
Parameter Adaptation in Heuristic Search

– A Population-Based Approach –

Mathias Kern

A thesis submitted for the degree of Philosophiae Doctor

Department of Computer Science

University of Essex

2006

Summary

Heuristic search methods have been applied to a wide variety of optimisation

problems. A central element of these algorithms’ success is the correct choice

of values for their control parameters. To tune these settings, the use of

specialists’ knowledge and experience are often required.

In this thesis, we first formalise the problem of parameter adaptation in

heuristic search. Thereafter, we propose an automated mechanism, i.e. a

method that reduces the strong dependency on experts, for choosing the best

performing algorithm among several heuristic search approaches and optimis-

ing its parameters. The novel Multiple Algorithms’ Parameter Adaptation

Algorithm (MAPAA) is based on Population-Based Incremental Learning,

a method that combines the concepts of Competitive Learning and Genetic

Algorithms. Addressing specific characteristics of the adaptation scenario,

we extend the basic approach to deal with more versatile search spaces and

to run successfully for small populations and few generational cycles. All

newly introduced techniques are analysed in detail, and the efficiency and

robustness of the MAPAA is studied and proven in several applications.

I

Acknowledgements

I would like to express my deepest gratitude to my supervisor Professor

Edward Tsang. He has been a remarkable mentor. Only his guidance, en-

couragement and seemingly infinite patience have made my research work

possible.

My sincere thanks also go Dr John Ford, Dr Paul Scott, Dr Qingfu Zhang

and many other people within the computer science department for their

inspiration and help.

Furthermore, I am heavily indebted to Dr Nader Azarmi, Dr Chris Voudouris

and Dr Raphael Dorne from BT’s Intelligent Systems Research Center for

their manifold support.

Last, but by no means least, I would like to thank my friends, especially

Tim, my parents, my sister Ati and my partner Claudia. You all made this

challenging time so much easier and so much more fun.

This research project was partially funded by EPSRC and BT (case stu-

dentship ML843777 / CT320826).

II

Contents

Summary I

Acknowledgements II

1 Introduction 1

1.1 Optimisation Problems . 2

1.2 Heuristic Search . 5

1.3 The Parameter Setting Problem 6

1.4 The Parameter Adaptation Problem 9

1.5 Characteristics of the Parameter Adaptation Problem 11

1.6 Overview of the Thesis . 13

2 Existing Approaches for Parameter Tuning and the No Free
Lunch Theorem 15

2.1 Alternating Variable Search 16

2.2 Design of Experiments . 17

2.3 Parameter Adaptation in Genetic Algorithms 20

III

2.4 The No Free Lunch Theorem 23

2.5 Summary . 25

3 Population-Based Incremental Learning 27

3.1 Population-Based Incremental Learning 28

3.1.1 Estimation of Distribution Algorithms 28

3.1.2 Genetic Algorithms . 29

3.1.3 Competitive Learning 32

3.1.4 Population-Based Incremental Learning 33

3.2 Further Developments of Population-Based Incremental
Learning . 36

3.2.1 Continuous Search Spaces 36

3.2.2 Multiple Populations 37

3.2.3 Learning Rate Correctives 39

3.3 Applications of Population-Based Incremental Learning 40

3.4 Generalised Population-Based Incremental Learning 42

3.5 Summary . 47

4 Multiple Algorithms’ Parameter Adaptation 49

4.1 The Problem . 50

4.2 The Solution Space . 51

4.3 The Evaluation Space . 52

IV

4.4 Notes about Individuals . 53

4.5 The Joint Probability Distribution over the Solution Space . . 54

4.5.1 Finite Domain . 54

4.5.2 Interval Domain . 55

4.6 Auxiliary Functions . 59

4.7 Initialising the Joint Probability Distributions 63

4.8 Sampling from the Joint Probability Distribution 64

4.9 Evaluating Individuals . 65

4.10 Updating of the Joint Probability Distribution 66

4.10.1 Learning over Finite Domains 66

4.10.2 Learning over Interval Domains 68

4.10.3 The Learning Scheme 71

4.11 The Optimum Function . 77

4.12 The Selection Process . 80

4.13 Summary . 81

5 Experimental Study of the Multiple Algorithms’ Parameter
Adaptation Algorithm 83

5.1 Experiments with Probability Distributions over Finite and
Interval Domains . 84

5.1.1 Experiments I and II: Learning over Finite Domains . . 84

5.1.2 Experiments III and IV: Learning over Interval Domains 89

V

5.2 Experiments with the Multiple Algorithms’ Parameter Adap-
tation Algorithm . 97

5.2.1 Parameters of the Multiple Algorithms’ Parameter
Adaptation Algorithm 97

5.2.2 The Testbed Algorithms 100

5.2.3 Experiment V: Learning Rates for Finite Domains . . . 101

5.2.4 Experiment VI: Learning Rates for Interval Domains . 106

5.2.5 Experiment VII: Mutation Rate 109

5.2.6 Experiment VIII: Distribution of Computation Resources111

5.2.7 Experiment IX: The Statistical Test 114

5.3 Summary . 116

6 Applications of the Multiple Algorithms’ Parameter Adap-
tation Algorithm 120

6.1 Preliminary Notes . 121

6.1.1 Implementation Details 121

6.1.2 Size of the Search Space 121

6.1.3 Infeasibility of Exhaustive Search 122

6.1.4 Running Time of the MAPAA 123

6.1.5 Fraction of the Search Space explored by the MAPAA 124

6.1.6 A Measure for the Quality of Solutions 125

6.1.7 Single Parameter Optimisation 126

6.1.8 Experimental Setup . 127

VI

6.2 An Application for the Travelling Salesman Problem 128

6.2.1 The Travelling Salesman Problem 128

6.2.2 Application I: A Simulated Annealing Method for the
TSP . 130

6.3 Applications for the Vehicle Routing Problem 137

6.3.1 The Vehicle Routing Problem 137

6.3.2 Application II: A Tabu Search for the VRP 140

6.3.3 Application III: A Genetic Algorithm for the VRP . . . 149

6.3.4 Application IV: A Tabu Search and a Genetic Algo-
rithm for the VRP . 155

6.4 Applications for Job Shop Scheduling 158

6.4.1 The Job Shop Scheduling Problem 158

6.4.2 Application V: A Genetic Algorithm for the JSSP . . . 161

6.4.3 Application VI: A Tabu Search for the JSSP 167

6.4.4 Application VII: A Genetic Algorithm and a Tabu
Search for the JSSP . 172

6.5 Parameter Adaptation and iOpt 175

6.6 Summary . 177

7 Summary 178

7.1 Summary of the Presented Work 178

7.2 Contributions . 181

7.3 Limitations . 182

VII

7.4 Future Research . 184

A Notation 188

A.1 Abbreviations . 188

A.2 Mathematical Symbols . 189

A.3 Population-Based Incremental Learning 190

A.4 Generalised Population-Based Incremental Learning 191

B Mathematical Concepts 194

B.1 Random Variables and Probability Distribution Functions . . 194

B.1.1 Random Variables . 194

B.1.2 Discrete Random Variables 195

B.1.3 Continuous Random Variables 196

B.1.4 Joint Probability Distributions 197

B.2 One-Sample and One-Tailed t-Test 198

C Self-Organising Maps 201

D Experimental Results for Single Parameter Optimisation 203

D.1 Application I . 203

D.2 Application II . 204

D.3 Application III . 206

D.4 Application V . 207

VIII

D.5 Application VI . 209

Bibliography 211

IX

List of Figures

3.1 A simple Competitive Learning network 32

3.2 The Population-Based Incremental Learning algorithm 34

3.3 The Generalised Population-Based Incremental Learning al-
gorithm . 45

4.1 Example density function . 59

4.2 Pseudo code of the initialisation function 64

4.3 Pseudo code of the sampling function 65

4.4 Pseudo code of the evaluation function 65

4.5 Neuron weights after positive and negative learning 71

4.6 Pseudo code of the learning1 function 73

4.7 Pseudo code for the learning2 function 74

4.8 Pseudo code of the learning function 76

4.9 Pseudo code of the ratio function 79

4.10 Pseudo code of the optimum function 79

4.11 Pseudo code of the selection function 80

X

5.1 The effect of positive learning over a finite domain 86

5.2 The effect of negative learning over a finite domain 88

5.3 Neuron distributions after positive learning over an interval
domain . 92

5.4 Density functions after positive learning over an interval domain 93

5.5 Density functions after positive and negative learning over an
interval domain . 96

5.6 Development of f1 for best parameter setting over time 104

5.7 Development of f2 for best parameter setting over time 105

5.8 Development of f1 for best parameter setting over time 108

5.9 Relationship between solution quality and mutation rate . . . 111

5.10 Distribution of Computation Resources showing successful al-
gorithms have bigger share of the population 112

5.11 Histogram of Objective Function Ratios 116

6.1 A Vehicle Routing Problem 139

6.2 The VRP Neighbourhood Operators 143

A.1 The Population-Based Incremental Learning algorithm 190

A.2 The Generalised Population-Based Incremental Learning al-
gorithm . 192

XI

List of Tables

1.1 Relation between problem size, solution space size and re-
quired computation time for a VRP 4

4.1 Parameters of the Multiple Algorithms’ Parameter Adaptation
Algorithm . 82

5.1 Conclusions of experiments conducted with the Multiple Al-
gorithms’ Parameter Adaptation Algorithm 118

5.2 Parameter values of the Multiple Algorithms’ Parameter
Adaptation Algorithm . 119

6.1 Search space sizes in the Applications I to VII 122

6.2 Parameters of a Simulated Annealing algorithm for the TSP . 133

6.3 Experimental results for a Simulated Annealing algorithm for
the TSP . 135

6.4 Parameters of the Tabu Search for the VRP 144

6.5 Experimental results for a Tabu Search for the VRP 146

6.6 Parameters of a Genetic Algorithm for the VRP 151

6.7 Experimental results for a Genetic Algorithm for the VRP . . 153

XII

6.8 Experimental results for a Tabu Search/Genetic Algorithm for
the VRP . 157

6.9 Parameters of a Genetic Algorithm for the JSSP 163

6.10 Experimental results for a Genetic Algorithm for the JSSP . . 164

6.11 Parameters of a Tabu Search for the JSSP 169

6.12 Experimental results for a Tabu Search for the JSSP 171

6.13 Experimental results for a Tabu Search/Genetic Algorithm for
the JSSP . 173

7.1 Summary of experiments . 187

XIII

Chapter 1

Introduction

Heuristic search methods form an important class of algorithms for tackling

difficult optimisation problems. The efficiency of these widely used tech-

niques often depends on the correct choice of values for their control pa-

rameters. Relying on expert knowledge and experience, such parameters are

usually set by hand so far. This thesis will present a population-based ap-

proach, the Multiple Algorithms’ Parameter Adaptation Algorithm, for the

automated tuning of parameters in heuristic search algorithms.

In the introductory chapter, we briefly explain the concepts of optimisation

problems and heuristic search. Thereafter, the Parameter Adaptation Prob-

lem is introduced and defined, and its characteristics are discussed. The

chapter concludes with an overview of this thesis.

1

1.1 Optimisation Problems

Optimisation tasks are encountered in many areas of human life. Finding the

shortest way to and from work, arranging furniture effectively, or looking for

the best offers in a supermarket are typical examples in our everyday lives.

Although these tasks may look basic at first, this is only due to the small

problem sizes usually encountered. Larger problems require a dramatically

increased effort. In the business world, many decision processes constitute or

include optimisation. Maximising profit in the stock market, applying labour

in a factory efficiently, or developing reliable and convenient timetables in a

transport company – all these are very difficult optimisation tasks.

Motivated by the need to solve such real life problems, researchers

have extensively studied the field of optimisation. According to

[Russell and Norvig, 2003], the general optimisation problem can be

defined as follows:

Definition 1 (Optimisation Problem). An optimisation problem Φ is the

problem of finding the best solution sbest from the set of all possible solutions,

the solution space S, according to an objective function f : S → R. In case

of a minimisation problem, the aim is to find sbest ∈ S such that

∀s ∈ S : f(sbest) ≤ f(s).

Analogically, the aim in case of a maximisation problem is to find sbest ∈ S

2

such that

∀s ∈ S : f(sbest) ≥ f(s).

Research has focused on a number of abstracted problem classes. The well-

known examples given below provide just a small insight into the diversity

and complexity of such scenarios:

• Vehicle Routing Problem (VRP): The VRP is the task of managing a

fleet of vehicles, based at a number of depots, to serve customers by

delivering and picking up goods. Constraints like distance, capacity

limits of the lorries, and restrictions on when customers can be served

often have to be taken into account. The objective is usually to min-

imise the distance and/or time the vehicles have to travel. For further

details, refer to section 6.3.1.

• Job Shop Scheduling Problem (JSSP): In a JSSP, a number of jobs have

to be completed. Each job consists of a sequence of actions which have

to be processed in a given order. Each of these actions take a certain

time and require the application of resources. One possible objective

is to find a valid schedule, i.e. a schedule that meets all order and

resource constraints, with minimal overall time for the completion of

all jobs. A detailed discussion is given in section 6.4.1.

Most optimisation problems, including both aforementioned examples, be-

long to the class of nondeterministic polynomial (NP) problems. The class

3

of polynomial problems, i.e. the class of problems that can be solved by poly-

nomial time algorithms, is called P. Although never proven, the vast majority

of scientists believe that P 6=NP and thus believe that no polynomial time al-

gorithms exist for NP problems. The following example illustrates the related

“combinatorial explosion” problem :

Example 1.1. We consider a basic VRP with one vehicle, one depot, and n

customers. The task is to find the shortest lorry route, beginning and ending

in the depot, that visits all n clients. There are n−factorial such routes.

Table 1.1 shows the relationship between the problem size n and the number

of all possible solutions n!. In addition, the time to generate all routes is

given in the third column, assuming 109 possibilities can be computed per

second. As the table clarifies, it is possible to create all possible solutions

Number of Customers Number of Routes Computation Time

1 1 1.0 · 10−9 seconds
5 120 1.2 · 10−7 seconds

10 3628800 3.6 · 10−3 seconds
12 4.8 · 108 0.5 seconds
15 1.3 · 1012 21.8 minutes
17 3.6 · 1014 4.2 days
20 2.4 · 1018 77.1 years
50 3.0 · 1064 9.6 · 1047 years

100 9.3 · 10157 3.0 · 10141 years

Table 1.1: Relation between problem size, solution space size and required
computation time for a VRP

for smaller VRPs and thus to find the optimal solution through a complete

search, but as the number of customers grows the computation time of this

approach grows extremely quickly. For example, it takes 77 years to find the

4

best schedule for only 20 customers.

Although sophisticated search methods like branch-and-bound

[Balas and Toth, 1985] and advances in computer speed have helped

to push up the boundary of practical computability, the underlying problem

of exponential growth, often referred to as the “combinatorial explosion”,

remains for NP problems. It is impossible to apply complete solution

algorithms, i.e. methods that guarantee optimality, for larger problem sizes

as all known solution algorithms for NP problems show non-polynomial

complexity. Rather one has to apply approximation methods, which are the

subject of this thesis.

1.2 Heuristic Search

One important class of algorithms to tackle optimisation problems, as de-

scribed in the last section, are heuristic search methods. The general concept

can be defined as follows:

Definition 2 (Heuristic Search Algorithm). A search algorithm A for tack-

ling optimisation problems that applies a heuristic to search through promis-

ing solutions in order to find a good solution is called heuristic search algo-

rithm.

As the definition points out, a heuristic search algorithm does not system-

5

atically search through the entire set of possible solutions. Rather a selec-

tion mechanism, the heuristic, is applied to choose only certain, apparently

promising, solutions. This restriction allows the bypass of the “combinato-

rial explosion” problem. Unfortunately, a solution produced by a heuristic

search algorithm is not guaranteed to be an optimal one. Heuristic search

methods have to sacrifice completeness for the benefit of practical usabil-

ity. Some of the best-known heuristic search methods are Genetic Algo-

rithms [Holland, 1975], Tabu Search [Glover, 1989] and Simulated Annealing

[Kirkpatrick et al., 1983, Ingber, 1989].

The central component of every heuristic search method is its heuristic. This

strategy allows the incorporation of additional knowledge. The search be-

comes informed: it uses heuristics to determine what solutions to look for and

what solutions to ignore. Therefore, the quality of the heuristics is crucial

for the success of the search.

1.3 The Parameter Setting Problem

In most heuristic search methods, the behaviour of the heuristics can be

modified via a number of parameters. As these parameters determine the

exact functioning of the whole algorithm, the right choice of values for these

parameters is often central for a good search performance. This choice is non-

trivial and usually requires expert knowledge and experience of the users.

This thesis proposes an automated mechanism for this task, the Multiple

6

Algorithms’ Parameter Adaptation Algorithm, which will be introduced in

the following two chapters.

First of all, we have to formalise the problem of choosing good parameter

values for heuristic search methods based on the definitions of optimisation

problems and heuristic search as previously introduced. In this section, we

define the Parameter Setting Problem. We begin by providing definitions for

parameter domains, the parameter space, and the parameter settings.

Definition 3 (Parameter Domain). P is a parameter of the heuristic search

algorithm A. The set D of all possible values for P is called the domain of

this parameter.

Definition 4 (Parameter Space). The heuristic search algorithm A has n

parameters P1, . . . ,Pn with the domains D1, . . . ,Dn. The cross product P =

D1 × . . .× Dn is called the parameter space of A.

Definition 5 (Parameter Setting). A point π from the parameter space P of

a heuristic search algorithm A is called a parameter setting for A. Such a

point is a vector (v1, . . . , vn) where vi is a member of the domain of the i-th

parameter of A, i = 1, . . . , n.

With A(π, Φ) we will denote, from now on, the solution ~s ∈ S produced

by the algorithm A with its parameters set according to π when applied to

the optimisation problem Φ. The term f(A(π, Φ)) describes therefore the

objective function value of the solution produced by A for Φ when using the

7

parameter setting π.

The parameter setting defined above has central importance for this thesis.

It represents a complete assignment of specific values to the parameters of

a heuristic search algorithm. The behaviour and thus the performance of

a heuristic search can and usually does depend strongly on this specific as-

signment. The task of finding a good, hopefully optimal parameter setting

among the potentially high number of such settings, i.e. from the parameter

space, is thus essential.

Even basic heuristic search methods can possess a number of parameters

which make the tuning of the algorithm difficult. Examples are given and

discussed in chapter 6. In practise, hybrid methods, i.e. methods that com-

bine ideas from several optimisation techniques, are often used. Such hybrid

algorithms often have even more parameters. The resulting parameter spaces

are thus potentially very large. Therefore, the following Parameter Setting

Problem can be very difficult:

Definition 6 (Parameter Setting Problem (PSP)). A heuristic search al-

gorithm A with the parameter space P is applied to solve k optimisation

problems ~Φ = (Φ1, . . . , Φk) with the objective function f to minimise. The

Parameter Setting Problem PSP (A,f, ~Φ) is the task of finding the optimal

parameter setting πbest ∈ P such that

∀π ∈ P :
1

k

k∑
i=1

f(A(πbest, Φi)) ≤ 1

k

k∑
i=1

f(A(π, Φi)).

8

Naturally, the PSP itself is NP by nature, and only approximations can

realistically be found.

1.4 The Parameter Adaptation Problem

In the Parameter Setting Problem, all optimisation problems are known.

In practise, however, one often has to adapt the parameters of a heuristic

search algorithm without knowing the exact optimisation problems it will get

applied to. Choices can only be based on results and experiences from the

application of the search to past problems. The next definition summarises

this task:

Definition 7 (Parameter Adaptation Problem (PAP)). A heuristic search

algorithm A is applied to solve optimisation problems with the objective func-

tion f . The Parameter Adaptation Problem PAP (A, f, ~Φ, ~Φ
′
) is the task of

finding the optimal parameter setting of A for a sequence of optimisation

problems ~Φ
′
= (Φ′

1, . . . , Φ
′
k′) based only on information gathered by applying

A to the optimisation problems ~Φ = (Φ1, . . . , Φk). ~Φ is called the vector of

sample problems, ~Φ
′
is named the vector of out-of-sample problems.

To solve the problem defined above, one cannot apply the heuristic search to

the optimisation problems from the out-of-sample vector. The only knowl-

edge available is the knowledge about results from the problems of the sample

vector. Only after one has found a solution is it possible to study its quality

9

and hopefully verify its efficiency by applying the heuristic search with the

found parameter setting to the problems from the out-of-sample vector.

If the sample and out-of-sample problems are very different, then no method

can find a good setting for ~Φ
′
. Rather we are interested in applications

where ~Φ provides a reasonable good sample of ~Φ
′
, so that it is possible to

draw conclusions: if a parameter setting works well for the sample problems,

then it should also deliver good results for the out-of-sample vector.

The PAP involves just one heuristic search algorithm. But often one has a

number of heuristic searches available and wants to choose the best one along

with its optimal choice of parameter values. The next definition discusses

this task.

Definition 8 (Multiple Algorithms’ Parameter Adaptation Problem (MA-

PAP)). The m heuristic search algorithms ~A = (A1, . . . , Am) are applied to

solve optimisation problems with the objective function f to minimise. The

Multiple Algorithms’ Parameter Adaptation Problem MAPAP (~A, f, ~Φ, ~Φ
′
)

is the task of finding the heuristic search algorithm Abest and the correspond-

ing optimal parameter setting πbest for the vector of out-of-sample problems

~Φ
′
= (Φ′

1, . . . , Φ
′
k′) such that the average

1

k′

k′∑
i=1

f(Abest(πbest, Φ′
i))

is minimal among the m algorithms Aj and their optimal parameter settings

πj (j = 1, . . . , m). In analogy to the PAP, this task must be based only on

10

information gathered by applying the heuristic search algorithms to the vector

of sample problems ~Φ = (Φ1, . . . , Φk).

With regard to complexity, a MAPAP with m algorithms can easily be di-

vided into m single PAPs. Therefore its complexity is constricted by m times

the complexity of the hardest PAP, which yields, as m is a constant, the same

complexity as this PAP. In other words, O(MAPAP) is determined by the

hardest of the corresponding O(PAP).

1.5 Characteristics of the Parameter Adap-

tation Problem

The Parameter Adaptation Problem shows the following characteristics that

make it difficult to solve:

C1 - Black box: Both the PAP and the MAPAP address heuristic search

methods as black boxes. Although the number of parameters and

the respective domains are known, no additional knowledge about the

heuristic search algorithm, its function, or the meaning and the in-

teraction of its parameters are assumed. While experts in the field

of heuristic search can use their experience to quickly decide which

parameters are critical with regard to performance, and can narrow

down parameter domains to promising values only, our problem for-

11

mulation intentionally excludes such extra information. On one hand,

this makes the search for good parameters choices less informed and as

such harder and more difficult. But on the other hand, the user is not

required to know how to tune the parameters. As experts in heuristic

search are a scarce resource, an algorithm for the automated solving of

the (MA)PAP would be helpful and valuable as it requires the user to

have just basic knowledge.

C2 - Limited computation time: Solution methods for the Parameter

Adaptation Problem and its variations need to evaluate the quality

of different parameter settings. To do so, heuristic search algorithms

which use these settings get applied to optimisation problems. Such

operations can be and usually are computationally expensive. The

number of heuristic search operations that can be performed is thus

limited. This is particularly true in case of a dynamic scenario: the

time span in which a parameter setting can be optimised before the

heuristic search method gets applied to the next problem can be very

short.

C3 - Noise in the results: Heuristic search methods usually include a

random element. The significance of the result of applying a heuristic

search algorithm with a specific parameter setting to a single problem

is limited. Rather multiple applications of the search method to differ-

ent problems are required in order to be able to reliably evaluate the

quality of a chosen parameter setting.

C4 - Unknown nature of the out-of-sample problems: As required

12

in the definition of the Parameter Adaptation Problem, only informa-

tion gathered by applying the heuristic search to the sample problems

can be used for finding good parameter settings for the out-of-sample

problems. That means that the search is based on information about

~Φ only, but the success of the search is judged based on information

about ~Φ
′
. Even with known relations, similarities, and dissimilarities

between the two data sets, one has to deal with a level of uncertainty.

Section 2.4 discusses this characteristic in the context of the No Free

Lunch Theorem.

1.6 Overview of the Thesis

Having introduced the problem of parameter adaptation in heuristic search

in this chapter, we look at a solution method for this task in the remainder

of the thesis. This work is structured as follows:

• Chapter 2 is a review of existing parameter adaptation approaches and

discusses the implications of the No Free Lunch Theorem.

• In chapter 3, we study Population-Based Incremental Learning as an

optimisation approach that successfully combines the concepts of Ge-

netic Algorithms and Competitive Learning.

• Thereafter, we propose a technique for tackling the Multiple Algo-

rithms’ Parameter Adaptation Problem. This method, which we re-

13

fer to as the Multiple Algorithms’ Parameter Adaptation Algorithm,

is an extended and specialised version of the basic population-based

approach.

• The aim of chapter 5 is the experimental examination and analysis of

the newly introduced algorithm.

• The efficiency and robustness of the Multiple Algorithms’ Parameter

Adaptation Algorithm is tested and demonstrated in chapter 6. It

presents the results of applying our optimisation technique to various

heuristic search scenarios.

• The final chapter summarises the central aspects of this thesis, discusses

the main conclusions and looks at future research directions.

14

Chapter 2

Existing Approaches for

Parameter Tuning and the No

Free Lunch Theorem

In the second chapter, we review existing optimisation approaches that can

be used for the tuning of parameters. We discuss two general optimisation

approaches: the alternating variable search and a method evolved from the

Design of Experiments methodology. Furthermore, we choose Genetic Algo-

rithms as a well-known example of heuristic search and provide an overview

of various parameter optimisation approaches for this class of algorithms.

The chapter concludes with a discussion of the No Free Lunch Theorem and

its implications to the Parameter Adaptation Problem.

15

2.1 Alternating Variable Search

Alternating variable search [Korel, 1990, Torczon, 1997], also known as alter-

nating directions, axial relaxation and local variation, is a general approach

to parameter adaptation/optimisation. One of its first applications on a dig-

ital computer is reported by [Davidon, 1991]. He describes how this search

method was used to determine values of theoretical parameters that best fit

experimental data:

”They varied one theoretical parameter at a time by steps of the

same magnitude, and when no such increase or decrease in any

one parameter further improved the fit to the experimental data,

they halved the step size and repeated the process . . .”

In general terms, this simple local search method aims to optimise a vector

of variables according to a given objective function. The initial vector of

values is chosen at random. Thereafter, each single input variable, i.e. each

individual element of the vector, is tested in the exploratory phase. One bye

one, variables are probed by increasing or decreasing their values by a certain

amount, the step size. If either step leads to an improved objective score,

the value of the corresponding variable is updated and the search continues

with this new value. This means that the neighbourhoods of all variables

are successively probed. If a complete iteration of probing all variables leads

to an objective score improvement, then the exploratory process is repeated.

However, if such a complete cycle does not yield an improvement, then the

16

step size is reduced, e.g. halved, and the exploration proceeds with the

modified step length. The search procedure continues until a termination

criterion is met, e.g. until the step length falls below a specified threshold.

Several variations of the alternating variable search are possible. While the

standard algorithm uses the same step length for all variables, other real-

isations employ different, variable-specific step sizes. Another fundamental

aspect of this optimisation routine is the order in which the variables are con-

sidered. The basic procedure uses a fixed variable order while others variants

chose the variable sequence randomly for each exploratory step.

2.2 Design of Experiments

Design of Experiments (DOE) is a general, systematic approach for plan-

ning and conducting experimental work. The main aim is to establish

how a number of input variables to a system or process affect its output.

[Montgomery, 2005] identifies the following seven steps for designing experi-

ments:

1. Problem statement : This statement clearly describes the problem sce-

nario and lists all objectives of the experiment. The three main types

of objectives are screening, optimisation and testing for robustness.

2. Selection of the response variable: The response variable is the output

of the system or process which the experimenter wants to observe.

17

3. Choice of factors, ranges and levels : Together with the response vari-

able, the experimenter has to define the input variables or factors that

may influence the performance of the system or process. After selecting

which of these factors will be studied in the experiment, the ranges over

which the inputs will be varied have to be chosen. From these ranges,

exact levels have to be picked at which experiments will be conducted.

4. Choice of experimental design: The type of problem, the experimen-

tal objectives and additional considerations like available sample sizes

influence the exact choice of the experimental design, i.e. how to con-

duct the experiments in a structured and effective way to achieve the

objectives. Such an experimental plan determines how to set and

modify the test factors in each experimental run. Various different

types of experimental designs of varying complexity and difficulty ex-

ist. [Montgomery, 2005, Wu and Hamada, 2000, Cox and Reid, 2000]

all describe and analyse manifold design approaches in great detail.

5. Performing the experiment : This stage involves the execution and care-

ful monitoring of the experiments.

6. Statistical analysis of the experimental data: The data gained during

the experimentation phase are analysed with the help of statistical

methods. These methods ”provide guidelines as to the reliability and

validity of the results.”

7. Conclusions : After analysing the experimental data, conclusions are

drawn and potential recommendations are made. This step often in-

18

volves graphical representations of the main results.

This universal DOE methodology can be used as a starting point for the de-

velopment and realisation of an experimental setup for tuning the parameters

of a heuristic search method. The problem statement describes the challenge

of choosing well-performing values for the parameters of this search method.

Furthermore, this initial statement names the class of optimisation problems

to which the heuristic search is applied.

The response variable, i.e. the monitored output, is the objective score of the

heuristic search method. The performance of the heuristic search system and

thus the objective is potentially influenced by a number of search parameters.

These parameters form the factors that we wish to vary in the experiment.

One of the most common experimental designs for such optimisation scenar-

ios with multiple input variables is the application of the method of steep-

est descent1 on a response surface. The experiments are designed in a way

that the functional relationship between the inputs and the output, i.e. the

response surface, can be approximated with a low-order polynomial. The

method of steepest descent can then be used ”for moving sequentially in the

direction of the maximum [decrease] in the response”. The experiments are

performed along the path of steepest descent until no further response de-

creases are monitored. The procedure can be continued by establishing a

new model of the response surface and determining a new steepest descent

path.

1We consider here only minimisation problems.

19

The rich mathematical theory behind the DOE approach analyses aspects

such as, for instance, how to vary input variables simultaneously to maximise

the information gained while minimising the experimental resources required,

how to detect interdependencies between inputs or how to deal with noise

in the observed output. For further information on these aspects and a

thorough discussion of various experimental designs, [Montgomery, 2005] is

strongly recommended.

2.3 Parameter Adaptation in Genetic Algo-

rithms

Among heuristic search algorithms, Genetic Algorithms (GAs) in particular

have attracted a significant amount of research interest with regard to the

question of how to set and tune their parameters. While the motivation

behind and the concept of GAs will be discussed in more depth in chapter

3, this section provides an overview of existing approaches for determining

good values for the parameters of GAs.

Both [da Graca Lobo, 2000] and [Eiben et al., 1999] present surveys of re-

search into how the various parameters of GAs affect their performance. The

former classifies this research work as either empirical studies, facetwise the-

oretical studies or parameter adaptation techniques, and our remarks follow

his overview.

20

Empirical studies subject GAs to performance test through the variation

of their parameter values. A well-known exponent is the work conducted by

[De Jong, 1975] in which the influence of four parameters, namely population

size, generation gap, crossover and mutation probability, is studied. Using

five different function optimisation scenarios, De Jong systematically varies

these four parameters, analyses the results and thus establishes guiding prin-

ciples for well-performing, robust parameter choices. [Schaffer et al., 1989]

build on this work, extend it to ten test functions and present much more

rigorous and exhaustive experimental work. The authors give an update on

the proposed standard GA parameter setting but also recognise their uncer-

tainty about whether these results remain valid beyond their test scenarios.

Common to both these studies is that they systematically examine the effects

of different parameter combinations on the performance of a standard GA.

Facetwise theoretical studies, the second category, analyse GAs by analysing

one or two of their parameters in isolation while purposely ignoring all

other parameters. Examples include the theoretical study and compar-

ison of different selection schemes ([Goldberg et al., 1992]), the theoret-

ical analysis of the mutation mechanism and the mutation probability

([Muehlenbein, 1992, Baeck, 1993]), and the theoretical investigation of pop-

ulation sizes in GAs ([Goldberg, 1989, Harik et al., 1999]).

[da Graca Lobo, 2000] sees parameter adaptation approaches as techniques

that adapt GA parameters as the search progresses. This third category can

be further subdivided into centralised methods, decentralised methods and

21

meta-GAs.

Centralised methods have a central learning component, e.g. a set of prede-

fined learning rules, which is responsible for the adaptation of the GA param-

eters. [Cavicchio, 1970], as an example, describes an adaptation mechanism

that tunes mutation and crossover rates of GAs over time. This parameter

adjustment scheme leads to significance performance gains in the experiments

reported. [Davis, 1989] and [Julstrom, 1995] study similar approaches which

use reward and penalty systems to adapt the rates of the genetic operators.

[Smith and Smuda, 1995] look at a different aspect of GAs, the population

size. Their algorithm automatically adjusts the population size as the search

progresses.

Decentralised methods for parameter adaptation in GAs, on the other hand,

do not employ central learning mechanisms but rather encode the parame-

ters which have to be adjusted in the individuals of the population them-

selves. This idea was already proposed by [Bagley, 1967]. Although such

self-adaptation mechanisms are mainly discussed in the context of evolution

strategies, [Smith and Fogarty, 1996] suggest that these techniques could be

also successfully employed in the GA domain.

Meta-GAs are (higher level) GAs that are applied to adapt and tune the

parameters of other (lower level) GAs. In other words, meta-GAs are op-

timisation routines which adjust the parameter settings of other optimisa-

tion algorithms. The first to suggest this approach was [Weinberg, 1970].

[Mercer and Sampson, 1978] report significant performance gains with their

22

realisation of such a meta-GA. A further exponent of this class of parame-

ter adaptation methods is the algorithm described by [Grefenstette, 1986].

He uses a meta-GA to tune six parameters of a GA and compares his find-

ings with the results presented by [De Jong, 1975]. More recent studies in-

clude [Tongchim and Chongstitvatana, 2002] who use a coarse-grained, par-

allel GA as their meta-strategy.

This section looked at a selection of techniques proposed for tuning parame-

ters of GAs. This selection can neither be exhaustive nor very detailed in the

context of this thesis. For more in-depth discussions of this research work,

the interested reader is referred to the original publications or the surveys

conducted by [da Graca Lobo, 2000, Eiben et al., 1999].

2.4 The No Free Lunch Theorem

The No Free Lunch Theorem, taking its name from the saying ”there ain’t

no such thing as a free lunch”, states [Wolpert and Macready, 1995]:

”...all algorithms that search for an extremum of a cost function

perform exactly the same, when averaged over all possible cost

functions. In particular, if algorithm A outperforms algorithm B

on some cost functions, then loosely speaking there must exist

exactly as many other functions where B outperforms A.”

[Wolpert and Macready, 1997] furthermore comment that

23

”...for any algorithm, any elevated performance over one class of

problems is exactly paid for in performance over another class.”

This theorem has profound implications for the task of tuning parameters

of heuristic search methods. Firstly, each heuristic search algorithm will

perform, on average over all possible problems, as well as any other heuristic

search algorithm. Secondly, a heuristic search will perform equally well with

all parameter choices over the set of all mathematically possible problems.

This raises the question why so much research effort is put into the de-

velopment and improvement of heuristic search algorithms, and why it

can be beneficial to optimise the parameter choices for such methods.

[Ho and Pepyne, 2002] provide the answer: ”a general-purpose universal op-

timisation strategy is theoretically impossible, and the only way one strategy

can outperform another is if it is specialized to the specific problem under

consideration”. In praxis, heuristic search methods are often only applied to

very specific classes of optimisation problems, and by thus limiting the con-

sidered problem domains it is possible to establish better performing search

methods and better parameter settings.

The definition of the (Multiple Algorithm’s) Parameter Adaptation Problem

in section 1.4 describes a black-box scenario in which parameters of heuristic

search methods are adapted using sample optimisation problem instances.

The quality of the parameter choices, however, is judged by applying the

heuristic search methods to different sets of out-of-sample problem instances.

The No Free Lunch Theorem explains that it is not possible to effectively

24

tune the heuristic search parameters for all potential sets of out-of-sample

problems. Only when the sample and the out-of-sample instances are drawn

from the same class of problems it is possible to effectively adapt the pa-

rameters of the heuristic search method. If this is not the case, performance

improvements for the sample data do not necessarily translate into perfor-

mance gains for the out-of-sample data. As an example, a heuristic search

method with optimised parameters for random Vehicle Routing Problems

does not necessarily perform equally well for Vehicle Routing Problems with

clustered, non-random data. We therefore assume in this thesis that the sam-

ple and out-of-sample problem instances are always from the same class of

problems. All experiments reported in chapters 5 and 6 satisfy this condition.

2.5 Summary

This chapter presented a selection of existing ideas and techniques for the

tuning of parameters. Firstly, the general approach of alternating variable

search was introduced and described. Secondly, the methodology of the De-

sign of Experiments was discussed. Based on this structured approach for the

design and organisation of experimental work, a possible experimental setup

for the problem of parameter adaptation in heuristic search was briefly out-

lined. In a third step, we chose Genetic Algorithms as an example of heuristic

search and reported manifold research efforts with regard to parameter op-

timisation. These approaches were classified as empirical studies, facetwise

theoretical studies or parameter adaptation techniques. Finally, the No Free

25

Lunch Theorem and its implications for the parameter adaptation scenario

were studied. This theorem states that it is theoretically impossible to find

a ”general-purpose universal optimisation strategy” [Ho and Pepyne, 2002]

and that, as a consequence, each optimisation algorithm can outperform

other optimisation strategies only for specific problem classes.

26

Chapter 3

Population-Based Incremental

Learning

[Baluja, 1994] describes Population-Based Incremental Learning as “a

method for integrating genetic search based function optimisation and com-

petitive learning”. The combination of these two concepts make it a success-

ful and versatile optimisation approach. The resolution algorithm for the

Multiple Algorithms’ Parameter Adaptation Problem, which is presented

in the next chapter, is based on a novel, generalised formulation of the

Population-Based Incremental Learning algorithm. Before we introduce this

new method, which we call Generalised Population-Based Incremental Learn-

ing, in the later part of this chapter, basic Population-Based Incremental

Learning is discussed in the context of Estimation of Distribution Algorithms,

Genetic Algorithms and Competitive Learning.

27

3.1 Population-Based Incremental Learning

Population-Based Incremental Learning, henceforth referred to as PBIL, is

an algorithm for tackling optimisation problems. The method belongs to the

class of Estimation of Distribution Algorithms, and it combines ideas both

from Genetic Algorithms and Competitive Learning. In this section, we

therefore summarise the concept of Estimation of Distribution Algorithms,

introduce Genetic Algorithms and Competitive Learning closely following

[Baluja, 1994], and describe and discuss the standard PBIL algorithm.

3.1.1 Estimation of Distribution Algorithms

Evolutionary Algorithms are population-based methods for solving optimi-

sation and search problems. Well-known exponents of this algorithm class

are Genetic Algorithms, which we look at in section 3.1.2, and Evolution-

ary Programming. These traditional techniques ”maintain and successively

improve a collection of potential solutions”, and ”employ crossover and mu-

tation as variation operators to create the elements of the next generation”

[Zhang and Mühlenbein, 2004].

Estimation of Distribution Algorithms (EDAs), a more recent addition to

the category of Evolutionary Algorithms, follow a different approach. These

methods statistically analyse the population and extract data about its com-

position. Based on this information, a model about the distribution of

promising solutions is built, or, in other words, these algorithms estimate

28

the probability distribution of promising points in the search space. Instead

of applying ”traditional crossover or mutation”, the constructed distribution

model is used for sampling new elements for the next generation. Through

this repeated process of generating a new population based on a distribu-

tion model, and the subsequent modification of the distribution model, the

quality of the maintained population is improved over time.

Many different implementations of EDAs have been proposed. In-

stances include, among others, Population-Based Incremental Learning

[Baluja, 1994], the Bayesian Optimisation Algorithm [Pelikan et al., 1999],

the Univariate and Bivariate Marginal Distribution Algorithms

[Pelikan and Mühlenbein, 1998, Pelikan and Mühlenbein, 1999], and the

Factorised Distribution Algorithm [Mühlenbein and Mahnig, 1999].

3.1.2 Genetic Algorithms

Genetic Algorithms (GAs), pioneered by [Holland, 1975], are a class of op-

timisation methods that take their motivation from the processes of natural

selection and genetic recombination. These principles, highly successful in

evolution, can be found in abstracted form in every GA.

In contrast to optimisation methods such as Simulated Annealing

[Kirkpatrick et al., 1983, Ingber, 1989] and Tabu Search [Glover, 1989],

which are based on the idea of improving a single solution in small mod-

ification steps, GAs always maintain a whole group of potential solutions

29

called a population. Each population member, referred to as an individual

or chromosome, is represented as a string of fixed length over a (finite)

alphabet. In its basic, and most common, form this alphabet consists of just

zeros and ones; hence the chromosomes, in this case, are binary vectors.

The population develops over a number of generations. While individuals of

the first generation are created randomly, individuals of subsequent cycles

are determined by recombining members of the current population. This

recombination process, which usually involves two parental chromosomes,

allows the merging of information and characteristics of the parent individ-

uals into a new offspring. In addition, the offspring chromosome may get

slightly altered by chance through mutation, i.e. some of the values in its

vector representation might get changed randomly. The following example

illustrates both a standard recombination operator, one point crossover, and

a basic mutation operator.

Example 3.1. In this example, each chromosome is represented as a binary

vector of length 8. The following two individuals act as parents:

parent 1: 11101111

parent 2: 00100001

A one point crossover operator, applied at position 5, combines these parents

by taking the first 5 bit values from parent 1 and the remaining 3 bit values

from parent two. By chance, a mutation operator might change the final bit

30

of the resulting offspring:

offspring: 11101001

mutated offspring: 11101000

The choice of parents to produce offspring chromosomes for the next gen-

eration is neither at random nor arbitrary. Rather the individuals of the

current population are in competition with each other. This competition,

the modelling of the principle of natural selection, is based on the objective

function evaluations of the individuals called their fitness. The parent se-

lection is a probabilistic process, i.e. individuals with higher fitness values

are more likely to be chosen. Therefore, individuals with a higher fitness are

more likely to pass their characteristics on to offsprings in the next gener-

ation. Of course, such an offspring is by no means guaranteed to be fitter

than its parents. But the recombination mechanism permanently forces the

population to explore new combinations and variations. Together with se-

lective pressure, this leads to the evolution of the population towards fitter

individuals.

GAs have been successfully applied in many different problem scenarios. Ex-

amples include Vehicle Routing [Machado et al., 2002], Job Shop Scheduling

[Ono et al., 1996] and Circuit Layout [Mazumder and Rudnick, 1998].

31

3.1.3 Competitive Learning

The most well-known application of Competitive Learning (CL) is within the

field of artificial neural networks [Zell, 1994]. [Kohonen, 1995] lists, among

others, Self-Organising Maps and Learning Vector Quantization as examples

of CL networks. In such networks, all input cells receive the same input sig-

nal. Through interaction within the neural network, the output cells compete

for activation. Only the neuron with the highest output signal is allowed to

fire, and is said to represent the current input. Through learning, i.e. modify-

ing the interaction within the network, output cells are trained to represent

different clusters of the input signal space. The learning process is called

Competitive Learning.

O2

Inputs

Outputs

I1 I2 I3

O1

Figure 3.1: A simple Competitive Learning network

In figure 3.1, a simple CL network with three input neurons and two output

neurons is given. Each of the input cells is connected to each of the output

cells, with a weight attached to each of these connections. The input units

can only receive binary signals Ii ∈ {0, 1}; hence the input space is {0, 1}3.

32

The activation Oi of output unit i can be computed as

Oi =
∑

j

wij · Ii

where wij is the weight of the connection between input neuron i and output

neuron j. While the weights are initially determined randomly, they are

modified during learning. The winning neuron, i.e. the output neuron with

the highest activation, is allowed to modify the weights of its connections in

order to represent the current input better:

∆wij = ε · (Ii − wij), (3.1)

with ε being the learning rate. The learning phase consists of presenting dif-

ferent input signals to the network, and subsequently modifying the weights

according to the described learning rule. After this learning process, the

weights of an output neuron can be seen as a prototype vector for a cluster

represented by this neuron. The network has learned to cluster the input

space.

3.1.4 Population-Based Incremental Learning

The PBIL algorithm, as it is presented next, assumes an optimisation prob-

lem with the solution space S = {0, 1}L. Hence each candidate solution is

a binary vector ~s ∈ S of length L. The task is to find the solution ~s best

with the optimal objective evaluation f(~s best). If not otherwise stated, a

33

minimisation scenario is assumed in this thesis.

In analogy to GAs, PBIL works with a population of candidate solutions

which evolve over a number of generations. But in contrast to GAs, members

of the current population are not used in a recombination scheme, rather

the “algorithm attempts to create a probability vector from which samples

can be drawn to produce the next generation’s population. . . . In a manner

similar to the training of a competitive learning network, the values in the

probability vector are shifted towards representing those in high evaluation

vectors.” [Baluja, 1994] This probability vector ~P = (P1, . . . , PL) holds the

probabilities Pi of samples having the bit value one at position i.

In figure 3.2, the pseudo code of the PBIL algorithm is given, followed by

the description of its working principle.

PBIL Algorithm
1 ~s best = ∅
2 FOR l = 1, . . . , L DO Pl = 0.5
3 FOR g = 1, . . . , G DO
4 FOR i = 1, . . . , M DO

5 ~si = sampling(~P)
6 ei = f(~si)
7 min = argminM

i=1ei

8 FOR l = 1, . . . , L DO
9 Pl = Pl · (1− ε1) + ~smin,l · ε1

10 IF random((0, 1]) < µ THEN
11 Pl = Pl · (1− ε2) + random({0, 1}) · ε2

12 ~s best = minimum(~s best, ~smin)
13 RETURN ~s best

Figure 3.2: The Population-Based Incremental Learning algorithm

In the initialisation phase, the best found solution ~s best is set to ∅ (line 1)

34

as no such solution is known yet. Furthermore, all probabilities in ~P are set

to 0.5 (line 2) because no information about values of solution vectors with

good evaluations are available at this point.

The second phase of the PBIL algorithm consists of the loop over G genera-

tional cycles (lines 3 to 12). The first step within this main loop is the sam-

pling of M new candidate solutions ~si which get evaluated as ei, i = 1, . . . , M

(lines 4 to 6). After determining the index min of the best among the M

evaluations (line 7), learning takes place. All L probabilities in the probabil-

ity vector ~P are shifted towards more accurately representing the bit values

in the best solution ~smin of the current population (line 9). The learning

formula

Pl = Pl · (1− ε1) + ~smin,l · ε1,

where ε1 is the learning rate and ~smin,l the l-th bit value of ~smin, can be

rewritten as

∆Pl = ε1 · (~smin,l − Pl). (3.2)

This equation resembles the learning rule 3.1 for CL networks. If ~smin has

a one at position l, then Pl gets increased by this rule, otherwise it gets

decreased. In a second updating step, all probabilities in ~P get “mutated”

with mutation probability µ (lines 10 and 11). That means each of these

probabilities may get moved by chance slightly towards either 0 or 1 by

amount ε2. The final step of the main loop is the replacement of ~s best if

the current population includes a solution with a better (smaller) evaluation

(line 12).

35

The PBIL algorithm finishes by returning the best encountered solution ~s best

(line 13). A list summarising the complete notation used in the algorithm

can be found in appendix A.3.

The main idea of PBIL is to determine the distribution of bit values in so-

lutions with good evaluations. As this distribution is used for the sampling

of each new generation, the search is concentrated on areas of the solution

space which previously led to promising solutions. It is hoped that these re-

gions yield even better solutions. After each generation, the search is shifted

towards the best solution of this generation. This leads to a dynamic system

of permanently (re-)focusing the search while still, probabilistically allowing

the exploration of the entire search space.

3.2 Further Developments of Population-

Based Incremental Learning

3.2.1 Continuous Search Spaces

The basic PBIL algorithm is designed for binary search spaces. Two exten-

sions have been proposed to extend its applicability to continuous domains.

[Servet et al., 1997] suggest to use a single probability P to determine values

from an interval [a, b]. This probability is interpreted as P (X > a+b
2

). This

means a value is uniformly chosen from (a+b
2

, b] with probability P , and from

36

[a, a+b
2

] with probability 1−P . The learning rule for updating this likelihood

is the same as in the boolean case: if the best individual takes a value

from (a+b
2

, b], then P is moved towards 1, otherwise its is moved towards

0. If, after some learning, P is specific enough, i.e. P < 0.1 or P > 0.9,

the search is re-focused on the corresponding sub-interval [a, a+b
2

] or (a+b
2

, b],

respectively, and P is newly initialised to 0.5. This mechanism allows the

search to focus on sub-intervals that contain the best individual in most cases.

However, this approach has serious limitations. Once a sub-interval has been

discarded, no further values can be drawn from this region. Furthermore, if

both sub-intervals contain promising values to the same degree, re-focusing

is not possible and the search remains purely random over the whole interval.

[Sebag and Ducoulombier, 1998] discuss how to use a normal distribution

N(X, σ) over an interval [a, b] for modelling the distribution of good values.

They propose mechanisms for updating the mean X and the variance σ

through incremental learning. The reported experimental results are not

outstanding. Although the assumption of a normal distribution of good

values over a range [a, b] can be justified in many cases, this is not necessarily

true in general. Therefore, the applicability of this concept is limited.

3.2.2 Multiple Populations

Using multiple populations rather than a single population has been shown

to be an effective mechanism for Evolutionary Algorithms in dynamic opti-

misation problems [Branke et al., 2000]. [Yang and Yao, 2003] take this sug-

37

gestion and propose two novel PBIL variants.

Parallel Population-Based Incremental Learning, in its simplest form, is a

modification of PBIL which uses two probability vectors ~P1 and ~P2 instead

of just one. While all values in the first vector are initialised to 0.5, the values

in the second vector are randomly initialised. Both ~P1 and ~P2 ”are sampled

and updated independently”. Initially, half the population in each cycle is

sampled from each probability vector. These sample sizes are then adapted

iteratively to allow the better performing of the two vectors to generate more

samples in latter cycles.

The second enhancement of PBIL discussed is Dual Population-Based In-

cremental Learning. This variant uses two dual probability vectors ~P =

(P1, . . . , PL) and ~P ′ = (1 − P1, . . . , 1 − PL). These vectors are ”symmet-

ric with respect to the central point” (0.5, . . . , 0.5) of the search space. In

contrast to Parallel PBIL where both probability vectors are updated inde-

pendently during the search process, Dual PBIL applies the default PBIL

learning mechanism only to ~P as ~P ′ changes automatically to maintain the

dualism. Both variants agree in all other aspects. The introduction of the

dualism principle into PBIL is motivated with an increased diversity of the

samples and a higher robustness against a changing environment.

[Yang and Yao, 2003] compare the performance of a standard GA, PBIL,

Parallel PBIL and Dual PBIL for stationary knapsack problems and series of

dynamic knapsack problems. In the stationary case, all three PBIL variants

outperform a standard GA with PBIL showing the best performance. The

38

authors conclude that ”introducing extra probability vector into PBIL may

not be beneficial” for stationary problems. In dynamic scenarios with sig-

nificant changes, however, Dual PBIL shows the best performance and often

achieves high performance improvements compared to PBIL. The dualism of

the probability vectors leads to an increased adaptability.

3.2.3 Learning Rate Correctives

The learning rate is a fundamental parameter of the PBIL algorithm. As

[Shapiro, 2002, Shapiro, 2003] illustrates in two example problem scenarios,

it must be sensitively scaled with regard to the problem size. This sensitivity

of the learning rate is caused by the drift phenomenon: even on a flat land-

scape, the amount of movement of the probabilities1 Pi away from 0.5, the

expected value, is larger than the movement towards 0.5. Therefore, PBIL

gets attracted to corners of the corresponding hypercube. [Shapiro, 2002]

shows that the learning rate must be chosen to be ”very small to prevent

premature convergence” and proposes two new mechanisms which help to

overcome this sensitivity.

Detailed Balance Population-Based Incremental Learning introduces detailed

balance in PBIL, a condition central to the convergence of variables to a de-

sired equilibrium distribution in Markov processes2. The modified algorithm

uses a rejection approach in its learning mechanism. During the learning

1Probability vector ~P = (P1, . . . , PL)
2The interested reader is referred to [Neal, 1993] for a detailed review of such processes

and related Markov chain Monte Carlo methods.

39

process, i.e. during the modification of probabilities Pi from the probabil-

ity vector ~P , moves away from hypercube corners are always accepted while

moves towards such corners can be rejected. Shapiro’s results for two case

studies indicate that Detailed Balance PBIL can successfully counter the

problems caused by drift and thus the algorithm works well for a much wider

range of learning rates.

The second proposed corrective to control drift is probabilistic mutation. A

”mutation-like parameter m” is introduced into the PBIL learning rule (line

9 in figure 3.2):

P new
l =

Pl + ε1(~smin,l − Pl) + m

1 + 2m
.

This leads to a mechanism analogous to mutation in classical GAs.

[Shapiro, 2003] discusses conditions for well-performing choices of mutation

rate m and learning rate ε1 and illustrates the effectiveness of probabilistic

mutation for needle-in-a-haystack problems.

3.3 Applications of Population-Based Incre-

mental Learning

PBIL has been successfully applied to a wide range of problems, some of

which are listed below:

• In his original work, [Baluja, 1994] applies PBIL to Job Shop Schedul-

40

ing, Traveling Salesman, Bin Packing, Standard Numerical Optimisa-

tion and Strong Local Optima Problems. He concludes that the ”simple

population-based incremental learner performs better than a standard

genetic algorithm in the problems empirically compared”.

• [Sukthankar, 1997] uses PBIL to tune the parameters of a distributed

reasoning system for an intelligent vehicle. The experiments presented

demonstrate the ”ability of evolutionary algorithms to automatically

configure a collection of these modules”.

• [SaÃlustowicz and Schmidhuber, 1997] introduces Probabilistic Incre-

mental Program Evolution (PIPE). This approach for automatic pro-

gram synthesis combines PBIL and ”tree-coded programs”. PBIL is

used to stochastically generate better-performing programs.

• [Southey and Karray, 1999] show in simulations how a PBIL variant

outperforms an implementation of a genetic algorithm in evolving con-

trollers based on neural networks for robotic agents.

• [Gosling, 2003] studies Simple Supply Chain Model problems scenarios,

analyses various middlemen strategies for such problems and discusses

the efficiency of PBIL in optimising parameters of these strategies.

41

3.4 Generalised Population-Based Incremen-

tal Learning

The PBIL algorithm in its basic form makes several assumptions about the

nature of the handled optimisation problem which obviously narrows its ap-

plicability. In this section, we address these restrictions and propose a novel,

more general formulation of the method that overcomes these problems,

which we call Generalised Population-Based Incremental Learning (GPBIL).

Standard PBIL shows the following restrictions:

1. The algorithm can handle just optimisation problems with binary so-

lution vectors. If one extends the solution space to NL or even RL, one

has to heavily modify the application of the probability vector and the

corresponding learning mechanism.

2. The algorithm assumes that every candidate solution has exactly one

unique evaluation. In case of noisy results or differing results for dif-

fering scenarios, which the MAPAP shows as stated in characteristic

C3 in section 1.5, one has to introduce mechanisms to allow the accu-

mulation of a number of evaluations. Furthermore, the decision about

which of two solutions is actually better becomes more difficult.

3. The algorithm in its most basic form just learns from the best popu-

lation member. Although [Baluja, 1994] also discusses other learning

schemes, including learning from negative examples, various further

42

learning mechanisms are possible.

Regarding the first point, we assume the solution space

S = D1 × . . .× Dn (3.3)

with Di being a subset of the real numbers. Di is called the domain for

the i-th element of any solution vector. In order to model a distribution

of good values over such a domain, we apply the concept of probability

distribution functions of real valued random variables to this set3. FS is

the joint probability distribution function over the entire solution space. It

is worth mentioning that the probability vector in the basic PBIL algorithm

is nothing more than a joint probability distribution over {0, 1}L. This joint

probability distribution can firstly be used to sample points from the solution

space, and secondly can be updated and modified through learning. Of

course, the learning mechanism becomes much more complex in this case,

and can, with regard to restriction three, take many different shapes. As the

proposed GPBIL method is formulated in a generic way, the exact nature of

the learning scheme is left open. A specific implementation is presented in

the next chapter in the context of the MAPAP.

To overcome the problems mentioned due to the second restriction above,

each population member can now have an attached history of evaluation

3Appendix B provides a brief overview over the mathematical principles of probability
distributions.

43

results. Hence, an individual I can be represented as a tuple4

I = 〈~s,~e〉 (3.4)

with ~s ∈ S and ~e = (e1, . . . , eG) a vector of G evaluation results. An individ-

ual can thus potentially hold evaluation results for all G generational cycles.

If E represents the space of all possible evaluation results, the space of all

possible individuals I can be written as I = S × EG. Adding an evaluation

value to an individual in generation g is symbolised by

〈~s, (e1, . . . , eg, . . . , eG)〉
⊎
g

e′g = 〈~s, (e1, . . . , e
′
g, . . . , eG)〉. (3.5)

In order to allow the accumulation of different evaluation results, individuals

must get the chance of multiple evaluations. Therefore, GPBIL makes it

possible for individuals to get passed on to subsequent generations. Which

individuals will get this survival chance is determined by a selection mecha-

nism.

Having made these introductory remarks, the pseudo code for GPBIL is

presented in figure 3.3. A list containing notational comments can be found

in appendix A.4.

In common with the standard PBIL method, both the best individual Ibest

and the joint probability distribution FS get initialised in the first stage of the

algorithm (lines 1 and 2). More specifically, the function initialisation, given

4The notation 〈. . . , . . .〉 is used to distinguish individuals clearly.

44

GPBIL Algorithm
1 Ibest = 〈~sinitial, ∅〉
2 FS = initialisation(S)
3 N = M
4 FOR g = 1, . . . , G DO
5 FOR i = M −N + 1, . . . , M DO Ii = 〈sampling(FS), ∅〉
6 FOR i = 1, . . . , M DO Ii = Ii

⊎
g evaluation(Ii, g)

7 Ibest = Ibest
⊎

g evaluation(Ibest, g)

8 FS = learning(FS, Ibest, ~I , g)

9 Ibest = optimum(Ibest, ~I)

10 ~I = selection(Ibest, ~I)

11 N = M − size(~I)
12 RETURN Ibest

Figure 3.3: The Generalised Population-Based Incremental Learning algo-
rithm

the solution space as a parameter, returns the initial probability distribution

function over this space. If S̃ is the space of all possible solution spaces, and

F is the space of all possible probability distribution functions, then one can

write

initialisation : S̃→ F. (3.6)

In addition, the number of individuals to be sampled N is initially set to the

population size M (line 3).

The main part of the algorithm consists again of a loop over G generational

cycles (lines 4 to 11). Firstly, N newly sampled individuals get added to the

population so that the population size is again M (line 5). To achieve this,

the function sampling returns a solution ~s ∈ S

sampling : F→ S (3.7)

45

which gets combined with an (initially empty) evaluation history5.

In a second step, all individuals of the population as well as the best found in-

dividual Ibest get evaluated; the results are added to the respective evaluation

histories (lines 6 and 7). The evaluation is performed through the evaluation

function which, presented with an individual and the current cycle number,

returns a value from the evaluation space:

evaluation : I× {1, . . . , G} → E. (3.8)

The joint probability distribution FS then gets modified through learning

(line 8)

learning : F× I× IM × {1, . . . , G} → F, (3.9)

which is based on comparing the most recent performances of the M popu-

lation members with the performance of the best individual and modifying

the probability distribution function accordingly.

Next, a test is performed to determine whether an individual from the pop-

ulation can replace the best found individual Ibest (line 9):

optimum : I× IM → I. (3.10)

The main loop finishes with the selection of population members which are

5Note that this is not a function in the strict mathematical sense because the returned
results are random but follow the given probability distribution.

46

passed on to the next cycle (line 10):

selection : I× IM → IM , (3.11)

and the subsequent re-computation of N (line 11).

The GPBIL algorithm terminates returning the best encountered individual

Ibest as the result (line 12).

Note that the functions initialisation, sampling, learning, optimum, and

selection are given without any further specification. Their meaning and

task has been described, but no additional details are provided. This allows

the algorithm to be formulated in a very broad, generic way.

3.5 Summary

In this chapter, we discussed Population-Based Incremental Learning (PBIL).

It was shown how this powerful optimisation strategy combines concepts of

Genetic Algorithms and Competitive Learning. Central to its function is the

maintenance of a model about the distribution of promising solutions. This

model serves as a source for the generation of new candidate solutions that

are in competition with each other. The most successful candidates are used

as feedback and thus help to improve the distribution model itself. Through a

repetition of this process, the method improves the quality of the distribution

model over time, and therefore learns to generate better candidate solutions.

47

However, PBIL has several limitations that narrow its applicability. To

overcome these shortcomings, we proposed a novel, generalised formulation

that we named Generalised Population-Based Incremental Learning (GP-

BIL). This new method allows more general solution spaces, more complex

evaluations which take noise into account, and provides room for manifold

learning schemes. In contrast to PBIL, the generalised version is not a fully

specified algorithm as such but rather a generic framework. Several of its

components are left unspecified to allow for tailored realisations in different

problem scenarios. As this thesis is concerned with the problem of parameter

adaptation in heuristic search, an application and complete implementation

of GPBIL for this case is presented in the next chapter.

48

Chapter 4

Multiple Algorithms’

Parameter Adaptation

In this chapter, we propose an algorithm based on Generalised Population-

Based Incremental Learning for solving the Multiple Algorithms’ Parameter

Adaptation Problem. In order to define this new method, which we refer to

as the Multiple Algorithms’ Parameter Adaptation Algorithm (MAPAA), we

specify and describe all generic components of the Generalised Population-

Based Incremental Learning scheme. However, no empirical analysis is pro-

vided here as the next chapter is aimed at the study of the suggested tech-

nique through experimentation.

The composition of this chapter is, therefore, as follows. After a brief reca-

pitulation of the Multiple Algorithms’ Parameter Adaptation Problem, this

49

problem is then modelled in a suitable way so that it can be used with

the generalised formulation of Population-Based Incremental Learning. The

modelling process includes the definition of a solution space, the descrip-

tion of an evaluation space, and a discussion about the employed probability

distribution functions. Thereafter, we characterise all the methods for ini-

tialising the joint probability distribution, for the sampling and evaluation of

individuals, for applying learning processes, and for the tasks of updating the

best solution and selecting surviving individuals. Pseudo code is provided

for each of these functions. The chapter closes with a summary that lists all

parameters and limitations of the proposed algorithm.

4.1 The Problem

Revisiting the definition of the Multiple Algorithms’ Parameter Adaptation

Problem (MAPAP) from section 1.4, the following information is available

to every solution method:

m number of heuristic search algorithms

~A = (A1, . . . , Am) vector of heuristic search algorithms

li number of parameters of algorithm Ai

Di,j domain of j-th parameter of algorithm Ai

~Φ = (Φ1, . . . , Φk) vector of k sample optimisation problems

f objective function of optimisation problems

(4.1)

50

Given these data, the task is to find the algorithm Abest among the m meth-

ods, together with its optimal parameter setting πbest, that performs best

for the out-of-sample problems ~Φ
′
= (Φ′

1, . . . , Φ
′
k′). Any findings must only

be based on information gathered by applying the heuristic search methods

to the sample problems ~Φ; the problems in ~Φ
′
are not available during this

process.

4.2 The Solution Space

In order to model the MAPAP in a suitable way under Generalised Popu-

lation-Based Incremental Learning (GPBIL), one has to define an appropriate

solution space1 over which a joint probability distribution can be maintained

and updated. A point from this solution space has to provide the information

to answer two questions: which of the heuristic search algorithms has been

chosen, and what are the selected parameter values for this algorithm. This

can be achieved by defining the solution space as

S = {1, . . . , m} × D1,1 × · · · × D1,l1 × · · · × Dm,1 × · · · × Dm,lm ,

rewritten as

S = D1 × · · · × Dn

with D1 = {1, . . . , m}, D2 = D1,1, . . . , Dn = Dm,lm .

(4.2a)

1We refer here to the solution space of the MAPAP, not the solution space of the
optimisation problems the algorithms Ai are supposed to solve.

51

A solution ~s ∈ S is thus a real-valued vector of length n, where

n = 1 +
m∑

i=1

li. (4.2b)

Such a solution vector holds, in fact, information about parameter choices

for all m heuristic search methods.

4.3 The Evaluation Space

As the vector of sample optimisation problems, ~Φ, provides k possible candi-

date problems, a policy has to be devised in order to decide when to use which

optimisation problem. The scheme applied here is to use problem Φg for the

evaluation of individuals in generation g. This way, new evaluation results

are available in every cycle. An individual I = 〈~s,~e〉 encodes m parameter

settings for the algorithms A1 to Am. There are, potentially, m different ob-

jective values with regard to one optimisation problem. Therefore, we define

the evaluation space as

E = Rm. (4.3)

A consequence of this equation is that an individual’s history is a point in

the space (Rm)G. That means that this memory can hold evaluation results

collected for all m heuristic search methods over all G generational cycles.

However, not all these results might be necessary, available or computable,

so that history entries can be left blank, symbolised by ∅.

52

4.4 Notes about Individuals

Each individual I from the population is a pair 〈~s,~e〉 of a candidate solution

~s = (s1, . . . , sn) from the solution space S and an evaluation history ~e from

the space (E)G. Although such an individual holds parameter choices for all

m algorithms A1 to Am, only the parameter setting for the encoded algorithm,

namely the algorithm with the index s1, is of importance and is ever used.

This also limits the evaluation history to the effect that it only stores results

about this one algorithm, all other fields are left blank.

The only exception is the special individual Ibest = 〈~s best, ~e best〉. The m

parameter settings,which are encoded by this individual, represent the best

settings that have been encountered for the algorithms A1 to Am. In addition,

it provides the information about the best among these m algorithms which is

the method indexed by sbest
1 . The history ~e best contains evaluations achieved

by all m algorithms as a result.

The first step of the MAPAA is the initialisation of Ibest by pairing an initial

candidate solution ~s initial with an empty history (∅) (line 1 in the GPBIL

figure 3.3). If advance information about reasonable parameter settings for

the heuristic search methods are available than those can be incorporated

into ~s initial. Otherwise, one can choose ~s initial as a random point from S.

53

4.5 The Joint Probability Distribution over

the Solution Space

As stated in equation 4.2, the solution space takes the form S = D1×· · ·×Dn.

Although GPBIL principally allows any subset of the real numbers for these

domains, we limit these sets here to two types: Di, i = 1, . . . , n, can be either

a finite set, or the domain can be an interval of the real numbers. By defin-

ing probability distribution functions FDi
: R → [0, 1] for marginal random

variables over the ranges Di, we define the joint probability distribution FS
over S by

FS = FD1 · . . . · FDn . (4.4)

Appendix B.1 briefly summarises the mathematical concepts behind discrete

and continous random variables, and the corresponding probability distribu-

tion functions(PDFs).

4.5.1 Finite Domain

If domain Di is a finite set with ui elements

Di = {di,1, . . . , di,ui
}, (4.5a)

54

then the probability distribution over this set, according to standard proba-

bility theory, is characterised by the ui probabilities2

Pi,1, . . . , Pi,ui
(4.5b)

representing the likelihoods of the corresponding elements to be chosen. That

means GPBIL can model the probability distribution function FDi
over Di =

{di,1, . . . , di,ui
}, which is given as

FDi
(x) =

∑

di,j<x

Pi,j, x ∈ R, (4.5c)

by ui real numbers.

4.5.2 Interval Domain

In the case where domain Di is a real-valued interval

Di = [ai, bi], (4.6a)

the probability distribution over Di can, potentially, be a very complex func-

tion. In general, it is possible to just approximate such a continous function

to an extent.

Previous strategies to model distributions over continuous domains were

briefly discussed in section 3.2.1. The two techniques mentioned there have

2In fact, only ui − 1 of these probabilities are required.

55

serious limitations. They both rely on the assumption that the search can

be focused on a single region within [ai, bi], and as such they are not effi-

cient if the interval contains multiple promising areas. Furthermore, neither

scheme includes negative feedback, and they both rely on a high number of

generations for learning.

As the number of learning steps is limited in our case, we propose a new

technique that incorporates positive and negative learning and that is capable

of approximating more versatile distributions. An example is provided in

section 5.1.2.

Our approach limits the probability distribution function to a certain kind

of step function which we define with the help of a one-dimensional Self-

Organising Map (SOM). The application of this neural network, a summary

of which can be found in appendix C, is motivated by its use of a simple

learning mechanism that results in a concentration of neurons in areas with

high positive feedback. The learning mechanism is described in section 4.10.2.

We assume an one-dimensional SOM with ui neurons with weights

ai ≤ Wi,1 < · · · < Wi,ui
≤ bi. (4.6b)

These ui neurons divide the interval [ai, bi] into ui sub-intervals [ai,
Wi,1+Wi,2

2
),

[
Wi,1+Wi,2

2
,

Wi,2+Wi,3

2
), . . ., [

Wi,ui−2+Wi,ui−1

2
,

Wi,ui−1+Wi,ui

2
), and [

Wi,ui−1+Wi,ui

2
, bi],

where the j-th sub-interval contains all values that are closest to the j-th

neuron weight. The idea is that each of the ui neurons is equally likely to be

56

chosen, i.e. the probability that a random value comes from any of the ui sub-

interval is 1
ui

. Furthermore, all values from the same sub-interval should be

equally probable. Consequently, the area under the resulting density function

for each of the ui sub-intervals must be 1
ui

, and the density function must be

constant within each sub-interval, or, more specifically must take the value

1
ui
· 1

interval length
. The probability density function di is therefore given by

di(x) =





0 if x /∈ [ai, bi]

1
ui
· 2

Wi,1+Wi,2−2ai
if x ∈ [ai,

Wi,1+Wi,2

2
)

1
ui
· 2

Wi,3−Wi,1
if x ∈ [

Wi,1+Wi,2

2
,

Wi,2+Wi,3

2
)

. . .

1
ui
· 2

Wi,ui
−Wi,ui−2

if x ∈ [
Wi,ui−2+Wi,ui−1

2
,

Wi,ui−1+Wi,ui

2
)

1
ui
· 2

2bi−Wi,ui
−Wi,ui−1

if x ∈ [
Wi,ui−1+Wi,ui

2
, bi]

. (4.6c)

As usual, the probability distribution function is defined as

FDi
(x) =

∫ x

−∞
di(t)dt, x ∈ R, (4.6d)

in this case.

The closer (the weights of) the neurons are, the narrower the described sub-

intervals are and, as a consequence, the density function is larger in these

sub-intervals. In other words, a concentration of neurons in a certain region of

[ai, bi] leads to higher density function values in this region, whereas a region

57

with few neurons shows lower density function values. The next example

clarifies these characteristics.

Example 4.1. We assume the domain D = [0, 1], and a SOM with four

weights W1 = 0.35, W2 = 0.45, W3 = 0.55, and W4 = 0.85. The sub-

interval belonging to W3, for instance, reaches from the median of W2 and

W3,
0.45+0.55

2
= 0.5, to the median of W3 and W4,

0.55+0.85
2

= 0.7, and is hence

[0.5, 0.7). As there are four such sub-intervals, the area under the density

function over [0.5, 0.7) must be 1
4
, and hence the density function must yield

the constant value 1
4
· 1

0.7−0.5
= 1.25 over this sub-interval. The complete

density function is thus

d(x) =





0 if x /∈ [0.0, 1.0]

0.625 if x ∈ [0.0, 0.4)

2.5 if x ∈ [0.4, 0.5)

1.25 if x ∈ [0.5, 0.7)

0.833 if x ∈ [0.7, 1.0]

.

This is shown in figure 4.1. The graph illustrates that the concentration of

neurons at 0.35, 0.45 and 0.55 leads to the highest density function value of

2.5 in the interval [0.4, 0.5). On the other hand, the low density function

value 0.625 in [0.0, 0.4) indicates a low concentration of neurons around this

area. ¤

To summarise, whether the domain Di is a finite set or an interval, we can in

58

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

d(
x)

x

neuron chain

Figure 4.1: Example density function

both cases describe a probability distribution over Di with ui real numbers,

that are either interpreted as element probabilities

FDi
= F(Pi,1, . . . , Pi,ui

) (4.7a)

or neuron weights

FDi
= F(Wi,1, . . . , Wi,ui

). (4.7b)

4.6 Auxiliary Functions

At this point, we introduce several auxiliary functions which help to simplify

definitions and descriptions in the latter part of this chapter. Thereafter, an

59

example is provided in order to clarify the meaning of these functions and to

demonstrate their application.

• For a given individual I = 〈~s,~e〉 = 〈(s1, . . . , sn), ~e〉 and a natural num-

ber i ∈ {1, . . . , n}, the function v returns the value from domain Di

which is encoded by I:

v : I× {1, . . . , n} → R

v
(〈(s1, . . . , sn), ~e〉, i) = si

(4.8)

As D1 encodes the indices of the algorithms A1 to Am, we can write

shorter:

alg : I→ {1, . . . , m}

alg(I) = v(I, 1).

(4.9)

• If we are interested in the algorithm the i-th domain Di belongs to, we

can use the following function:

alg : {2, . . . , n} → {1, ..., m}

alg(i) = j ⇐⇒ 1 +

j−1∑

k=1

lk < i ≤ 1 +

j∑

k=1

lk

(4.10)

• The mapping π yields the parameter setting encoded by an individual

60

I for algorithm Ai:

π : I× {1, . . . , m} →
m⋃

i=1

Rli

π(I, i) =
(
v(I, p + 1), . . . , v(I, p + li)

)
with p = 1 +

j<i∑
j=1

lj.

(4.11a)

With no algorithm index specified, the represented algorithm alg(I) is

assumed:

π(I) = π
(
I, alg(I)

)
. (4.11b)

• The auxiliary function h, which returns for a given individual the stored

evaluation result for the i-th algorithm in generation g, is defined as

follows:

h : I× {1, . . . , m} × {1, . . . , G} → R

h
(
〈~s,

(
(e1,1, . . . , e1,m), . . . , (eG,1, . . . , eG,m)

)〉, i, g
)

= eg,i

(4.12a)

By omitting the algorithm index i, we presume algorithm Aalg(I):

h(I, g) = h(I, alg(I), g). (4.12b)

Example 4.2. Two algorithms (m = 2) A1 and A2 with two parameters each

(l1 = l2 = 2) are given. Parameters P1,1 and P1,2 of A1 can take values from

the domains D1,1 = {2, 4, 6} and D1,2 = [0, 1], respectively, while the values

for the parameters of A2 are chosen from D2,1 = [0, 100] and D2,2 = {−3,−5},
respectively.

61

The parameter space for algorithm A1 is P1 = {2, 4, 6} × [0, 1], while the

parameter space for A2 is given by P2 = [0, 100] × {−3,−5}. Hence the

resulting solution space is S = {1, 2} × {2, 4, 6} × [0, 1]× [0, 100]× {−3,−5}
with n = 1 + 2 + 2 = 5. The evaluation space takes the form E = R2. With

a total number of cycles of G = 3, the histories of individuals come from the

space EG = (R2)3.

The individual I = 〈(1, 4, 0.57, 37.1,−3),
(
(10, ∅), (9, ∅), (11, ∅))〉 is a point in

the individual space I = S×EG. The space here is {1, 2}×{2, 4, 6}× [0, 1]×
[0, 100]× {−3,−5} × (R2)3.

I describes the choice of algorithm A1 with the parameter values 4 and 0.57.

This is reflected in alg(I) = 1 and π(I) = π(I, 1) = (4, 0.57). π(I, 2), on the

other hand, yields (37.1,−3), i.e. I encodes the parameter values 37.1 and

−3 for A2.

The value of v(I, 3) is 0.57 as the third element of the solution part of the

individual contains this number. As this value comes from the domain D3 =

[0, 1] which belongs to the second parameter of algorithm A1, the term alg(3)

is evaluated as 1, the index of this algorithm.

The history of I holds only evaluation results for the first algorithm A1.

As an example, the stored evaluation for this algorithm in cycle three is

h(I, 1, 3) = 11. Zero results, as in h(I, 2, 2) = ∅, indicate that no results for

the second algorithm have been collected. ¤

62

4.7 Initialising the Joint Probability Distri-

butions

During the initialisation of the joint probability distribution (line 2 in the

GPBIL figure 3.3), all marginal probability distribution functions over the

domains get initialised. As no prior knowledge is available at this point,

these distributions get instantiated as equal distributions. More specifically,

for i = 1, . . . , n and j = 1, . . . , ui, we choose

Pi,j =
1

ui

(4.13)

when Di is a finite set. If the i-th domain is an interval [ai, bi], we apply a

neuron chain with L neurons

ui = L, (4.14a)

where L is a parameter of the MAPAA and must be predefined. We then

initialise the neuron weights according to the rule

Wi,j = ai +
2j − 1

2
· bi − ai

ui

. (4.14b)

This yields the density function

di(x) =





0 if x /∈ [ai, bi]

1
bi−ai

if x ∈ [ai, bi]

(4.14c)

and hence an equal distribution over [ai, bi].

63

The function initialisation : S̃ → Fn, which maps the solution space onto

a joint probability distribution function, therefore has the following pseudo

code:

Function initialisation(D1 × · · · × Dn)
1 FOR i = 1, . . . , n DO
2 IF Di is finite domain THEN
3 ui = size(Di)
4 FOR j = 1, . . . , ui DO Pi,j = 1

ui

5 FDi
= F(Pi,1, . . . , Pi,ui

)
6 ELSE
7 ui = L
8 FOR j = 1, . . . , ui DO Wi,j = ai + 2j−1

2
· bi−ai

ui

9 FDi
= F(Wi,1, . . . , Wi,ui

)
10 RETURN FD1 · . . . · FDn

Figure 4.2: Pseudo code of the initialisation function

4.8 Sampling from the Joint Probability Dis-

tribution

During the sampling process (line 5 in the GPBIL figure 3.3), a solution

vector ~s ∈ S is constructed by choosing an element from each domain Di,

i = 1, . . . , n, according to the probability distributions FDi
over these do-

mains. The mutation rate µ, a parameter of the MAPAA, provides a small

probability that this choice is purely random, i.e. a value according to the

equal distribution F equal
Di

over Di is selected. The function sampling : Fn → S

is presented as a code fragment in figure 4.3.

64

Function sampling(FD1 · . . . · FDn)
1 FOR i = 1, . . . , n DO

2 IF random([0, 1]) < µ THEN si = random(F equal
Di

)
3 ELSE si = random(FDi

)
4 RETURN (s1, . . . , sn)

Figure 4.3: Pseudo code of the sampling function

4.9 Evaluating Individuals

The pseudo code of the evaluation function evaluation : I × N → E, which

is used in lines 6 and 7 in the GPBIL figure 3.3, can be found in figure

4.4. Presented with an individual I and the current cycle number g, this

function returns a vector of m real numbers. Only in the case of the best

individual Ibest are evaluation results from all m algorithms required. For

all other individuals I, only the single objective function value for algorithm

Aalg(I), which is the algorithm described by I, is of importance and is in fact

calculated.

Function evaluation(I, g)

1 IF I 6= Ibest THEN RETURN
(
∅, . . . , ∅, f(

Aalg(I)(π(I), Φg)
)
, ∅, . . . , ∅

)

2 ELSE RETURN
(
f
(
A1(π(I, 1), Φg)

)
, . . . , f

(
Am(π(I, m), Φg)

))
3

Figure 4.4: Pseudo code of the evaluation function

3As a reminder, f
(
Ai(π(I, i), Φg)

)
is the objective function value of the solution pro-

duced by algorithm Ai with the parameter setting π(I, i) when applied to the optimisation
problem Φg.

65

4.10 Updating of the Joint Probability Dis-

tribution

The updating of the joint probability distribution FS in line 8 of the GPBIL

figure 3.3 is essential for GPBIL in order to learn what are favourable and

less favourable choices from the domains Di, i = 1, . . . , n. As these domains

can take two different shapes, we first introduce the basic learning rules for

both finite and interval domains. Thereafter, the complete learning scheme

is described.

4.10.1 Learning over Finite Domains

Following the learning rule from standard Population-Based Incremental

Learning (PBIL), positive feedback from a value di,k ∈ Di = {di,1, . . . , di,ui
}

leads to an increased likelihood of this value:

P new
i,k = 1 · ε + P old

i,k · (1− ε) = P old
i,k + (1− P old

i,k) · ε

In this formula, ε ∈ (0, 1) is the learning rate. All other probabilities Pi,j

with j 6= k are decreased according to

P new
i,j = P old

i,j ·
1− P new

i,k

1− P old
i,k

.

66

The rule for positive learning over a finite set domain can be thus comprising

as

P new
i,j =





P old
i,j + (1− P old

i,j) · ε if j = k

P old
i,j ·

1−P new
i,k

1−P old
i,k

if j 6= k

. (4.15)

It is worth noting that this rule maintains a number of characteristics. Firstly,

all probabilities are from [0, 1]. Secondly, all probabilities sum up to 1

ui∑
j=1

P new
i,j = P new

i,k +

ui∑

j=1,j 6=k

P new
i,j

= P new
i,k +

ui∑

j=1,j 6=k

P old
i,j ·

1− P new
i,k

1− P old
i,k

= P new
i,k +

1− P new
i,k

1− P old
i,k

·
ui∑

j=1,j 6=k

P old
i,j

= P new
i,k +

1− P new
i,k

1− P old
i,k

· (1− P old
i,k)

= 1.

Thirdly, the ratio of two probabilities Pi,j1 and Pi,j2 with j1 6= k and j2 6= k

is unchanged (P old
i,j2

> 0 is assumed):

P new
i,j1

P new
i,j2

=
P old

i,j1
· 1−P new

i,k

1−P old
i,k

P old
i,j2
· 1−P new

i,k

1−P old
i,k

=
P old

i,j1

P old
i,j2

.

The rule for negative learning, based on the formula

P new
i,k = 0 · ε + P old

i,k · (1− ε) = P old
i,k + (0− P old

i,k) · ε,

67

can be derived analogically:

P new
i,j =





P old
i,j + (0− P old

i,j) · ε if j = k

P old
i,j ·

1−P new
i,k

1−P old
i,k

if j 6= k

. (4.16)

Example 4.3. We assume the domain {1, 2, 3} with the probabilities P1 =

0.5, P2 = 0.3 and P3 = 0.2. Positive feedback for the value 1 with a learning

rate of 0.2 leads to updated probabilities of P new
1 = 0.5+(1−0.5) ·0.2 = 0.6,

P new
2 = 0.3 · 1−0.6

1−0.5
= 0.24 and P new

3 = 0.2 · 1−0.6
1−0.5

= 0.16. The sum of these

new likelihoods is 0.6 + 0.24 + 0.16 = 1. If, on the other hand, negative

learning for the value 1 is assumed, again with a learning rate of 0.2, then

the resulting probabilities would be P new
1 = 0.5 + (0 − 0.5) · 0.2 = 0.4,

P new
2 = 0.3 · 1−0.4

1−0.5
= 0.36 and P new

3 = 0.2 · 1−0.4
1−0.5

= 0.24, which sum up to 1 as

well: 0.4 + 0.36 + 0.24 = 1. ¤

4.10.2 Learning over Interval Domains

If Di is an interval [ai, bi], then the PDF over this domain is given by the ui

neuron weights ai ≤ Wi,1 < · · · < Wi,ui
≤ bi. The rule applied for modifying

these weights is the learning rule for Self-Organising Maps. Positive feed-

back from a value X ∈ [ai, bi] leads firstly to the determination of the best

68

matching weight Wi,k

k = argminui
j=1(|X −Wi,j|)4, (4.17a)

and secondly to a weights update according to

W new
i,j = W old

i,j + ε · h(k, j) · (X −W old
i,j).

ε ∈ [0, 1] is the rate of positive learning, while h(k, j) represents the neigh-

bourhood kernel. If a cylinder neighbourhood kernel is of size δ then

h(k, j) =





1 if |k − j| ≤ δ

0 else

is applied and the learning rule can be formulated as

W new
i,j =





W old
i,j + ε · (X −W old

i,j) if |k − j| ≤ d

W old
i,j else

. (4.17b)

The standard SOM concept does not include the notion of negative feedback,

i.e. negative learning. But to our algorithm, the ability to use negative

experience is important. Therefore, a rule for negative learning in a SOM is

introduced. Its basic idea is the movement of neurons away from a negative

input X within a certain neighbourhood around it, in contrast to neuron

4argmini(xi) returns the index i for which xi is minimal.

69

movement towards X in case of positive learning. After determining the

closest neuron

k = argminui
j=1(|X −Wi,j|), (4.18a)

the neuron weights get modified according to

W new
i,j =





W old
i,j + ε · (W old

i,k−δ −W old
i,j) if |k − j| ≤ δ and W old

i,j ≤ X

W old
i,j + ε · (W old

i,k+δ −W old
i,j) if |k − j| ≤ δ and W old

i,j > X

W old
i,j else

.

(4.18b)

If the weights W old
i,k−δ or W old

i,k+δ in the formula above are not defined, we use

W old
i,k−δ = ai and W old

i,k+δ = bi, respectively.

The following example illustrates the effects of both positive and negative

learning.

Example 4.4. The domain [0.05, 0.95] is given with 9 evenly distributed

weights W1 = 0.1,W2 = 0.2, . . . , W9 = 0.9. Positive feedback from the

value 0.48 results in k = 5 as W5 = 0.5 is the best matching, i.e. nearest,

weight. With a learning rate of 0.5 and a neighbourhood size of 2, only

the weights W4, W5 and W6 get modified by moving them towards 0.48:

W new
4 = 0.4+ 0.5 · (0.48− 0.4) = 0.44 , W new

5 = 0.5+0.5 · (0.48− 0.5) = 0.49

and W new
6 = 0.6 + 0.5 · (0.48− 0.6) = 0.54.

But if X = 0.48 is negative feedback, then the weight W4 gets shifted towards

70

W3, and W5 and W6 get moved towards W7: W new
4 = 0.4 + 0.5 · (0.3− 0.4) =

0.35, W new
5 = 0.5+0.5 · (0.7− 0.5) = 0.6 and W new

6 = 0.6+0.5 · (0.7− 0.6) =

0.65. Figure 4.5 shows the concentration of neurons around X = 0.48 after

positive learning, and their away movement from this value after negative

feedback. ¤

 0.95 0.8 0.6 0.48 0.4 0.2 0.05

neuron weight

initial neuron chain

neuron chain after positive learning

neuron chain after negative learning

Figure 4.5: Neuron weights after positive and negative learning

4.10.3 The Learning Scheme

Having discussed the basic rules for positive and negative learning for both

finite and interval domains, we are now in a position to describe the entire

learning mechanism as applied in the MAPAA. This strategy is presented in

three steps with the corresponding functions building upon each other.

71

The Learning Function learning1

Objective: The aim of function learning1 is the abstraction of a single

learning step, i.e. a single update of a single PDF, regardless of whether

positive or negative learning over a finite or interval domain is performed.

Description: Four input parameters are required to allow the updating

of a single PDF by learning from a single value: a PDF FDi
that is to be

updated, a value X ∈ Di from which to learn, a weight ω ∈ [0, 1] influencing

the amount of learning, and a flag b ∈ {0, 1} indicating positive (b = 1)

or negative (b = 0) learning. The function returns the updated probability

distribution as its result.

The pseudo code, which is shown in figure 4.6, combines the four learning

rules discussed in equations 4.15, 4.16, 4.17 and 4.18. It contains six MAPAA

parameters that must be predefined. The learning rates for positive and

negative learning over finite and interval domains are given by ε+
fin, ε−fin, ε+

int

and ε−int. In the case of an interval domains, the neighbourhhood kernel sizes

δ+ for positive and δ− for negative feedback must be provided as well.

The Learning Function learning2

Objective: With the second learning function we describe a mechanism

for the repeated modification of a single probability distribution function

through learning from a group of individuals.

72

Function learning1(FDi , X, ω, b)
1 IF Di is finite domain THEN
2 X ≡ di,k

3 IF b is 1 THEN Pnew
i,k = P old

i,k + (1− P old
i,k) · ε+fin · ω

4 ELSE Pnew
i,k = P old

i,k + (0− P old
i,k) · ε−fin · ω

5 FOR j = 1, . . . , ui, j 6= k DO Pnew
i,j = P old

i,j · 1−P new
i,k

1−P old
i,k

6 RETURN F(Pnew
i,1 , . . . , Pnew

i,ui
)

7 ELSE
8 k = argminui

j=1(|X −Wi,j |)
9 IF b is 1 THEN FOR j = 1, . . . , ui DO

10 Wnew
i,j =

{
W old

i,j + ε+int · ω · (X −W old
i,j) if |k − j| ≤ δ+

W old
i,j else

11 ELSE FOR j = 1, . . . , ui DO

12 Wnew
i,j =





W old
i,j + ε−int · ω · (W old

i,k−δ− −W old
i,j) if |k − j| ≤ δ−, W old

i,j ≤ X

W old
i,j + ε−int · ω · (W old

i,k+δ− −W old
i,j) if |k − j| ≤ δ−, W old

i,j > X

W old
i,j else

13 RETURN F(Wnew
i,1 , . . . , Wnew

i,ui
)

Figure 4.6: Pseudo code of the learning1 function

Description: The function learning2, shown in figure 4.7, takes four input

parameters: a single PDF FDi
which has to be updated, a real-valued ref-

erence evaluation e, a vector ~I = (I1, . . . , Il) of l individuals from which to

learn, and the current cycle number g. Its return value is the modified PDF

FDi
.

In the first part of this method (lines 1 and 2), the population6 ~I gets parti-

tioned into two groups: those individuals, ~I+, that show a better evaluation7

than the reference evaluation e in cycle g, and those individuals, ~I−, that did

5ascending sort sorts the elements of a set in ascending order and returns them as a
vector.

6This is not necessarily the whole MAPAA population (I1, . . . , IM).
7As we assume minimisation problems, we mean a smaller evaluation result.

73

Function learning2
(FDi , e, (I1, . . . , Il), g

)

1 ~I+ = ascending sort
({Ij |h(Ij , g) < e})5

2 ~I− = ascending sort
({Ij |h(Ij , g) ≥ e})

3 FOR j = size(~I−), . . . , 1 DO
4 FDi = learning1(FDi , v(I−j , i), j

size(~I−)
, 0)

5 FOR j = size(~I+), . . . , 1 DO

6 FDi = learning1(FDi , v(I+
j , i), size(~I+)+1−j

size(~I+)
, 1)

7 RETURN FDi

Figure 4.7: Pseudo code for the learning2 function

not perform better than e. Thereafter in the second phase, negative learning

from the individuals in ~I− (lines 3 and 4) and positive learning from the

members of ~I+ (lines 5 and 6) is performed. Both learning processes are lin-

early weighted: the better/worse the evaluation of a population member is,

the higher the weight is and thus the effect of the positive/negative feedback.

If there are, for instance, three individuals with a better performance than

the reference value e, then a weight of 1
3

is used for the third best individ-

ual, the weight 2
3

is applied for the second best, and learning from the best

population member is performed with a maximum weight of 1
1
.

Since an individual Ij ∈ {I1 . . . , Il} encodes v(Ij, i) as its choice from domain

Di, this value is used as the source for positive feedback (if Ij belongs to ~I+)

or negative feedback (if Ij belongs to ~I−) because we aim to modify the PDF

FDi
over Di.

74

The Complete Learning Mechanism learning

Objective: Based on the the abstraction of basic learning steps through

the functions learning1 and learning2, we present the complete learning

mechanism learning, as used in line 8 in the GPBIL figure 3.3, in a compact

form.

Description: The learning scheme is based on a simple idea. Population

members that outperform the best so far encountered individual see the likeli-

hoods of the parameter choices they represent increased, while underperform-

ing individuals see a probability decrease of encoded choices. This strategy

leads, over time, to a concentration on values that often feature in better

candidate solutions.

The function learning : Fn × I× IM × {1, . . . , G} → Fn, the pseudo code of

which is listed in figure 4.8, manages the modification of the joint probability

distribution by learning from results obtained by population members in the

latest generational cycle. Therefore, the following input data are required:

the joint probability distribution FS = FD1 · . . . · FDn over the solution space

S, the best individual so far encountered Ibest, the current population ~I =

(I1, . . . , IM) and the current generation number g. It returns the updated

joint probability distribution FS.

The working principle of the learning mechanism is simple: it modifies the

n PDFs FDi
one by one. The PDF over the first domain D1 describes the

8vec transforms a set into a vector.

75

Function learning(FD1 · . . . · FDn , Ibest, (I1, . . . , IM), g)
1 FD1 = learning2(FD1 , h(Ibest, g), ~I , g)
2 FOR i = 2, . . . , n DO
3 ~I

′
= vec

({Ij |alg(Ij) = alg(i)})8

4 FDi = learning2(FDi , h(Ibest, alg(i), g), ~I
′
, g)

5 RETURN FD1 · . . . · FDn

Figure 4.8: Pseudo code of the learning function

distribution of good and less good methods among the algorithms A1 to Am.

It is updated by comparing the evaluation results achieved by algorithms

present in the current population with the reference evaluation h(Ibest, g),

which is the evaluation of the best found algorithm in cycle g (line 1). Al-

gorithms improving on this reference evaluation become more probable, i.e.

see their likelihood in FD1 increased, while algorithms demonstrating a worse

performance become less likely.

The set Di, i ∈ {2, . . . , n}, is the domain of a parameter belonging to algo-

rithm Aalg(i). Only some of the individuals Ij ∈ ~I represent this algorithm

and thus have evaluation results stored for it (line 3). Only these popula-

tion members can be used for the modification of Di through learning (line

4). The evaluation result of method Aalg(i) with its best parameter setting

π(Ibest, alg(i)) in cycle g, namely h(Ibest, alg(i), g), serves as the reference

performance as we aim to improve this setting.

76

4.11 The Optimum Function

The m parameter settings π(Ibest, 1) to π(Ibest,m) describe the best encoun-

tered parameter choices for the algorithms A1 to Am. In addition, alg(Ibest)

provides the information about the best among these algorithms. Near the

end of each generational cycle (line 9 in the GPBIL figure 3.3), the pop-

ulation is analysed in order to detect whether improvements to the above

choices can be found.

The decision about whether an algorithm Ai with parameter setting πi per-

forms better than Aj with parameter choices πj is non-trivial. This question

cannot be answered by comparing the achieved solutions for just a single

optimisation problem as heuristic search algorithms usually comprise an ele-

ment of noise, as stated under C3 in section 1.5. Rather we have to compare

evaluation results achieved for several optimisation problems Φ1, Φ2, Φ3, . . . ,

i.e. compare

f
(
A1(π1, Φ1)

)
, f

(
A1(π1, Φ2)

)
, f

(
A1(π1, Φ3)

)
, . . .

with

f
(
A2(π2, Φ1)

)
, f

(
A2(π2, Φ2)

)
, f

(
A2(π2, Φ3)

)
,

A smaller and thus better mean of one data series is an insufficient indicator

for its superiority. As absolute evaluation results can vary highly, a few out-

liers can change the result dramatically. Instead of looking at the absolute

differences of the evaluation results, we propose to look at the relative dis-

77

tinctions. Assuming that all evaluation results are positive, the data series

of ratios

f
(
A1(π1, Φ1)

)

f
(
A2(π2, Φ1)

) ,
f
(
A1(π1, Φ2)

)

f
(
A2(π2, Φ2)

) , . . . ,

normalised as

f
(
A1(π1, Φ1)

)− f
(
A2(π2, Φ1)

)

f
(
A2(π2, Φ1)

) ,
f
(
A1(π1, Φ2)

)− f
(
A2(π2, Φ2)

)

f
(
A2(π2, Φ2)

) , . . . ,

(4.19)

is a better indication of which of the two algorithms performs better. A

negative ratio shows the superiority of the first algorithm, while a positive

result points to a better performance of the second algorithm. For example,

a ratio of −0.02 indicates a 2% better evaluation of A1. As a result, a

negative mean of the data series in equation 4.19 suggests that, on average,

A1 performs better than A2, and vice versa.

But an important question remains unanswered: is a detected superiority of

one algorithm over another really significant, i.e. can we statistically prove

that the found difference is not due to pure chance? The one-sample and

one-tailed t-test, a statistical method which is discussed in more detail in

appendix B.2, is the tool we use to answer this question. Given the data used

in equation 4.19, it can decide, with a certain level of confidence, whether

the mean is significantly smaller than zero, and thus that A1 is significantly

better than A2, or not. The main prerequisite for the application of the t-test

is that the analysed data must follow a distribution similar to the normal

distribution. As we later show empirically, this is usually the case in practice.

78

The realisation of the described approach within GPBIL is illustrated in fig-

ures 4.9 and 4.10. The first of the two functions, ratio, takes two individuals

and two algorithm indices, and thus two parameter settings with the corre-

sponding algorithms, as input. From the available evaluation results history,

it compiles a vector containing the ratios described in formula 4.19:

Function ratio(I1, i1, I2, i2)
1 RETURN vec

(
{h(I1,i1,g)−h(I2,i2,g)

h(I2,i2,g) |g ∈ {1, . . . , G} and ratio exist}
)

Figure 4.9: Pseudo code of the ratio function

The main function optimum : I × IM → I loops through all individuals

from the population and decides in each case, with the help of the t-test,

whether the represented algorithm with the represented parameter setting

demonstrates a significant improvement over the best parameter setting for

this algorithm found so far, or even over the best overall algorithm found so

far. If significant improvements can be found, Ibest is updated in order to

accommodate the new results.

Function optimum(Ibest, (I1, . . . , IM))
1 FOR i = 1, . . . , M DO
2 IF ttest

(
ratio

(
Ii, alg(Ii), Ibest, alg(Ii)

)
, α,minttest

)
THEN

3 UPDATE Ibest such that π
(
Ibest, alg(Ii)

)
= π(Ii)

4 IF ttest
(
ratio

(
Ii, alg(Ii), Ibest, alg(Ibest)

)
, α, minttest

)
THEN

5 UPDATE Ibest such that π
(
Ibest, alg(Ii)

)
= π(Ii)

6 UPDATE Ibest such that alg(Ibest) = alg(Ii)
7 RETURN Ibest

Figure 4.10: Pseudo code of the optimum function

Our implementation of the t-test is controlled by two parameters that must

be supplied. Firstly, the test can only detect significant differences if the

79

studied sample contains at least minttest entries. Secondly, a significance

level α (see appendix B.2) must be provided in order to control the level of

confidence we want to have in the results.

4.12 The Selection Process

During the selection process, individuals of the current population are se-

lected for being passed on to the next generation (line 10 in figure 3.3).

Survival can only be justified if these solutions are promising, i.e. if it is

believed that they have the potential to replace the best individual so far

encountered in the future.

The criterion used here is mean performance: only population members Ii

from ~I whose evaluations are, on average, better than the evaluations of the

best found individual Ibest, are selected for the next generation. This decision

is again based on the data that were outlined in equation 4.19: a negative

mean leads to survival while a non-negative mean results in exclusion. The

corresponding pseudo code for selection : I×IM → IM is listed in figure 4.11.

Function selection(Ibest, (I1, . . . , IM))
1 RETURN vec

(
Ii|mean

(
ratio

(
Ii, alg(Ii), Ibest, alg(Ibest)

))
< 0

)

Figure 4.11: Pseudo code of the selection function

80

4.13 Summary

The Multiple Algorithms’ Parameter Adaptation Algorithm (MAPAA) was

introduced in this chapter as a method for tackling the Multiple Algorithms’

Parameter Adaptation Problem (MAPAP). The technique was presented as

an instantiation of the generalised formulation of Population-Based Incre-

mental Learning. Definitions for all generic, and thus still unspecified, com-

ponents of the framework method were provided in order to establish a fully

described solution algorithm. The purpose of this chapter was purely to

define the MAPAA. No empirical analysis was presented as we focus on ex-

perimental means of studying the proposed algorithm in chapter 5.

The MAPAA as defined shows a number of restrictions:

1. Parameter domains are limited to sub-sets of the real numbers that are

either finite in their cardinality or are intervals.

2. Without loss of generality, the handled optimisation problems are as-

sumed to be minimisation tasks with positive objective function values.

3. The defined joint probability distribution function is restricted to the

product of unconditional probability distribution functions.

4. The ratios of the objective function results of any two heuristic search

algorithms studied must follow a distribution which resembles a normal

distribution.

81

Furthermore, the MAPAA is controlled by a number of parameters that must

be user-defined. These parameters are listed in table 4.1.

MAPAA Parameter Symbol

number of generational cycles G
population size M
mutation rate µ
positive learning rate, finite domain ε+

fin

negative learning rate, finite domain ε−fin

number of neurons for the SOM model L
positive learning rate, interval domain ε+

int

negative learning rate, interval domain ε−int

neighbourhood kernel size, positive learning δ+

neighbourhood kernel size, negative learning δ−

significance level of the t-test α
minimal number of sample data required by t-test minttest

Table 4.1: Parameters of the Multiple Algorithms’ Parameter Adaptation
Algorithm

82

Chapter 5

Experimental Study of the

Multiple Algorithms’

Parameter Adaptation

Algorithm

The Multiple Algorithms’ Parameter Adaptation Algorithm was formally in-

troduced and described in the previous chapter. The aim of this chapter is

the experimental examination and analysis of this method. It is divided into

two main parts. In the first half, experiments with the models for estimating

probability distributions over both finite and interval domains are presented.

These focus on the intensifying and diversifying effects of positive and neg-

ative learning, respectively. In the second half of this chapter, the Multiple

83

Algorithms’ Parameter Adaptation Algorithm itself is studied in more de-

tail. Experiments are conducted to determine good learning schemes, to

study the effect of mutation, to look at the resource distribution if the adap-

tation method is applied to various algorithms simultaneously, and to show

that the application of the t-test is justified. The chapter concludes with a

summary of the results found.

5.1 Experiments with Probability Distribu-

tions over Finite and Interval Domains

5.1.1 Experiments I and II: Learning over Finite Do-

mains

In the first two experiments, we study how positive and negative learning

works over a finite domain. The considered domain is the set D = {1, . . . , 10}
in both cases. Ten probabilities P1, . . . , P10 are used to model a probability

distribution function F over D, as was outlined in section 4.5.1. The learning

rules for updating these probabilities were introduced in equations 4.15 and

4.16. They are, rewritten in a simplified form,

P new
i =





P old
i + (1− P old

i) · ε if j = k

P old
i · 1−P new

k

1−P old
k

if j 6= k

84

in the case of positive learning, and

P new
i =





P old
i + (0− P old

i) · ε if j = k

P old
i · 1−P new

k

1−P old
k

if j 6= k

for negative learning. In both formulas, k ∈ D is the value from which to

learn, and ε symbolises the applied learning rate.

Experiment I: Positive Learning over Finite Domains

Objective of the experiment: The aim of this experiment is to clarify how

the application of the rule for positive learning over a finite domain leads to

the estimation of an unknown probability distribution by only using sample

data drawn from this distribution.

Detailed description of the experiment:

The task of the first experiment is to learn to estimate the distribution F target

over the domain D = {1, . . . , 10}, which is given by the ten probabilities

P target
1 = 1

55
, P target

2 = 2
55

, . . . , P target
10 = 10

55
. As initially no information is

available about this distribution, its estimation F gets initialised as a uniform

distribution, i.e. as P1 = P2 = . . . = P10 = 1
10

. This estimation distribution

then gets modified via the rule for positive learning by repeatedly presenting

sample data k drawn from F target. A small learning rate of ε = 0.02 is used

in this experiment.

85

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

pr
ob

ab
ili

ty

x

target distribution
0 learning steps

10 learning steps
20 learning steps
50 learning steps

100 learning steps
200 learning steps

Figure 5.1: The effect of positive learning over a finite domain

Figure 5.1 presents the development of the probability distribution F over

time (number of learning steps). For each value i from the considered do-

main, the corresponding probability Pi is shown after 0, 10, 20, 50, 100 and

200 learning steps. Results are averaged over 10,000 runs, and probabilities

belonging to the same learning step are connected by a line for clarity. Start-

ing as a uniform distribution, the Pi converge over time towards the values

P tagret
i . The more learning steps that take place, the better the estimation of

F target through F. After 200 learning steps there is an almost perfect match.

This means that the probabilities Pi have learnt to represent the distribution

of the values they learnt from, the P target
i .

Conclusion: The mechanism for positive feedback over finite domains en-

ables us to estimate a target probability distribution function. The longer

86

the learning process lasts, i.e. the more samples that are provided, the bet-

ter the estimation. The implication for the Multiple Algorithms’ Parameter

Adaptation Algorithm (MAPAA) is that it can learn to estimate the distri-

bution of good values for parameters with finite ranges. As a consequence,

the search can be intensified around the more promising parameter choices.

Experiment II: Negative Learning over Finite Domains

Objective of the experiment: The focus of the second experiment is

on the relevance of negative learning when a probability distribution over a

finite domain gets modified both through positive and negative feedback. We

show that the rule for negative learning brings a diversifying element to the

learning process.

Detailed description of the experiment: The probability distribution

function F over the finite set D = {1, 2, . . . , 10} is initially given by the

ten probabilities P1 = 1
55

, P2 = 2
55

, . . . , P10 = 10
55

. In this experiment, there

is no target distribution to learn. Rather F itself is used for repeatedly

drawing values from D during the experimental runs. These values are used

for learning and thus for updating F. Both forms of learning, positive and

negative, are possible. With a certain probability r a learning step is seen as

positive feedback, otherwise, i.e. with probability 1− r, the rule for negative

feedback is applied. Results are averaged over 10,000 runs, and rates of 0.02

are used both for positive and negative learning.

87

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

pr
ob

ab
ili

ty

x

uniform distribution
0 learning steps

0% negative learning, 500 learning steps
40% negative learning, 500 learning steps
80% negative learning, 500 learning steps

80% negative learning, 1,000 learning steps
80% negative learning, 2,000 learning steps

100% negative learning, 2,000 learning steps

Figure 5.2: The effect of negative learning over a finite domain

The figure 5.2 shows the development of the probability distribution over

time for varying ratios of positive and negative learning. The graphics il-

lustrate that, without negative learning and thus only positive learning, the

probability distribution does not change on average as it is constantly rein-

forced: the distribution of values after 500, purely positive, learning steps

is congruent to the initial distribution at 0 cycles. However, with 60% pos-

itive learning and thus a 40% chance of negative learning, a small change

is noticeable after 500 cycles. The probabilities move slightly towards the

uniform distribution. This effect is more visible after 500 cycles with an 80%

probability of negative learning, and progresses as more learning steps are

performed. In the extreme case, 100% negative learning leads to an almost

uniform distribution after 2,000 learning cycles. This can be interpreted as

88

an increased diversity of the distribution: the more negative learning and

the longer it takes place for, the more the single probabilities even out for

a probability distribution over a finite domain, i.e. the more similar the

distribution is to the uniform distribution.

Conclusion: The relevance of experiment II for the MAPAA is that nega-

tive learning over a finite domain has a diversifying effect on a probability

distribution over this domain. In other words, negative learning can be seen

as a diversification mechanism within the search.

5.1.2 Experiments III and IV: Learning over Interval

Domains

While the experiments in the previous section dealt with learning over finite

domains, we look here at the effects and results of positive and negative

learning over interval domains. For both experiments, the studied domain

D is the interval [0, 1]. In section 4.5.2, we described how a one-dimensional

Self-Organising Map (SOM) can be used to model a probability distribution

function F over D. Here we use a chain with a fixed length of L = 50

neurons, the weights of which are denoted by W1, . . . , W50. In equation 4.6c,

the relationship between these neuron weights and a density function d, and

hence F, was established. The modification of the neuron weights follows

89

the rules as presented in formulas 4.17 and 4.18. They are, simplified,

k = argminL
i=1(|X −Wi|)

W new
i =





W old
i + ε · (X −W old

i) if |k − i| ≤ δ

W old
i else

in the case of positive learning, and

k = argminL
i=1(|X −Wi|)

W new
i =





W old
i + ε · (W old

k−δ −W old
i) if |k − i| ≤ δ and W old

i ≤ X

W old
i + ε · (W old

k+δ −W old
i) if |k − i| ≤ δ and W old

i > X

W old
i else

in the negative case. In both equations, X ∈ D is the learning input, ε is the

learning rate, and δ is the size of the neighbourhood kernel used.

Experiment III: Positive Learning over Interval Domains

Objective of the experiment: The aim of experiment III, the counterpart

to experiment I where we looked at positive learning over finite sets, is to show

how the application of the rule for positive learning over an interval domain

leads to the estimation of an unknown probability distribution through a

one-dimensional SOM.

Detailed description of the experiment: The task in this experiment

90

is to learn to estimate the probability distribution function F target, which is

given by its density function

dtarget(x) =





4 if x ∈ [0.1, 0.2]

6 if x ∈ [0.8, 0.9]

0 else

,

through a chain of 50 neurons. Initially, these neurons are uniformly dis-

tributed over the interval [0, 1]. The one-dimensional SOM is then repeatedly

modified during the experiment by learning from values X that are chosen

randomly following the distribution F target. In the applied rule for positive

learning, we use a neighbourhood kernel size of δ = 10 and the learning rate

ε = 0.05.

Histograms of the neuron distribution over the domain [0, 1], averaged over

10,000 simulation runs, are presented in figure 5.3. The initially uniform

distribution of the neurons changes over time. The more learning steps that

are performed, the more the neurons become concentrated around the sub-

intervals [0.1, 0.2] and [0.8, 0.9]. These are exactly the sub-intervals from

which sample data X are drawn. The diagram also shows that the concen-

tration of neurons in the interval [0.8, 0.9] is higher than in [0.1, 0.2].

As described in section 4.5.2, a high neuron concentration in a certain area

leads to a high value of the density function in that area. Consequently, the

neurons in this example define a density function d which yields high values

in the intervals [0.1, 0.2] and [0.8, 0.9], furthermore higher values are reached

91

 1 0.9 0.8 0.6 0.4 0.2 0.1 0

ne
ur

on
 fr

eq
ue

nc
y

x

0 learning steps
20 learning steps
50 learning steps
75 learning steps

Figure 5.3: Neuron distributions after positive learning over an interval do-
main

in the latter interval, and much smaller values are reached elsewhere in the

domain. These properties are demonstrated in figure 5.4.

The learnt density functions d are by no means exact matches of the target

function dtarget. The estimated density d, by its definition, cannot take the

value zero over the domain, just small values. As a consequence, it can-

not reach the values 4 and 6 over the whole intervals [0.1, 0.2] and [0.8, 0.9],

respectively. Furthermore, high peaks in the middle of the two mentioned

sub-intervals as well as comparatively small values at their boundaries are

noticeable. The reason for these characteristics is that a learning input leads

to the weight modification of multiple neurons. With a high neighbourhood

kernel size, as used in this experiment, most of the neurons located around

92

 0

 2

 4

 6

 8

 10

 12

 1 0.9 0.8 0.6 0.4 0.2 0.1 0

y

x

target
0 learning steps

20 learning steps
50 learning steps
75 learning steps

Figure 5.4: Density functions after positive learning over an interval domain

for instance [0.1, 0.2] get affected by learning inputs from this interval. On

average, they therefore tend to become concentrated around the middle of

this area. In the original SOM algorithm, this phenomenon is tackled by

learning rates and neighbourhood kernels that become smaller with time.

Such a mechanism allows the neuron chain to settle into a more stable state.

However, this mechanism also makes the neuron chain less able to adapt over

time, i.e. it loses its ability to adapt quickly to changes in the distribution

of input patterns. As a continuous capability to adapt to changes is highly

desired in the MAPAA, for instance when the search encounters a new inter-

esting sub-interval and reinforces those values, constant learning rates and

neighbourhood kernel sizes are used in this approach.

Conclusion: The mechanism for positive feedback over interval domains

93

can learn to approximate the probability distribution of presented sample

data. Although the learnt approximation is not an exact match of the target

function, it is a sufficiently good estimation of the target for our purpose and

shares the main characteristics of it. Its applicability and usefulness in the

MAPAA will be the object of discussion in section 5.2.4 on experiment VI in

this chapter.

Experiment IV: Negative Learning over Interval Domains

Objective of the experiment: With the fourth experiment, we show that

the incorporation of negative learning over an interval domain has a diver-

sifying effect. More specifically, we demonstrate that negative learning in a

neuron chain leads to a more uniform distribution of the neurons over the

domain, and hence to a more even density function over this interval.

Detailed description of the experiment: In this experiment, the L = 50

neurons of the neuron chain are initially distributed uniformly over the sub-

interval [0.25, 0.75] of the domain D = [0, 1], i.e. they are located at the

positions 0.255, 0.265, . . . , 07451. The neuron weights therefore describe the

1The interval [0.25, 0.75] is partitioned into 50 equal sized sub-intervals [0.25, 0.26),
[0.26, 0.27) to [0, 74, 0.75], and the neurons are located in the middle of these ranges.

94

density function2

d(x) =





1
13

if x ∈ [0.0, 0.26)

2 if x ∈ [0.26, 0.74)

1
13

if x ∈ [0.74, 1.0]

0 else

,

and hence a probability distribution function F. During the experimental

runs, values, that are drawn from [0, 1] following F, are used for the modifica-

tion of the neuron chain. The modification is seen, with a certain percentage,

as either positive or negative feedback.

The experiment shows that the application of negative learning forces the

neurons to spread out over the interval [0, 1], and has an equalising effect on

the probability distribution. The higher the percentage of negative learning,

and the more learning steps that are performed, the more the neurons become

uniformly distributed over the whole of the domain [0, 1]. Figure 5.5, in which

the resulting density functions are presented, confirms these observations.

A small, 20% chance of negative learning (and thus 80% positive learning)

does not change the initial situation much after 100 learning steps, although

even then equalising effects are observable on the borders of [0.25, 0.75]. If the

negative learning percentage is increased to 60%, the density function values

become smaller inside the interval [0.25, 0.75], and larger in the remaining

2With regard to the domain [0, 1], the first neuron at 0.255 is closest to all points
in [0, 0.26), the second neuron is closest to all points in [0.26, 0.27), the third neuron
attracts all neurons in [0.27, 0.28), and so on. As the area under the density function
must be 1

L = 1
50 for each sub-interval, the corresponding density function values are

1
50 · 1

0.26−0.0 = 1
13 , 1

50 · 1
0.27−0.26 = 2, 1

50 · 1
0.28−0.27 = 2, and so on.

95

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1

y

x

uniform distribution
0 learning steps

20% negative learning, 100 learning steps
60% negative learning, 100 learning steps

100% negative learning, 200 learning steps
100% negative learning, 500 learning steps

Figure 5.5: Density functions after positive and negative learning over an
interval domain

part of [0, 1]. In case of pure negative learning, an almost uniform distribution

over the domain is reached after 500 learning steps. To sum up, the more and

the longer negative learning is performed, the more the estimated density

function becomes evened out over the whole interval, i.e. the closer the

probability distribution becomes to the uniform distribution.

Conclusion: In analogy to experiment II, the fourth experiment strongly

suggests that negative learning over an interval increases diversity. There-

fore, its application within the MAPAA can be seen as the addition of a

diversification mechanism to the algorithm.

96

5.2 Experiments with the Multiple Algo-

rithms’ Parameter Adaptation Algo-

rithm

5.2.1 Parameters of the Multiple Algorithms’ Param-

eter Adaptation Algorithm

Population Size and Number of Generations

The Multiple Algorithms Parameter Adaptation Problem (MAPAP) demon-

strates a number of characteristics that make it particularly difficult to tackle.

These attributes were listed and discussed in section 1.5. Besides the black

box character of the problem (C1), the difficulties with noise in the results of

heuristic search methods (C3) and the unknown nature of the out-of-sample

instances (C4), the limitation of available calculation time (C2) is the pivotal

property of the MAPAP. The evaluation of individuals can be computation-

ally very expensive. This high demand for computation power restricts the

MAPAA both in the population size and the number of generational cycles

that can practically be used.

In the original work introducing Population-Based Incremental Learning

[Baluja, 1994], experiments were conducted using population sizes of 100

over 2, 000 generations. Those experiments thus required 200, 000 evalua-

tions of population members which was manageable as these computations

97

were very fast. But in case of the MAPAP such high numbers of evaluations

are not possible. As an example, a run of the Tabu Search algorithm for

Vehicle Routing Problems, as described in the next chapter, can take up to

10 seconds to produce a reasonably good solution for a single instance on a

standard office computer – this corresponds to one evaluation. Consequently,

200, 000 evaluations would take up to 33, 333 minutes, or 23 days.

To guarantee a complete run of the MAPAA in an acceptable and maintain-

able time frame, the population size as well as the number of generational

cycles obviously must be limited to smaller values. In all experiments re-

ported here, the population size M is therefore restricted to

M = 12, (5.1)

and the number of generations is fixed at

G = 200. (5.2)

The MAPAA with these settings still requires at least 2, 600 evaluations3

which may take up to 7 hours in case of the previously described example.

This computation time is considered affordable.

3In each cycle, all 12 population members and the best encountered individual are
evaluated.

98

Parameters of the t-Test

Two further parameters have to be predefined for the optimum function in

the MAPAA, as it was outlined in section 4.11. The first parameter α deter-

mines the significance level of the t-test, i.e. the level of confidence required

for its result to be correct. The second parameter, minttest, defines the min-

imum number of data required. Both parameters can be freely modified to

meet the user requirements when running the MAPAA. For all experiments

reported in this document, these parameters were set to

α = 2.5% (5.3)

and

minttest = 10. (5.4)

Further Parameters

Four of the MAPAA parameters, as listed in section 4.13, have been discussed

and have been set to fixed values. However, the eight remaining parameters

are still undefined. They are studied in a number of experiments in this

chapter in order to establish good operational settings.

99

5.2.2 The Testbed Algorithms

In the experiments described in this chapter, heuristic search algorithms are

emulated by using artificially created objective functions that are very quickly

computable. This allows the realisation of more versatile experiments as well

as a better significance through larger test series. Although a much higher

number of evaluations would be possible here, the restrictions on population

size (M = 12) and generational cycles (G = 200) are always applied to

guarantee a realistic emulation.

We define two pseudo heuristic search algorithms A1 and A2, each of

which has ten parameters P1, . . . ,P10. The parameter domains are equal:

D1 = . . . = D10 = [0, 10]. The objective functions of both pseudo algorithms

depend only on the applied parameter settings, i.e no real optimisation prob-

lem instances are required. In addition, the objective functions include a

random factor from [0.95, 1.05] in each case to model the effect of noise.

The first objective function f1 is given by

f1(P1, . . . ,P10) = random(0.95, 1.05) · (100 +
10∑
i=1

|Pi − 1|).

All parameters contribute independently to the objective function. Without

consideration of the random element, it can yield results from the range

[100, 190]. Obviously parameter values closer to 1 lead, on average, to smaller

and hence better objective function values, with (1, . . . , 1) being the optimal

parameter setting. Within the MAPAA, we use (10, . . . , 10) as the initial

100

setting.

The second objective function is defined as

f2(P1, . . . ,P10) = random(0.95, 1.05) · (100 +
10∑
i=1

g(Pi,Pi−1,Pi+1))

with

g(P1,P2,P3)) =





−2 if P2 ∈ [6, 9] and P3 ∈ [6, 9]

|P1 − 1| else

,

where we assume P0 ≡ P10 and P11 ≡ P1. In contrast to the first function,

the domain here is [80, 190], again not taking the random factor into account.

Although the parameter setting (1, . . . , 1) leads to a good average objective

function value of 100, better results of 80 are reached if all parameters are

chosen from the interval [6, 9]. Again, the parameter setting (10, . . . , 10) is

used as the initial MAPAA solution.

Owing to the random factor in both functions, objective ratios for any two

parameter settings follow a distribution that resembles a normal distribution.

Therefore, the application of the t-test within our method is justified.

5.2.3 Experiment V: Learning Rates for Finite Do-

mains

Objective of the experiment: In experiment V, we study how different

rates for positive and negative learning over finite domains influence the

101

performance of the MAPAA.

Detailed description of the experiment: The MAPAA is applied to

find good parameter settings for A1 and A2. The domains of the ten pa-

rameters are in each case discretised: D1 = . . . = D10 = {0, . . . , 10}. As

we are studying learning rates over finite domains, various combinations of

positive and negative learning rates, as introduced in section 4.10.3, are

considered. In detail, the positive learning rate ε+
fin is chosen from the

set {0.50, 0.30, 0.20, 0.10, 0.05, 0.00} while its negative counterpart ε−fin is se-

lected from the set {0.20, 0.10, 0.05, 0.02, 0.01, 0.00}. Results are averaged

over 1,000 experimental runs, and the chance of mutation during the sam-

pling process is µ = 0.05.

To compare different sets of learning rates, we look at the development of

the objective function value of the best found parameter setting over time.

We consider a learning rate set better the smaller this value is after 200

generational cycles.

Several observations can be made when applying the MAPAA to algorithm

A1. The combination ε+
fin = ε−fin = 0.00, i.e. a search without learning

and thus purely random, yields the worst results. The inclusion of negative

learning improves the quality of the solution. The higher the rate of negative

learning is, the better the results become. However, these improvements are

still comparatively poor.

Much better results are achieved if the MAPAA incorporates positive feed-

102

back. All tested positive learning rates yield reasonably good results when

combined with small rates of negative learning ε−fin ≤ 0.02. Among these

choices, non-zero values for ε−fin usually yield better results than MAPAA

instances relying only on positive feedback. The application of higher ε−fin-

values leads to a clear performance decline.

The correlations described above are illustrated in figure 5.6. The graph

shows for ε+
fin = 0.10 combined with different rates of negative learning the

development of the objective function value for the best found parameter

setting over time, i.e. over generational cycles in the MAPAA. The combi-

nations ε+
fin = 0.10/ ε−fin = 0.02 and ε+

fin = 0.10/ ε−fin = 0.00 outperform all

other rates, with the former being marginally better. Increasing the influence

of negative feedback to ε−fin = 0.05, ε−fin = 0.10 or even ε−fin = 0.20 leads to a

deterioration of the results.

The dominant influence of positive learning is expected. Each parameter con-

tributes independently to the objective function, and the closer a parameter

value is to 1 the better. The combination of a higher positive learning rate

with a much smaller rate for negative learning leads to a fast concentration

of the search on such values.

The picture changes slightly if the MAPAA is applied to find good parameter

settings for algorithm A2. Now, combinations that include higher amounts

of negative feedback perform well and often yield better results. In fact, the

pair ε+
fin = 0.20/ ε−fin = 0.20 performs best overall for A2.

103

 100

 105

 110

 115

 120

 0 50 100 150 200

ob
je

ct
iv

e
fu

nc
tio

n

cycle

e+ = 0.10, e- = 0.20
e+ = 0.10, e- = 0.10
e+ = 0.10, e- = 0.05
e+ = 0.10, e- = 0.00
e+ = 0.10, e- = 0.02

Figure 5.6: Development of f1 for best parameter setting over time

In figure 5.7, we present the graphs of the objective function f2 for the

same set of learning rates as in the first part of the experiment. A positive

learning rate of 0.10 is best paired with a negative learning rate of 0.02, but

also rates of ε−fin = 0.05 and ε−fin = 0.10 yield good results. They outperform

the configuration without negative learning. A greater focus on negative

feedback with ε−fin = 0.20 clearly shows the worst performance.

As in the case for the first algorithm, the absence of positive learning and the

reliance on purely negative feedback does not perform well. But interestingly,

the worst performance is achieved with the highest rate of positive learning,

ε+
fin = 0.50, and no negative learning. However, an inclusion of negative

learning at a small rate dramatically improves this performance.

104

 80

 85

 90

 95

 100

 0 50 100 150 200

ob
je

ct
iv

e
fu

nc
tio

n

cycle

e+ = 0.10, e- = 0.20
e+ = 0.10, e- = 0.00
e+ = 0.10, e- = 0.10
e+ = 0.10, e- = 0.05
e+ = 0.10, e- = 0.02

Figure 5.7: Development of f2 for best parameter setting over time

These findings can be explained as follows. In case of only positive learning

with a high rate of 0.5, the search becomes focused on the area around the

parameter setting (1, . . . , 1) as in the experiment for f1. Without diversifica-

tion through negative learning, it becomes stuck there and is, in general, not

able to efficiently explore other, better regions of the parameter space which

are harder to find. If negative learning is included, the performance clearly

becomes improved. But very good results are achieved with a more moderate

rate of 0.10 for positive learning and a small rate of 0.02 for negative learning,

as these choices allow the search to explore the parameter space more evenly

without concentrating to quickly on specific areas.

Conclusion: To sum up, there is no straightforward best choice for the rates

of learning over finite domains in the MAPAA. Depending on the scenario,

105

learning rates show different performances. However, experiment V suggests

that the combination of a moderate positive learning rate of

ε+
fin = 0.10 (5.5)

and a small negative learning rate of

ε−fin = 0.02 (5.6)

yields consistently good to very good results. The above values are therefore

used in the remainder of experiments in this thesis.

5.2.4 Experiment VI: Learning Rates for Interval Do-

mains

Objective of the experiment: In the sixth experiment, we look at the

performance of the MAPAA when different learning rates and neighbourhood

kernel sizes are used for interval domains.

Detailed description of the experiment: As in the previous experimen-

tal study, the MAPAA is applied to the algorithms A1 and A2 in order to

determine good choices for the respective ten parameters. For both meth-

ods, the parameter ranges are modelled as real-valued intervals, i.e. the

domains are implemented as D1 = . . . = D10 = [0, 10]. The length of the

one-dimensional Self-Organising Maps, which are used for the characteri-

106

sation of probability distribution functions over these intervals, is fixed to

L = 50. A multitude of learning rates and neighbourhood kernel sizes (see

section 4.10.3) are tested. More specifically, the rate for positive learning

ε+
int is chosen from the set {0.5, 0.3, 0.2, 0.1, 0.05} while the negative learning

rate ε−int comes from the range {0.2, 0.1, 0.05, 0.01, 0.0}, with the correspond-

ing neighbourhood kernel sizes δ+ and δ− selected from {15, 10, 7, 4} and

{15, 10, 7, 5, 2}, respectively. All possible combinations are studied with re-

sults being averaged over 1, 000 runs. A mutation rate of µ = 0.05 is employed

in all cases.

The MAPAA’s application to algorithm A1 shows that positive learning is

again decisive for a successful determination of good parameter settings.

Generally, instances with the highest rate of positive learning ε+
int = 0.50

and the largest neighbourhood δ+ = 15 yield supreme results. Scaling these

values down leads to a deterioration of the performance.

This situation is illustrated in figure 5.8. It shows how the value of f1 for the

best found parameter setting develops over time. In all displayed learning

configurations, the negative feedback is kept constant at ε−int = 0.10 and

δ− = 2. One can clearly observe that the ε+
int/δ

+ pair 0.50/15 yields the best

results, followed by 0.50/10, 0.20/15 and 0.50/7. The combination 0.10/15

yields the worst performance.

With the focus on positive learning, negative feedback plays a lesser role.

Among the best performing learning schemes, no clear observations about

good values for negative learning are possible. As positive feedback is domi-

107

 100

 105

 110

 115

 120

 125

 0 50 100 150 200

ob
je

ct
iv

e
fu

nc
tio

n

cycle

e+=0.1, d+=15
e+=0.5, d+=07
e+=0.2, d+=15
e+=0.5, d+=10
e+=0.5, d+=15

Figure 5.8: Development of f1 for best parameter setting over time

nant, ε−int and δ− seem to have little influence.

In analogy to experiment V, this behaviour is anticipated. As the ten pa-

rameters of A1 contribute independently to the objective, no correlations

between different parameters have to be detected and a high amount of pos-

itive learning is vital for the MAPAA performance.

The picture for algorithm A2, however, is different. Here, the best results

are achieved with more moderate amounts of positive feedback coupled with

small amounts of negative feedback. Neither configurations with the highest

degree of positive feedback ε+
int = 0.50/δ+ = 15 nor schemes with high values

of negative feedback, ε−int, are among the best learning procedures. The expla-

nation for these observations lies again in the nature of A2: a slower learning

108

from positive examples paired with the diversifying effects of small negative

feedback allows the MAPAA to detect parameter relations efficiently.

Conclusion: It is not possible to specify an outright best learning scheme

for learning over interval domains as the application is important for the

performance of a configuration. However, the values

L = 50 (5.7)

ε+
int = 0.50 (5.8)

δ+ = 10 (5.9)

ε−int = 0.10 (5.10)

δ− = 2 (5.11)

performed well for both cases presented, as well as in other experiments.

Therefore, the MAPAA is used with the aforementioned choices in all future

experiments.

5.2.5 Experiment VII: Mutation Rate

Objective of the experiment: The purpose of experiment VII is to look

at the quality of solutions produced by the MAPAA for different degrees of

mutation.

Detailed description of the experiment: We apply the MAPAA to both

algorithms A1 and A2. In both cases, the first five parameters P1 to P5

109

are modelled as parameters over finite, discretised domains {0, 1, . . . , 10},
while P6 to P10 have interval domains [0, 10]. All parameters of the MAPAA

are fixed to the values previously discussed, only the mutation rate µ is

varied between 0 and 1. The experiments are repeated 1, 000 times to obtain

averaged results.

After running the MAPAA for G = 200 generational cycles, we determine

the objective values produced by both algorithms with the respective best

found parameter settings. In figure 5.9, this measure is shown for A1 for

mutation rates between 0.0 and 0.5. The best results are clearly achieved

with mutation rates between 0.05 and 0.15. In this area, the objective values

yielded are nearly constant. Smaller and larger amounts of mutation lead

to a performance decline. Results for algorithm A2 are qualitatively similar.

There, mutation rates from the interval [0.05, 0.20] produce the best results.

Conclusion: Our experiments demonstrate that choosing a moderate muta-

tion rate between 0.05 and 0.15 yields consistently the best results. Therefore,

a constant mutation rate of

µ = 0.05 (5.12)

is used for all further experiments reported.

110

 100

 102

 104

 106

 108

 110

 0.5 0.4 0.3 0.2 0.15 0.1 0.05 0

ob
je

ct
iv

e
fu

nc
tio

n

mutation rate

Figure 5.9: Relationship between solution quality and mutation rate

5.2.6 Experiment VIII: Distribution of Computation

Resources

Objective of the experiment: In this penultimate experimental scenario,

we study the distribution of resources if the MAPAA is applied to optimise

the parameters of various algorithms simultaneously.

Detailed description of the experiment: As in scenario VII, this exper-

iment is based on modelling the second algorithm with five finite and five

interval parameter domains. However, A2 was modified to Ak
2 to the effect

that fAk
2

= f2+k. In other words, the objective function of Ak
2 is the objective

function of A2, f2, plus a constant k. In 1, 000 experimental runs, the MA-

111

PAA is applied to pairs of algorithms A2 and Ak
2 with k ∈ {0, 1, 3, 10, 20}.

The focus of this experiment is on how our adaptation scheme distributes

the available computation resources between such pairs of algorithms. The

measure used here is the portion of the population that is occupied by the

first of the two algorithms. In figure 5.10, the development of this measure

is shown over generational cycles.

100

75

50

25

0
 20 40 60 80 100 120 140 160 180 200

po
rt

io
n

of
 p

op
ul

at
io

n
of

 fi
rs

t a
lg

or
ith

m
 (

in
 p

er
ce

nt
)

cycle

f2 vs f2+20
f2 vs f2+10
f2 vs f2+3
f2 vs f2+1

f2 vs f2

Figure 5.10: Distribution of Computation Resources showing successful al-
gorithms have bigger share of the population

If A2 competes with A0
2, the MAPAA distributes its computation resources

evenly between the two algorithms. On average, 50% of the population are

composed of individuals representing A2, and hence the remaining 50% rep-

resent the second method A0
2. As both algorithms possess the same objective

and hence produce the same results, resources are evenly shared.

112

But if A2 competes with Ak
2, k > 0, then the former produces better, i.e.

smaller, objective results. The larger k is, the larger is the performance su-

periority of A2 over Ak
2. Graph 5.10 demonstrates that the MAPAA allocates

more resources to the first algorithm, and thus less to the second, the larger

the performance gap between the two methods is. As an example, on average

75% of the population represent A2 and 25% A20
2 after cycle 50.

The figure also shows that these performance distributions are constant in

the later part of MAPAA runs, in our scenario after cycle 50. In this later

phase, an equilibrium between positive and negative feedback leads to an

equilibrium in the algorithm distribution. However in the initial 50 cycles,

positive learning is much more dominant as it is much easier to find improved

parameter settings. This large amount of positive feedback, primarily for A2,

results in a peak of the population’s portion that is assigned to the better

performing algorithm.

Experiments with more than two competing algorithms produce similar re-

sults. Better performing methods get a bigger share of the population and

hence computation resources, while less effective methods have less presence

in the MAPAA populations.

Conclusion: Experiment VIII shows that our adaptation mechanism is ca-

pable of efficiently distributing computation resources between multiple al-

gorithms. Promising, better performing methods are studied more intensely

through an allocation of more resources.

113

5.2.7 Experiment IX: The Statistical Test

Objective of the experiment: The intention of the final experiment in

this chapter is to show that the application of the t-test in the MAPAA is

justified, i.e. that the data analysed with this statistical test show normal

distribution like characteristics.

Detailed description of the experiment: The optimum function, as de-

fined in section 4.11, is the point of the MAPAA where a t-test is employed

to check whether the statistical data gained support the replacement of the

best found parameter setting for an algorithm with the parameter setting

represented by an individual within the population. In order to do so, it ex-

tracts past evaluation results from the evaluation histories of the individuals

and examines a data series (here simplified)

f(A(π1, Φi))

f(A(π2, Φi))
4

for various different optimisation problems Φi, where π1 represents the pa-

rameter setting of the individual from the population and π2 the correspond-

ing setting of the best individual found so far. If the t-test suggests that this

series has a mean value smaller than one, then π1 replaces the corresponding

part in the best found individual.

The derivation of the t-test is based on the assumption that the

analysed data are drawn from a normal distribution. However, as

4As a reminder, f(A(π, Φ)) is the objective function value of the solution produced by
algorithm A with the parameter setting π for the optimisation problem Φ.

114

[Bronstein and Semendjajew, 1991] point out, the t-test is not very sensitive

to this condition. Because of its robustness, it can be applied as long as the

frequency distribution of the data does not show multiple peaks and is not

too skewed. We demonstrate these characteristics for the above described

data series.

One experiment with data derived from the application of a Tabu Search

algorithm with two different parameter settings5 to 2, 000 VRP instances is

presented here. In figure 5.11, a histogram with 50 bins showing the ratios of

the derived objective function values is presented. Furthermore, the data are

approximated by a Bezier curve, and a normal distribution with the mean

at 0.96 and a standard deviation of 0.024 is shown.

Although both the Shapiro-Wilk W test [Royston, 1992] and the Anderson-

Darling test [Stevens and D’Agostino, 1986] indicate that the considered

data are not drawn from a normal distribution, it is clearly visible that both

the Bezier and the normal distribution curve approximate the frequency dis-

tribution of the data well. Both curves have one peak at x = 0.96 and are

symmetrical.

For this experiment, we can therefore state that the data are drawn from

a distribution with normal distribution like characteristics. Further experi-

ments with this and other heuristic search algorithms show similar results.

Conclusion: Our empirical study suggests that the application of the t-test

5The two parameter settings are π1 = (1, 7, 4, 1, 0.05.40, 5) and π2 =
(1, 5, 1, 0, 0.00, 20, 0). Refer to section 6.3.2 and table 6.4 for details.

115

 0.85 0.9 0.95 1 1.05

y

x

Histogram
Bezier
Gauss

Figure 5.11: Histogram of Objective Function Ratios

in the MAPAA is justified. Because of its robustness, the t-test only requires

data from a normal distribution like distribution with a single peak that

is not too skewed, and the data analysed in this experiment satisfy these

conditions.

5.3 Summary

In this chapter, we examined the Multiple Algorithms’ Parameter Adapta-

tion Algorithm (MAPAA) by means of experimentation. On one hand, we

demonstrated how the rules for positive learning help to intensify the search

around promising solutions. On the other hand, we illustrated how negative

116

learning adds a diversification mechanism to our approach. Furthermore, ex-

periments for the determination of good learning schemes were carried out.

Although it was not possible to find choices that perform constantly best,

we were able to select robust, high performance learning rates. In addition,

we showed how a moderate amount of mutation helps to improve the perfor-

mance of the MAPAA. We also studied how our adaptation method balances

its computation resources if applied to several algorithms simultaneously. We

highlighted that the efficient strategy used distributes more computation time

to better performing methods. Finally, we provided experimental proof for

the validity of utilising the t-test. Table 5.1 provides an overview of these

conclusions.

As a result of our experimental study, we have determined a set of good

choices for the parameters of the MAPAA. All further experiments reported

in this thesis are based on these values that are summarised in table 5.2.

117

Exp. Conclusion Section

I Positive learning over finite domains leads to the esti-
mation of a target probability distribution.

5.1.1

II Negative feedback brings a diversifying element to the
learning process over finite domains.

5.1.1

III Positive learning over interval domains leads to the es-
timation of a target probability distribution.

5.1.2

IV Negative feedback brings a diversifying element to the
learning process over interval domains.

5.1.2

V The combination of a moderate positive learning rate
ε+
fin = 0.10 and a small negative learning rate ε−fin = 0.02

yields consistently good results for finite domains.

5.2.3

VI A Self-Organising Map with a chain of L = 50 neurons,
learning rates of ε+

int = 0.50 and ε−int = 0.10, and neigh-
bourhood kernels of size δ+ = 10 and δ− = 2 performs
well as a learning scheme over interval domains.

5.2.4

VII Choosing a moderate mutation rate between 0.05 and
0.15 yields consistently the best results.

5.2.5

VIII The adaptation mechanism efficiently allocates more re-
sources to better performing algorithms in case of mul-
tiple methods.

5.2.6

IX The application of the t-test is justified. 5.2.7

Table 5.1: Conclusions of experiments conducted with the Multiple Algo-
rithms’ Parameter Adaptation Algorithm

118

MAPAA Parameter Symbol Value

number of generational cycles G 200
population size M 12
mutation rate µ 0.05
positive learning rate, finite domain ε+

fin 0.10

negative learning rate, finite domain ε−fin 0.02

number of neurons for the SOM model L 50
positive learning rate, interval domain ε+

int 0.50
negative learning rate, interval domain ε−int 0.10
neighbourhood kernel size, positive learning δ+ 10
neighbourhood kernel size, negative learning δ− 2
significance level of the t-test α 2.5%
minimal number of sample data required by t-test minttest 10

Table 5.2: Parameter values of the Multiple Algorithms’ Parameter Adapta-
tion Algorithm

119

Chapter 6

Applications of the Multiple

Algorithms’ Parameter

Adaptation Algorithm

The purpose of this chapter is to demonstrate the efficiency and robustness

of the Multiple Algorithms’ Parameter Adaptation Algorithm (MAPAA). It

therefore presents an overview of seven applications. In five of these sce-

narios, the parameters of a single heuristic search are adapted, while the

two remaining applications address cases where the MAPAA is applied to

two heuristic search algorithms simultaneously. At the end of this chapter,

we examine a MAPAA implementation in the commercial iOpt toolkit and

conclude with a summary.

120

6.1 Preliminary Notes

6.1.1 Implementation Details

All heuristic search methods covered in this chapter are implemented in the

JAVA programming language. The experiments reported were performed

on Intel processor-based 2.0 GHz personal computers. Depending on the

application scenario, the heuristic search algorithms took between 10 and 25

seconds to produce a solution for a single optimisation problem instance.

6.1.2 Size of the Search Space

The aim of the MAPAA is to find good parameter settings from the parameter

spaces of the studied heuristic search methods. Therefore, these parameter

spaces constitute the search space of our adaptation approach. If such a space

takes the shape D1 × . . .× Dn, then its size can be calculated by
∏n

i=1 |Di|.

Table 6.1 provides an overview of the encountered search space sizes for all

seven applications studied in this chapter. Details of these spaces and the

respective parameters are discussed in sections 6.2 to 6.4. Here, we assume

that continuous domains are discretised with 11 sample values1. The table

shows that the sizes of the search spaces range from 5, 880 possibilities in

Application III to 1, 023, 660 in Application VII.

1As an example, the interval [0, 1] can be discretised as {0.0, 0.1, . . . , 0.9, 1.0}.

121

Application Search Space Size

I 3 · 7 · 6 · 11 · 11 = 15, 246
II 3 · 7 · 5 · 2 · 11 · 7 · 7 = 113, 190
III 3 · 7 · 5 · 2 · 2 · 7 · 2 = 5, 880
IV (II+III) 113, 190 + 5, 880 = 119, 070
V 3 · 4 · 5 · 5 · 11 · 11 · 2 · 2 = 145, 200
VI 3 · 2 · 11 · 10 · 11 · 11 · 11 = 878, 460
VII (V+VI) 145, 200 + 878, 460 = 1, 023, 660

Table 6.1: Search space sizes in the Applications I to VII

6.1.3 Infeasibility of Exhaustive Search

In all seven applications in this chapter, an exhaustive search (in which each

point is tested) for the best parameter setting is usually not possible due

to the sheer size of the parameter spaces. Taking into account the noise

factor in the results of heuristic search methods2, each point would have to

be tested for a number of different optimisation problem instances in order

to get averaged results.

We assume here an averaging over just 10 problem instances. In Application

III, with the smallest search space size of 5, 880, a single heuristic search

call requires 10 seconds. Hence, an exhaustive search would run for 5, 880 ·
10 · 10 = 588, 000 seconds, or 7 days. For Application V, where a single

heuristic search instance runs for 25 seconds, a complete search would last

for 145, 200 · 10 · 25 = 36, 300, 000 seconds, or 420 days. Even the smallest

computation time of one week can rarely be justified and is usually too high.

More selective and thus faster search strategies are required. We propose the

2See characteristic C3 in section 1.5.

122

MAPAA as such an alternative strategy.

6.1.4 Running Time of the MAPAA

In all experiments, the MAPAA runs for G = 200 generations. In each

cycle, all M = 12 parameter settings present in its population as well as the

best encountered parameter settings for the m considered heuristic search

methods get evaluated. In the single algorithm scenarios (Applications I,

II, III, V and VI) m equals 1, and in the two multiple algorithm scenarios

(Applications IV and VII) m is 2. The MAPAA therefore tests G · (M + m)

parameter setting, which adds up to 2, 600 or 2, 800 evaluations.

The running time of the MAPAA predominantly depends on the required

computation time for these evaluations. In Applications I to IV, where such

a heuristic search takes between 10 to 15 seconds, a single MAPAA run

lasts between 7 and 12 hours. For the remaining Applications V, VI and

VII, where a heuristic search call is computationally more expensive, a single

MAPAA instance can run for up to 20 hours.

Although the computation time resources required by the MAPAA are still

high, they are much smaller than those required by a complete search. In our

experiments, this improvement in running time was at least of one magni-

tude3 and in general of two magnitudes and higher. This makes the compu-

tation demands much more manageable and, we believe, affordable. These

3A magnitude of one is considered as factor 10.

123

demand still, however, limit the number of independent MAPAA runs for

each of the seven applications covered in this chapter. In the first four sce-

narios I to IV, results are reported from 20 individual MAPAA runs for each

case. For the more time demanding Applications V to VII, the number of

MAPAA runs is set to 16.

6.1.5 Fraction of the Search Space explored by the

MAPAA

During one MAPAA run, G · M = 200 · 12 = 2, 400 evaluations are per-

formed for individuals from the population. That means that our parameter

adaptation approach can explore at most 2, 400 different parameter settings.

But well performing configurations are often repeatedly tested. In fact, a

minimal number of minttest = 10 evaluations is required for a setting to be

considered as an improvement by the statistical test within the MAPAA.

Consequently, significantly less than 2, 400 parameter settings are explored

during the search. The usual magnitude is from a few hundred up to one

thousand.

To sum up, the MAPAA can explore only a small fraction of the search space.

However, the search focuses on promising areas and leads, as we show in this

chapter, to good and robust results.

124

6.1.6 A Measure for the Quality of Solutions

The MAPAA is a solution algorithm for the Multiple Algorithms’ Param-

eter Adaptation Problem (MAPAP)4. To briefly recapitulate, the aim is to

find the algorithm Abest among the algorithms A1, . . . , Am, together with the

corresponding best parameter setting πbest, such that the sum

favg =
1

k′

k′∑
i=1

f(Abest(πbest, Φ′
i)) (6.1)

is minimal. During the solution process, the out-of-sample problems ~Φ
′
=

(Φ′
1, . . . , Φ

′
k′) are not available, and only information gathered by applying

the heuristic search algorithms to sample problems ~Φ = (Φ1, . . . , Φk) can be

used.

The sum given in equation 6.1 is used as the criterion to judge and com-

pare the quality of solutions yielded by the MAPAA. In other words, if our

adaptation approach returns algorithm A with parameter setting π as its re-

sult, then the average objective function value favg produced by this specific

algorithm configuration for given out-of-sample problems ~Φ
′
is the decisive

measure to assess the solution quality.

4See section 1.4 for the formal definition.

125

6.1.7 Single Parameter Optimisation

Having defined a measure for comparing the quality of candidate solutions for

the MAPAP with equation 6.1, one important question remains unanswered:

What is the optimal value for favg for a given vector of test optimisation

problems ~Φ
′
? As explained earlier, an exhaustive search is, in practical terms,

not possible. Moreover, a detailed analysis of the search space landscapes is

too big an issue to be addressed in this thesis. We describe therefore a basic

statistical approach, which we refer to as Single Parameter Optimisation

(SPO), and use its results as reference values to judge the efficiency of the

MAPAA.

The SPO approach for tuning the parameters of a heuristic search, and thus

improving its performance, is to optimise the parameters one by one. This

procedure starts with all parameters set to initial values. One parameter is

chosen, either randomly or following a predefined order, and is varied while

all other parameters are kept constant. This allows the method to find a good

value for this single parameter. Once a good value is found, the initial setting

is modified in order to incorporate this setting. This process is repeated for

all parameters.

If all parameters contribute independently to the performance of the heuristic

search algorithm, then SPO is an effective way to determine good settings.

As the quality of a parameter choice does not depend on other parameter

values in this case, optimising each parameter individually yields very good

results.

126

However, parameters are often not independent of each other. Rather there

are inter-dependencies which influence the quality of the heuristic search.

Such links between parameters are often not obvious, and expert knowledge

is required to understand and utilise them efficiently. As a consequence,

SPO is less effective in such cases. Furthermore, the order parameters are

optimised in is often crucial for the quality of the settings found, as is the

initial configuration SPO starts with.

For a search space D1× . . .×Dn, SPO examines |Di| different settings during

the optimisation of the i-th parameter. Overall, it explores
∑n

i=1 |Di| different

parameter configurations. To counter the interfering influence of noise, each

such setting is tested for a number of optimisation problems. In Applications

I, II and III, we average results over 100 problem instances, while 50 instances

are used for Applications V and VI5. Hence SPO requires between 2, 150

(Application V) and 4, 200 (Application II) evaluations, which is the same

magnitude as required by the MAPAA.

6.1.8 Experimental Setup

For each of the seven applications presented in sections 6.2 to 6.4, we provide

the following information:

• a description of the class of optimisation problems used,

5No SPO runs are required for Applications IV and VII. These are scenarios where two
heuristic search methods are adapted simultaneously, and the SPO results are the same
as for Applications II/III and V/VI, respectively.

127

• a specification of the applied heuristic search method (including details

about its parameters, its parameter domains and its initial parameter

choices),

• the result of an SPO run (which starts with the specified initial param-

eter setting) for the heuristic search method,

• the results of 16 or 20 independent MAPAA runs (which again use the

the specified initial parameter setting) for the heuristic search,

• an analysis and comparison of the achieved results, and

• conclusions drawn.

6.2 An Application for the Travelling Sales-

man Problem

In this section, we discuss the results produced by the MAPAA when it

is applied to a Simulated Annealing algorithm for the Travelling Salesman

Problem.

6.2.1 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is possibly the most well known

optimisation problem. In the classic symmetric TSP, a number of N

128

cities and their respective, symmetric distances are given. The aim is

to find the shortest tour that visits each city exactly once. This NP-

hard problem has attracted a huge amount of research interest. Many

different optimisation techniques have been applied to this problem sce-

nario including Tabu Search [Zachariasen and Dam, 1995], Simulated An-

nealing [Boettcher and Percus, 1998, Moldover and Coddington, 1994], Ge-

netic Algorithms [Whitley and Mathias, 1992] and Guided Local Search

[Voudouris and Tsang, 1999]. [Johnson and McGeoch, 1997] is a compre-

hensive survey of solutions methods for the TSP.

The TSPLIB library [Reinelt, 1995] is a collection of TSP instances of var-

ious nature. However, as the Multiple Algorithms’ Parameter Adaptation

Algorithm (MAPAA) requires a large number of problem cases to run, we

create random scenarios with the following characteristics:

• There are between 100 and 200 cities to visit.

• Each city is situated in the square [0, 1]× [0, 1].

• The Euclidean distance is used as the distance measure.

129

6.2.2 Application I: A Simulated Annealing Method

for the TSP

General Concept

Simulated Annealing (SA) belongs to the class of local or neighbourhood

search techniques. [Russell and Norvig, 2003] describes these techniques as

”algorithms [which] operate using a single current state ... and generally

move only to neighbours of that state”. The underlying principle is that of

improving an initial, often randomly created single solution by modifying it

in small, local steps. The set of all solutions that can be reached from the

current state by a single modification step is called the neighbourhood of

this state. Therefore, local search is the repeated replacement of the current

solution by a solution from its neighbourhood, until a termination criterion

is satisfied.

The process of selecting a member from the neighbourhood is central for

the success of a local search method. A basic approach is hill-climbing,

where only improving states from the neighbourhood, i.e. states with better

objective values than the current solution, are considered for selection, until

the neighbourhood does not contain any more improving states. Hence hill-

climbers risk the search to get trapped in suboptimal solutions. Various

techniques have been proposed to overcome this shortage.

SA is based on a strategy analogous to the physical process of annealing of

130

solids. In this process, a heated metal is cooled down. A drastic cooling

would lead to the formation of random, high energy states of the atoms. A

slow cooling, however, allows the atoms to settle in more stable patterns,

which results in a low-energy crystalline state.

[Kirkpatrick et al., 1983] were the first to propose SA as a general optimi-

sation method. During the search, a state s′ from the neighbourhood of

the current solution s is randomly selected. If s′ is a superior solution,

f(s′) ≤ f(s), the search moves from state s to s′. In case of an inferior

solution s′, f(s′) > f(s), this move is only accepted with probability e
−∆f

T .

The parameter T is referred to as temperature. For higher temperatures, this

scheme accepts many non-improving steps, while for lower temperatures the

majority of such moves are rejected. During the search process, an initially

high temperature is gradually lowered. As a result, the search moves towards

better solutions but avoids getting trapped in local minima. Only in the final

stage the search settles in a good solution. Central to the performance of SA

is the way the temperature is lowered. Many different annealing schedules

have been proposed. The interested reader may refer to [Osman, 1995] for a

classification.

SA has been applied very successfully to a wide range of optimisation

problems. Examples include Very Large Scale Integration layout problems

[Chandy et al., 1997] and Vehicle Routing [Osman, 1993].

131

Simulated Annealing for the TSP

Our implementation of a Simulated Annealing method for the TSP is loosely

based on the basic technique outlined in [Moldover and Coddington, 1994].

This algorithm has five parameters which are discussed below.

Parameter P1 - number of restarts: The complete search process involves

the selection of a total of 2, 000, 000 random moves. This move number can

be evenly divided between 1, 2 or 5 restarts of the SA algorithm.

Parameter P2 - neighbourhood operators: A solution for the TSP is

represented as a permutation of (1, . . . , N). A neighbouring solution can

be reached by applying one of three possible operators: swap, reinsert or

reverse. As an example, if we are given the solution (1, 2, 3, 4, 5, 6), then a

swap of the cities 2 and 5 results in the route (1, 5, 3, 4, 2, 6), a reinsertion

of 2 after 5 leads to (1, 3, 4, 5, 2, 6), and a reversal of the cities between 2

and 5 yields the path (1, 2, 4, 3, 5, 6). The second parameter decides whether

one, two or all three of these operators are applicable. The possible val-

ues 1 to 7 correspond to 1=swap, 2=reinsert, 3=reinsert+swap, 4=reverse,

5=reverse+swap, 6=reverse+reinsert and 7=reverse+reinsert+swap.

The parameters P3, P4 and P5 define a stepwise temperature reduction

annealing schedule. At the start of the SA process, the initial and the final

temperatures have to be determined. To do so, the search accepts initially all

random moves for a while and observes the average (∆avg) and the minimal

(∆min) objective difference of all non-improving moves. Given parameter P4,

132

the initial acceptance probability, the initial temperature is set to a value

which accepts a non-improving move with the average objective difference of

∆avg with probability P4
6. Analogically, based on the parameter P5, the final

acceptance probability, the final temperature is calculated by accepting

non-improving moves with objective differences of ∆min with probability P5.

During the annealing process, the temperature remains constant for a number

of steps before it is reduced. This number is controlled by parameter P3,

the thermalisation. At each reduction step, the temperature is reduced

according to the geometric cooling rule T = T · α with α < 1. Knowing the

initial and final temperatures, the total number of neighbourhood moves and

the thermalisation, α can be easily calculated.

Table 6.2 summarises the five parameters and their domains as used in our

experiments. The initial parameter choices are highlighted.

Parameter Description Domain

P1 number of restarts {1, 2, 5}
P2 neighbourhood operators {1, 2, 3, 4, 5, 6, 7}
P3 thermalisation {1,10, 100, 1000, 10000, 100000}
P4 initial acceptance prob. [0.01, 0.99] (0.5)
P5 final acceptance prob. [0.01, 0.99] (0.5)

Table 6.2: Parameters of a Simulated Annealing algorithm for the TSP

6In order to determine the initial temperature Tinitial, the equation e
−∆avg

Tinitial = P4 has
to be solved.

133

Experimental MAPAA Results

Both SPO and the MAPAA are applied to the aforementioned Simulated

Annealing algorithm. The SPO process starts with the initial setting

(1, 1, 10, 0.5, 0.5) and optimises the parameters in the order given in table

6.2. In each step, 100 TSP instances are solved by the heuristic search

to establish the best parameter choices. The result produced is the vector

(1, 6, 10, 0.5, 0.99), i.e. the configuration with 1 restart, neighbourhood 6, a

thermalisation of 10, and initial and final acceptance probabilities of 0.5 and

0.99, respectively. A full account of the numerical results is presented in

appendix D.1.

Furthermore, 20 MAPAA runs are performed. For each MAPAA instance,

a different vector of 200 sample TSP problems is used. Table 6.3 lists the

parameter choices found in each of these 20 runs alongside the initial param-

eter setting and the setting yielded by SPO. The last column of the table

shows the average objective achieved by the SA algorithm with the respective

settings for 100 out-of-sample7 TSP instances.

• For 13 out of 20 runs, the MAPAA produces a solution that suggests

1 restart. In the remaining 7 cases, 2 restarts are favoured.

• In all 20 runs, the neighbourhood 6, i.e the use of the reverse and

reinsert neighbourhood operators, is found to be the best choice.

7The TSP instances used during the MAPAA runs are different from these test prob-
lems. Therefore, the former are called sample problems while the latter are referred to as
out-of-sample problems.

134

Parameter Setting P1 P2 P3 P4 P5 favg

Initial 1 1 10 0.50 0.50 11.99
SPO 1 6 10 0.50 0.99 9.38

MAPAA #1 2 6 10000 0.24 0.97 9.38
MAPAA #2 2 6 1 0.11 0.74 9.40
MAPAA #3 1 6 10 0.41 0.94 9.39
MAPAA #4 1 6 100 0.04 0.88 9.38
MAPAA #5 1 6 10000 0.13 0.97 9.38
MAPAA #6 1 6 10000 0.43 0.62 9.41
MAPAA #7 1 6 10 0.15 0.76 9.40
MAPAA #8 1 6 100 0.41 0.83 9.40
MAPAA #9 1 6 10000 0.40 0.86 9.40
MAPAA #10 1 6 10 0.47 0.97 9.40
MAPAA #11 1 6 100 0.03 0.90 9.39
MAPAA #12 1 6 10000 0.32 0.76 9.42
MAPAA #13 1 6 100 0.04 0.91 9.39
MAPAA #14 2 6 100 0.02 0.94 9.37
MAPAA #15 2 6 1 0.52 0.86 9.41
MAPAA #16 2 6 10000 0.12 0.62 9.41
MAPAA #17 1 6 10000 0.24 0.59 9.42
MAPAA #18 2 6 1000 0.15 0.95 9.37
MAPAA #19 2 6 1000 0.25 0.95 9.39
MAPAA #20 1 6 100 0.18 0.95 9.40

favg: mean = 9.396, σ = 0.014

Table 6.3: Experimental results for a Simulated Annealing algorithm for the
TSP

• No clear statement can be made about the thermalisation parameter.

Except for the largest value of 100000, all possible choices can be found

in solutions produced by the MAPAA.

• The results achieved for the initial and the final acceptance probabilities

are consistent. While smaller values from [0.02, 0.52] are chosen for the

former parameter, the latter is always selected from [0.59, 0.97].

135

The parameter settings produced by the MAPAA are comparable to the

solution produced by the SPO approach. The only exception is the restart

parameter. SPO strongly favours the value 1, but the MAPAA often finds 2

to be efficient as well.

The similarity of the parameter settings produced by SPO and MAPAA

is mirrored by their performance. For 100 VRP instances, the MAPAA

solutions and the SPO result produce very similar average objective values.

In few cases, the MAPAA solution is slightly but not significantly better, but

the majority of the results are equivalent. Only the parameter setting found

by MAPAA run #17 performs worse than the single optimisation setting

at a 1% significance level. Furthermore, all produced parameter settings

dramatically improve the initial solution that is used as a starting point for

both SPO and MAPAA runs.

The experimental results suggest that the right choice for the neighbourhood

parameter is central for the SA performance. In all 20 MAPAA runs, the

choices 6 or 7 are proven to be better than the initial choice of 1 after only

10 generational cycles. After 60 MAPAA generations at most, this choice

is narrowed down to the best value of 6. That means that the MAPAA is

able to very rapidly find high performance parameter settings and prove their

superiority.

136

Conclusion

For the Simulated Annealing mechanism discussed, SPO and the MAPAA

yield equivalent results. Because of the simple parameter structure of the

heuristic search, both methods have no difficulties in finding good parameter

settings. Our population-based adaptation approach concentrates its effort

very quickly on the relevant areas of the parameter space, and therefore

produces solutions with a proven high performance after few generational

cycles.

6.3 Applications for the Vehicle Routing

Problem

Three applications of the MAPAA are presented in this section. After ap-

plying our adaptation approach individually to a Tabu Search method and

a Genetic Algorithm for Vehicle Routing, we test its efficiency when applied

to both aforementioned heuristic search techniques simultaneously.

6.3.1 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP), in its most basic form and as it is used

here, is the task of serving a number of customers through a fleet of vehicles.

These vehicles are based at one single depot and must be routed in order to

137

fulfill demands for certain amounts of goods by the customers. The routing is

constrained by the amount of goods one vehicle can carry, and the maximal

length of a lorry route. The most common objective is to serve all customers,

i.e. to find a set of routes for the fleet that visit all customers, with minimal

vehicle travelling distance while taking account of both the capacity and the

distance constraints for the vehicles.

A candidate solution for the VRP can be represented as the assignment of

routes, i.e. sequences of customers to visit, to all vehicles. These routes

must cover every customer exactly once. If all routes fulfill both capacity

and distance constraints, we speak of a legal solution, otherwise it is called

illegal.

Example 6.1. An example VRP instance is presented in figure 6.1. A fleet

of three vehicles V 1, V 2 and V 3 are based at the depot D. The task is

to serve 10 customers C1 to C10, the demand of which is exactly 1 in this

example. The figure also shows one possible set of routes for the vehicles.

The first vehicle V 1 serves the customer C4, C2 and C5 in that order, while

V 2 serves C10, C9, C1 and C3, and V 3 travels to C7, C6 and C8. As the

number beside an arrow corresponds to the traveling distance, vehicle V 1

would travel a distance of 10 and would need a capacity of 3, vehicle V 2

would drive a distance of 12 and would need a loading capacity of 4, and

vehicle V 3’s traveled distance would be 11 with a required capacity of 3.

[Beasley, 1990] provides several sets of VRP instances, among others 14

138

3

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

V1

V2

V3

D

2

1

2 2

5

2

3

3

4

3

2

1

Figure 6.1: A Vehicle Routing Problem

VRPNC problems. In order to test the MAPAA efficiently, a larger num-

ber of problem scenarios is required. Therefore, further instances similar to

these VRPNC problems are randomly created. They all show the following

characteristics:

• The single depot is located at position (40, 40).

• The 50 to 75 customers have a demand between 1 and 40 each, and are

located inside the square [0, 80]× [0, 80].

• The distance between any two locations is the Euclidean distance.

• Vehicles can travel a maximum distance of 200, and can carry no more

than 150 units.

• For each served customer, an additional drop time equivalent to 10 dis-

tance units is considered when calculating the fleet’s overall travelling

distance.

139

Various extensions of the basic VRP have been extensively studied, among

others VRPs with time constraints (time windows) for customer servic-

ing [Badeau et al., 1997, Kilby et al., 1999], VRPs which include pickup

and delivery tasks [Gendreau et al., 1998, Li and Lim, 2001], multiple de-

pot problems [Irnich, 2000], and dynamic VRP scenarios [Psaraftis, 1995,

Kilby et al., 1998, Bianchi, 2000]. For further information refer to recent re-

views such as [Toth and Vigo, 2001].

6.3.2 Application II: A Tabu Search for the VRP

General Concept

Tabu Search methods are a class of algorithms that were pioneered by

[Glover, 1989]. This class is a further exponent of neighbourhood search

techniques. The basic strategy, or heuristic, employed by all Tabu Search

implementations while manoeuvring through the search space is to guide the

search away from local optima once they have been visited. In order to do

so, Tabu Search maintains a data structure called tabu list. All neighbour-

hood moves made by the search are recorded there for a certain time. In

each search cycle, the oldest move from the list gets replaced by the most

recently used. The length of the tabu list thus determines how many cycles

a move is avoided. A move found on this list and its reverse move are said

to be tabu. That means that this move and its reverse are temporarily not

available, and the search cannot apply them as long as they are present in

140

the tabu list. Hence the search cannot reverse its most recent modification

steps, and, consequently, is forced to explore other points of the search space.

During the search process, the algorithm stores the best solution encountered

so far. If a move would improve this overall best solution but is considered

tabu, then a mechanism known as aspiration overrides the move’s tabu status

so that the new best solution can be reached.

Tabu Search for the VRP

After the initial remarks about Tabu Search, we now introduce a specific im-

plementation for VRPs as previously discussed. This algorithm is a modified

and extended version of the Tabu Search outlined in [Duncan, 1995]. It is

controlled by seven parameters which are listed and described below.

Parameter P1 - number of restarts: Each search instance can use a fixed

number of cycles. These cycles can be assigned to a single Tabu Search run,

or the search can be restarted several times from different initial solutions

using less cycles. Therefore, the number of restarts is the first parameter. In

our implementation, we limit the choices to D1 = {1, 2, 5}. Allowing search

restarts is an extension of the original work by [Duncan, 1995].

Parameter P2 - neighbourhood operators: The search allows three

different kind of neighbourhood moves: swap, re-insert and re-link moves.

• A swap move for two customers leads to the swapping of their positions.

141

This move can be applied to customers both on the same route of one

vehicle, or to customers on routes of two different vehicles.

• A re-insert move results in the removal of a customer from its current

position and the re-insertion at a different position. The re-insertion

can take place in the route of any vehicle.

• A re-link move allows the exchange of sub-routes between two different

vehicles. On each route, a customer is selected, and the partial routes

consisting of all customers coming after these two selected ones are

swapped.

Example 6.2. To illustrate these three neighbourhood move operators, we

give an example for each when applied to the situation presented earlier in

this chapter. In figure 6.2, the graph in the upper left-hand corner shows the

initial state. On its top-right, the situation after swapping the customers C1

and C7 is given. In the lower left-hand graph, the routes after re-inserting

customer C1 between C7 and C6 are presented, while in the lower right-

hand figure the result of re-linking the routes after customers C1 and C7 is

displayed.

Whether the search uses one, two or all three of these neighbourhood op-

erators is controlled by the second parameter. The values 1 to 7 for these

parameters describe the following choices: 1 = re-insert, 2 = re-link, 3 =

re-link + re-insert, 4 = swap, 5 = swap + re-insert, 6 = swap + re-link

and 7 = swap + re-link + re-insert. Hence the second parameter domain is

142

Initial Situation
C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

V1

V2

D

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

D

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

D

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

V1

V2

V3

D

V3

V1

V2

V3

V1

V2

Swap of C1 and C7

Re−Insert of C1

between C7 and

C6

Re−Link of routes

after C1 and C7

V3

Figure 6.2: The VRP Neighbourhood Operators

D2 = {1, 2, 3, 4, 5, 6, 7}.

Parameter P3 - stepping factor: [Duncan, 1995] proposes a factor for

stepping through the neighbourhood in order to speed the search up. A

factor of 2 for instance would mean that just every second member of the

neighbourhood set would be considered. This stepping factor is a further

search parameter, and we consider values from D3 = {1, 2, 4, 8, 16}.

Parameter P4 - aspiration: A fourth parameter controls the use of aspira-

tion. The value 1 means that the aspiration criterion is used, while 0 stands

for no aspiration: D4 = {0, 1}.

Parameter P5 - random move probability: During the search process,

the best non-tabu or aspired move is selected, unless a purely random move

is chosen. The probability for such a random move is controlled by the

fifth search parameter. We allow this likelihood to be between 0% and 50%:

143

D5 = [0.0, 0.5]. The possibility of random moves is an addition to the original

method.

Parameters P6 and P7- tabu list length and its variation: The

tabu list length P6 is the sixth search parameter. To avoid unwanted cy-

cling effects, a random variation of the tabu list length P7 is introduced,

which constitutes the final search parameter. More specifically, a move

that gets added to the tabu list becomes tabu for P6 + random(P7) cy-

cles. We select these values from the domains D6 = {5, 10, 15, 25, 35, 50, 75}
and D7 = {0, 1, 2, 5, 10, 20, 50}.

Table 6.4 lists all seven search parameters along with their description and

their domains as used in this chapter’s experiments. The choice of parameter

values is kept as broad as possible in order to show that the MAPAA can

learn to distinguish between promising and less promising values. The initial

choices as used by the adaptation schemes are highlighted.

Parameter Description Domain

P1 number of restarts {1, 2, 5}
P2 neighbourhood operators {1, 2, 3, 4, 5, 6,7}
P3 stepping factor {1, 2, 4, 8, 16}
P4 aspiration {0,1}
P5 random move probability [0.0, 0.5](0.0)
P6 tabu list length {5,10, 15, 25, 35, 50, 75}
P7 tabu list length variation {0, 1, 2, 5, 10, 20, 50}

Table 6.4: Parameters of the Tabu Search for the VRP

The Tabu Search, used with all three neighbourhood operators and a stepping

factor of 1, is run for 1, 000 cycles. With fewer operators or a higher stepping

144

factor, this cycle number is increased to guarantee comparable computation

times of the search runs. Similarly, increasing the number of restarts results

in less cycles per run.

Experimental MAPAA Results

The SPO for tuning the aforementioned Tabu Search method starts with

the initial setting (1, 7, 1, 1, 0.0, 10, 0). The order in which the parameters of

this heuristic search are optimised is the same as in table 6.4. At each step

of the optimisation process, the objective is averaged over the same set of

100 randomly created VRP instances. Appendix D.2 gives the results of the

complete SPO run. It yields the parameter setting (5, 7, 1, 0, 0.15, 35, 0). In

other words, this approach favours a Tabu Search with 5 restarts, the richest

neighbourhood of 7, a stepping factor of 1, no use of the aspiration criterion,

random moves with a probability of 0.15, and a tabu list of a fixed length of

35 elements.

In 20 independent runs based on different sample VRP instances, the MA-

PAA is applied to the Tabu Search method as well. Table 6.5 lists the

returned findings together with the initial parameter setting and the result

of SPO. For all settings, the objective result of the corresponding heuristic

search, averaged over 200 out-of-sample VRP instances, is given.

In contrast to Application I, where SPO and the MAPAA produced very

similar settings, table 6.5 highlights some significant differences in the results

145

Parameter Setting P1 P2 P3 P4 P5 P6 P7 favg

Initial 1 7 1 1 0.00 10 0 1402.6
SPO 5 7 1 0 0.15 35 0 1376.5

MAPAA #1 2 7 4 1 0.02 75 50 1370.6
MAPAA #2 2 7 2 1 0.05 50 20 1372.0
MAPAA #3 2 7 2 1 0.07 75 1 1370.7
MAPAA #4 1 6 2 1 0.08 75 20 1371.8
MAPAA #5 1 7 2 1 0.03 75 10 1373.4
MAPAA #6 5 7 2 1 0.09 75 2 1371.2
MAPAA #7 5 7 4 1 0.02 50 50 1371.5
MAPAA #8 5 7 2 1 0.05 50 20 1370.7
MAPAA #9 1 7 2 0 0.10 35 2 1372.1
MAPAA #10 2 7 2 1 0.20 10 2 1374.6
MAPAA #11 5 7 2 1 0.06 75 50 1372.1
MAPAA #12 1 7 2 0 0.13 15 10 1373.3
MAPAA #13 2 7 4 1 0.05 50 5 1371.6
MAPAA #14 5 7 2 1 0.12 25 0 1372.6
MAPAA #15 2 7 2 0 0.10 35 1 1372.6
MAPAA #16 1 7 2 1 0.16 35 2 1371.8
MAPAA #17 1 7 2 1 0.07 50 1 1372.2
MAPAA #18 5 7 4 1 0.03 75 0 1371.1
MAPAA #19 5 7 2 1 0.02 35 10 1371.7
MAPAA #20 2 7 2 1 0.11 35 50 1372.5

favg: mean = 1372.0, σ = 0.97

Table 6.5: Experimental results for a Tabu Search for the VRP

between these two approaches to the current scenario.

• While SPO strongly favours 5 restarts, our adaptation approach pro-

duces solutions based on 1, 2 or 5 restarts with comparable frequency.

• Both methods agree on neighbourhood 7, the neighbourhood that in-

cludes all three available operators, as being the best option. Only the

fourth MAPAA run differs slightly by proposing neighbourhood 6.

146

• The first real significant difference in the results is the choice of the

stepping factor. In 16 out of the 20 MAPAA runs, a factor of 2 is

found to be the most effective one, the remaining 4 runs suggest a

factor of 4. This is in strong contrast to the SPO result which sees 1

as superior.

• 85% of the MAPAA settings include aspiration and thus disagree with

the SPO result. The surprising absence of the usage of this criterion

by SPO can be explained as follows. During the optimisation process,

the decision about its application is made using a very short tabu list

of length 10. With only few moves being tabu, aspiration is much less

beneficial and, by chance, is rejected. These findings are supported by

MAPAA results. Only in runs 9, 12 and 15 is no aspiration used, and

these cases also feature tabu lists of moderate length.

• The majority of settings produced by our adaptation approach recom-

mend small random move probabilities between 0.0 and 0.1. Only in

five cases, namely runs 10, 12, 14, 16 and 20, is a higher value from

[0.1, 0.2] proposed. Very interesting to note is that these higher prob-

abilities coincide with short or moderate tabu list lengths. Further

experiments support this observation: Tabu Search is sensitive to the

chosen random move probability. It works very well with either a large

tabu list combined with few random moves, or a shorter tabu list with

a higher chance for random moves.

• In general, the MAPAA results recommend a tabu list of at least length

35. Only in 15% of the runs was a shorter length favoured. In these

147

cases, higher random move probabilities are applied as described above.

The tabu list length variation does not seem to have a decisive influence.

Both SPO and the MAPAA clearly improve on the initial setting, which

mainly constitutes the parameter choices tested in [Duncan, 1995]. However,

the considerably different parameter settings produced by the two approaches

lead to performance differences. Specifically, all parameter settings yielded by

our novel adaptation method are significantly better than the SPO solution

with a significance level of 1%.

Conclusion

The experiments provide strong evidence for the superiority of the MAPAA

over SPO when it comes to finding good parameter settings for the discussed

Tabu Search when solving VRPs. The collected data demonstrate that the

MAPAA is better able to detect and consider interdependencies of parame-

ters, e.g. between aspiration, random move probability and tabu list length

in this scenario. Consequently, the MAPAA consistently and significantly

outperforms the more basic SPO approach.

148

6.3.3 Application III: A Genetic Algorithm for the

VRP

Genetic Algorithm for the VRP

In addition to the Tabu Search method discussed in section 6.3.2,

[Duncan, 1995] proposed a Genetic Algorithm (GA) for the Vehicle Rout-

ing Problem . His method differs from the standard GA approach that was

discussed in section 3.1.2. Firstly, the solution representation is not based

on a bit string but rather uses a model for the vehicle tours. Because of this

difference, the classical crossover and mutation operators are not applicable.

Therefore, he secondly introduces a new set of operators to produce offspring.

These mechanisms are the swap, re-insert and re-link moves that we outlined

in section 6.3.2 and illustrated in example 6.2. These operators modify a

single parent and produce a single offspring. Consequently, the discussed

GA does not include a crossover scheme but rather applies three specialised

mutation techniques. Our implementation of this heuristic search algorithm

has seven parameters, these are specified below.

Parameter P1 - number of restarts: The complete search process can

make use of a specified number of generational cycles. These generations

can be evenly divided in order to facilitate a restart mechanism. In our

experiments, we allow 1, 2 or 5 restarts of the GA. This parameter was not

considered in the original work by [Duncan, 1995].

149

Parameter P2 - neighbourhood operators: The GA can apply one, two

or all three of the explained mutation operators. The possible values 1 to 7

correspond to 1 = re-insert, 2 = re-link, 3 = re-link + re-insert, 4 = swap, 5

= swap + re-insert, 6 = swap + re-link and 7 = swap + re-link + re-insert.

Parameter P3 - population size: The third parameter controls the size

of the population. We consider here the choices 50, 100, 150, 200 and 250.

Parameter P4 - elitism: The boolean elitism flag establishes whether the

best found candidate solution in the current population is passed on to the

next generation, P4 = 1, or whether it is replaced, P4 = 0.

Parameter P5 - better initial tours: [Duncan, 1995] recommends to seed

the GA with good initial solutions. The fifth parameter defines whether a

simple savings algorithm is used for the determination of the initial popula-

tion, P5 = 1, or whether this population is made up of purely random tours,

P5 = 0.

Parameter P6 - parenthood proportion: To model the principle of nat-

ural selection, only candidate solutions with good evaluations are allowed to

participate in the reproduction process. In this GA, only the best performing

population members get this chance. The sixth parameter determines which

proportion of the population will be marked for parenthood. Possible choices

are 5, 10, 15, 20, 30, 40 and 50 percent.

Parameter P7 - replacement scheme: Two different replacement schemes

are possible. In the generational scheme, P7 = 1, the population is replaced

150

entirely by the offspring population. In the second option P7 = 0, the incre-

mental scheme, offspring are produced one at a time and replace the worst

member of the population.

Table 6.6 provides an overview of the seven aforementioned GA param-

eters. The initial parameter choices, that resemble the values used by

[Duncan, 1995], are highlighted in bold.

Parameter Description Domain
P1 number of restarts {1, 2, 5}
P2 neighbourhood operators {1, 2, 3, 4, 5, 6,7}
P3 population size {50,100, 150, 200, 250}
P4 elitism {0,1}
P5 better initial tours {0,1}
P6 parenthood proportion {5,10, 15, 20, 30, 40, 50}
P7 replacement scheme {0,1}

Table 6.6: Parameters of a Genetic Algorithm for the VRP

To guarantee a fair comparison of all possible GA configurations, the number

of generational cycles is chosen depending on the number of restarts and

the used population size. More specifically, the product of the number of

generations, restarts and population size is always kept constant. A GA

with one restart and a population of 100 candidate solutions runs for 1000

generations.

151

Experimental MAPAA Results

Starting with the parameter choices (1, 7, 100, 1, 1, 10, 1), the SPO run, a

detailed account of which can be found in appendix D.3, returns the setting

(1, 7, 50, 1, 1, 5, 1) as its result. All configurations are tested for 100 VRP

instances. The final parameter setting encodes a GA that is started once,

applies all three possible mutation operators, uses a population of size 50,

uses elitism and a savings algorithm for the initial solutions, selects the top

10% of a population as potential parents and uses a generational replacement

scheme. Only two improvements are found over the initial choices which are

the values analysed by [Duncan, 1995].

As in the previous two applications, the MAPAA is applied in 20 indepen-

dent runs to optimise the parameters of the discussed GA, starting with the

same initial parameter setting as SPO. The results of these experiments are

presented in table 6.7. This table also shows the initial parameter setting and

the solution produced by SPO. To compare the quality of the configurations

found, the corresponding GA instances are applied to 200 VRPs. The last

column of the table lists the average objective function values achieved for

these out-of-sample problems.

• In 13 out of 20 runs, 2 restarts are favoured. In the remaining 7 cases,

exactly one run of the GA is recommended.

• In 90% of the settings produced by the MAPAA, the usage of all three

available mutation operators is suggested. Only in runs #4 and #16 is

152

Parameter Setting P1 P2 P3 P4 P5 P6 P7 favg

Initial 1 7 100 1 1 10 1 1429.3
SPO 1 7 50 1 1 5 1 1404.3

MAPAA #1 1 7 150 1 1 5 0 1400.7
MAPAA #2 2 7 50 1 1 5 0 1398.4
MAPAA #3 2 7 150 1 1 5 0 1399.0
MAPAA #4 1 6 200 1 1 5 0 1401.0
MAPAA #5 2 7 100 1 1 5 0 1397.5
MAPAA #6 1 7 150 0 1 5 0 1400.7
MAPAA #7 2 7 50 0 1 5 0 1398.4
MAPAA #8 1 7 50 1 1 20 0 1399.5
MAPAA #9 1 7 150 0 1 10 0 1399.4
MAPAA #10 2 7 100 0 1 5 0 1397.5
MAPAA #11 2 7 50 0 1 15 0 1397.6
MAPAA #12 2 7 100 0 1 5 0 1397.5
MAPAA #13 2 7 50 0 1 15 0 1397.6
MAPAA #14 2 7 50 1 1 10 0 1396.9
MAPAA #15 2 7 200 1 1 5 0 1400.7
MAPAA #16 1 6 150 1 1 10 0 1401.5
MAPAA #17 2 7 50 0 1 10 0 1396.9
MAPAA #18 2 7 50 1 1 10 0 1396.9
MAPAA #19 2 7 100 1 1 5 0 1397.5
MAPAA #20 1 7 50 1 1 15 0 1397.7

favg: mean = 1398.6, σ = 1.51

Table 6.7: Experimental results for a Genetic Algorithm for the VRP

this choice limited to two operators. However, these two settings show

the worst performance amongst all MAPAA results.

• In contrast to SPO, our adaptation method strongly recommends the

usage of an incremental replacement scheme instead of a generational

technique. As the incremental replacement scheme automatically en-

sures the survival of the fittest parent, the results about the elitism

parameter are not significant here.

153

• All 20 runs yield GA configurations that include the usage of a savings

approach to create better initial tours.

• Although the vast majority of MAPAA results recommend small popu-

lation sizes of 50 or 100, some solutions perform well with populations

of 150 or 200 individuals.

• Regarding the proportion of the population that should be used for

reproduction, smaller values of 5% and 10% dominate. Percentages

larger than 20% are dismissed.

The decisive difference between the parameter settings yielded by SPO and

the MAPAA is that the former suggests the usage of a generational replace-

ment scheme while the latter strongly hints that replacing population mem-

bers incrementally is superior. It seems that the specific combination of

one start, a population of just 50 individuals and the usage of the top 5%

for reproduction is unfavourable for the incremental method. Therefore,

SPO concludes that the generational approach is superior. The MAPAA,

on the other hand, is capable of detecting more favourable settings for the

incremental scheme, and produces solutions that do not contain the specific

aforementioned parameter combination.

Both the SPO and the MAPAA significantly improve the parameter choices

studied and suggested by [Duncan, 1995]. Furthermore, the superiority of

the results achieved by our adaptation approach over the SPO results can

be statistically substantiated. Under a strict significance level of 1%, a sig-

nificantly better performance is achieved in 15 out of 20 cases. Relaxing

154

the confidence level to 10% shows that all 20 runs yield superior parameter

settings.

Conclusion

The experiments with the MAPAA demonstrate that the performance of the

GA proposed by [Duncan, 1995] can be significantly improved by using better

parameter choices. In particular, the statement that ”results are inconclu-

sive” regarding the usage of an incremental replacement scheme could not

be confirmed. On the contrary, our study suggests that such an incremental

approach can be very beneficial. Our adaptation method is very robust in

producing configurations that outperform both the original settings as well

as the parameter values yielded by SPO.

6.3.4 Application IV: A Tabu Search and a Genetic

Algorithm for the VRP

In the fourth application presented in this chapter, the MAPAA is applied

simultaneously to the two heuristic search methods introduced in the previous

sections 6.3.2 and 6.3.3. We show that the adaptation method is capable of

detecting the algorithm with superior performance and can produce good

parameter settings accordingly.

155

Experimental MAPAA Results

For both the Tabu Search and the Genetic Algorithm for the VRP, the SPO is

exactly the same as in the scenarios where these methods are studied alone.

As we have to conduct the SPO process for two algorithms, the required

computation effort is doubled.

The MAPAA run, on the other hand, does not require additional resources in

case of multiple heuristic search methods. The outcome of 20 experimental

runs is summarised in table 6.8. In addition, the table provides average

objective results achieved for a set of 200 VRP instances.

The results are clear and without ambiguity: the Tabu Search is the supe-

rior method in our tests. The MAPAA finds it to be the best performing

algorithm in every single run.

Statements about the parameter settings produced by the adaptation scheme

for the Tabu Search are comparable to those made in section 6.3.2. We ab-

stain from repeating these observations and rather concentrate on two dif-

ferences. Firstly, the MAPAA finds against using the richest neighbourhhod

as its choice in 3 out of 20 cases, compared to just one miss in the single

algorithm scenario. Secondly, higher mutation rates, above 0.10, are more

frequently proposed in the multiple algorithm case. These differences in-

dicate that the MAPAA comes, on average, to slightly different results if

it has to distribute its computation resources between two heuristic search

methods.

156

Parameter Setting Alg. P1 P2 P3 P4 P5 P6 P7 favg

SPO GA 1 7 50 1 1 5 1 1404.3
SPO TS 5 7 1 0 0.15 35 0 1376.5

MAPAA #1 TS 5 7 2 1 0.07 25 1 1372.7
MAPAA #2 TS 2 6 2 1 0.13 50 5 1372.7
MAPAA #3 TS 1 7 2 1 0.15 50 5 1372.2
MAPAA #4 TS 2 7 2 1 0.09 50 20 1371.3
MAPAA #5 TS 2 7 2 1 0.11 75 20 1371.2
MAPAA #6 TS 1 7 2 1 0.14 75 50 1373.0
MAPAA #7 TS 5 7 2 1 0.07 75 50 1371.3
MAPAA #8 TS 1 7 2 0 0.15 35 50 1373.7
MAPAA #9 TS 1 7 2 1 0.11 75 10 1371.6
MAPAA #10 TS 5 7 4 1 0.05 75 5 1371.4
MAPAA #11 TS 2 6 2 1 0.08 50 20 1372.8
MAPAA #12 TS 1 7 2 1 0.10 25 0 1372.5
MAPAA #13 TS 2 7 2 1 0.10 50 10 1371.8
MAPAA #14 TS 2 7 2 0 0.10 75 10 1372.5
MAPAA #15 TS 2 7 2 1 0.07 35 0 1372.1
MAPAA #16 TS 2 7 4 1 0.03 35 1 1371.2
MAPAA #17 TS 1 7 2 1 0.17 75 2 1373.0
MAPAA #18 TS 1 6 2 1 0.13 35 20 1373.0
MAPAA #19 TS 2 7 4 1 0.04 50 10 1371.9
MAPAA #20 TS 2 7 2 1 0.12 50 50 1371.8

favg: mean = 1372.2, σ = 0.72

Table 6.8: Experimental results for a Tabu Search/Genetic Algorithm for the
VRP

The parameter settings recommended by MAPAA for the Tabu Search again

clearly outperform the configurations yielded by SPO for the Tabu Search

and the GA. Their performance is on average worse by 0.2 than the perfor-

mance of the settings produced in the single algorithm scenario in section

6.3.2. However, a sample size of only 20 results is not sufficient to prove a

significance of this difference.

157

Conclusion

The MAPAA demonstrates in this experiment that it can, when it is ap-

plied to two heuristic search algorithms at once, detect the better performing

search and can consistently produce high performance parameter settings for

it. Although the adaptation process has to divide its resources between the

Tabu Search and the GA, it still clearly outperforms the SPO approach. The

results indicate that such a sharing of resources, i.e. a sharing of available

computation time, leads to a slight degradation of the solution quality in

comparison to the scenario where the focus is only on one heuristic search.

6.4 Applications for Job Shop Scheduling

The final three applications of the MAPAA presented in this chapter look

at heuristic search methods for the Job Shop Scheduling Problem (JSSP).

The parameter adaptation processes are studied individually for a GA and

a Tabu Search as well as for both methods together.

6.4.1 The Job Shop Scheduling Problem

The Job Shop Scheduling Problem is a further example of the class of NP-

hard optimisation problems. It contains a set of concurrent jobs. Each job

consists of a set of operations that must be scheduled according to a given

158

process plan. This order differs from job to job. As each operation requires

a resource, called a machine, for a certain time span to be completed, oper-

ations are in competition for available resources. The task is to schedule all

operations while taking account of the process orders and the constraint that

a machine can process only one operation at any given time. A widely used

criterion to assess the performance of a schedule is the makespan which is the

duration between the starting time of the first operation and the completion

time of the last operation. In the experiments reported in section 6.4.2, the

objective is to minimise the makespan. The following example discusses a

small scheduling task.

Example 6.3. We consider a 3 × 2 Job Shop Scheduling Problem, i.e. a

scenario with 3 jobs and 2 machines. The problem data

job 1: 1 (2) 2 (5)

job 2: 2 (3) 1 (7)

job 3: 1 (4) 2 (4)

describe 3 jobs, each consisting of 2 operations. The first operation of job 1

requires machine 1 for 2 time units. After its completion, the second oper-

ation of job 1, which requires machine 2 for 5 time units, can be processed.

Analogically, job 2 needs first the second resource for 3 time units, and there-

after machine 1 for a time span of 7. The third job has to be processed first

on machine 1 and then on machine 2, each time for 4 units of time.

159

The first operations of both job 1 and 3 must be processed on machine 1. As

a machine can handle only one operation at a time, one of these jobs must

delay its start. As a consequence of such order decisions, different schedules

can be generated. One possible plan for the completion of the example jobs

is:

machine 1: job 1 (time 0-2), job 3 (time 2-6), job 2 (time 6-13)

machine 2: job 2 (time 0-3), job 1 (time 3-8), job 3 (time 8-12)

As the last operation is finished at time point 13 under this schedule, the

makespan is 13. ¤

In order to have sufficient problem instances for the MAPAA process, we

generate random JSSPs that closely resemble the famous FT10×10 problem

[Fisher and Thompson, 1963]:

• Each problem consists of 10 jobs and 10 machines.

• The order of machines a job has to be processed on is a random per-

mutation of (1, . . . , 10).

• The processing time of each operation is randomly chosen from [2, 99].

Among the heuristic search methods that have been successfully applied

to the JSSP are Genetic Algorithms [Lin et al., 1997], Simulated Annealing

[van Laarhoven et al., 1992] and Tabu Search [Taillard, 1994].

160

6.4.2 Application V: A Genetic Algorithm for the

JSSP

A Genetic Algorithm for the JSSP

[Lin et al., 1997] describe different GA approaches for Job Shop Scheduling.

To counter the problem of premature convergence in the classical GA, they

propose and analyse fine-grained, coarse-grained and hybrid models.

We study here the coarse-grained algorithm, often referred to as an island-

parallel GA. Instead of a single population, a number of subpopulations is

maintained. These subpopulations evolve independently. The fundamen-

tal idea is that the separation leads to diverse island populations and thus

to a higher diversity overall. The islands are arranged in a ring topology.

At certain times individuals are allowed to migrate to other, neighbouring

subpopulations to facilitate the exchange of information.

A direct representation approach for modelling candidate solutions, i.e.

schedules for a JSSP, is used: a solution encodes the operation starting times.

The genetic operators applied by [Lin et al., 1997] to these schedules are time

horizon exchange crossover and mutation. These operators, which are based

on the G&T algorithm [Giffler and Thompson, 1960], are highly specialised

and incorporate very problem specific knowledge. For more details, the in-

terested reader is referred to the original work.

Our GA implementation has the following eight parameters:

161

Parameter P1 - number of restarts: The available computation resources

for one search instance can be divided between 1, 2 or 5 restarts of the GA.

This constitutes an extension of the original method by [Lin et al., 1997].

Parameter P2 - number of subpopulations: As described above, the

GA maintains a number of subpopulations. We consider the values 1, 2, 5

or 10 in our experiments.

Parameter P3 - size of subpopulations: The third parameter de-

fines the number of individuals in each of the subpopulations. Although

[Lin et al., 1997] allow for very large populations with up to 2000 individu-

als, we limit the choices to D3 = {10, 20, 50, 100, 200}.

Parameter P4 - migration: This control parameter describes the time

interval in which a subpopulation’s best individual is allowed to migrate to

another island.

Parameter P5 - crossover rate: After the selection of two parents from

the current population, two offspring are produced through time horizon ex-

change crossover with probability P5. With probability 1−P5, these parents

are passed on directly to the next generation.

Parameter P6 - mutation rate: With a certain percentage P6, individuals

are mutated when being passed on to the new population.

Parameter P7 - elitism: This flag controls the application of the elitism

mechanism. If P7 = 1, the best individual is guaranteed survival.

162

Parameter P8 - selection mechanism: The reproduction process of the

GA involves the selection of parents from the current population. We test

two possible schemes. Fitness selection (P8 = 0) chooses parents from the

subpopulations with probabilities proportional to their fitness8. Tournament

selection (P8 = 1), on the other hand, selects a parent by picking the fittest of

three randomly selected individuals. This choice between different selection

mechanisms is an addition to the original method.

Table 6.9 provides a summary of all eight parameters and their respective

domains. The values of the initial parameter setting, that describe a classical

GA with just one population of 100 individuals, are highlighted.

Parameter Description Domain

P1 number of restarts {1, 2, 5}
P2 number of subpopulations {1, 2, 5, 10}
P3 size of subpopulations {10, 20, 50,100, 200}
P4 migration {0, 10, 20,50, 100}
P5 crossover rate [0, 1] (0.6)
P6 mutation rate [0, 1] (0.1)
P7 elitism {0,1}
P8 selection mechanism {0, 1}
Table 6.9: Parameters of a Genetic Algorithm for the JSSP

Experimental MAPAA Results

SPO modifies the initial parameter setting (1, 1, 100, 50, 0.6, 0.1, 1, 0) step by

step and returns (2, 2, 50, 10, 0.6, 0.7, 1, 1) as its result. In other words, this

8As the objective is to minimise the makespan of schedules, a lower objective leads to
a higher probability.

163

basic parameter optimisation approach recommends a GA configuration with

2 restarts, 2 subpopulations of 50 individuals, migration every 10 generations,

crossover and mutation rates of 0.6 and 0.7, respectively, the use of elitism

and a tournament selection mechanism. Appendix D.4 contains the full nu-

merical results.

Table 6.10 confronts the parameter settings found by the MAPAA in 16

independent runs with the initial parameter values and the SPO choices. To

allow for a performance comparison, all GA configurations are tested for 100

JSSP instances, the average results of which are listed in the last column.

Parameter Setting P1 P2 P3 P4 P5 P6 P7 P8 favg

Initial 1 1 100 50 0.6 0.1 1 0 882.6
SPO 2 2 50 10 0.6 0.7 1 1 858.0

MAPAA #1 2 2 200 50 0.97 0.81 1 1 854.6
MAPAA #2 2 5 10 50 0.70 0.94 0 1 852.3
MAPAA #3 5 1 200 100 0.74 0.85 1 1 854.0
MAPAA #4 2 5 100 10 0.56 0.94 1 1 850.9
MAPAA #5 5 2 50 50 0.20 0.96 1 1 851.5
MAPAA #6 2 5 100 50 0.76 0.88 1 1 851.5
MAPAA #7 5 5 10 20 0.48 0.88 0 1 853.4
MAPAA #8 5 5 20 10 0.21 0.99 0 1 853.4
MAPAA #9 2 5 50 10 0.75 0.95 1 1 852.9
MAPAA #10 5 5 10 20 0.19 0.86 0 1 852.6
MAPAA #11 5 2 50 50 0.83 0.80 0 1 856.5
MAPAA #12 5 2 200 100 0.53 0.96 1 1 853.3
MAPAA #13 2 5 100 10 0.81 0.97 1 1 851.6
MAPAA #14 5 1 200 50 0.35 0.96 1 1 851.6
MAPAA #15 2 5 10 100 0.60 0.97 0 1 852.4
MAPAA #16 2 5 100 10 0.56 0.66 1 1 854.0

favg: mean = 852.9, σ = 1.39

Table 6.10: Experimental results for a Genetic Algorithm for the JSSP

164

The following observations can be made for the MAPAA results:

• A search process with 2 or 5 restarts of the GA is clearly favoured as

these two values appear in all runs.

• In 14 out of 16 runs, the MAPAA suggests to use 2 or 5 subpopulations.

In the 2 remaining cases, a single population of maximal size is found

to be effective. Configurations with 10 subpopulations never appear

approved.

• All possible subpopulation sizes feature in parameter settings produced

by the MAPAA. As a general trend, smaller population sizes occur

in combination with a higher number of subpopulations while larger

population sizes are mainly paired with fewer subpopulations.

• Migration is found to be beneficial as its absence, P4 = 0, is clearly

rejected. In the vast majority of cases, migration cycles between 10

and 50 are chosen.

• The rate of crossover does not seem to influence the GA performance

very much as a wide spectrum of values is found to work well. Only

small values lead to a significantly reduced performance. Therefore,

the MAPAA never recommends crossover rates below 0.19 in the ex-

periments.

• The analysis of the established mutation rates is very surprising. 15 out

of 16 runs yield a mutation rate above 0.8. Even in the one remaining

case, a high value of 0.66 is returned. Further experiments, among

165

others also in the SPO run given in appendix D.4, show that a high

time horizon exchange mutation rate between 0.7 and 1.0 is essential

for a good GA performance. Smaller values lead to a clear performance

loss.

• The MAPAA usually produces solutions that include the elitism cri-

terion. Only in cases where small population sizes are used is this

mechanism not supported.

• In all MAPAA runs, the tournament selection mechanism is found to

be the superior scheme.

Instead of finding a specific area of the parameter space to be superior,

our novel adaptation approach proves that a wide variety of different GA

configurations do perform very well. All 16 runs significantly improve the

initially applied parameter setting, and also have a better performance than

the SPO result. For all runs but MAPAA #11, the t-test shows this better

performance to be significant at a significance level of 1%.

This experiment illustrates a further facet of the MAPAA. As the user can

define very broad and general parameter domains, the danger of missing

good parameter values due to inappropriate assumptions is reduced. As an

example, GAs are usually recommended to be run with small to moderate

mutation rates. Here, however, this recommendation is wrong. The specific

nature of the time horizon exchange mutation operator makes it a central

element in the process of improving candidate solutions, and a high frequency

for its application is suggested.

166

Conclusion

In the experiments conducted, the MAPAA is very robust in improving the

initial parameter setting and outperforms the SPO approach. It consistently

finds dramatic performance enhancing upgrades for a single population GA

with rates of 0.6 and 0.1 for crossover and mutation, respectively. Moreover,

the tests with JSSP instances that resemble the FT10× 10 problem suggest

that a mutation rate of 0.1, as recommended in [Lin et al., 1997], is too small

for the specific time horizon exchange mutation operator. Higher mutation

rates yield clearly better results.

6.4.3 Application VI: A Tabu Search for the JSSP

A Tabu Search for the JSSP

[Taillard, 1994] proposes a Tabu Search, the general concept of which is in-

troduced in section 6.3.2, for the JSSP. His parallel technique uses a graph

representation for the schedules, and it employs a neighbourhood based on

the permutation of specific, so called ”critical” operations within such graphs.

A detailed discussion of these two concepts is beyond the scope of this thesis,

and the interested reader is therefore referred to the original work.

Our Tabu Search implementation for the JSSP, which is based on the afore-

mentioned method, can be controlled by seven parameters:

167

Parameter P1 - number of restarts: As an extension to the original

algorithm, we allow the restarting of the search from a different, randomly

created initial solution. Possible values for P1 are 1, 2 and 5.

Parameter P2 - aspiration: The binary second parameter controls the

usage of the aspiration criterion, with P2 = 1 representing its application.

Parameter P3 - random move probability: In contrast to the original

Tabu Search by [Taillard, 1994], we consider the possibility of random moves

during the search process. Such moves are performed with probability P3 ∈
[0.0, 0.5].

Parameters P4, P5 and P6 - tabu list parameters: The fourth parameter

P4 determines the basic time span a move, once chosen, becomes tabu. To

counter unwanted cycling effects, the actual tabu period is randomly chosen

from the interval [P4 × P5,P4 × P6].

Parameter P7 - penalty factor: In order to discourage repetition, the

Tabu Search records its moves and considers additional costs for moves found

in its memory. The amount of these penalties is controlled by the seventh

parameter.

Table 6.11 lists all parameters with their domains and default values.

168

Parameter Description Domain

P1 number of restarts {1, 2, 5}
P2 aspiration {0,1}
P3 random move probability [0.0, 0.5] (0.0)
P4 tabu list length {4, 6, 8, 10,13, 15, 20, 25, 35, 50}
P5 min. tabu list length factor [0.0, 1.0] (0.8)
P6 max. tabu list length factor [1.0, 5.0] (1.2)
P7 penalty factor [0.0, 2.0] (0.5)

Table 6.11: Parameters of a Tabu Search for the JSSP

Experimental MAPAA Results

If the Tabu Search method under consideration is subjected to the SPO pro-

cess, then the initial values are altered only for two of the seven parameters.

Instead of the default tabu list length of 13, 8 is suggested as a good choice,

and 0.0 is favoured over the initial 0.8 for parameter P5. The full account of

the SPO results can be found in appendix D.5.

If, on the other hand, the MAPAA is applied to improve the Tabu Search,

then the recommended adaptations are more versatile, as table 6.12 confirms:

• The configuration with exactly 1 restart is found to be best in the

majority of cases. However, 6 out of 16 MAPAA runs yield settings

with 2 restarts.

• The application of the aspiration mechanism is clearly beneficial. In 13

out of the 16 experiments, this criterion is approved.

• Although random move probabilities of up to 0.5 are considered, the pa-

169

rameter adaptation process finds only small values to be useful. Prob-

abilities between 0.0 and 0.1 are advised in 75% of the cases, while

values between 0.11 and 0.17 are obtained in the remaining 25%.

• The analysis of the optimal tabu list length reveals different recom-

mendations between the initial parameter setting, the result of SPO

and the findings of the MAPAA experiments. While [Taillard, 1994]

suggests a base length of 13 and varies it between 0.8 · 13 ≈ 10 and

1.2 · 13 ≈ 16, the process of optimising each parameter independently

favours a length of 8 and its variation between 0.0·8 = 0 and 1.2·8 ≈ 10.

The MAPAA runs, however, yield a tabu list length of 4 as the best

choice in the overwhelming majority of cases. Only in scenario #12,

the final setting features the parameter value 6. With regard to the

tabu list length variation parameters, the results are manifold, but val-

ues smaller than 0.2 for P5 and values greater than 2.83 for P6 do not

occur.

• Small penalty factors between 0.04 and 0.38 occur in 15 out of 16 exper-

imental runs, though values from the domain [0.0, 2.0] are considered

by the MAPAA. The one remaining run #12 yields 0.57.

The initial parameter setting achieves an average objective value of 857.8 for

100 test JSSP instances. SPO improves significantly on this by reducing the

measure to 853.6. The MAPAA produces even better findings by averaging

853.1 in the 16 presented runs. Although these results hint at a superiority

of the MAPAA, the available data are not sufficient to prove a statistical sig-

170

Parameter Setting P1 P2 P3 P4 P5 P6 P7 favg

Initial 1 1 0.0 13 0.8 1.2 0.5 857.8
SPO 1 1 0.0 8 0.0 1.2 0.5 853.6

MAPAA #1 2 1 0.06 4 0.55 1.77 0.13 853.9
MAPAA #2 1 1 0.07 4 0.87 2.48 0.12 853.1
MAPAA #3 1 1 0.10 4 0.25 2.34 0.27 852.5
MAPAA #4 1 1 0.09 4 0.20 2.54 0.06 852.7
MAPAA #5 2 1 0.17 4 0.20 1.64 0.38 853.8
MAPAA #6 1 0 0.10 4 0.73 1.23 0.26 854.0
MAPAA #7 2 1 0.11 4 0.60 2.09 0.19 853.3
MAPAA #8 1 1 0.10 4 0.78 2.44 0.29 853.6
MAPAA #9 1 1 0.06 4 0.93 1.54 0.20 853.3
MAPAA #10 2 0 0.02 4 0.92 2.04 0.29 852.6
MAPAA #11 2 1 0.13 4 0.81 1.21 0.36 852.2
MAPAA #12 1 1 0.03 6 0.58 1.52 0.57 852.7
MAPAA #13 2 1 0.05 4 0.42 2.83 0.29 854.1
MAPAA #14 1 0 0.15 4 0.24 1.75 0.16 852.5
MAPAA #15 1 1 0.05 4 0.43 2.60 0.06 853.2
MAPAA #16 1 0 0.01 4 0.70 2.23 0.04 851.9

favg: mean = 853.1, σ = 0.65

Table 6.12: Experimental results for a Tabu Search for the JSSP

nificance. It has to be acknowledged furthermore that 25% of the adaptation

experiments yield results slightly inferior to the SPO output.

The experimental data do however provide evidence for the robustness of our

novel adaptation process. The achieved favg test measures all lie between

851.9 and 854.1. The standard deviation is just 0.65 around the mean 853.1.

171

Conclusion

A Tabu Search method for the JSSP was subjected to our parameter adap-

tation process. The MAPAA consistently proposes settings which strongly

improved on the original configuration recommended by [Taillard, 1994]. It

also outperforms, on average, the SPO method, but the difference can not be

proven to be of statistical significance with the limited available data. Over-

all, the MAPAA once again proves its strength in terms of solution quality

and robustness.

6.4.4 Application VII: A Genetic Algorithm and a

Tabu Search for the JSSP

In the seventh and final application, the MAPAA is applied simultaneously

to the two heuristic search methods previously introduced for the JSSP. Full

details of these GA and Tabu Search techniques can be found in sections

6.4.2 and 6.4.3.

Experimental MAPAA Results

This experiment is similar to application IV in that the parameters of two

search algorithms are optimised together. The main difference, however, is

that here the two techniques are very evenly matched.

172

In the single algorithm scenario, the GA achieves an average test objective

of 852.9 while the Tabu Search is just marginally worse with 853.1. The

results of application VII, summarised in table 6.13, reflect this closeness.

A GA configuration is proposed at the end of 6 of 16 MAPAA runs, and a

Tabu Search parameter setting is the best found solution in the remaining

10 cases. As both methods are comparable in their performance, both are

almost equally likely to feature as the MAPAA output.

Param. Sett. Alg. P1 P2 P3 P4 P5 P6 P7 P8 favg

SPO GA 2 2 50 10 0.6 0.7 1 1 858.0
SPO TS 1 1 0.0 8 0.0 1.2 0.5 853.6

MAPAA #1 GA 1 5 200 20 0.48 0.98 0 1 852.7
MAPAA #2 GA 2 10 50 100 0.72 0.94 1 1 851.8
MAPAA #3 GA 2 5 200 100 0.49 0.84 1 1 854.5
MAPAA #4 TS 1 1 0.12 4 0.27 2.29 0.02 852.6
MAPAA #5 TS 2 1 0.01 4 0.49 2.82 0.49 854.2
MAPAA #6 GA 5 2 200 10 0.60 0.85 1 1 852.9
MAPAA #7 TS 1 0 0.09 4 0.47 1.82 0.14 853.1
MAPAA #8 TS 1 0 0.07 4 0.63 1.73 0.43 853.3
MAPAA #9 GA 5 2 100 100 0.63 0.89 1 1 852.1
MAPAA #10 TS 1 1 0.16 4 0.43 1.57 0.06 854.1
MAPAA #11 GA 2 5 100 10 0.27 0.83 1 1 853.7
MAPAA #12 TS 1 0 0.00 8 0.30 1.39 0.44 853.7
MAPAA #13 TS 1 0 0.01 6 0.23 1.98 0.33 853.9
MAPAA #14 TS 1 1 0.04 4 0.79 2.13 0.07 853.4
MAPAA #15 TS 1 0 0.07 4 0.65 1.24 0.13 851.6
MAPAA #16 TS 5 0 0.00 4 0.23 2.39 0.27 854.5

favg: mean = 853.3, σ = 0.89

Table 6.13: Experimental results for a Tabu Search/Genetic Algorithm for
the JSSP

With regard to the actual parameter value choices, the observations are sim-

ilar to the findings in the respective single algorithm studies. The interested

173

reader should refer to the corresponding sections for a thorough discussion.

The results of the 16 MAPAA runs are again tested for the same 100 instances

as in the earlier JSSP scenarios. The achieved average of favg = 853.3 is

slightly worse than the single algorithm adaptation results. This outcome is

expected as the MAPAA’s computation resources have to be split between the

two heuristic search techniques. As both methods are very similar in terms

of performance, our adaptation technique optimises both at the same time:

the best parameter settings for the second placed, non-winning algorithms

in the 16 experimental runs average 853.5 for the 100 JSSP test instances.

With a small standard deviation of just 0.89, the MAPAA is once more very

robust in producing high quality solutions. All 16 runs significantly improve

the results achieved with the initial parameter settings for both the GA and

the Tabu Search. Equally, they all clearly outperform the SPO result for

the GA. Only the result of the SPO process for the Tabu Search comes close

with favg = 853.6 so that a significant difference cannot be proven.

Conclusion

The MAPAA shows in this final application that it is very robust and efficient

when confronted with two local search methods with similar performance. By

chance, either of the two algorithms can be part of the final recommendation.

Though slightly inferior to the results achieved when adapting just a single

method, the produced solutions are of high quality.

174

6.5 Parameter Adaptation and iOpt

[Voudouris and Dorne, 2002] describe iOpt as ”a large software system com-

prising several libraries and frameworks dedicated to the development of com-

binatorial optimisation applications based on Heuristic Search.” This toolkit

is the result of an ongoing research project at the BT Laboratories.

A central component of iOpt is an algorithm modeling framework named

Heuristic Search Framework (HSF) [Dorne and Voudouris, 2004]. ”The main

idea in HSF is to break down ... heuristic algorithms into a plurality of con-

stituent parts.” These parts facilitate the quick and efficient development of

existing heuristic search methods for a wide variety of applications. Novel re-

combinations of such modules even allow the building of entirely new heuristic

algorithms. Due to the flexibility of the aforementioned framework, compo-

nents can be easily extended to accommodate new concepts.

The iOpt package provides a tool for visually building heuristic search algo-

rithms. This tool represents such an algorithm as a tree of modules from the

Heuristic Search Framework. The user can graphically modify this tree by

adding, replacing or removing components. Knowledge about internal details

of the modules is not required.

Such modules possess parameters that determine their exact operation. As

an example, the component modeling a tabu list has a parameter that defines

the length of this data structure. Although these parameters are set to default

values, these choices are not always good. Components are highly reusable,

175

and different applications might require different parameter settings.

The desire to free the user from having to tune parameters by hand has

motivated the realisation of the Multiple Algorithm’s Parameter Adaptation

Algorithm within iOpt. A program has been developed that supports the

optimisation of parameter values. With this tool, the user can choose one or

more heuristic search algorithms. These methods are graphically displayed,

and all parameters of their modules are listed. By simply marking them, pa-

rameters are selected for the adaptation process. After defining domains for

the selected parameters and providing files with sample problem instances

for the heuristic search methods, the tool employs the MAPAA and auto-

matically finds good parameter settings. A number of graphical monitors are

provided to facilitate the observation of the adaptation process. After the

completion of the parameter adaptation phase, the heuristic search methods

and the established parameter choices can be saved for later reuse.

Our algorithm optimisation tool contributes to the user-friendliness of iOpt.

Combined with the tool for visually building algorithms, it allows a fast

and easy development of efficient heuristic search methods for new scenarios.

Planned improvements for the future include a better cooperation of and

interaction between these two tools, and the realisation of default domains

for parameters of iOpt’s search modules in order to prevent the need for users

to specify such domains before the parameter adaptation processes.

176

6.6 Summary

This chapter focused on the application of the Multiple Algorithms’ Pa-

rameter Adaptation Algorithm (MAPAA) to heuristic search methods. We

applied our method to find good parameter settings for a Simulated Anneal-

ing algorithm for Travelling Salesman Problems, for a Tabu Search method

and a Genetic Algorithm for Vehicle Routing, and for a Genetic Algorithm

and a Tabu Search for Job Shop Scheduling. Furthermore, the techniques

for Vehicle Routing and Job Shop Scheduling were combined in additional

scenarios.

The experimental results strongly suggest that the MAPAA consistently de-

tects very good parameter settings. Our mechanism never performed worse

than the more basic Single Parameter Optimisation approach, and outper-

formed it in the majority of the presented case studies. We also showed that

the MAPAA is very robust in choosing the best among two available heuristic

search methods or, if both algorithms are very similar in their performance,

optimises both at the same time and then chooses one of the methods.

To summarise, the novel approach proposed is an efficient, mainly au-

tonomously working technique for tuning parameters of heuristic search

methods. It has been successfully integrated into the iOpt package, BT’s

toolkit for the development of heuristic search applications.

177

Chapter 7

Summary

This thesis introduced and analysed the Multiple Algorithms’ Parameter

Adaptation Algorithm, an approach for tuning parameters of heuristic search

methods. The final chapter is a summary of this study. It looks at the work

presented, lists the main contributions, discusses limitations and takes an

outlook on further research.

7.1 Summary of the Presented Work

In the first chapter, we described the general optimisation problem and pre-

sented heuristic search as a class of algorithms to tackle it. Motivated by the

fact that the effectiveness of these methods often depends on good choices

for their parameters, we defined the problem of parameter adaptation. In its

178

most general formulation as the Multiple Algorithms’ Parameter Adaptation

Problem (MAPAP), the task is to find the best algorithm among a num-

ber of heuristic search methods together with the best parameter choices.

The introductory section furthermore listed characteristics which make this

problem particularly difficult to solve.

Chapter 2 saw a review of existing approaches for the tuning of parameters in

heuristic search methods. We briefly introduced two general techniques, al-

ternating variable search and the experimental design approach, which could

be applied to this problem scenario, and then gave an overview of parame-

ter adaptation methods for Genetic Algorithms as exponents of the class of

heuristic search algorithms. The chapter concluded with a discussion of the

No Free Lunch Theorem in the context of parameter adaptation.

The aim of the third chapter was to discuss Population-Based Incremen-

tal Learning (PBIL), an approach that successfully combines the concepts

of Competitive Learning and Genetic Algorithms. PBIL is a generational

technique that works with a population of candidate solutions. Its main

innovation is that it maintains a probability distribution over a binary so-

lution space. In each cycle, new candidate solutions are sampled based on

this distribution and entirely replace the old population. The best population

member with regard to a fitness function is then used to update the probabil-

ities. Through this learning process, the probability distribution represents

high quality solutions over time.

Based on a generalised formulation of the PBIL technique, the Multiple Al-

179

gorithms’ Parameter Adaptation Algorithm (MAPAA) was introduced in

chapter four. This method, using only small populations and relatively few

generational cycles, can optimise heuristic search parameters that have either

finite or interval domains. When applied to several heuristic searches simul-

taneously, it concentrates its resources on the better performing algorithms.

The central element of the MAPAA is the maintenance of joint probability

distributions of the considered parameter spaces. Through sampling of and

both positive and negative learning from small sets of candidate parameter

configurations, the probability distributions are constantly updated. This

mechanism allows the search to focus on promising areas of the search space.

Chapter five saw a rigorous examination of the main techniques employed in

the MAPAA. We analysed how the positive learning schemes help to inten-

sify the search around promising solutions and how negative feedback works

as a diversification mechanism. Furthermore, the examination of mutation

showed how moderate amounts can be successfully incorporated into the

learning strategy. These experiments led to the determination of a successful

MAPAA setup.

In chapter six, seven applications of the MAPAA were studied. The con-

sidered heuristic search methods included Simulated Annealing (SA) for the

Travelling Salesman Problem (TSP), and Tabu Search (TS) and Genetic Al-

gorithms (GA) for Vehicle Routing (VRP) and Job Shop Scheduling Prob-

lems (JSSP). While these five cases involved the optimisation of a single

heuristic search, two further studies looked at improving tow of the search

180

techniques together in multiple algorithms scenarios. The MAPAA never

performed worse than a more basic benchmark approach, and often outper-

formed it.

Table 7.1 summarises all experiments with and applications of the MAPAA

covered in this thesis.

7.2 Contributions

The main contribution of this work is the introduction of an incremental

learning mechanism for tackling the problem of parameter adaptation in

heuristic search. The MAPAA constitutes both a significant extension and

a specialisation of the standard PBIL technique. It is novel and significant

because1:

• Versatile search spaces: The MAPAA extends the scope of the PBIL

method to cope with more complex search spaces:

– Multiple values: The basic learning rule for binary variables

has been extended to deal with finite variables with more than

two possible values (experiments I, II and V).

– Interval domains: For variables with an interval domain, a com-

pletely new learning scheme based on Self-Organising Maps has

been introduced (experiments III, IV and VI).

1An overview of all experiments and applications referred to is given in table 7.1.

181

• Noisy data: PBIL has been extended so that it can manage noisy

problem data. Our approach incorporates a mechanism for transfering

good candidate solutions to new generations so that a memory of their

performance characteristics can be compiled and used to reduce the

influence of noise.

• Small population sizes: One major element of the motivation for the

MAPAA were the high computational costs of heuristic search runs,

that are therefore limited in number. Consequently, the MAPAA uses

much smaller population sizes and fewer generational cycles than PBIL,

and its learning mechanism utilises information from all population

members as either positive or negative feedback.

• Effectiveness: The MAPAA consistently shows good performance in

both parameter tuning (applications I to VII) and algorithm selection

(applications IV and VII) when applied to tackle a MAPAP.

7.3 Limitations

Although the MAPAA performs well when applied in its domain, it has

limitations, some of which are addressed below:

• In our experiments, the MAPAA was only compared to the basic Single

Parameter Optimisation (SPO) approach. Performance comparisons

with other, more advanced techniques, such as experimental design

182

based methods, are currently not available.

• Although the MAPAA performs well in all test cases presented, the

performance gains over the basic SPO procedure are sometimes only

marginal. The high computational requirements of the MAPAA can

often only be justified in scenarios where even small gains are of cen-

tral importance. In cases where such small gains can be neglected

but computational costs play a more prominent role, other parameter

adaptation approaches might be better suited.

• The joint probability distribution maintained by the MAPAA is uncon-

ditional, i.e. distributions of different parameters are treated indepen-

dently from each other. This is, of course, a simplifying assumption.

The MAPAA in its current formulation is not capable of directly identi-

fying interdependencies between parameters. Whether the MAPAA is

able to find high performance parameter settings in test scenarios with

strong parameter interdependencies remains unclear for the moment.

• The MAPAA in its current formulation does not try to approximate the

landscape of the parameter space with regard to the objective function.

Such information could, however, be very useful in guiding the search

towards better regions of the parameter space.

• Each heuristic search method is treated as a black box. In its current

formulation, our adaptation approach cannot make use of additional

knowledge of the search algorithm.

• The MAPAA was specifically designed and studied for the case of pa-

183

rameter adaptation in heuristic search. Although many of the novelties

within this algorithm have the potential to be successfully applied to

a multitude of further optimisation scenarios, statements about their

performance can currently only be substantiated for the original task.

7.4 Future Research

A thorough and detailed study of the MAPAA has been presented in the

thesis. But this challenging research area offers many more questions of

scientific interest. The following outlook summarises a selection of possible

future research directions.

• A crucial direction for future research is a more detailed comparison

of the MAPAA with alternative parameter adaptation approaches. In-

stead of comparing it only with the basic SPO method, further exper-

iments should be conducted to compare the MAPAA with alternating

variable search and experimental design techniques.

• [Shapiro, 2002, Shapiro, 2003] and [Yang and Yao, 2003] propose inter-

esting extensions and improvements of the standard PBIL algorithm.

Future research could aim to incorporate these modifications into the

MAPAA. It would be interesting to see whether our adaptation ap-

proach can benefit from concepts like detailed balance or dual popula-

tions.

184

• A simplification and thus limitation of the MAPAA is that probabil-

ities for different parameters are implemented as being independent.

How could one extend the technique to handle dependencies between

parameters directly? This is an area of high research activity, exam-

ples of which include [Pelikan and Mühlenbein, 1999]. Can existing

techniques be adapted so that they successfully work with the limited

information available in the MAPAA?

As the MAPAA relies on small populations and relatively few gen-

erational cycles, the amount of available information about inter-

parameter relations is extremely limited. Further research into this

direction should therefore initially look at how existing approaches can

cope with reduced amounts of information and, if not, how they could

be successfully adapted.

• The high cost in computation time when using heuristic search meth-

ods resulted in specific MAPAA configurations with small populations,

few generations and relatively high learning rates. If these resource re-

strictions became less important, how much better would the MAPAA

perform given the chance to employ larger populations, more genera-

tional cycles and smaller, better suited rates of learning?

With the increasing availability of powerful parallel computer technol-

ogy, the experiments described in this thesis could be repeated with

larger populations of sizes of 100 or above and for 500 or more gen-

erations. We expect that more moderate rates of learning would be

beneficial in such scenarios and that MAPAA results could be further

185

improved both in efficiency and robustness.

• As noted in the previous section on limitations, our adaptation tech-

nique sees each heuristic search as a black box. Is it possible to make

the optimisation process more informed, i.e. include problem specific

knowledge about the impact and relationship of parameters? How

could that be achieved?

A starting point could be the examination of one particular class of

heuristic search methods, e. g. of GAs. Through analysing correla-

tions between their parameters, one could try to find and formulate

patterns. This would allow the development of more informed and

thus improved learning mechanisms which take account of the afore-

mentioned parameter dependencies.

186

Name Section Subject

Exp I 5.1.1 Study of how positive learning over finite domains leads
to the estimation of target probability distributions

Exp II 5.1.1 Study of how negative learning over finite domains works
as a diversification mechanism

Exp III 5.1.2 Study of how positive learning over interval domains
leads to the estimation of target probability distribu-
tions

Exp IV 5.1.2 Study of how negative learning over interval domains
works as a diversification mechanism

Exp V 5.2.3 Determination of effective learning rates for finite do-
mains

Exp VI 5.2.4 Determination of effective learning rates for interval do-
mains

Exp VII 5.2.5 Determination of effective mutation rates
Exp VIII 5.2.6 Study of how resources are allocated efficiently and in-

telligently in scenarios with multiple heuristic searches
Exp IX 5.2.7 Justification of the applicability of the statistical t-test
Appl I 6.2.2 Study of a basic parameter adaptation scenario by ap-

plying the MAPAA to a SA method for the TSP
Appl II 6.3.2 Study of a more complex parameter adaptation scenario

by applying the MAPAA to a TS for the VRP
Appl III 6.3.3 Study of a more complex parameter adaptation scenario

by applying the MAPAA to a GA for the VRP
Appl IV 6.3.4 Study of a multiple algorithms scenario in which one

heuristic search is clearly superior by applying the MA-
PAA simultaneously to a TS and a GA for the VRP

Appl V 6.4.2 Further study of a more complex parameter adaptation
scenario by applying the MAPAA to a GA for the JSSP

Appl VI 6.4.3 Further study of a more complex parameter adaptation
scenario by applying the MAPAA to a TS for the JSSP

Appl VII 6.4.4 Study of a multiple algorithms scenario in which all
heuristic searches are comparable in their performance
by applying the MAPAA simultaneously to a GA and a
TS for the JSSP

Table 7.1: Summary of experiments

187

Appendix A

Notation

A.1 Abbreviations

CL Competitive Learning

DOE Design of Experiments

EDA Estimation of Distribution Algorithm

GA Genetic Algorithm

GPBIL Generalised Population-Based Incremental Learning

JSSP Job Shop Scheduling problem

MAPAP Multiple Algorithms’ Parameter Adaptation Problem

NP nondeterministic polynomial

PAP Parameter Adaptation Problem

PBIL Population-Based Incremental Learning

188

PDF probability distribution function

PSP Parameter Setting Problem

SA Simulated Annealing

SOM Self-Organising Map

SPO Single Parameter Optimisation

TS Tabu Search

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

A.2 Mathematical Symbols

Spaces are always written in BLACKBOARD− BOLD letters:

N natural numbers

R real numbers

S solution space

S̃ space of all possible solution spaces

D domain

P parameter space

E evaluation space

I individual space

F space of all probability distribution functions

H history space

Φ optimisation problem

189

f objective function

s, ~s solution, solution vector

A heuristic search algorithm

P parameter of an algorithm

π parameter setting

I = 〈~s,~e〉 individual, i.e. a population member in GPBIL, pair of

a solution ~s ∈ S and an evaluation history ~e ∈ H

By adding a superscript best we indicate the best found item, e.g. Ibest rep-

resents the best encountered individual in the GPBIL algorithm.

A.3 Population-Based Incremental Learning

PBIL Algorithm
1 ~s best = ∅
2 FOR l = 1, . . . , L DO Pl = 0.5
3 FOR g = 1, . . . , G DO
4 FOR i = 1, . . . , M DO

5 ~si = sampling(~P)
6 ei = f(~si)
7 min = argminM

i=1ei

8 FOR l = 1, . . . , L DO
9 Pl = Pl · (1− ε1) + ~smin,l · ε1

10 IF random((0, 1]) < µ THEN
11 Pl = Pl · (1− ε2) + random({0, 1}) · ε2

12 ~s best = minimum(~s best, ~smin)
13 RETURN ~s best

Figure A.1: The Population-Based Incremental Learning algorithm

Variables:

190

~P = (P1, . . . , PL) - probability vector

~s1, . . . , ~sM - candidate solutions in the population

e1, . . . , eM - evaluations of the solution vectors

min - index of the solution with the minimal evaluation

~s best - best solution found so far in all generations

l, g, i - loop variables

Constants:

L - bit length of the encoded solutions

G - number of generational cycles

M - population size

ε1 - learning rate

µ - mutation probability (for each bit position)

ε2 - amount of mutation

Functions:

sampling(~P) - generate a sample solution according to ~P

f(~si) - objective evaluation of solution ~si

A.4 Generalised Population-Based Incre-

mental Learning

Notation:

I - each individual is a tuple 〈~s,~e〉 with ~s ∈ S and ~e ∈ H
⊎

- adds an element to the evaluation history of an individual

191

GPBIL Algorithm
1 Ibest = 〈~sinitial, ∅〉
2 FS = initialisation(S)
3 N = M
4 FOR g = 1, . . . , G DO
5 FOR i = M −N + 1, . . . , M DO Ii = 〈sampling(FS), ∅〉
6 FOR i = 1, . . . , M DO Ii = Ii

⊎
g evaluation(Ii, g)

7 Ibest = Ibest
⊎

g evaluation(Ibest, g)

8 FS = learning(FS, Ibest, ~I , g)

9 Ibest = optimum(Ibest, ~I)

10 ~I = selection(Ibest, ~I)

11 N = M − size(~I)
12 RETURN Ibest

Figure A.2: The Generalised Population-Based Incremental Learning algo-
rithm

Variables:

FS- joint probability distribution over solution space

~I = (I1, . . . , IM) - population

Ibest - best individual found so far in all generations

N - number of individuals to be sampled

g, i - loop variables

Constants:

S - solution space

Di - domain for the i-th position in the encoded solution

G - number of generational cycles

M - population size

~sinitial - initial solution

Functions:

initialisation(S) - initialise the joint probability distribution over S

192

sampling(FS) - generate a sample solution vector according to FS
evaluation(I, g) - evaluate the individual I in generation g

learning(FS, Ibest,~I, g) - update the joint probability distribution FS
optimum(Ibest,~I) - select the optimal solution

selection(Ibest,~I) - select individuals for next generation

193

Appendix B

Mathematical Concepts

B.1 Random Variables and Probability Dis-

tribution Functions

B.1.1 Random Variables

In general probability theory [Bronstein and Semendjajew, 1991,

Tucker, 1962], a random variable is usually defined as a real variable

that can take different values depending on the random outcome of an

experiment. Typical examples for such variables are the random results

of rolling a dice, or measuring a car’s speed. The set of all values such a

variable can take is called its range or domain. In the above examples, the

ranges are {1, 2, 3, 4, 5, 6}, and, for instance, [0, 100] (mph).

194

A probability distribution function (PDF) F is associated with every random

variable X. This function characterises a random variable completely. For

each x ∈ R, it yields the probability of the random variable taking a value

less than x:

F(x) = P (X < x).

With the term probability distribution over a set S we refer to the PDF of a

random variable with the range S.

B.1.2 Discrete Random Variables

A random variable X and its PDF F are called discrete if the range of X is

finite or denumerable. Such a random variable is characterised by the values

x1, x2, . . . it can take, and the corresponding probabilities pi = P (X = xi).

Of course,
∑

i pi = 1 has to be satisfied. The PDF is defined as

F(x) =
∑
xi<x

pi.

Example B.1. In the case of rolling a dice, we have the six possible outcomes

1, 2, 3, 4, 5 and 6. All results are equally likely, and thus p1 = p2 = . . . =

195

p6 = 1
6

holds. The PDF is consequently given as

F(x) =





0 if x ≤ 1

1
6

if 1 < x ≤ 2

. . .

5
6

if 5 < x ≤ 6

1 if 6 < x

.

B.1.3 Continuous Random Variables

A random variable X is called continuous, if its PDF F can be written as

F(x) =

∫ x

−∞
d(t)dt

where d is continuous. In this case, the function d is called the density

function of X, and it has to satisfy

∫ ∞

−∞
d(t)dt = 1.

One can easily calculate the probability that the random variable falls into

a given interval [a, b):

P (a ≤ X < b) =

∫ b

a

d(t)dt.

196

This formula can be graphically interpreted. The probability that X falls

into [a, b) equals the area under the density function over this interval.

Example B.2. We assume that a random variable X can take all values

from the interval [0, 100], e.g. by measuring a car’s speed. If all results are

”equally likely”, then the density function is given as

d(x) =





1
100

if x ∈ [0, 100]

0 if x /∈ [0, 100]

,

i.e. it is constant over the considered interval and zero elsewhere. The

resulting PDF can hence be written as

F(x) =

∫ x

−∞
d(t)dt =





0 if x < 0

1
100

x if 0 ≤ x ≤ 100

1 if 100 < x

.

B.1.4 Joint Probability Distributions

A number of random variables X1, . . . , Xn are said to form an n-dimensional

random vector (X1, . . . , Xn). This random vector can be characterised by an

n-dimensional joint probability distribution function

F(x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn).

197

X1, . . . , Xn are called independent if

F(x1, . . . , xn) = F1(X1 < x1) · . . . · Fn(Xn < xn)

where Fi is the PDF of Xi. That means that the joint probability distribution

function F is fully described by the distribution functions F1 to Fn.

B.2 One-Sample and One-Tailed t-Test

The t-tests are a family of statistical tests that are used to analyse sample

data and to draw conclusions about the sample means. The one-sample and

one-tailed t-test is applied in the following situation:

Problem: A single data sample x1, . . . , xn of n real numbers, which is uni-

formly distributed1, is given. The assumption that this sample is not drawn

from a population with a known and given mean m, but rather has a smaller

mean µ has to be probed statistically.

The t-test for this case consists of four major steps:

1. Hypotheses: The first step of the t-test is to set up the null and

the alternative hypotheses. The null hypothesis is that the population

mean µ takes the value m: H0 : µ = m, while the alternative hypothesis

1[Bronstein and Semendjajew, 1991] points out that the t-test can be applied in prac-
tise as long as the frequency distribution of the data shows a single peak and is not too
skewed.

198

states that the the population mean is smaller than m: H1 : µ < m.

2. Establish critical t-value: The critical t-value tcritical can be

taken from tables, e.g. as given in [Bronstein and Semendjajew, 1991,

Ehrenberg, 1986]. It depends firstly on the kind of t-test being used,

here one-tailed, secondly on the chosen significance level α (which is a

measure for the degree of reliability of the t-test), and thirdly on the

degree of freedom DF of the sample data which is given as the sample

size minus one: DF = n− 1.

3. Calculate t-statistics: Central to the t-test is the calculation of the

t-statistics tcalculated = x̄−m
s/
√

n
. In this formula, x̄ is the sample mean and

is given by x̄ = 1
n

∑n
i=1 xi, and s is the estimated standard deviation of

the sample which can be established as s =
√

1
n−1

∑n
i=1(xi − x̄)2.

4. Conclusion: By comparing the t-statistics with the critical t-value,

we can accept or reject the set up hypotheses. If the absolute value of

the calculated t-value is smaller than or equal to the critical t-value,

|tcalculated| ≤ tcritical, then we accept the null hypothesis. But if the

absolute value of the calculated t-value is larger than the critical t-

value and the calculated t-value itself is negative, |tcalculated| > tcritical

and tcalculated < 0, then we reject the null hypothesis and accept the

alternative. In the latter case, we say that the population mean µ is

significantly smaller than the hypothesized mean m with a significance

level of α.

Example B.3. The following example illustrates this procedure:

199

Problem: We consider the sample 6, 11, 10, 8, 8, 9, 7, 12, 8 and 9 and want

to decide whether the corresponding population mean is significantly smaller

than m = 10 with a significance level of α = 0.05.

Step 1: Null hypothesis H0 : µ = 10, alternative hypothesis H1 : µ < 10.

Step 2: The critical t-value for a one-tailed t-test with a significance level of

0.05 and a degree of freedom of DF = 10− 1 = 9 is tcritical = 1.83.

Step 3: We calculate the mean of the sample data as x̄ = 8.8, and compute

an estimated standard deviation of the sample of s = 1.81. These results

yield a t-statistics of tcalculated = −2.09.

Step 4: As we find |tcalculated| = 2.09 > 1.83 = tcritical, we reject the null

hypothesis and, as tcalculated < 0, accept the alternate hypothesis instead. The

population mean is therefore significantly smaller than 10, and the difference

is not due to chance at a 0.05 level of significance.

200

Appendix C

Self-Organising Maps

Self-Organising Maps (SOMs) are neural networks with one layer of active

neurons. The basic idea is to train the neuron weight vectors through un-

supervised learning such that they cover the space of the input vectors ef-

fectively. The neurons are arranged in a lattice that leads to neighbour-

hood relationships between neurons. Here, we consider only the case of a

one-dimensional chain of neurons. For more detailed information about the

general case refer to the original work [Kohonen, 1995].

n neurons, each associated with a weight vector ~Wi, are arranged in a chain.

Neuron 1 is the first, neuron n the last member of the chain. During the

learning phase, k input vectors ~X1, . . . , ~Xk are successively presented to the

network. If the input vector ~Xi is presented, the weight vectors of the neurons

are compared to this input using a metric (e.g. the Euclidean distance). The

201

neuron, c, that is most similar to the input wins [Zell, 1994]:

c = argminn
j=1(|| ~Xi − ~Wj||).

The weight of this winning neuron is now modified so that it better matches

the input. Neurons neighbouring the winner are also adapted through this

process although to a less degree. This can be summarised in the following

formula, where t stands for t-th training step:

~Wj(t + 1) = ~Wj(t) + η(t)hcj(t)(~Xt − ~Wj(t)).

η(t) is a time dependent learning rate which usually decreases over time from

1 to 0. hcj(t) is the neighbourhood kernel which determines to what extent

weights get adapted depending on the distance to the winning neuron. Due

to the chain structure of the neurons this function can be written as:

hcj(t) = h(|c− j|, t).

A typical example is the cylinder neighbourhood kernel:

h(|c− j|, t) = hδ(|c− j|) = hcylinder(|c− j|, δ) =





1 if |c− j| ≤ δ

0 else

202

Appendix D

Experimental Results for Single

Parameter Optimisation

At each stage of the single parameter optimisation process, the best param-

eter value is highlighted in bold.

D.1 Application I

Results are averaged over 100 TSP instances.

Initial parameter setting:

Parameter P1 P2 P3 P4 P5

Value 1 1 10 0.5 0.5

203

Number of restarts:

P1 1 2 5

favg 11.99 12.23 12.81

Neighbourhood operators:

P2 1 2 3 4 5 6 7

favg 11.99 10.04 10.24 9.48 9.55 9.40 9.45

Thermalisation:

P3 1 10 100 1000 10000 100000

favg 9.43 9.40 9.42 9.42 9.43 9.42

Initial acceptance probability:

P4 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

favg 9.40 9.40 9.41 9.42 9.42 9.40 9.42 9.43 9.42 9.43 9.46

Final acceptance probability:

P5 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

favg 9.43 9.44 9.43 9.46 9.41 9.40 9.43 9.42 9.39 9.43 9.38

Final parameter setting:

Parameter P1 P2 P3 P4 P5

Value 1 6 10 0.5 0.99

D.2 Application II

Results are averaged over 100 VRP instances.

Initial parameter setting:

204

Parameter P1 P2 P3 P4 P5 P6 P7

Value 1 7 1 1 0.0 10 0

Number of restarts:

P1 1 2 5

favg 1431.3 1416.8 1408.8

Neighbourhood operators:

P2 1 2 3 4 5 6 7

favg 1860.3 1476.4 1410.7 1448.4 1430.5 1412.9 1408.8

Stepping factor:

P3 1 2 4 8 16

favg 1408.8 1410.5 1414.7 1421.4 1431.5

Aspiration:

P4 0 1

favg 1408.7 1408.8

Random move probability:

P5 0.00 0.05 0.10 0.15 0.20 0.30 0.50

favg 1408.7 1404.6 1405.2 1403.9 1404.3 1412.9 1591.7

Tabu list length:

P6 5 10 15 25 35 50 75

favg 1404.7 1403.9 1403.2 1403.4 1402.3 1403.1 1402.7

Tabu list length variation:

P7 0 1 2 5 10 20 50

favg 1402.3 1402.7 1402.4 1403.0 1402.9 1403.3 1402.8

205

Final parameter setting:

Parameter P1 P2 P3 P4 P5 P6 P7

Value 5 7 1 0 0.15 35 0

D.3 Application III

Results are averaged over 100 VRP instances.

Initial parameter setting:

Parameter P1 P2 P3 P4 P5 P6 P7

Value 1 7 100 1 1 10 1

Number of restarts:

P1 1 2 5

favg 1456.7 1473.1 1506.8

Neighbourhood operators:

P2 1 2 3 4 5 6 7

favg 1517.7 1545.1 1467.5 1465.1 1458.9 1459.1 1456.7

Population size:

P3 50 100 150 200 250

favg 1442.0 1456.7 1473.1 1484.3 1490.9

Elitism:

P4 0 1

favg 1701.2 1442.0

Better initial tours:

206

P5 0 1

favg 1449.3 1442.0

Parenthood proportion:

P6 5 10 15 20 30 40 50

favg 1428.9 1442.0 1447.3 1462.8 1478.0 1500.0 1518.1

Replacement scheme:

P7 0 1

favg 1435.8 1428.9

Final parameter setting:

Parameter P1 P2 P3 P4 P5 P6 P7

Value 1 7 50 1 1 5 1

D.4 Application V

Results are averaged over 50 JSSP instances.

Initial parameter setting:

Parameter P1 P2 P3 P4 P5 P6 P7 P8

Value 1 1 100 50 0.6 0.1 1 0

Number of restarts:

P1 1 2 5

favg 879.8 879.7 880.8

Number of subpopulations:

207

P2 1 2 5 10

favg 879.7 879.1 888.9 897.1

Size of subpopulations:

P3 10 20 50 100 200

favg 879.2 875.9 872.1 879.1 887.6

Migration:

P4 0 10 20 50 100

favg 873.9 870.2 872.1 872.1 873.6

Crossover rate:

P5 0.0 0.1 0.2 0.3 0.4 0.5

favg 885.4 874.9 872.5 873.3 873.3 872.2

P5 0.6 0.7 0.8 0.9 1.0

favg 870.2 873.6 871.8 872.6 875.2

Mutation rate:

P6 0.0 0.1 0.2 0.3 0.4 0.5

favg 898.2 870.2 865.3 863.7 865.7 863.7

P6 0.6 0.7 0.8 0.9 1.0

favg 864.6 857.1 861.9 859.3 861.6

Elitism:

P7 0 1

favg 889.1 857.1

Selection mechanism:

P8 0 1

favg 857.1 852.6

208

Final parameter setting:

Parameter P1 P2 P3 P4 P5 P6 P7 P8

Value 2 2 50 10 0.6 0.7 1 1

D.5 Application VI

Results are averaged over 50 JSSP instances.

Initial parameter setting:

Parameter P1 P2 P3 P4 P5 P6 P7

Value 1 1 0.0 13 0.8 1.2 0.5

Number of restarts:

P1 1 2 5

favg 847.6 848.3 849.2

Aspiration:

P2 0 1

favg 852.4 847.6

Random move probability:

P3 0.00 0.05 0.1 0.15 0.20 0.25

favg 847.6 850.8 853.0 855.1 857.7 857.4

P3 0.30 0.35 0.4 0.45 0.50

favg 859.2 862.4 862.0 866.4 869.4

Tabu list length:

209

P4 4 6 8 10 13

favg 847.7 844.2 844.0 844.5 847.6

P4 15 20 25 35 50

favg 850.9 858.4 868.3 874.1 887.1

Minimal tabu list length factor:

P5 0.0 0.1 0.2 0.3 0.4 0.5

favg 842.6 844.2 843.1 843.1 845.2 844.2

P5 0.6 0.7 0.8 0.9 1.0

favg 843.8 844.0 844.0 846.8 845.8

Maximal tabu list length factor:

P6 1.0 1.2 1.4 1.8 2.2 2.6

favg 848.2 842.6 845.2 846.6 845.9 847.7

P6 3.0 3.4 3.8 4.2 4.6 5.0

favg 849.1 848.1 852.4 853.5 856.9 855.2

Penalty factor:

P7 0.0 0.2 0.4 0.5 0.6 0.8

favg 845.8 844.5 845.1 842.6 845.1 845.2

P7 1.0 1.2 1.4 1.6 1.6 2.0

favg 846.6 845.6 850.8 846.3 846.7 848.6

Final parameter setting:

Parameter P1 P2 P3 P4 P5 P6 P7

Value 1 1 0.0 8 0.0 1.2 0.5

210

Bibliography

[Badeau et al., 1997] Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y.,

and Taillard, E. D. (1997). A Parallel Tabu Search Heuristic for the

Vehicle Routing Problem with Time Windows. Transportation Research,

5:109–122.

[Baeck, 1993] Baeck, T. (1993). Optimal Mutation Rates in Genetic Search.

In Forrest, S., editor, Proceedings of the 5th International Conference on

Genetic Algorithms, pages 2–8, San Mateo, CA, USA. Morgan Kaufmann.

[Bagley, 1967] Bagley, J. D. (1967). The Behavior of Adaptive Systems which

employ Genetic and Correlation Algorithms. PhD thesis, University of

Michigan.

[Balas and Toth, 1985] Balas, E. and Toth, P. (1985). Branch and Bound

Methods. In Lawler, E., Lenstra, J., Kan, A. R., and Shmoys, D., edi-

tors, The Traveling Salesman Problem: A Guided Tour of Combinatorial

Optimization, page 361, Wiley, New York.

[Baluja, 1994] Baluja, S. (1994). Population-Based Incremental Learning:

A Method for Integrating Genetic Search based Function Optimization

and Competitive Learning. Technical Report CMU-CS-94-163, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA.

[Beasley, 1990] Beasley, J. E. (1990). OR-Library: Distributing Test Prob-

lems by Electronic Mail. Journal of the Operational Research Society,

41(11):1069–1072. (See http://mscmga.ms.ic.ac.uk/info.html).

211

[Bianchi, 2000] Bianchi, L. (2000). Notes on dynamic vehicle routing - the

state of the art -. Technical Report IDSIA-05-01, IDSIA, Switzerland.

[Boettcher and Percus, 1998] Boettcher, S. and Percus, A. (1998). Nature’s

Way of Optimizing.

[Branke et al., 2000] Branke, J., Kaussler, T., Schmidt, C., and Schmeck, H.

(2000). A Multi-Population Approach to Dynamic Optimization Problems.

In Proceedings of the 4th International Conference on Adaptive Computing

in Design and Manufacturing.

[Bronstein and Semendjajew, 1991] Bronstein, I. N. and Semendjajew, K. A.

(1991). Taschenbuch der Mathematik. B. G. Teubner Verlagsgesellschaft

and Verlag Nauka, Stuttgart, Leipzig, Moskau, twenty-fifth edition.

[Cavicchio, 1970] Cavicchio, D. J. (1970). Adaptive Search Using Simulated

Evolution. PhD thesis, University of Michigan, Ann Arbor, MI.

[Chandy et al., 1997] Chandy, J., Kim, S., Ramkumar, B., Parkes, S., and

Banerjee, P. (1997). An Evaluation of Parallel Simulated Annealing Strate-

gies with Application to Standard Cell Placement. IEEE Transactions on

Computer-Aided Design, pages 100–114.

[Cox and Reid, 2000] Cox, D. R. and Reid, N. (2000). The Theory of the

Design of Experiments. Chapman & Hall/CRC, Boca Raton, London,

New York, Washington D. C.

[da Graca Lobo, 2000] da Graca Lobo, F. M. P. (2000). The Parameter-

less Genetic Algorithm: Rational and Automated Parameter Selection for

Simplified Genetic Algorithm Operation. PhD thesis, Lisbon University.

[Davidon, 1991] Davidon, W. C. (1991). Variable Metric Method for Mini-

mization. SIAM Journal Optimization, 1(1):1–17. With a belated preface

for ANL 5990.

[Davis, 1989] Davis, L. (1989). Adapting Operator Probabilities in Genetic

Algorithms. In Proceedings of the third international conference on Genetic

algorithms, pages 61–69. Morgan Kaufmann Publishers Inc.

212

[De Jong, 1975] De Jong, K. (1975). An Analysis of the Behavior of a Class

of Genetic Adaptive Systems. PhD thesis, University of Michigan.

[Dorne and Voudouris, 2004] Dorne, R. and Voudouris, C. (2004). HSF: The

iOpt’s framework to easily design metaheuristic methods. In Resende, M.

G. C. and de Sousa, J. P., editors, Metaheuristics: Computer Decision-

Making, chapter 11. Kluwer Academic Publishers.

[Duncan, 1995] Duncan, T. (1995). Experiments in the use of Neighbour-

hood Search techniques for Vehicle Routing. Presented at BCS Expert

Systems 95.

[Ehrenberg, 1986] Ehrenberg, A. S. C. (reprinted with corrections 1986). A

Primer in Data Reduction. John Wiley & Sons.

[Eiben et al., 1999] Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999).

Parameter Control in Evolutionary Algorithms. IEEE Trans. on Evolu-

tionary Computation, 3(2):124–141.

[Fisher and Thompson, 1963] Fisher, H. and Thompson, G. L. (1963). Prob-

abilistic learning combinations of local job-shop scheduling rules. In Muth,

J. F. and Thompson, G. L., editors, Industrial Scheduling, pages 225–251.

Prentice Hall, Englewood Cliffs, New Jersey.

[Gendreau et al., 1998] Gendreau, M., Guertin, F., Potvin, J., and Sguin, R.

(1998). Neighborhood search heuristics for a dynamic vehicle dispatching

problem with pick-ups and deliveries. Technical Report CRT-98-10, Centre

de recherche sur les transports, Universit de Montral.

[Giffler and Thompson, 1960] Giffler, J. and Thompson, G. L. (1960). Algo-

rithms for Solving Production Scheduling Problems. Operations Research,

8:487–503.

[Glover, 1989] Glover, F. (1989). Tabu Search, Part 1. ORSA Journal on

Computing, 1(3):190–206.

213

[Goldberg, 1989] Goldberg, D. E. (1989). Optimal Initial Population Size

for Binary-Coded Genetic Algorithms. Technical report, University of Al-

abama.

[Goldberg et al., 1992] Goldberg, D. E., Deb, K., and Thierens, D. (1992).

Towards a Better Understanding of Mixing in Genetic Algorithms. Tech-

nical Report IlliGAL Report No 92009, University of Illinois.

[Gosling, 2003] Gosling, T. (2003). The Simple Supply Chain Model and

Evolutionary Computation. In Proceedings of the Congress on Evolution-

ary Computation, Canberra, Australia, pages 2322–2329.

[Grefenstette, 1986] Grefenstette, J. (1986). Optimization of Control Param-

eters for Genetic Algorithms. IEEE Trans. Syst. Man Cybern., 16(1):122–

128.

[Harik et al., 1999] Harik, G., Cantu-Paz, E., Goldberg, D. E., and Miller,

B. L. (1999). The Gambler’s Ruin Problem, Genetic Algorithms, and the

Sizing of Populations. Evolutionary Computation, 7:231–255.

[Ho and Pepyne, 2002] Ho, Y. C. and Pepyne, D. L. (2002). Journal of Op-

timization Theory and Applications, 115:549.

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor, Michigan.

[Ingber, 1989] Ingber, L. (1989). Very fast simulated re-annealing. Mathe-

matical Computer Modelling, 12(8):967–973.

[Irnich, 2000] Irnich, S. (2000). A Multi-Depot Pickup and Delivery Prob-

lem with a Single Hub and Heterogeneous Vehicles. European Journal of

Operational Research, 122(2):310–328.

[Johnson and McGeoch, 1997] Johnson, D. and McGeoch, L. (1997). The

Traveling Salesman Problem: A Case Study in Local Optimization. In

Aarts, E. H. L. and Lenstra, J., editors, Local Search in Optimisation,

pages 215–310. John Wiley and Sons, New York.

214

[Julstrom, 1995] Julstrom, B. A. (1995). What Have You Done for Me

Lately? Adapting Operator Probabilities in a Steady-State Genetic Al-

gorithm. In ICGA, pages 81–87.

[Kilby et al., 1998] Kilby, P., Prosser, P., and Shaw, P. (1998). Dynamic

VRPs: a study of scenarios. Technical Report APES-06-1998, University

of Strathclyde, UK.

[Kilby et al., 1999] Kilby, P., Prosser, P., and Shaw, P. (1999). Guided Lo-

cal Search for the Vehicle Routing Problems With Time Windows. In

S.Voss, Martello, S., Osman, I., and C.Roucairol, editors, Meta-heuristics:

Advances and Trends in Local Search for Optimization, pages 473–486.

Kluwer Academic Publishers, Boston.

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P.

(1983). Optimization by Simulated Annealing. Science, 220(4598):671–

680.

[Kohonen, 1995] Kohonen, T. (1995). Self–Organizing Maps. Springer Ver-

lag, Berlin, Heidelberg.

[Korel, 1990] Korel, B. (1990). Automated software test data generation.

IEEE Transactions on Software Engineering, 8(16):870–879.

[Li and Lim, 2001] Li, H. and Lim, A. (2001). A Metaheuristic for the Pickup

and Delivery Problem with Time Windows. In ICTAI.

[Lin et al., 1997] Lin, S.-C., Goodman, E. D., and III, W. F. P. (1997). In-

vestigating Parallel Genetic Algorithms on Job Shop Scheduling Problems.

In Proceedings of the sixth International Conference on Evolutionary Pro-

gramming.

[Machado et al., 2002] Machado, P., Tavares, J., Pereira, F. B., and Costa,

E. (2002). Vehicle Routing Problem: Doing It The Evolutionary Way. In

GECCO 2002: Proceedings of the Genetic and Evolutionary Computation

Conference.

215

[Mazumder and Rudnick, 1998] Mazumder, P. and Rudnick, E. (1998). Ge-

netic Algorithms for VLSI Design, Layout and Test Automation. Prentice

Hall Modern Semiconductor Design Series. Prentice Hall.

[Mercer and Sampson, 1978] Mercer, R. E. and Sampson, J. R. (1978).

Adaptive Search Using a Reproductive Meta-Plan. Kybernetes, 7:215–228.

[Moldover and Coddington, 1994] Moldover, R. and Coddington, P. (1994).

Improved Algorithms for Global Opimization.

[Montgomery, 2005] Montgomery, D. C. (2005). Design and Analysis of Ex-

periments. John Wiley & Sons, Inc., New York, sixth edition.

[Muehlenbein, 1992] Muehlenbein, H. (1992). How genetic algorithms really

work: Mutation and hill-climbing. Parallel Problem Solving from Nature,

2:15–26.

[Mühlenbein and Mahnig, 1999] Mühlenbein, H. and Mahnig, T. (1999).

Convergence Theory and Applications of the Factorized Distribution Al-

gorithm. JCIT: Journal of Computing and Information Technology, 7.

[Neal, 1993] Neal, R. M. (1993). Probabilistic inference using Markov chain

Monte Carlo methods. Technical Report CRG-TR-93-1, Department of

Computer Science, University of Toronto.

[Ono et al., 1996] Ono, I., Yamamura, M., and Kobayashi, S. (1996). A Ge-

netic Algorithm for Job-shop Scheduling Problems Using Job-based Order

Crossover. In Proceedings of ICEC’96, pages 547–552.

[Osman, 1993] Osman, I. H. (1993). Metastrategy simulated annealing and

tabu search algorithms for the vehicle routing problem. Annals of Opera-

tions Research, 41:421–451.

[Osman, 1995] Osman, I. H. (1995). An Introduction to Meta-Heuristics.

In Lawrence, M. and Wilson, C., editors, Operational Research Tutorial

Papers, pages 92–122, Birmingham. Operational Research Society Press.

216

[Pelikan et al., 1999] Pelikan, M., Goldberg, D. E., and Cantú-Paz, E.

(1999). BOA: The Bayesian Optimization Algorithm. In Banzhaf, W.,

Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and

Smith, R. E., editors, Proceedings of the Genetic and Evolutionary Com-

putation Conference GECCO-99, volume I, pages 525–532, Orlando, FL.

Morgan Kaufmann Publishers, San Fransisco, CA.

[Pelikan and Mühlenbein, 1998] Pelikan, M. and Mühlenbein, H. (1998).

Marginal Distribution in Evolutionary Algorithms. In Proceedings of the

International Conference on Genetic Algorithms Mendel ’98, pages 90–95,

Brno, Czech Republic.

[Pelikan and Mühlenbein, 1999] Pelikan, M. and Mühlenbein, H. (1999). The

Bivariate Marginal Distribution Algorithm. In Roy, R., Furuhashi, T.,

and Chawdhry, P. K., editors, Advances in Soft Computing - Engineering

Design and Manufacturing, pages 521–535, London. Springer-Verlag.

[Psaraftis, 1995] Psaraftis, H. N. (1995). Dynamic vehicle routing: Status

and prospects. Annals of Operations Research, 61:143–164.

[Reinelt, 1995] Reinelt, G. (1995). TSPLIB. http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/index.html.

[Royston, 1992] Royston, P. (1992). Approximating the Shapiro-Wilk W test

for Non-Normality. Statistics and Computing, 2:117–119.

[Russell and Norvig, 2003] Russell, S. and Norvig, P. (2003). Artificial Intel-

ligence A Modern Approach. Prentice Hall Series in Artificial Intelligence.

Prentice Hall, second edition.

[SaÃlustowicz and Schmidhuber, 1997] SaÃlustowicz, R. P. and Schmidhuber,

J. (1997). Probabilistic Incremental Program Evolution. Evolutionary

Computation, 5(2):123–141.

[Schaffer et al., 1989] Schaffer, J. D., Caruana, R., Eshelman, L. J., and Das,

R. (1989). A Study of Control Parameters Affecting Online Performance

of Genetic Algorithms for Function Optimization. In Proceedings of the

217

3rd International Conference on Genetic Algorithms, pages 51–60, San

Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Sebag and Ducoulombier, 1998] Sebag, M. and Ducoulombier, A. (1998).

Extending Population-Based Incremental Learning to Continuous Spaces.

In A. E. Eiben, T. Bitck, H.-P. S. and Schoenauer, M., editors, Fifth

International Conference on Parallel Problem Solving from Nature, New

York. Springer-Verlag.

[Servet et al., 1997] Servet, I., Trave-Massuyes, L., and Stern, D. (1997).

Telephone network traffic overloading diagnosis and evolutionary compu-

tation techniques. In Third European Conference on Artificial Evolution

(AE’97), pages 137–144, Berlin. Springer Verlag.

[Shapiro, 2002] Shapiro, J. L. (2002). The Sensitivity of PBIL to its Learning

Rate, and How Detailed Balance Can Remove It. Morgan Kaufmann.

[Shapiro, 2003] Shapiro, J. L. (2003). Scaling of Probability-Based Opti-

mization Algorithms. Advances in Neural Information Processing, 15.

[Smith and Fogarty, 1996] Smith, J. and Fogarty, T. C. (1996). Self Adap-

tation of Mutation Rates in a Steady State Genetic Algorithm. In Inter-

national Conference on Evolutionary Computation, pages 318–323.

[Smith and Smuda, 1995] Smith, R. E. and Smuda, E. (1995). Adaptively

resizing populations: Algorithm, analysis, and first results. Complex Sys-

tems, 9:47–72.

[Southey and Karray, 1999] Southey, F. and Karray, F. (1999). Approaching

Evolutionary Robotics Through Population-Based Incremental Learning.

In Proceedings of the 1999 International Conference on Systems, Man, and

Cybernetics (SMC’99).

[Stevens and D’Agostino, 1986] Stevens, M. and D’Agostino, R., editors

(1986). Goodness of Fit Techniques. Marcel Dekker, New York.

[Sukthankar, 1997] Sukthankar, R. (1997). Situation Awareness for Tactical

Driving. PhD thesis, Carnegie Mellon University, Pittsburgh.

218

[Taillard, 1994] Taillard, E. D. (1994). Parallel taboo search techniques for

the job shop scheduling problem. ORSA Journal on Computing 6, pages

108–117.

[Tongchim and Chongstitvatana, 2002] Tongchim, S. and Chongstitvatana,

P. (2002). Parallel genetic algorithm with parameter adaptation. Infor-

mation Processing Letters, 82(1):47–54.

[Torczon, 1997] Torczon, V. (1997). On the Convergence of Pattern Search

Algorithms. SIAM Journal on Optimization, 7(1):1–25.

[Toth and Vigo, 2001] Toth, P. and Vigo, D., editors (2001). The Vehicle

Routing Problem. Siam Monographs on Discrete Mathematics and Appli-

cations. SIAM.

[Tucker, 1962] Tucker, H. G. (1962). An Introduction to Probability and

Mathematical Statistics. Academic Press, New York, London.

[van Laarhoven et al., 1992] van Laarhoven, P. J. M., Aarts, E. H. L., and

Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Oper-

ations Research, 40(1):113–125.

[Voudouris and Dorne, 2002] Voudouris, C. and Dorne, R. (2002). Integrat-

ing Heuristic search and One-Way Constraints in the iOpt Toolkit. In Voss,

S. and Woodruff, D., editors, Operations Research/Computer Science In-

terfaces (Optimization Software Class Libraries), volume 18, chapter 6,

pages 177–192. Kluwer Academic Publishers.

[Voudouris and Tsang, 1999] Voudouris, C. and Tsang, E. P. K. (1999).

Guided Local Search and its application to the Travelling Salesman Prob-

lem. European Journal of Operational Research, 113(2):469–499.

[Weinberg, 1970] Weinberg, R. (1970). Computer Simulation of a Living

Cell. PhD thesis, University of Michigan.

[Whitley and Mathias, 1992] Whitley, D. and Mathias, K. (1992). Genetic

Operators, the Fitness Landscape and the Traveling Salesman Problem.

219

In Manner, R. and Manderick, B., editors, Parallel Problem Solving from

Nature-PPSN 2, pages 219–228. North Holland-Elsevier.

[Wolpert and Macready, 1995] Wolpert, D. H. and Macready, W. G. (1995).

No Free Lunch Theorems for Search. Technical Report SFI-TR-95-02-010,

Santa Fe Institute.

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997).

No Free Lunch Theorems for Optimization. IEEE Transactions on Evo-

lutionary Computation, 1:67–82.

[Wu and Hamada, 2000] Wu, C. F. J. and Hamada, M. (2000). Experiments:

Planning, Analysis, and Parameter Design Optimization. John Wiley &

Sons, Inc., New York.

[Yang and Yao, 2003] Yang, S. and Yao, X. (2003). Dual Population-Based

Incremental Learning for Problem Optimization in Dynamic Environ-

ments. In et. al., M. G., editor, Proceedings of the 7th Asia Pacific Sym-

posium on Intelligent and Evolutionary Systems, pages 49–56.

[Zachariasen and Dam, 1995] Zachariasen, M. and Dam, M. (1995). Tabu

Search on the Geometric Traveling Salesman Problem. In Osman, I. H. and

Kelly, J. P., editors, Metaheuristics: theory and applications, Proceedings

from Metaheuristics International Conference, Colorado, pages 571–587.

[Zell, 1994] Zell, A. (1994). Simulation Neuronaler Netze. Addison–Wesley,

Bonn, Paris, Reading Mass., first edition.

[Zhang and Mühlenbein, 2004] Zhang, Q. and Mühlenbein, H. (2004). On

the Convergence of a Class of Estimation of Distribution Algorithms. IEEE

Transactions on Evolutionary Computation, 8(2).

220

