
Technical Report CSM-371, Department of Computer Science, University of Essex, April 2002 
Presented in the UK Local Search Workshop, OR Society (UK),  
City University, London UK, 16-17 April 2002, Paper T15 

 

 

 

Extending Guided Local Search –  
Towards a Metaheuristic Algorithm With No Parameters To Tune 

Edward Tsang, Patrick Mills and John Ford 
Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK 

Phone: +44 01206 87{2771,2774,2787} 
E-mail: {millph,edward,fordj}@essex.ac.uk 

URL: http://cswww.essex.ac.uk/CSP/ 
 

Technical Report CSM-371 
April 2002 

 

Abstract. Guided Local Search is a general penalty-based optimisation method that sits on 
top of local search methods to help them escape local optimum. It has been applied to a 
variety of problems and demonstrated effective. The aim of this paper is not to produce 
further evidence that Guided Local Search is an effective algorithm, but to present an 
extension of Guided Local Search that potentially has no parameter to tune. Compared to 
other algorithms, Guided Local Search is relatively easy to apply, as there is only one major 
parameter (λ) to set. In some applications, performance of Guided Local Search is insensitive 
to the value of this parameter. Nevertheless, the value of this parameter can affect the 
performance of Guided Local Search in some problems. In this paper, we show how (a) an 
aspiration criterion and (b) random moves may be added to Guided Local Search to reduce 
the sensitivity of its performance to the parameter value. The extended Guided Local Search 
is tested on the SAT, weighted MAX-SAT and Quadratic Assignment Problems with positive 
results.  

Keywords: local search, meta-heuristics, SAT, MAX-SAT, quadratic assignment problem 
(QAP) 
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1 Introduction 
Guided Local Search (GLS) is a general penalty-based optimisation method [36]. It belongs to a class of 

methods called meta-heuristics, which sit on top of local search methods to help them escape local 
optimum. Other meta-heuristics include various forms of Tabu Search [10, 11, 11] and Simulated 
Annealing [1, 16].  

GLS has been applied to a variety of problems and demonstrated effective (e.g. see [35, 37, 38, 39, 29]). 
The aim of this paper is not to produce further evidence on the effectiveness of GLS. The aim here is to 
present an extension of GLS that potentially has no parameter to tune.  

Compared to other meta-heuristic algorithms, GLS is relatively easy to apply, as there is only one major 
parameter, namely λ (see explanation below), to set. In some applications, performance of GLS is 
insensitive to the value of λ. Nevertheless, the value of λ can affect the performance of GLS in some 
problems. In this paper, we show how GLS can be extended to make it relatively insensitive to the value of 
λ; these extensions include:  

(a) Linking λ to the fitness of the first local optima found; 
(b) Adding aspiration to GLS 
(c) Adding random moves to GLS.  
For each extension, we attempt to (at least partially) answer the following questions: 
(i) Does it help GLS in any application at all? 
(ii) If it does help, when and why? 
(iii) Does it harm GLS in any applications? 
The promise of these extensions is supported by empirical evidence from applying the extended Guided 

Local Search to the SAT, weighted MAX-SAT and Quadratic Assignment Problems.  

2 Background: Guided Local Search 
Guided Local Search (GLS) [36] was an extension of GENET [5, 6, 34, 42, 42], a neural network 

approach to constraint satisfaction. While GENET attempts to find any solution that satisfies all the 
constraints, GLS attempts to find optimal solutions, according to a given function.  

GLS borrowed the idea of penalties in OR (e.g. see Koopman [17], Stone [30] and Luenberger [23]). As 
a meta-heuristic method, GLS sits on top of local search algorithms. In a local search, one searches in the 
space of candidate solutions1. To apply GLS, one defines a set of features for the candidate solutions2. GLS 
associates a cost and a penalty to each feature. The costs can normally be defined by the objective 
function3. The penalties are initialised to 0 and will only be increased when the local search reaches local 
optimum.  

Given an objective function g that maps every candidate solution s to a numerical value, GLS defines a 
function h that will be used by local search (replacing g):  

h(s) = g(s) + λ × Σ(pi × Ii(s)) (1)  

where s is a candidate solution, λ is a parameter to the GLS algorithm, i ranges over the features, pi is 
the penalty for feature i (all pi 's are initialised to 0) and Ii is an indication of whether s exhibits feature i: 

Ii(s) = 1 if s exhibits feature i; 0 otherwise. (2) 
                                                           
1 The solution representation issue is significant, though it is not the subject of our discussion in this paper. 
2 For example, in the traveling salesman problem, a feature could be “whether the candidate tour visits city B 

immediately after visiting city A”. 
3 For example, in the traveling salesman problem, the cost of the above feature can simply be the distance between 

cities A and B. 
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Sitting on top of local search algorithms, GLS helps them to escape local optima in the following way. 
Whenever the local search algorithm settles in a local optimum, GLS augments the cost function by adding 
penalties to selected features.  

The novelty of GLS is mainly in the way that it selects features to penalize. The intention is to penalize 
“unfavourable features” or features that “matter most” when a local search settles in a local optimum. The 
feature that has high cost affects the overall cost more. Another factor that should be considered is the 
current penalty value of that feature. The utility of penalizing feature i, utili, under a local optimum s*, is 
defined as follows:  

utili(s*) = Ii(s*) × ci / (1 + pi) (3) 

where ci is the cost and pi is the current penalty value of feature i. In other words, if a feature is not 
exhibited in the local optimum (indicated by Ii), then the utility of penalizing it is 0. The higher the cost of 
this feature (the greater ci), the greater the utility of penalizing it. Besides, the more times that it has been 
penalized (the greater pi), the lower the utility of penalizing it again. In a local optimum, the feature(s) with 
the greatest util value will be penalized. When a feature is penalized, its penalty value is always increased 
by 1. The scaling of the penalty is determined by λ. 

Following is the general GLS procedure: 
Procedure GLS (input: an objective function g; a local search strategy L; features and their 

costs; parameter λ ) 
1. Generate a starting candidate solution randomly or heuristically; 
2. Initialise all the penalty values (pi) to 0; 
3. Repeat the following until a termination condition (e.g. a maximum number of iterations or 

time limit) has been reached: 
3.1. Perform local search (using L) according to the augmented function h (which is g 

plus the penalty values, as defined in (Eq. 1) above) until a local optimum s* has 
been reached; 

3.2. For each feature i exhibited in s* compute utili = ci / (1 + pi)  
3.3. Penalize every feature i such that utili is maximum: pi = pi + 1; 

4. Return the best candidate solution found so far according to the objective function g. 
Apart from helping the local search to escape local optimum, penalties also helps GLS to rationalise its 

search effort: parts of the search space that exhibit penalised features will not be searched as thoroughly as 
space that do not exhibit any penalised features4.  

Naturally the choice of the features and the setting of λ may affect the efficiency of a search. In many of 
the problems that we have studied, the features come directly from the objective function. The only 
parameter that needs serious tuning is λ. This is the focus of this paper. The aim is to reduce the need to 
fine tune this parameter for individual problems or different problem classes.  

3 Using the first local optima to set the parameter λλλλ 
As shown in equation (1), if the value of λ is too small, then the penalty terms will not have significant 

effect on the augmented function. The consequence is GLS will take a long time to escape local optimum. 
If the value of λ is too high, the penalty terms will dominate the search. Any penalty posed on a feature that 
might be exhibited by an optimal solution could seriously prevent the search from finding this optimal 
solution.  

Our aim is to involve as little domain-specific knowledge as possible in setting λ. When Voudouris and 
Tsang applied GLS to the travelling salesman problem, they λ is set to the following value [39]: 
                                                           
4 However, not all penalised features will be avoided all the time. Therefore, penalties can be seen as soft taboos in 

Tabu Search [9, 10, 11]. In that sense, it can be argued that GLS is a form of Tabu Search. 
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λ = a × g(s*) / N (4) 
where s* is the first local optima found by the local search; g(s*) is the cost of s* in the travelling 

salesman problem; N is the number of cities in the problem; a is new parameter to tune; from the range (0, 
1]. In other words, the problem of tuning λ becomes the problem of tuning a, which we shall refer to as the 
λ-coefficient.  

Larger travelling salesman problems tend to have larger optimal values. The use of g(s*) ensures that 
the penalty terms are scaled to the cost of the original function to be optimised. Using Eq. (4) avoids tuning 
λ for individual problems. There is hope for finding a value for a that suits all travelling salesman 
problems. 

Can this strategy of setting λ be generalised to other problems? Notice that domain knowledge still 
plays a part in Eq. (4): g(s*) / N is the average cost of the edges in the tour represented by the local optima 
s*. Since the value of a is no greater than 1, each penalty term in the augmented function will have 
comparable values to the terms in the original function in the travelling salesman problem. 

One possibility to generalise this strategy to setting λ for other problems is to make: 
λ = a × C (5) 

where C is a value that roughly reflects the cost of the problem. Learning from our experience in the 
travelling salesman problem (and later the quadratic assignment problem, QAP), C should be roughly 
comparable to the average value of each term in the given cost function (g). 

To allow for inaccuracy in C, we do not limit the value of the λ-coefficient a to (0, 1]. Finding a value 
for λ-coefficient is still easier than finding a value for λ, as C has taken care of the scaling factor. Some of 
the remaining questions are:  

(a) How sensitive would the performance of GLS be with regard to the value of the λ-coefficient?  
(b) Are there means to reduce the sensitivity?  
(c) How easy is it to find good values for the λ-coefficient?  
A number of extensions have been looked at, with the intention to improve the performance of GLS. In 

the following sections, we shall present extensions for answer questions (b) above. 

4 Adding Aspiration to Guided Local Search 
Aspiration moves were used in Tabu Search [10, 11, 11]. Given a local search L and a function g to 

minimize5, an aspiration criterion for GLS is defined as follows: 
Let bsf be the best solution found so far according to g. A move from a candidate 
solution s to s’ is accepted by the local search L if g(s’) < g(bsf) but h(s’) > h(s), where 
h is the augmented cost function. 

In other words, an aspiration move in GLS is a move that would normally be rejected by the local 
search (which operates under the augmented cost function), but only accepted if the aspiration criterion is 
adopted.  

The intuition behind aspiration moves is this: since g is the function to optimise, there is no reason to 
ignore any good solutions just because we use an augmented function (h) to help escape local optimum and 
rationalise our search effort.  

GLS uses utilities to heuristically pick features to penalise. There is no guarantee that the feature being 
penalised will not appear in an optimal solution. If a feature fi is penalised, and fi is actually exhibited by an 
optimal solution s*, then it may take many more penalties on other features before the search could enter 
the basin of attraction6 of s*. This problem is potentially more serious if λ-coefficient is set to a relatively 
high value. Aspiration moves temporarily removes the effect of the penalties. If aspiration moves were to 
                                                           
5 An aspiration criterion for maximization problems can be defined similarly. 
6 Given a local search algorithm L, the basin of attraction for a local optima s* is the set of all candidate solutions that 

necessarily lead to s* under L. 
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be useful to GLS, one would expect them to be more useful when GLS uses relatively high λ-coefficient 
values. This conjecture is empirically supported (see summary below, or details in [25]). 

5 Adding Random Moves to Guided Local Search 
Randomness (sometimes referred to as “noise”) plays an important part in heuristic search (e.g. see 

Walksat [28, 28, 13]), especially Simulated Annealing [1, 16]. A random move in GLS means a move by 
the local search to a random neighbour, regardless of its fitness (according to the original or augmented 
function).  

Random moves helps to move out of basins of attraction. It is a simple way to escape local optimal. 
Therefore, one could say that the function of random moves overlaps that of penalties in GLS. However, 
random moves could compensate GLS should the λ-coefficient be set to a value that is too small. On the 
other hand, too much randomness defeats the purpose of local search. Therefore, some of the questions are:  

� Would random moves really help GLS when λ-coefficient is too small? 
� Would random moves degrade the performance of GLS when the λ-coefficient value is not too 

small?  
� How much randomness should one allow in GLS?  
� Does this level of randomness need tuning from problem to problem, or from problem class to 

problem class? 
We extended GLS by giving it, in every move, a probability Pr to make a random move. We conducted 

pilot experiments to test the effect of different combinations of Pr and λ-coefficient [25]. It was found that 
Pr = 0.2 worked well with most λ-coefficients.  

With Pr = 0.2 fixed, we extensively tested the effectiveness of this level of randomness in GLS, varying 
λ-coefficient. Empirical results are summarised in the next section (see [25] for details). They basically 
support the fact that randomness helped GLS when the value of λ-coefficient is too small, without seriously 
degrading the performance of GLS when λ-coefficient is not too small. Random moves worked particularly 
well with aspiration in QAPs. Our experimental results so far seem to indicate that Pr = 0.2 worked well in 
GLS in general, without needing any fine-tuning to suit individual problems or problem classes. 

6 Extended Guided Local Search 
Readers should be reminded that our goal is to extend GLS so that there is no need to fine tune λ for 

individual problems or problem classes. Our first extension is to turn the problem of tuning λ into tuning λ-
coefficient. Our analysis and experiments suggested that, at least in some problem classes, aspiration moves 
enhances the performance of GLS when λ-coefficient is too large, while random moves enhances the 
performance of GLS when λ-coefficient is too small. Therefore, we give the name Extended Guided Local 
Search to the following algorithm: 

GLS with λλλλ-coefficient replacing λλλλ, aspiration and random moves 
We tested the following algorithms: 

� GLS with λ-coefficient replacing λ 
� GLS with λ-coefficient replacing λ and aspiration moves (GLS+A) 
� GLS with λ-coefficient replacing λ and random moves (GLS+R); and 
� GLS with λ-coefficient replacing λ and aspiration and random moves (GLS+A+R) 

on three classes of problems (see [25] for details): 
� SAT: the satisfiability problem where Boolean variables represent the truth values of 

propositions and constraints are expressed in conjunctive normal form; the task is to find truth 
values for all the variables satisfying all the constraints [8]; 

� Weighted MAX-SAT: this is an optimisation problem which is based on the SAT problem, 
except that each clause is given a weight; the task is to minimize the total weights of the 
unsatisfied clauses [14, 24]; 
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� Quadratic Assignment Problem (QAP): this is an extensively studied optimisation problem in 
Operations Research [4, 25]. 

These problem classes are very different in nature. The landscape of SAT problems mainly comprises 
large plateaus. Although the MAX-SAT problem appears similar to the SAT problem, its landscape is 
much more ragged. The QAP has a more complex cost function than MAX-SAT, as the cost of each 
assignment depends on the values assigned to other variables. The performance of the GLS variants on 
MAX-SAT and QAP are shown in Figures 1 and 2. On SAT, all GLS variants exhibit similar performance. 

 

Figure 1: GLS Applied to MAX-SAT
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Figure 2: GLS applied to QAP
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Results in figure 1 and 2 show that aspiration and random moves complement each other. The 

performance of GLS+A+R is quite close to the better of GLS+A and GLS+R as λ-coefficient changes its 
value. This suggests that aspiration and random moves do not interfere with each other. Table 1 summarises 
the results.  

 SAT MAX-SAT QAP 
GLS+A Under all λ-coefficients, GLS+A 

produced solutions as good as, and 
often better, than results by GLS alone 
on MAX-SAT 

Under all λ-coefficients values, 
GLS+A produced better results than 
GLS alone; the gap between GLS and 
GLS+A grows as λ-coefficients grow, 
especially after λ-coefficients = 0.8 

When λ-coefficient is ≤ 0.8: GLS+R 
produced solutions better than those 
produced by GLS alone 

When λ-coefficient is ≤ 1: GLS+R 
produced better results than GLS 
alone 

When λ-coefficient is between 0.9 
and 6: GLS+R is sometimes better 
than GLS alone, sometimes not.  

GLS+R 

With λ-coefficient > 6, GLS+R 
mostly performed poorer than GLS 

When λ-coefficient is > 1: GLS+R 
produced worse results than GLS 
alone 

GLS+A+R 

No 
significant 
difference 
among the 
different 
variations 
of GLS 

GLS+A+R out-performed GLS alone 
under all λ-coefficient, with only one 
exception (λ-coefficient=2).  

GLS+A+R produced better results 
than GLS alone under all λ-
coefficients values. In fact, GLS+A+R 
performed better than GLS+R in all 
but one points (λ-coefficient=0.3).  

Table 1: Summary of performance of different GLS variants in SAT, MAX-SAT and the QAP 
Keys: GLS = Guided Local Search; +A = GLS with Aspiration; +R = GLS with Randomness 
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7 Discussions 
How easy is it to use metaheuristic methods? Tabu Search and Simulated Annealing are both relatively 

easy to use. Sitting them on top of local search methods could potentially improve the effectiveness of the 
local search. Basic Tabu Search is simple to use. There is only one parameter to set, namely the length of 
the taboo list. However, Tabu Search is a class of algorithm, within which there are many variations to 
choose from. To use simulated annealing, one needs to define the cooling schedule. Our aim is to make 
GLS easier for users by fixing both the control strategy (GLS+A+R) and parameter setting in Extended 
GLS.  

Figure 1 shows that the setting of λ-coefficient is still relevant to the performance of GLS. But 
experiments in all three applications seem to indicate that performance of GLS is reasonable when Pr is set 
to 0.2 and λ-coefficient is set to1. 

8 Conclusions and Future Work 
There is no attempt to claim in this paper that GLS will get solutions of the best quality7. The aim of this 

work is to extend GLS to one of the easiest algorithms to use. The basic control strategy has been proved 
effective for a wide range of applications. The focus here is on how to set the parameter λ. 

The Extended Guided Local Search algorithm has been tested on SAT, MAX-SAT and QAP. The basic 
algorithm and its parameters were kept the same for all problems. The following conclusions can be drawn: 

Conclusion 1:  Adding aspiration and random moves to Guided Local Search improved its performance 
under certain λ-coefficient values.  

Conclusion 2:  In the problems that we have tested so far, aspiration and random moves have not 
caused any significant degradation in performance in GLS under any λ-coefficient 
values. 

This gives hope for finding an algorithm that does not have any parameter to tune carefully (with 
Pr=0.2 and λ-coefficient=1). We intend to verify these results in more problem classes.  

In our experiments, we observe a number of measures to monitor the performance of the extended GLS.  
The hope is to find out more about when and why GLS and its individual components (including the 
extensions) work.  

GLS-Solver 1.0 is a piece of software that allows researchers to run GLS on SAT, MAX-SAT and QAP 
problem instances [25]. It includes an option to output detailed monitored measures.  

It is worth mentioning that GLS has not only been used to help improving the performance of local 
search. GLS has been used to guide Genetic Algorithms. The resulting algorithms, Guided Genetic 
Algorithm (GGA) [21], achieved robust, outstanding, results in the General Assignment Problem [19], the 
Processors Configuration Problem [18, 20] and the Radio Length Frequency Assignment Problem [22]. 
Replacing GLS with Extended GLS in GGA would be a worthwhile exercise.  
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