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Abstract

Looking ahead is a commonly used search technique in constraint satisfaction. In this paper,
we examine the future role of two long established lookahead algorithms, Partial Looking
Ahead (PLA) and Full Looking Ahead (FLA) [9]. We prove that PLA is inferior to
Directional Arc-consistency Lookahead [3, 4, 14] in that the latter will prune at least as
much as the former for no more compatibility checks in each problem reduction step.
Similarly, FLA is inferior to Bi-directional Arc-consistency Lookahead, an algorithm
introduced in this paper. We also point out a couple of errors in the literature.

Keywords: constraint satisfaction, looking ahead, constraint propagation, directional arc-
consistency, arc-consistency

1.  Introduction

A finite constraint satisfaction problem (CSP) is a problem which comprises a set of
variables, a domain for each of the variables, and a set of constraints restricting the values
that the variables can take simultaneously. The task is to assign a value to each variable from
its domain satisfying all the constraints [8, 14].

We call the assignment of a value v to a variable x a label, denoted by <x, v>. One
common way to search for a solution is to commit to one label for one variable at a time. We
shall call the variables which are yet to be assigned a value future variables. A redundant
value is a value in a domain which cannot be assigned to the corresponding variable to form
any solution. Lookahead search algorithms attempt to remove redundant values through
problem reduction. The most basic form of problem reduction is to remove all the values in
the domains of future variables which are directly incompatible with the value that has just
been committed to. We shall refer to this way of reducing the problem as FC reduction, since
it is the reduction that the ‘Forward Checking’ algorithm [9] performs. In some lookahead
algorithms, the removal of certain redundant values could lead to the removal of more
redundant values or tightening of certain constraints. This is called constraint propagation.

Haralick & Elliott [9] introduced Partial Looking Ahead (which we shall refer to as PLA)
and Full Looking Ahead (which we shall refer to as FLA) algorithms. Tsang [14] introduced
the Directional Arc-consistency Lookahead (DAC-L) and Arc-consistency Lookahead (AC-
Lookahead) algorithms, which reduce the remaining problem by maintain DAC and AC
respectively. The objectives of this paper are:

(a) to prove that DAC-L is superior to PLA, in that the former is capable of removing
more redundant values without requiring more computation than the latter;
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(b) to introduce an algorithm called Bi-directional Arc-consistency Lookahead (BDAC-
L), and show that it is superior to FLA;

(c) to point out that PLA and FLA are not the same as DAC-L and AC-Lookahead,
respectively, as it was suggested by Tsang [14];

(d) to point out that maintaining DAC in both directions does not achieve AC, as it was
suggested by Dechter & Pearl [3, 4].

2.  PLA, FLA, DAC-L and AC-L Recapitulation

Definition 1 (Directional Arc-consistency [3, 4]):
A problem is Directional Arc-consistent (DAC) under an ordering of the variables if and
only if for every label <x, a> which satisfies the constraints on x, there exists a compatible
label <y, b> for every variable y which is after x according to the ordering.

As suggested in this definition, DAC assumes an ordering of the future variables. The
standard procedure to maintain DAC is as follows [3, 4]. Let us assume that k variables have
been labelled. Let the future variables and their ordering be (xk+1, xk+2, …, xn). To achieve
DAC, variable xn is looked at first, followed by xn-1, xn-2, etc. until xk+1 is processed. When
variable xp is looked at, each of the values v in its current domain is checked against its future
variables xp+1, …, xn, to see if v can be removed; v will be removed if it has no compatible
value in any of its future variables. Let Di denote the current domain of variable xi, and C be
a set of constraints. The following reduces a problem to directional arc-consistency:

1 Procedure DAC((xk+1, xk+2, …, xn), (Dk+1, Dk+2, …, Dn), C)
2 BEGIN
3 For p = n to k + 1 do
4 For each value v in Dp do
5 For q = p + 1 to n do
6 IF <xp, v> has no compatible value in Dq

7 THEN remove v from Dp

8 END

After committing to each label, the DAC-L algorithm performs FC reduction and then
maintains DAC. PLA does the same, except that instead of maintaining DAC, it calls a
procedure which we shall refer to as PLA reduction. The PLA reduction procedure is
identical to DAC, except that the variables are looked at in a different ordering: (xk+1, xk+2,
…, xn). In other words, line 3 of procedure DAC becomes:

3' For p = k + 1 to n do

FLA behaves exactly like PLA, except that PLA reduction is replaced by a procedure that
we shall refer to as FLA reduction. FLA reduction differs from PLA reduction in that it
examines values against past as well as future variables. To be more precise, FLA reduction
calls the following procedure after committing to each label and performing FC reduction (as
before, xk+1, xk+2, …, xn are the future variables):

1 Procedure FLA_Reduction((xk+1, xk+2, …, xn), (Dk+1, Dk+2, …, Dn), C)
2 BEGIN
3 For p = k + 1 to n do
4 For each value v in Dp do
5 For q = k + 1 to n except p do
6 IF <xp, v> has no compatible value in Dq

7 THEN remove v from Dp

8 END
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Definition 2 (Arc-consistency [10]):
A problem is Arc-consistent (AC) if and only if for every label <x, a> which satisfies the
constraints on x, there exists a compatible label <y, b> for every other variable y.

If FLA_Reduction were to be used to maintain AC, it must be called repeatedly until no
value is removed. Exactly how AC could be achieved has been extensively studied but
unimportant to our discussions here. Interested readers should refer to, for example,
Montanari [12], Mackworth [10], Mohr & Henderson [11], Deville & Van Hentenryck [5],
Van Hentenryck et. al. [15], Bessière et. al. [1, 2], van Beek [16], Falting [6], Sabin &
Freuder [13].

It is worth remarking on the names of the above algorithms before we continue: the name
‘Partial Looking Ahead’ is quite vague. Unlike DAC-L and AC-Lookahead, it does not
suggest exactly what is being achieved during problem reduction. Besides, there is nothing
‘full’ (or complete) about ‘Full Looking Ahead’. One can attempt to reduce the problem
further than making FLA reduction (by, for example, maintaining 3-consistency [7]).

3. Bi-directional AC Lookahead

In this section, we shall introduce the Bi-directional AC Lookahead (BDAC-L) algorithm.
Later we shall show that it can potentially prune more redundant values than FLA. BDAC-L
simply maintains DAC from both directions after each label is committed to and FC
reduction is completed. The pseudo code of BDAC-L is shown below:

1 Procedure BDAC((x1, x2, …, xn), (D1, D2, …, Dn), C)
2 BEGIN
3 DAC((x1, x2, …, xn), (D1, D2, …, Dn), C)
4 DAC((xn, xn-1, …, x1), (Dn, Dn-1, …, D1), C)
5 END

Constraint propagation is built upon the notion of support: a value is removed if it has no
support (compatible value) from another variable. So the sooner a redundant value is
removed, the less support other redundant values will get, which means the higher chance of
them being pruned. So as a principle, the sooner redundant values are removed the more
effective and efficient a problem reduction algorithm is likely to be.

In the pseudo code shown above, DAC is maintained from x1 to xn first. It is also possible
to maintain DAC using the reverse ordering first. Given a particular CSP, if there exists
heuristics which indicate which ordering for maintaining DAC should allow more redundant
values to be removed early, such ordering should be used first.

4. Example

In this section, we shall give an example of a CSP, and explain the behaviour of the above
lookahead algorithms. This example will be used in subsequent sections.

Figure 1 shows a graph colouring problem, which is a CSP with three variables A, B and
C. The domain of variable A contains only one value “r” (which stands for red); the domains
of B and C both contain values “r” and “g” (which stands for green). The constraint between
A and C requires the value that A takes to be different from the value that C takes. Similarly,
B is required to take a value different from C’s. There exists no constraint between A and B,
which means that there is no restriction on what values A and B may take simultaneously.
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Table 1: Redundant values removed by different reduction procedures
Ordering PLA Reduction DAC FLA Reduction BDAC

1 (A, B, C) Nil Nil <C,r> <C,r>
2 (A, C, B) Nil Nil <C,r>, <B,g> <C,r>, <B,g>
3 (B, A, C) Nil Nil <C,r> <C,r>
4 (B, C, A) <C,r> <C,r>, <B,g> <C,r> <C,r>, <B,g>
5 (C, A, B) <C,r> <C,r> <C,r>, <B,g> <C,r>, <B,g>
6 (C, B, A) <C,r> <C,r> <C,r>, <B,g> <C,r>, <B,g>

Imagine A, B and C being three future variables during a search after a label is committed
to and FC reduction is performed. Table 1 summarizes the redundant values that will be
pruned by the above procedures. As an example, let us focus on row 4 of Table 1. Under the
ordering (B, C, A), PLA will first check <B, r> against C and A. Since <C, g> is compatible
with <B, r>, and no constraint exists between A and B, <B, r>  gets support from both C and
A. Next, <B, g> is checked against C and A, and support is found too. When <C, r> is
checked against A, the value r will be removed from the domain of C because there exists no
value in the domain of A which is compatible with <C, r>. Then PLA will check <C, g>
against A; since it is supported by <A, r>, g will be retained in C’s domain.

If DAC were to be maintained under the ordering (B, C, A), values in the domain of C will
be checked against A first. <C, r> will be removed before <B, g> is checked against C, which
would lead to the removal of g from the domain of B. Maintaining BDAC under this ordering
will achieve the same effect due to line 3 of the above pseudo code (no further pruning will
be made in line 4).

Under the same ordering, FLA will check the values in the domain of B against C and A
first, which leads to no removal of redundant values. Next values for C will be checked
against A and B, which leads to the removal of <C, r>. This is followed by the checking of
<A, r> against B and C, which confirms that it is not redundant.

5. A couple of errors in the literature

Given the importance of lookahead algorithms in constraint satisfaction research, it is
worth pausing to correct a couple of errors in the literature here. Firstly, PLA and FLA do not
guarantee to maintain DAC and AC as suggested by Tsang ([14], page 136). As illustrated in
the pseudo codes above, after committing to each label and performing FC reduction, PLA
checks the values of variables from xk+1 to xn given the variable ordering (xk+1, xk+2, …, xn),
whereas DAC-L checks the values for variables from xn to xk+1. Therefore, PLA does not
guarantee to maintain DAC.

A B

C

B � CA � C

{r, g}

{r} {r, g}

Figure 1 – A constraint satisfaction problem with variables A, B and C; their domains are
indicated in { }’s and the constraints are marked next to the edges shown
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Row 4 in Table 1 provides a counter example to illustrate that PLA reduction does not
necessarily prune enough redundant values to achieve AC: a careful check with Definition 2
(AC) and the example above should convince the readers that to maintain AC, both <B, g>
and <C, r> must be removed. Row 4 in Table 1 shows that FLA only removes <C, r>, and
therefore does not guarantee to achieve AC.

Secondly, achieving DAC from both directions does not guarantee to achieve AC, as it was
suggested by Dechter & Pearl ([3], page 1069, and [4], page 13). This can be illustrated by
two counters examples in Table 1: given any ordering of variables, BDAC maintains DAC in
both directions. In both rows 1 and 3 of Table 1, BDAC removes <C, r> only, but not <B,
g>. This shows that by achieving DAC in both directions, one does not guarantee to achieve
AC.

6. DAC-L is superior to PLA

In the following, we shall prove that maintaining DAC requires no more compatibility
checks than PLA reduction, but it prunes at least as many redundant values as PLA reduction
could.

Proposition 1:
Procedure DAC performs no more compatibility checks than PLA reduction under the
same variable ordering.

Proof:
This is obvious in the pseudo code of DAC and line 3' in Section 2. The only difference
between DAC and PLA reduction is in the ordering of label checks. In fact, when a label
<x, v> is checked against variable y in PLA reduction, the domain of y contains all the
values input to the PLA reduction procedure. On the other hand, when <x, v> is checked
against y in the DAC procedure, it is possible, though not necessary, that the domain of y
has been reduced. (This is because y could be after x under the ordering that DAC uses,
and values of y are examined before <x, v> is looked at.) We know that if <x, v> were to
be pruned due to its having no support from y, then all the values in the domain of y must
be checked against <x, v>. So it is possible for DAC to perform fewer number of checks
than PLA reduction.  �

Proposition 2:
Procedure DAC prunes at least as many redundant values as PLA reduction.

Proof:
Let DAC and PLA reduction use an ordering under which x is before y, and let Dy be the
domain of variable y when a PLA reduction procedure is called. As it is explained in the
proof of Proposition 1, when PLA reduction checks <x, v> against variable y, the domain
of y will always be Dy. This is not necessarily the case in the DAC procedure since it
checks the values of y before checking those of x. Therefore, should <x, v> be pruned by
PLA reduction due to its having no support in y, it will always be pruned by procedure
DAC.  �

Proposition 3:
It is possible for DAC to prune redundant values that PLA reduction does not.

Proof:
Following the analysis in the above proofs, it is possible for the only values in y which
support <x, v> to be pruned before <x, v> is checked against y in achieving DAC. Row 4
in Table 1 shows an example of such a situation: under the ordering (B, C, A), DAC
prunes <B, g> while PLA reduction does not.  �

Propositions 1 to 3 together suggest that PLA reduction is inferior to DAC. Table 1 shows
that the DAC procedure prunes the same set of values as PLA reduction under five of the six
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possible orderings of the three variables. In fact, this example illustrates some general truth:
given two variables y and z, if no values in constrained variable z supports <y, b>, then:

(1) if z is before y under the ordering used for achieving DAC or PLA reduction,  then b
will not be pruned because <y, b> will not be checked against z (see rows 1 to 3 in
Table 1, where A is ordered before C).

(2) if z is after y under the ordering used for achieving DAC or PLA reduction, then b will
be pruned (see rows 4 to 6 in Table 1, where A is ordered after C).

Assume further that <y, b> is the only value that supports <x, a>. It is obvious that <x, a>
will only be pruned by DAC if the ordering (x, y, z) is used. So if a random ordering is used
by DAC, there is one in sixth chance that both <x, a> and <y, b> will be pruned. For reasons
explained above, PLA reduction will never be able to prune both redundant values. Under the
above assumptions, PLA reduction prunes less than DAC in one out of every six calls under
random variable orderings. In general, there is no obvious reason why PLA should be used
instead of DAC-L.

7. BDAC-L is superior to FLA

Table 1 above illustrates that BDAC reduces as many redundant values as FLA reduction
in five out of the six rows; it prunes more in row 4. We shall prove in this section that it is
generally true that BDAC has more pruning power than FLA reduction. We shall then prove
that maintaining BDAC using the procedure shown in Section 3 requires no more
compatibility checks than FLA reduction.

Proposition 4:
Any value that is removed by FLA reduction when checking forward will be removed by
the BDAC procedure in line 3.

Proof:
Let variable x be before variable y under an ordering used by both FLA reduction and
BDAC maintenance. Let Dy be the domain of y immediately before these procedures are
called. When <x, b> is checked against y in FLA reduction, the domain of y will always
be Dy, as the domain of y is not yet examined. Therefore, if y provides no support to <x,
b> in FLA reduction, it will also provide no support in maintaining BDAC.   �

Proposition 5:
Any value that is removed by FLA reduction when checking backward will be removed
by the BDAC procedure in line 4.

Proof:
Let variable x be after variable w under the ordering used by both FLA reduction and
BDAC maintenance. Let Dw be the domain of w immediately before these procedures are
called. If the domain of w is not reduced from Dw when <x, v> is checked against w in
FLA reduction, then BDAC would prune <x, v> in line 4 whenever FLA reduction does
so. FLA reduction could only remove a value v' from the domain of w under two
situations: (1) when <w, v'> was checked against some variable after w; and (2) when <w,
v'> was checked against some variable before w. Proposition 4 suggests that pruning by
FLA reduction under situation (1) would also be achieved by BDAC in line 3; so BDAC
would be checking <x, v> against w’s domain without v' in line 4. A careful inspection of
the pseudo codes should review that line 4 in procedure BDAC performs all the backward
checks of FLA reduction in exactly the same order. Therefore, pruning by FLA reduction
under situation (2) will also be achieved by BDAC in line 4. So we know that when <x,
v> is checked against w in BDAC, the domain of w would have been reduced as much as
it could have been in FLA reduction. Therefore, BDAC will prune <x, v> whenever FLA
reduction does so.  �
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It is worth noting that had lines 3 and 4 swapped their places in procedure BDAC, the
above proof will not be valid.

Proposition 6:
It is possible for BDAC to prune redundant values that FLA reduction does not.

Proof:
This is illustrated by the example in row 4 of Table 1.  �

Proposition 7:
Procedure BDAC performs no more compatibility checks than FLA reduction under the
same variable ordering.

Proof:
The pseudo codes above show that both BDAC and FLA reduction check every label
against every other variable once and once only.. (Since every label is checked against
every other variable, <C, r> is removed under every ordering used by FLA reduction and
BDAC in our example in Section 4, as it is illustrated in Table 1. Whether <B, g> is
removed or not depends on whether it is checked against C before or after <C, r> is
removed.) Their difference is in the order in which the variables are processed. As
explained in the proofs of Propositions 5 and 6, when <x, v> is checked against w, BDAC
will be handling a smaller or equal-sized domain of w than FLA reduction. Therefore,
BDAC should perform no more (possibly fewer) checks than FLA reduction.  �

Propositions 4 to 6 show that BDAC has more pruning power than FLA reduction.
Proposition 7 suggests that FLA reduction requires at least as many compatibility checks as
BDAC. Therefore, we can conclude that FLA reduction is inferior to BDAC.

8. Conclusion

Figure 2 summarizes the relative positions of the lookahead algorithms mentioned in this
paper. Forward Checking, k-consistency [7] and adaptive consistency [4] lookahead are
included in figure 2 for reference.

In this paper, we have proved that PLA reduction performs at least as many checks as
DAC-L, but has less pruning power. Similarly, PLA performs at least as many checks as
BDAC-L, but has less pruning power. Therefore, we argue that DAC-L and BDAC-L should
be used in place of the long established PLA and FLA respectively in future research.
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Partial Looking Ahead

DAC-Lookahead

Bidirectional AC Lookahead

Full Looking Ahead

AC-Lookahead

Q potentially requires
less computation and
could prune more than P

Y potentially requires
more computation but
could prune more than X

k-consistency lookahead for k > 2,
adaptive consistency lookahead, etc.

Figure 2 –  Relative positions of selected lookahead algorithms (inferior algorithms are shaded, see text)
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P

Q

X
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