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Abstract

GENET and Guided Local Search (GLS) have been applied to a number of optimisation and search problems in the last decade. Despite
their success, there has been little study of the properties of the GENET and GLS search mechanism. This paper provides a rigorous account
of GENET local search for binary constraint satisfaction problems. This enables us to study the convergence of a slightly modified version of
GENET. We have identified and established a condition under which the modified GENET algorithm will converge to the global optimum.
This is a significant result as it enables us to identify problems which can be solved to optimality by the modified GENET method.

I. INTRODUCTION

Guided Local Search (GLS) is a meta-heuristic method for combinatorial optimisation [13][16][15][9]. Inspired by var-
ious ideas in Operations Research, GLS was generalised from GEneric NEural neTwork (GENET), which was proposed
by Tsang and Wang in 1991 [1][2] and significantly extended by Davenport [3][4], for solving constraint satisfaction
problems (CSPs) [5][6]. In GENET, a local search procedure is used to explore the search space. When the local search
becomes trapped in a local optimum, the cost function is modified to help the local search procedure escape. GLS
extends GENET by using problem-specific features to guide the search out of a local optimum.

GLS and its variants have been applied with great success to a number of combinatorial optimisation problems,
including the radio link frequency assignment problem (RLFAP) [24][18], British Telecom’s work force scheduling problem
(WFS) [21][10], the travelling salesman problem (TSP) [11], function optimisation [22], processor configuration [17], the
satisfiability (SAT) and MAX-SAT problems [19], rail traffic control [27], logic programming [28][29] and vehicle routing
[23][26]. GLS has been incorporated into ILOG Dispatcher, a commercial package for vehicle routing problems [23].
With success in these applications, GLS and its variants are algorithms that combinatorial optimisation researchers
cannot afford to ignore.

Given their experimental success, the issue of theoretical analysis of GENET and GLS has received some attention,
e.g. see [25], which cast GENET as a Lagrangian method. The present paper attempts to provide a robust foundation
for GENET and GLS. With constraint satisfaction problems, global solutions can be recognised (when no constraint
is violated) once found. But in general, meta-heuristic methods cannot prove unsatisfiability in constraint satisfaction
problems, or recognise global optimal solutions in optimisation problems. In this paper, we make our first attempt at
studying the search mechanism of GENET and GLS. We prove that GENET can escape from a local optimum under
certain conditions. This preliminary result should pave the way for further study of the working mechanism of GLS.

II. CONSTRAINT SATISFACTION PROBLEMS

Constraint satisfaction is a general problem that appears in many applications [5][6]. Research in constraint program-
ming has been active during the last two decades. Commercial products such as ILOG [30][31] and ECLiPSe [32] have
been used in many commercial applications, including scheduling work for British Airways, French and British Rail, the
Port of Singapore, Renault car manufacturing, etc.

In this paper, we define a constraint satisfaction problem (CSP) as a triple (Z, D, C), where
o Z={&,&,---,&,} is a finite set of variables,

e D=1{1,2,---,m} is a finite set of values,
e C is a set of constraints. Each constraint restricts certain simultaneous value assignments to a subset of the variables.

For convenience in the analysis (mainly to reduce necessary complexity in indexing), we assume, without loss of
generality, that all values are available to all variables here. A label, denoted by (&, v) here, is a variable-value pair
which represents the assignment of value v € D to variable £ € Z. We use A = {(§1,v1),--+,(§,,vn)} to denote a
simultaneous assignment in which the set of variables &, ---, &, is assigned the values vy, - - -, v,, respectively. Given
a CSP, the task is to find a simultaneous assignment which satisfies all the constraints in C'. A CSP is called a binary
CSP if each of its constraints involves two variables. It has been proved that any CSP can be transformed into a binary
CSP. Therefore, in this paper, we only consider binary CSPs.



A. The Cost Function of a CSP

In GENET for the binary CSP [1][2], a simultaneous assignment A = {(&1,v1),--+,(§,,,vn)} to the binary CSP is
represented as a 0-1 matrix:

X171 X192 Tin
T = 21 22 2n ’
Tml Tm2 Tmn

where

S 1 ifv; =,
Y71 0 otherwise.

Obviously, only one element in each column of x takes the value of 1. For any ¢ € {1,2,---m}, x,; = 1 represents the
assignment of the value v to the variable ;. In this paper, the i-th column of x is denoted by @, i.e., * = (Tx1, -+, Tun)-
The search space € is defined as:

Q= {x = (Zpi)mxn : Tpi € {0,1} and me =1fori= 1,...,n}. (1)

v=1

Clearly, 2 contains all possible simultaneous assignments to the CSP.
The cost (or “energy”) of a simultaneous assignment x € 2 for the CSP is defined as:

E(x) = Zzzzwm,uﬂmxw‘, (2)

where w,; . is a non-negative integer coefficient (called the connection weight) between the labels (§;,v) and (§;,u).
For convenience, we assume that wy; ; = Wy;j,vi for any 4, j,u,v. In GENET, the values of all weights w,; ,; satisfy the
following condition:

—0 ifi=j
Woiug 8 =0 if (§;,v) and (§;,u) are compatible in the constraint set C, (3)

> (0 otherwise.

The initial value of wy; 4 is set to 1 if and only if (§;,v) and ({;,u) are incompatible with each other. These values are,
however, subject to increments during the search. It is evident that F(x) = 0 if and only if = satisfies all the constraints.
In many applications, the problem might be overconstrained to the extent that no simultaneous assignment satisfies all
the constraints. In this case, the CSP is regarded as being equivalent to the following optimisation problem:

min E(z), x¢€ Q. (4)

y € § is called a global optimum of (4) if E(y) < E(z) for all x € Q. y is called a local optimum if E(y) < E(z) for any
z € () differing from y in only one column.

III. GENET LOCAL SEARCH
Before introducing GENET local search, we need to introduce the following operators:
Definition 1: [7][8] The WT A (winner-take-all) operator ¢ is a map: R™ — {0,1}™ in which, for any a = (ay,as, ...,am)’ €
R™, ¢(a) = (b1, -, bm)T is determined by

by — 1 if a; = minlgkgm{ak} and a; < aj for ] = 17 B ,i — 17
71 0 otherwise.

In other words, b; = 1 iff a; is the minimum element with lowest index in {ay,- -, am}.
Definition 2: For each i € {1,2,---,n}, the move operator ¥; on the variable &, works as follows:



Move Operator: y = ¥;(x)
Input: z € Q
Output: y € Q
Step 1 For any j € {1,2,---n}\{i}, set y.; = ;.
Step 2 Set T
Cy = Zzw”’“jx“j’ ve{l,2 --m}, (5)

u=1 j=1

and let ¢ = (cq,- -+, cm) 7.

Step 3 Let v; be the integer in {1,2, - --,m} such that x,,; = 1. If ¢,, = mini<g<m{ck}, then set y,; = ;. Otherwise,
Yui = ¢(c).

Obviously, = ¥,(z) if and only if ¢,, = minj<g<m{ck}-

The GENET local search works as follows:

y = GENET._LS(E, x)

Input: Cost function F(.) and a starting assignment z = (z;;) € Q
Output: an assignment y = (y;;) € Q

Step 1 yY =z, t:=0
Step 2 Set NT =0,
Fori:=1,---,ndo
{
2= W(y);
if z £yt set y!tl =2, NT:=NT +1andt:=t+1;
}

Step 8 If NT = 0, return y := y* and stop. Else go to Step 2.

Evidently, y* # y**' in GENET_LS.
Theorem 1: If wy;u;, = 0 for any ¢ € {1,2,---,n} and for any uv,v € {1,2,---,m}, then GENET_LS will terminate in
a finite number of steps and find a local optimum.

Proof: Consider two consecutive solutions y* and 3’*! in the sequence generated by GENET local search. We
first prove that E(y*) > E(y'*!). Note that y**! and y! differ only in one column - say, the I*" column. We denote the
non-zero elements of y*+! and y* in the I** column by ;' and y?;, respectively, i.e. y’ ' =y, = 1 and d # e. Then

n n

n o n
Z Z Wosi U«Jyfvzyu_y Z Z Z Z Wi U«Jy'f);rlyijl

s
@N
j
Qﬁ#

+

|
NE
Ms

u=1v=11¢=1 3 u=1v=1 =1 j=1
m m n n n n
_ t t+1, t+1
- ZZ Z Z wvi’ujy'viyuj - ZZ Z Z Wi, ujYyi yu] } +
u=1v=11i=1,i#l j=1,j#l u=1v=11i=1i#£l j=1,j#l
=0
m m n m m n
E E E t ot } :} :2: t+1, t4+1
[ WolujYupiYuj — Wol,ujYyl  Yuj ]+
u=1v=1 j=1 u=1v=1j=1
m m n m m n
E E E t .t E :} :}: t+1, t+1
[ Woi,ujYpiYul — Woi,uiYyi Yul ]
u=1v=1 i=1 u=1v=1 i=1
m m m m
t.t t+1, t+1
[E E Wol,ulYi1Yul — E E Wol,ul¥Yy; Yol )

u=1v=1 u=1v=1

=0 (Since wqy,u=0)



m n m n
t t
= 2( g g wel,ujyuj - E § Wdl,ujyuj)-
u=1j=1 u=1 j=1

Since >, 2?21 Wel,uj¥h; and Yty Z?:l Wai,ujYh; are c. and cq, respectively (by (5)), we have

m n m n
t t+1
DD wetuiu; = DD waiuyly >0,

u=1 j=1 u=1 j=1

Thus
E@y") > EW'™),

which means that the sequence of values {E(y")} is strictly decreasing. Since the search space is finite, GENET_LS
must therefore terminate in a finite number of steps.
Let y be the solution returned by GENET_LS. Then, for any i € {1,2,---,n}, y = ¥,(y). Thus when z € Q differs

from y in one column, we have
m n m n
g g Wel ujZuj — E g Wl ujYuj = 0,

u=1 j=1 u=1 j=1

which means
E(z) > E(y).

Therefore y is a local minimum of E(x). [ |

IV. GENET GUIDED LOCAL SEARCH

Suppose that z* is a local minimum obtained from the GENET local search procedure defined above. Suppose also
that new connection weights are defined as follows:

A o — it
Wi, vj otherwise,
where « is the learning rate (a positive integer that users need to set). The augmented function is then defined as

n n

F(z) = ZZZZQUi,UjZEuiZEuj. (7)

u=1v=1 =1 j=1
Then we can apply the GENET local search procedure to F'(x), starting at z*:
z** = GENET_LS(F,x"). (8)
By repeating the above procedure, we will generate a sequence of solutions and hope to obtain a global optimum.

V. CONVERGENCE OF GENET

In general, metaheuristic methods, of which GLS is one, do not guarantee to find global optimum solutions. GLS is
able to escape from local optima by means of penalty increments. However, there has been no guarantee until now that,
after escaping from one local optimum, the method will find a better one. The following theorem shows that GENET
can find better local minima under certain conditions.

Theorem 2: Suppose {y°, y!,--- ,yT} is the sequence generated by the GENET_LS described in the above section,
ie, 2" =yT in (8). If T > an(n — 1)/2, then E(z**) < E(z*).

Proof: From (2), (7) and (6), we can show that
£(0) = P = 0 232 3 atantyrucn) < 1, )

for any z € Q.
Since wy;,v; and Wy, are integers, we have



for:=0,1,---,T. Then

T—1
Fa*) = F@@™) =} [F(y') - Fy")] > T. (10)
i=0
From (6),
E(x) < F(x) (11)
for any z € Q. Then
E@@") - E(@™) = F(z") = F@™)+[E(@") - F(2")] - [E(x™) — F(2™)]
> T —[E(x™)— F(z™)],using (10) and (11),
> T- nin = 1)(Jz,using (9).

It follows that

The theorem above implies that, after the penalties are increased, GLS will be able to find a better local optimum
if the number of GENET local search steps exceeds an(n — 1)/2. When this condition is satisfied at all local optima,
the modified GENET algorithm will be able to converge to the global optimum. For obvious reasons, this condition will
never be satisfied at the global optimum.

The impact of this result is yet to be explored. In practice, the value of T is not under our control. However,
it is measurable; as a matter of fact, it is monitored in [15], among other performance indicators. It should also be
noted that the condition T' > an(n — 1)/2 is derived from the ‘worst case’, i.e. that in which the difference between
F(y') and F(y**!) assumes its lowest possible value of unity at every stage. Any differences greater than unity will
cause a corresponding relaxation in the minimum value required for 7. Furthermore, the learning rate parameter o
is under our full control. It is plausible that « could be set, or adjusted dynamically, with the aim of satisfying the
condition T' > an(n — 1) /2.

VI. CONCLUSION

This paper presents a mathematical formulation of GENET local search for binary constraint satisfaction problems.
This enables us to study the convergence of GENET and GLS. We have proved that the local search in GENET can
find a local optimum of the objective function. We have slightly modified the GLS in GENET to allow us to study its
properties mathematically. We have proved that this modified version of GLS can move to a ‘better’ local optimum if
the number of steps in the GLS phase is sufficiently large.

The formulation and slight modification of GLS and the convergence analysis provided in this paper pave the way
for a further study of the mechanism and range of application of GLS. The number of moves between local optima (i.e.
the values of T') may be an indicator of the hardness of the problem for the modified GLS. The condition above will
potentially enable us to identify problems that can be solved to optimality by GLS. It may also help us to tune, or
dynamically adjust, the learning rate parameter «, the only major parameter to be tuned in the modified GLS. The
above result may also help us to guide the search. For example, looking ahead will potentially help us to pick neighbours
that lead to a larger value of T', thus increasing our chances of improving on the previous local optimum. Besides, when
the above condition is satisfied, z* can be seen as in the same basin of attraction as x**. The more local optima that
satisfy this condition, the larger the basins of attraction will be. We would like to study the landscape of GLS in certain
problems [33]. These are some of the issues that we would like to examine further.
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