

Table 5.5 - Results of applying the aggregation transformation using

the α2bt evaluation heuristic
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<20, 5, 0.10, 0.70> bj+nat 0.013 0.79 0.94 54   (53) 4     (8) 42   (46) 3     (3)
<20, 5, 0.10, 0.75> bj+nat 0.005 0.68 0.80 62   (57) 0     (5) 52   (49) 0     (2)
<20, 5, 0.10, 0.80> bj+nat 0.0010 0.59 0.62 68   (61) 1     (2) 62   (43) 0     (0)
<20, 5, 0.30, 0.35> bj+nat 0.34 0.92 0.97 48   (39) 14   (41) 24   (20) 8     (31)
<20, 5, 0.30, 0.40> bj+nat 0.32 0.92 0.96 47   (32) 13   (50) 22   (22) 5     (37)
<20, 5, 0.30, 0.45> bj+nat 0.18 0.85 0.87 67   (49) 10   (30) 46   (31) 5     (19)
<20, 10, 0.10, 0.80> bj+nat 1.3 e-04 0.77 0.99 44   (25) 9     (6) 34   (20) 8     (5)
<30, 10, 0.10, 0.70> bj+mwo 0.78 0.86 0.90 67   (33) 12   (54) 37   (20) 5     (35)
<30, 10, 0.10, 0.75> bj+mwo 0.03 0.82 0.83 79   (48) 6     (36) 54   (30) 2     (24)
<30, 10, 0.10, 0.80> bj+mwo 0.49 0.71 0.71 99   (79) 0     (10) 93   (58) 0     (4)
<30, 10, 0.10, 0.85> bj+mwo 0.45 0.62 0.62 100 (96) 0     (1) 99   (85) 0     (1)
<40, 10, 0.10, 0.60> bj+mwo 0.18 0.98 0.99 19   (15) 15   (82) 8     (13) 6     (75)
<40, 10, 0.10, 0.65> bj+mwo 0.48 0.95 0.96 46   (4) 13   (96) 13   (2) 0     (87)
<40, 10, 0.10, 0.70> bj+mwo 0.50 0.89 0.90 79   (2) 3     (88) 25   (1) 0     (73)
<40, 10, 0.05, 0.80> bj+mwo 8.0 e-06 1.02 1.01 39   (52) 36   (32) 23   (27) 30   (26)
<40, 10, 0.05, 0.85> bj+mwo 3.6 e-05 0.73 0.80 71   (72) 25   (18) 59   (56) 20   (10)
<40, 10, 0.05, 0.90> bj+mwo 0.12 0.42 0.43 100  (98) 0     (1) 100 (98) 0     (1)
<40, 5, 0.10, 0.48> bj+mwo 0.014 0.90 0.96 43   (20) 7     (66) 19   (13) 1     (48)
<40, 5, 0.10, 0.52> bj+mwo 0.38 0.90 0.91 62   (34) 6     (49) 33   (24) 3     (25)
<40, 5, 0.10, 0.56> bj+mwo 0.42 0.77 0.78 92   (54) 2     (27) 73   (24) 0     (11)
<40, 5, 0.05, 0.62> bj+mwo 1.7 e-06 0.96 0.91 60   (65) 27   (27) 36   (44) 22   (21)
<40, 5, 0.05, 0.66> bj+mwo 1.4 e-05 0.69 0.79 74   (75) 17   (19) 57   (54) 10   (14)
<40, 5, 0.05, 0.70> bj+mwo 1.5 e-04 0.65 0.71 84   (80) 12   (8) 75   (69) 9     (5)

Table 5.6 - Results of applying the aggregation transformation using

the α2bj evaluation heuristic
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<20, 5, 0.10, 0.70> fc+nat 0.0026 0.77 0.88 54   (57) 5     (6) 46   (42) 0     (4)
<20, 5, 0.10, 0.75> fc+nat 0.012 0.76 0.90 53   (58) 4     (5) 44   (49) 0     (4)
<20, 5, 0.10, 0.80> fc+nat 0.096 0.79 0.92 55   (66) 0     (2) 42   (54) 0     (1)
<20, 5, 0.30, 0.35> fc+nat 0.88 1.00 1.00 1     (35) 1     (47) 0     (22) 0     (34)
<20, 5, 0.30, 0.40> fc+nat 0.79 1.00 1.00 4     (27) 7     (54) 2     (17) 4     (37)
<20, 5, 0.30, 0.45> fc+nat 0.70 1.00 1.00 3     (33) 13   (51) 1     (24) 6     (37)
<20, 10, 0.10, 0.80> fc+nat 6.0 e-04 0.76 0.96 49   (40) 12   (6) 45   (35) 2     (1)
<30, 10, 0.10, 0.70> fc+mwo 1.00 1.00 1.00 0     (36) 0     (54) 0     (25) 0     (43)
<30, 10, 0.10, 0.75> fc+mwo 1.00 1.00 1.00 0     (32) 0     (52) 0     (27) 0     (33)
<30, 10, 0.10, 0.80> fc+mwo 0.32 0.88 0.87 63   (51) 22   (34) 44   (31) 11   (23)
<30, 10, 0.10, 0.85> fc+mwo 0.35 0.72 0.69 86   (81) 12   (11) 72   (72) 2     (5)
<40, 10, 0.10, 0.60> fc+mwo 1.00 1.00 1.00 0     (29) 0     (65) 0     (26) 0     (55)
<40, 10, 0.10, 0.65> fc+mwo 1.00 1.00 1.00 0     (14) 0     (80) 0     (7) 0     (73)
<40, 10, 0.10, 0.70> fc+mwo 1.00 1.00 1.00 0     (6) 0     (88) 0     (2) 0     (73)
<40, 10, 0.05, 0.80> fc+mwo 1.0 e-05 0.92 0.98 30   (32) 16   (44) 16   (20) 8     (28)
<40, 10, 0.05, 0.85> fc+mwo 9.6 e-05 0.83 0.93 54   (47) 15   (39) 34   (36) 0     (29)
<40, 10, 0.05, 0.90> fc+mwo 0.13 0.58 0.59 97   (95) 1     (2) 94   (91) 0     (0)
<40, 5, 0.10, 0.48> fc+mwo 1.00 1.00 1.00 0     (26) 0     (60) 0     (16) 0     (43)
<40, 5, 0.10, 0.52> fc+mwo 1.00 1.00 1.00 0     (24) 0     (62) 0     (17) 0     (38)
<40, 5, 0.10, 0.56> fc+mwo 0.54 0.98 0.96 47   (28) 40   (54) 34   (20) 28   (37)
<40, 5, 0.05, 0.62> fc+mwo 8.0 e-06 0.96 0.98 29   (43) 20   (41) 8     (18) 10   (32)
<40, 5, 0.05, 0.66> fc+mwo 3.6 e-04 0.81 0.93 55   (56) 10   (32) 31   (30) 3     (22)
<40, 5, 0.05, 0.70> fc+mwo 6.0 e-04 0.83 0.92 61   (52) 10   (34) 32   (44) 3     (29)

Table 5.7- Results of applying the aggregation transformation using

the α2fc evaluation heuristic

5.4.4.2 3-Colouring Problems

Another commonly encountered class of problem is the graph colouring problem, which we also

used in chapter 4. These are important problem classes as some real world problems can be

mapped to graph colouring. A sub-class of this is the 3-colouring problem. We investigated the

validity of our new evaluation heuristics on a sample of 100 instances of the same 3-colouring

problem class used in chapter 4, i.e. <50, 3, 4.5>. As with the experiment in the previous section,

we used standard backtracking, backjumping and forward checking and we combined them with

the minimum width variable ordering. Our results are given in table 5.8.

In terms of the qualitative performance of our heuristics, the results in table 5.8 show how variable

aggregation combined with our new evaluation heuristics shows significant improvements in
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search costs for all three algorithms, for the class of 3-colouring problem used. If we look at the

figures in columns 6, 7, 8 and 9, all of the α heuristics satisfy the 50% selection criterion described

in chapter 3.

In terms of the quantitative performance, all of our heuristics display good best case gains of

greater than 50%, as can be seen if we look at column 2. Furthermore, in all cases the average

gain in search cost obtained is greater than 10%, as seen by the results in column 3.

These results are encouraging because they provide another example of how the theoretical

complexity approach can be useful for ZDC formulation selection, when applied in the way we

have described in this chapter, even on 3-colouring problems which have extremely low density

constraint graphs.
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α1bt bt+mwo 0.48 0.90 0.95 52 0 17 0

α2bt bt+mwo 0.48 0.89 0.93 66 0 20 0

α1bj bj+mwo 0.47 0.87 0.93 60 0 27 0

α2bj bj+mwo 0.21 0.87 0.91 68 1 34 0

α1fc fc+mwo 0.19 0.86 0.94 55 2 27 1

α2fc fc+mwo 0.19 0.87 0.95 46 31 26 6

Table 5.8 - Results of applying the aggregation transformation to 3-colouring problems

5.4.4.3  The 8-Queens Problem

As a further test of the effectiveness of variable aggregation combined with our new evaluation

heuristics, we investigated the application of the transformation to the 8-Queens problem. Table

5.9 shows the result of using our more informed application of the aggregation transformation.

The results are for the 8-Queens problem before and after application of the transformation

described in figure 5.6.
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He Algorithm+
Heuristic

Checks in
original

ZDC
formulation

Checks in
transformed

ZDC
formulation

α1bt bt+nat 2438 1810

α2bt bt+nat 2438 1476

α1bj bj+nat 2157 1306

α2bj bj+nat 2157 1306

α1fc fc+nat 803 760

α2fc fc+nat 803 803

Table 5.9 - Results of applying the aggregation transformation to the 8-Queens problem

The results in table 5.9 show the search cost required to solve the 8-Queens problem in terms of

the number of constraint checks. Each of our three search algorithms was used to solve the

problem before and after the application of the aggregation transformation. The results show that

our evaluation heuristics ensure no degradation in performance. In fact, the use of our evaluation

heuristics has resulted in improvements in search cost in all but the last row. This compares well

with the naive variable aggregation which we used in chapter 2. In that case, a degradation in

search cost was seen for all three algorithms.

One interesting feature of these results is the last row, for α2fc. No aggregation takes place using

this heuristic and hence no loss or gain in search cost is seen. The reason for this is the very loose

constraints in the 8-Queens problem tend to mean that losses due to l1fc dominate by consistently

giving a value greater than 1.0, hence pushing α2fc to a value greater than 1.0. This suggests that

the usefulness of α2fc may be improved by combining it with other measures or properties of

CSPs.

5.5 Discussion

The variable aggregation transformation is an important ZDC transformation algorithm which

presents us with an opportunity for significant gains in search cost. The work in this chapter has

been concerned with improving the effectiveness of this transformation by incorporating

sophisticated ZDC formulation evaluation heuristics into it. Our approach has been to build on the

ideas presented in chapter 4, using theoretical complexity models. We have developed heuristics
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based on the theoretical comparison of different ZDC formulations. We have also used

knowledge, specific to the variable aggregation transformation, as a basis for refining our

heuristics.

5.5.1 Robustness of Variable Aggregation

One of the problems with uninformed variable aggregation is that, while there are many problem

classes where large gains can be made through its application, there are some problem classes

where it can result in a degradation in search cost. This phenomenon was seen in table 5.2-5.7

with problem classes where the cells are shaded grey such as problem class <20, 5, 0.30, 0.45> in

table 5.5. By using more sophisticated ZDC formulation evaluation heuristics, such as the α

heuristics we have developed in this chapter, we have improved the robustness and scope of the

transformation, reducing the number of problem classes where bad formulations are generated.

Our new approach automatically adapts to the problem class being considered.

Further improvements in the performance of the variable aggregation transformation may be

possible if further refinements are made to the α heuristics. For example, further properties of

CSPs could be incorporated into the measure vector, as we described in chapter 3.

5.5.2 Improved Mean Performance

The α2 heuristics showed a general improvement, in terms of the mean gain in search cost,

relative to the α1 heuristics. This suggests that the use of theoretical estimates based on the local

changes to ZDC formulations can lead to an improvement in the accuracy of theoretical estimates.

As a result, we believe the type of analysis and approach used in this chapter could be applicable

to other ZDC transformation functions.

5.5.3 Exceptionally Hard Problems

From the results in tables 5.2-5.7, when the maximum ratio of search cost is considered, we see

savings in search cost of several orders of magnitude are occasionally seen. For example, the

minimum ration of cc(AG2) and cc(AG1) for problem class <40, 10, 0.05, 0.80> in table 5.6

where the difference is six orders of magnitude. This relates to the phenomenon of exceptionally

hard problems or EHPs (Smith 1994) (Smith & Grant 1996). EHPs are outliers in a class of

problems which show search costs several orders of magnitude greater than the median. The use
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of the variable aggregation transformation has clearly resulted in some cases where search costs

were reduced by several orders of magnitude and we conjecture that the use of the transformation

can result in improved performance of some algorithms in terms of the frequency of EHPs.

Avoiding this exceptional behaviour is extremely desirable. The intelligent application of the

variable aggregation transformation presents us with an opportunity to reduce their impact,

especially for the forward checking and backjumping algorithms.

5.5.4 Theoretical Complexity Model for Backjumping

The performance of the α1bj and α2bj heuristics was comparable with the corresponding heuristics

for standard backtracking and forward checking. These results give us further confidence in the

correctness of the  theoretical complexity model we developed for backjumping in chapter 4.

5.5.5 Applicability to Cycle Cutset Method

An interesting observation relating to the variable aggregation transformation in particular

concerns the cycle cutset method (Dechter & Pearl 1987). The cycle cutset method is an approach

to CSP solving which looks to modify the structure of an original ZDC formulation such that we

eventually obtain a formulation whose constraint graph is a tree. One part of the method is to join

groups of variables. This is done in a naive fashion, without regard to the effects of joining

variables that were described in section 5.2. Furthermore, it is often the case that there are several

alternative choices that can be made during the problem transformation process, regarding the

members of such groups of variables. It is possible that evaluation heuristics similar to the ones

developed in this chapter could be used as method for improving the effectiveness of the cycle

cutset method.

5.6 Summary

The main contribution of this chapter is the development of an important new set of ZDC

formulation evaluation heuristics for use with the variable aggregation transformation. This

represents a new direction in constraint satisfaction research and the principles we have used to

improve the performance of variable aggregation should be applicable to other ZDC

transformations. Our work also demonstrates how the elements of our context for ZDC
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formulation selection can be combined and our results show much promise in this area. In

particular we have developed;

• a ZDC formulation suggestion heuristic, Hs, based on the idea that reducing the

search space complexity is a good thing

• a move operator based on the variable aggregation transformation

• a ZDC formulation evaluation heuristic, He, based significant extensions to the

theoretical complexity theory of chapter 4

Our evaluation heuristics were applied to the standard backtracking, backjumping and forward

checking algorithms. Results from the experiments we have performed support our claim that

theoretical complexity estimates have a significant role to play in the development of ZDC

formulation evaluation heuristics as large savings in search costs were seen for some classes of

problem. The results for backjumping also give additional evidence for the correctness of the new

theoretical complexity model which we developed for that algorithm.


