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Abstract. MOEA/D is a novel and successful Multi-Objective Evolu-
tionary Algorithms(MOEA) which utilizes the idea of problem decom-
position to tackle the complexity from multiple objectives. It shows bet-
ter performance than most nowadays mainstream MOEA methods in
various test problems, especially on the quality of solution's distribu-
tion in the Pareto set. This paper aims to bring the strength of meta-
model into MOEA/D to help the solving of expensive black-box multi-
objective problems. Gaussian Random Field Metamodel(GRFM) is cho-
sen as the approximation method. The performance is analyzed and com-
pared on several test problems, which shows a promising perspective on
this method.

1 Introduction

Multi-Objective Evolutionary Algorithms(MOEA) is an important stochastic
search method for Multi-Objective Optimization(MOO), gaining more and more
attention from both research and real application �elds. However, when applying
to real problem, one main defect of most MOEA methods is that they need
great amount of function evaluations before �nd a good Pareto set, while it is
not uncommon to see a black-box and expensive function(or functions) in real-
life application solving. Here, we say a function to be expensive and black-box
means the function has no analytic form; function value can only be obtained
by evaluation; and it needs lots of resource(time, computation power, etc.) for
that evaluation. With every evaluation costs a lot, MOEA, which normally need
thousands of, cannot be directly applied in those applications.

The hardness of expensive block-box function had been confronted and well
handled in many �elds. The essential idea behind is to use an approximated cheap
function to estimate the real function value, thus reduce the pricy evaluations.
The concept was widely adpoted in �elds such as global optimization[9], ex-
perimental design[16] and the large varieties of Response Surface Method[16,3],
when facing expensive black-box functions. Many researches[4,8,23,20,18] had
also been done in Evolutionary Computation(EC) for single objective prob-
lem(seeing [7] for a good survey on this topic) on this matter. However, because
of the di�erence between single and multiple objectives problem solving, those
methods cannot be readily applied in MOEA. Recent researches on MOEA with



metamodel assistance also appeared, notably in [11] and [5], which we think
represent two kinds of methods to transform metamodel assistance from single
objective to multiple objectives.

The �rst kind is to adapt the metamodel itself. In [5], the underlying statistics
model of Gaussian Random Field Metamodel(GRFM) was extended from single
objective to multi-objectives. Various screening methods from global optimiza-
tion were naturally augmented to multi-objective case. Then the individual pass-
ing through the screening was evaluated. Another kind of approach decomposes
the Multi-Objective Problem(MOP) into Single Objective Problems(SOPs) us-
ing weighted-sum[14] or Tchebyche�[14] aggregation function. As those aggrega-
tion functions' optimal are also Pareto solutions(and vice verse), this approach
can make use of the existed large amount of algorithms and techniques from
single objective optimization theory. In [11], a method called ParEGO was in-
troduced. In every iteration of ParEGO, it uniformly randomly picks a aggrega-
tion weight and then using an augmented Tchebyche� to form a singular func-
tion from the multiple objective functions. Then EGO[10], a global optimization
method based on GRFM, was used to approximate the singular function based
on the existed evaluation point set and �nd the next evaluation point. Currently
no comparison has been done on the performance of the above two approaches.
As we also take the second approach in this paper, we will put our attention on
the comparison between our method and ParEGO.

MOEA/D was �rst proposed and developed by Zhang and Li in [24]. It ex-
plicitly made use the concept of decomposition to simplify a MOP into a serial of
subproblems in forms of SOP, using weighted-sum, Tchebyche� aggregation or
other more advanced decomposing techniques such as Penalty-based boundary
intersection(PBI)[2]. It exploited the bene�t of that decomposition further by a
neighborhood relationship de�ned on the subproblems. Subproblems in a neigh-
borhood can exchange information to accelerate the convergence. It exhibited
better performance on most standard test problems. However, no research have
been done on the performance of MOEA/D with metamodel assistance on the
black-box expensive functions. This paper will show that MOEA/D is so �exible
that it still works very well in that situation. In our experiments, we also choose
to use GRFM for the purpose of function approximation.

The paper is organized as follow: section 2.1 and section 2.2 give some de-
scription of the background on MOEA/D and the metamodel GRFM we used;
section 3 details the algorithm, then some experiment results are given in sec-
tion 4. We conclude the paper in section 5 and give some the future research
directions on this matter.

2 Background

2.1 MOEA/D

Most MOEAs do not directly involve in decomposition of the problem; they
normally treat a MOP as a whole. In scalar optimization, all solutions can be



Algorithm 1 MOEA/D pseudo code
weights[] . The subproblem weights
neighbours[][] . The neighbourhood table
pop[] . The main population
P,N,D . The population size, neighbourhood size and dimension size respectively

procedure MoeaD(objs) . The main routine
Initialize
while Not Terminated do

for i = 1 to m do
ind← GeneticOp(i) . Generate new individual
Evaluate(ind) . Evaluate the new indivisual
Update(i, ind) . Update neighbourhood

end for
end while

end procedure

compared based on the single objective function. However, that is not the case
in MOP, as domination does not de�ne a complete order among the solutions
in objective space. To use the readily made techniques for scalar objective op-
timization, many MOEAs focus on how to sort the solutions in objective space
in a sensible order, and assign �tness according to that order to solutions. They
normally aims to generate the whole Pareto front(PF).

MOEA/D took a di�erent approach. On the consideration that in normal
case, only a limited number of solutions are needed for decision making, MOEA/D
aimed to solve only a subset of all the possible subproblems, which deemed
to be more computational e�cient and practical. A set of weights were �xed
ahead, with each weight corresponding to one subproblem de�ned by weight-
sum, Tchebyche� or any other decomposition approach. Then the neighborhood
of every subproblem was constructed based on the distance between weights.
Later, all the new solution generation and updating were performed on the neigh-
borhood. The rationale behind the neighborhood is: for closer weights with a less
distance, they have a larger chances to share similar good solutions. The using
of neighbor greatly sped up the convergence to subproblems' optimal.

Those functions not de�ned in the pseudo code are implemented straightly
forward and omitted from it to save the page. More detail on this method can
be found in [24]. This algorithms worked so well that it outperformed the main-
stream algorithm NSGA2 on a majority of test problems, as reported in [24].

2.2 Gaussian Random Field Metamodeling
GRFM has been long recognized as a powerful framework to build metamodel
for arbitrary unknown functions, especially those are simulated by computer
experiment[21]. It's essentially a statistics method based on Bayesian reasoning.
It have been widely used[19,12,23,1] in Evolutionary Computation for metamodel
assistance. Both the papers we mentioned in the introduction used this method.



Algorithm 2 MOEA/D pseudo code continue
procedure Initialize

weights[]← WeightGen(P,D)
neighbours[][]← NeighbourGen(weights)
pop[]← InitPop(m)
for i = 1 to P do

Evaluate(pop[i]); Update(i, pop[i])
end for

end procedure
procedure Update(index, ind)

for i = 1 to N do . Update the neighbour's solution
nindex← neighbour[index][i]; nweight← weights[nindex]
newval← ScalarProblem(nweight, ind)
oldval← ScalarProblem(nweight, pop[nindex])
if newval ≤ oldval then

pop[nindex]← ind
end if

end for
end procedure
procedure GeneticOp(index)

neighbour[]← neighbours[index]
for i = 1 to N do

j ← random(neighbour); k ← random(neighbour)
ind← Crossover(pop[j], pop[k])
ind← Mutate(ind)
return ind

end for
end procedure

In our implementation, a simpli�ed version is used. We are not intended to
gives the full derivation of the formula, but just gives the result here. To see
more detail on this, please refer to[10,22].

Formally speaking, for an unknown function f , given the training set T =
{〈xi, f (xi)〉 | i = 1..n,xi ∈ D ⊆ Rm}of size n, to predict the function value at a
new point y∗ = f (x∗) ,x∗ ∈D, the following formulas are used to estimate the
value of y∗:

ŷ = µ̂+ r′R−1 (y − 1µ̂) (1)
In the above equation, y is the vector of the training point's value: y =

{f (x1) , .., f (xn)}; µ̂ is the expected value of the estimated value, which will
be given below shortly, r and R are the so called correlation vector and matrix
respectively, their elements are computed as:

R (i, j) = exp (−d (xi,xj)) ; r (i) = exp (−d (xi,x∗))

where d (xi,xj)is the distance function:



d (xi,xj) =
m∑

h=1

θh |xih − xjh|ph ; θh ≥ 0 ∧ ph ∈ [1, 2] (2)

where xih is the hth element of vector xi; θh and ρh are the hyperparameters
that need to be computed �rst; and that is actually where the learning proce-
dure of Gaussian Process occurs. They are computed by maximize the following
likelihood function:

1

(2π)
n
2 (σ̂)n |R| 12

exp
(
− (y − 1µ̂)′R−1 (y − 1µ̂)

2σ̂2

)
(3)

The µ̂ and σ̂ are the expectation and standard deviation separately, which are
obtained also by maximize the above likelihood when treat θ and ρ as constant:

µ̂ =
1′R−1y
1′R−11

; σ̂ =
(y − 1µ̂)′R−1 (y − 1µ̂)

n

When substituting the above equations into the equation 3, we can get the
so-called �concentrated likelihood function�, which depends only upon the pa-
rameter θh and ρh. After maximize this likelihood function, we can get the value
of θh and ρh, then put them back in the equation 1, we can get an approximation
of y∗, namely ŷ.

One key feature of Gaussian prediction is that, not only a prediction is given,
the estimation of the accuracy of this prediction is also given by:

s2 = σ2

(
1− r′R−1r +

(
1− 1′R−1r

)2
1′R−1r

)
(4)

In this way, the prediction of f (x∗) is estimated to follow a normal distribu-
tion: y∗ ∼ N (ŷ, s2

)
. The additional deviation information is of great value as it

provides guidance for the search of the solution space, which will be seen in the
next section.

3 MOEA/D with GP model assistant

If we want to solve a black-box expensive MOP, the target is to limit the number
of evaluations as much as possible while can still get a reasonable closeness and
distribution of the Pareto front. Here, we present an analysis on the performance
of MOEA/D with GP model assistance.

We take a traditional way to do the job, i.e., using model as a prescreen-
ing mechanism[5]. Similar to ParEGO, at every iteration, MOEA/D runs on
a learned model, then the best result is selected for evaluation. However, our
approach is rather di�erent than ParEGO's. In ParEGO, at every iteration, a
GP model is constructed for one selected scalar subproblem. However, as in
MOEA/D, we maintain a set of subproblems, it may not be appropriate or



practical to construct GP models for every subproblem when the normal size of
subproblems ranges from 20 to 100.

Taken the above consideration, we model every objective function instead,
and construct the model for the subproblem model based on the objective mod-
els. Given a MOP with objective function f = 〈f1, ..fn〉, we construct the
GP model at every generation as f̂ =

〈
f̂1, ..f̂n

〉
, with every f̂i is estimated

to follow normal distribution f̂i ∼ N
(
ŷi, s

2
i

)
. Then in weight-sum decomposi-

tion, the scalar subproblem corresponding to weight w = 〈w1, .., wn〉 of form
sf =

∑n
i=1 wifi can be estimated as:

ŝf ∼ N

(
n∑

i=1

wiŷi,

n∑

i=1

(wisi)
2

)
(5)

Also, as suggested in [9], the optimal of the model cannot be directly evalu-
ated because of false convergence or local optimal. There must be some balance
between exploit and explore. Thus, as in ParEGO, the concept of Expected
Improvement[15] for the normal distribution is also considered here. Formally
speaking, in the training set T , if the minimal value for f is fmin, then for every
other point x, which f (x) is estimated to have a mean ŷ and standard deviation
s(just as given by the GP model), the Expected Improvement over fminis de�ned
as[9]:

EI (x) = E (max (f (x)− fmin, 0)) = s (uΦ (u) + φ (u)) (6)

where u = fmin−ŷ
s , Φ and φ are the normal cumulative distribution function

and density function respectively. Thus for every maintained scalar function, we
need to �nd a point that maximize the formula 6; The objective is changed from
�nding its minimal to �nding the maximal expected improvement. This should
be re�ected in MOEA/D when updating the main population. If we maintain n
subproblems, at every iteration we could get n points that could act as candidates
for real evaluation. To choose one from them, we simply choose the point that
has a maximal sum of all the EI over all the subproblems.

As a good solution from an iteration of MOEA/D could possible still be
a good solution in the next iteration, a good portion of main population of
MOEA/D should be kept between iterations. In our implementation, a k-mean
cluster[13] algorithm is used. The number of k is chosen to be S/5(the size of
main population divided by 5). Then, from each cluster, the best individual that
is closet to the cluster's center is reserved. All the other individuals in the main
population are randomized. The cluster technique proved to work well in our
settings.

After taken the above decisions, all other things are rather straight forward.
Thus we could have algorithm 3.



Algorithm 3 MOEA/D with GP model
evalpop[] . The already evaluaed points
gpmodel[] . The GP models learned from the evaluated points

procedure GPMoeaD
InitGPModel
while Not Terminated do

MoeaD(gpmodel)
ind← maxind∈mainpop(

∑
sf
EI(ind, sf))

Evaluate(ind)
evalpop[]← evalpop[] ∪ ind
UpdateGP
ClusterPop(mainpop, S/5)

end while
end procedure
procedure UpdateGP

for i = 1 to d do
gpmodel[i]← GP(evalpop, obj[i])

end for
end procedure

4 Experiment and Comparison

This section deals with experiments on several standard test problems. Even
thought this test problems are not black-box expensive, we limit the number
of evaluation to 100, 150, or 250, which makes them �expensive� essentially. On
every problem, we compared three settings of test: MOEA/D without evaluation
limit, MOEA/D with GP assistant, and ParEGO. The test problem chosen are
ZDT1(150), KNO1(100), OKA1(100); the number in parenthesis indicates the
evaluation limit.

Two metrics are chosen for measurement of the quality of result: D-metric
and I-metric. D-metric measure the distance from the Pareto Front(PF) and is
calculated as: D (A,P ∗) =

∑
v∈P∗ d(v,A)

|P∗| , where A is the approximation to the
PF, P ∗ is the set of uniformly distributed points along the PF, and d (v,A) is
the minimal Euclidean distance between v and A. While |P ∗| is large enough,
D-metric measure both diversity and convergence in a sense. I-metric measure
the hypervolume di�erence between the PF and the approximation set, it's cal-
culated as: I (A,P ∗, R) = H (P ∗, R) − H (A,R), where H is the hypervolume
indicator, or S-metric de�ned in [25], measures how much volume dominated
between the set and R(a reference point). Both D and I are the smaller, the
better. All the problems are tested for 10 times and the average and deviation
are computed on D and I. The experiment result are listed in table 1.

Experiment shows MOEA/D GP works extremely well on ZDT1(4 parame-
ters), not only in the metric D and I, but in the �gure. On KNO1, MOEA/D
GP works also very well, comparing to ParEGO and NSGA2. On OKA1, both



Table 1. D and I Metric

MOEA/D GP ParEGO NSGA2
instance D I D I D I

ZDT1 0.01(6.61e-4) 0.02(0.03) - - - -
KNO1 0.54(0.12) 21.25(5.70) 1.66(0.31) 47.51(8.32) 1.70(0.54) 53.80(16.62)
OKA1 1.43(1.06) 5.24(4.75) 0.65(0.05) 6.10(0.55) 0.95(0.15) 13.64(2.77)

Fig. 1. ZDT1 with 4 parameters, 150 evaluations
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the metric cannot show exactly which is better(MOEA/D GP is better in I but
worse in D). The reason may lie behind the complexity of OKA1 itself[17], which
make it very hard for any algorithm to approximate with mere 100 evaluations.

Fig. 2. KNO1 with 100 evaluation
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The experiments demonstrate that on the selected test problems, MOEA/D
GP exhibits good and consistent performances that at least no worse than
ParEGO and NSGA2 on the black-box and expensive condition. To be noted
that, as most settings used in this initial experiments are rather primitive and
reserved, MOEA/D GP should gain better result after re�nement such as nor-
malization, advanced decomposition techniques(both was taken by ParEGO),
etc.

5 Conclusion and Future Study
The paper shows some initial result from the experimenting of a new method to
solve black-box expensive multi-objective problems using the newly introduced
algorithm MOEA/D.

Although MOEA/D GP's performance was good on the selected test func-
tions, the research is only in primitive and tentative status, which at least can
be improved in the following way:



� Advanced decomposition techniques: MOEA/D GP does not work well on
concave problem such as VLMOP2 due to the used weight-sum decompo-
sition. The choosing of weight-sum here is just for simplicity because the
distribution as solved in equation 5 is hard (but not impossible) to solve for
Tchebyche�.

� Alternative exploration techniques: in recent research of global optimization
as surveyed in [9], new techniques to replace Expected Improvement have
been introduced and exhibited better performance. In [6], augmented EI was
proposed . Those advance in single objective optimization can be readily
borrowed in the framework of MOEA/D and better performance could be
expected in MOEA/D GP.

� Better selection strategy: when choose the next point for evaluation, a simple
strategy is applied to choose the best sum of EI over all subproblem. However,
as every subproblem has its own improvement measurement, the strategy
may not works well especially when no normalization is done beforehand.
Some other smarter strategy can be imaged to speed up the convergence,
such as to maximize the best improvement percentage.

� Dynamic weights control: the weights used to decompose the MOP in MOEA/D
were �xed, which made it di�cult to generate an evenly distributed Pareto
set when the weights set size is limited for some known test problem(OKA1).
Some dynamic control machenism of weights may help solve this problem
after obversing the population's distribution from generation to generation.

The future work will continue on the directions suggested above, and try it
on some realistic problems such as BT's multi-objective workforce scheduling
problem.
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