
Technical Report CSM-371, Department of Computer Science, University of Essex, April 2002
Presented in the UK Local Search Workshop, OR Society (UK),
City University, London UK, 16-17 April 2002, Paper T15

Extending Guided Local Search –
Towards a Metaheuristic Algorithm With No Parameters To Tune

Edward Tsang, Patrick Mills and John Ford
Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

Phone: +44 01206 87{2771,2774,2787}
E-mail: {millph,edward,fordj}@essex.ac.uk

URL: http://cswww.essex.ac.uk/CSP/

Technical Report CSM-371
April 2002

Abstract. Guided Local Search is a general penalty-based optimisation method that sits on
top of local search methods to help them escape local optimum. It has been applied to a
variety of problems and demonstrated effective. The aim of this paper is not to produce
further evidence that Guided Local Search is an effective algorithm, but to present an
extension of Guided Local Search that potentially has no parameter to tune. Compared to
other algorithms, Guided Local Search is relatively easy to apply, as there is only one major
parameter (λ) to set. In some applications, performance of Guided Local Search is insensitive
to the value of this parameter. Nevertheless, the value of this parameter can affect the
performance of Guided Local Search in some problems. In this paper, we show how (a) an
aspiration criterion and (b) random moves may be added to Guided Local Search to reduce
the sensitivity of its performance to the parameter value. The extended Guided Local Search
is tested on the SAT, weighted MAX-SAT and Quadratic Assignment Problems with positive
results.

Keywords: local search, meta-heuristics, SAT, MAX-SAT, quadratic assignment problem
(QAP)

CSM-371 Page 2

Extended Guided Local Search April 2002

1 Introduction
Guided Local Search (GLS) is a general penalty-based optimisation method [36]. It belongs to a class of

methods called meta-heuristics, which sit on top of local search methods to help them escape local
optimum. Other meta-heuristics include various forms of Tabu Search [10, 11, 11] and Simulated
Annealing [1, 16].

GLS has been applied to a variety of problems and demonstrated effective (e.g. see [35, 37, 38, 39, 29]).
The aim of this paper is not to produce further evidence on the effectiveness of GLS. The aim here is to
present an extension of GLS that potentially has no parameter to tune.

Compared to other meta-heuristic algorithms, GLS is relatively easy to apply, as there is only one major
parameter, namely λ (see explanation below), to set. In some applications, performance of GLS is
insensitive to the value of λ. Nevertheless, the value of λ can affect the performance of GLS in some
problems. In this paper, we show how GLS can be extended to make it relatively insensitive to the value of
λ; these extensions include:

(a) Linking λ to the fitness of the first local optima found;
(b) Adding aspiration to GLS
(c) Adding random moves to GLS.
For each extension, we attempt to (at least partially) answer the following questions:
(i) Does it help GLS in any application at all?
(ii) If it does help, when and why?
(iii) Does it harm GLS in any applications?
The promise of these extensions is supported by empirical evidence from applying the extended Guided

Local Search to the SAT, weighted MAX-SAT and Quadratic Assignment Problems.

2 Background: Guided Local Search
Guided Local Search (GLS) [36] was an extension of GENET [5, 6, 34, 42, 42], a neural network

approach to constraint satisfaction. While GENET attempts to find any solution that satisfies all the
constraints, GLS attempts to find optimal solutions, according to a given function.

GLS borrowed the idea of penalties in OR (e.g. see Koopman [17], Stone [30] and Luenberger [23]). As
a meta-heuristic method, GLS sits on top of local search algorithms. In a local search, one searches in the
space of candidate solutions1. To apply GLS, one defines a set of features for the candidate solutions2. GLS
associates a cost and a penalty to each feature. The costs can normally be defined by the objective
function3. The penalties are initialised to 0 and will only be increased when the local search reaches local
optimum.

Given an objective function g that maps every candidate solution s to a numerical value, GLS defines a
function h that will be used by local search (replacing g):

h(s) = g(s) + λ × Σ(pi × Ii(s)) (1)

where s is a candidate solution, λ is a parameter to the GLS algorithm, i ranges over the features, pi is
the penalty for feature i (all pi 's are initialised to 0) and Ii is an indication of whether s exhibits feature i:

Ii(s) = 1 if s exhibits feature i; 0 otherwise. (2)

1 The solution representation issue is significant, though it is not the subject of our discussion in this paper.
2 For example, in the traveling salesman problem, a feature could be “whether the candidate tour visits city B

immediately after visiting city A”.
3 For example, in the traveling salesman problem, the cost of the above feature can simply be the distance between

cities A and B.

CSM-371 Page 3

Extended Guided Local Search April 2002

Sitting on top of local search algorithms, GLS helps them to escape local optima in the following way.
Whenever the local search algorithm settles in a local optimum, GLS augments the cost function by adding
penalties to selected features.

The novelty of GLS is mainly in the way that it selects features to penalize. The intention is to penalize
“unfavourable features” or features that “matter most” when a local search settles in a local optimum. The
feature that has high cost affects the overall cost more. Another factor that should be considered is the
current penalty value of that feature. The utility of penalizing feature i, utili, under a local optimum s*, is
defined as follows:

utili(s*) = Ii(s*) × ci / (1 + pi) (3)

where ci is the cost and pi is the current penalty value of feature i. In other words, if a feature is not
exhibited in the local optimum (indicated by Ii), then the utility of penalizing it is 0. The higher the cost of
this feature (the greater ci), the greater the utility of penalizing it. Besides, the more times that it has been
penalized (the greater pi), the lower the utility of penalizing it again. In a local optimum, the feature(s) with
the greatest util value will be penalized. When a feature is penalized, its penalty value is always increased
by 1. The scaling of the penalty is determined by λ.

Following is the general GLS procedure:
Procedure GLS (input: an objective function g; a local search strategy L; features and their

costs; parameter λ)
1. Generate a starting candidate solution randomly or heuristically;
2. Initialise all the penalty values (pi) to 0;
3. Repeat the following until a termination condition (e.g. a maximum number of iterations or

time limit) has been reached:
3.1. Perform local search (using L) according to the augmented function h (which is g

plus the penalty values, as defined in (Eq. 1) above) until a local optimum s* has
been reached;

3.2. For each feature i exhibited in s* compute utili = ci / (1 + pi)
3.3. Penalize every feature i such that utili is maximum: pi = pi + 1;

4. Return the best candidate solution found so far according to the objective function g.
Apart from helping the local search to escape local optimum, penalties also helps GLS to rationalise its

search effort: parts of the search space that exhibit penalised features will not be searched as thoroughly as
space that do not exhibit any penalised features4.

Naturally the choice of the features and the setting of λ may affect the efficiency of a search. In many of
the problems that we have studied, the features come directly from the objective function. The only
parameter that needs serious tuning is λ. This is the focus of this paper. The aim is to reduce the need to
fine tune this parameter for individual problems or different problem classes.

3 Using the first local optima to set the parameter λλλλ
As shown in equation (1), if the value of λ is too small, then the penalty terms will not have significant

effect on the augmented function. The consequence is GLS will take a long time to escape local optimum.
If the value of λ is too high, the penalty terms will dominate the search. Any penalty posed on a feature that
might be exhibited by an optimal solution could seriously prevent the search from finding this optimal
solution.

Our aim is to involve as little domain-specific knowledge as possible in setting λ. When Voudouris and
Tsang applied GLS to the travelling salesman problem, they λ is set to the following value [39]:

4 However, not all penalised features will be avoided all the time. Therefore, penalties can be seen as soft taboos in

Tabu Search [9, 10, 11]. In that sense, it can be argued that GLS is a form of Tabu Search.

CSM-371 Page 4

Extended Guided Local Search April 2002

λ = a × g(s*) / N (4)
where s* is the first local optima found by the local search; g(s*) is the cost of s* in the travelling

salesman problem; N is the number of cities in the problem; a is new parameter to tune; from the range (0,
1]. In other words, the problem of tuning λ becomes the problem of tuning a, which we shall refer to as the
λ-coefficient.

Larger travelling salesman problems tend to have larger optimal values. The use of g(s*) ensures that
the penalty terms are scaled to the cost of the original function to be optimised. Using Eq. (4) avoids tuning
λ for individual problems. There is hope for finding a value for a that suits all travelling salesman
problems.

Can this strategy of setting λ be generalised to other problems? Notice that domain knowledge still
plays a part in Eq. (4): g(s*) / N is the average cost of the edges in the tour represented by the local optima
s*. Since the value of a is no greater than 1, each penalty term in the augmented function will have
comparable values to the terms in the original function in the travelling salesman problem.

One possibility to generalise this strategy to setting λ for other problems is to make:
λ = a × C (5)

where C is a value that roughly reflects the cost of the problem. Learning from our experience in the
travelling salesman problem (and later the quadratic assignment problem, QAP), C should be roughly
comparable to the average value of each term in the given cost function (g).

To allow for inaccuracy in C, we do not limit the value of the λ-coefficient a to (0, 1]. Finding a value
for λ-coefficient is still easier than finding a value for λ, as C has taken care of the scaling factor. Some of
the remaining questions are:

(a) How sensitive would the performance of GLS be with regard to the value of the λ-coefficient?
(b) Are there means to reduce the sensitivity?
(c) How easy is it to find good values for the λ-coefficient?
A number of extensions have been looked at, with the intention to improve the performance of GLS. In

the following sections, we shall present extensions for answer questions (b) above.

4 Adding Aspiration to Guided Local Search
Aspiration moves were used in Tabu Search [10, 11, 11]. Given a local search L and a function g to

minimize5, an aspiration criterion for GLS is defined as follows:
Let bsf be the best solution found so far according to g. A move from a candidate
solution s to s’ is accepted by the local search L if g(s’) < g(bsf) but h(s’) > h(s), where
h is the augmented cost function.

In other words, an aspiration move in GLS is a move that would normally be rejected by the local
search (which operates under the augmented cost function), but only accepted if the aspiration criterion is
adopted.

The intuition behind aspiration moves is this: since g is the function to optimise, there is no reason to
ignore any good solutions just because we use an augmented function (h) to help escape local optimum and
rationalise our search effort.

GLS uses utilities to heuristically pick features to penalise. There is no guarantee that the feature being
penalised will not appear in an optimal solution. If a feature fi is penalised, and fi is actually exhibited by an
optimal solution s*, then it may take many more penalties on other features before the search could enter
the basin of attraction6 of s*. This problem is potentially more serious if λ-coefficient is set to a relatively
high value. Aspiration moves temporarily removes the effect of the penalties. If aspiration moves were to

5 An aspiration criterion for maximization problems can be defined similarly.
6 Given a local search algorithm L, the basin of attraction for a local optima s* is the set of all candidate solutions that

necessarily lead to s* under L.

CSM-371 Page 5

Extended Guided Local Search April 2002

be useful to GLS, one would expect them to be more useful when GLS uses relatively high λ-coefficient
values. This conjecture is empirically supported (see summary below, or details in [25]).

5 Adding Random Moves to Guided Local Search
Randomness (sometimes referred to as “noise”) plays an important part in heuristic search (e.g. see

Walksat [28, 28, 13]), especially Simulated Annealing [1, 16]. A random move in GLS means a move by
the local search to a random neighbour, regardless of its fitness (according to the original or augmented
function).

Random moves helps to move out of basins of attraction. It is a simple way to escape local optimal.
Therefore, one could say that the function of random moves overlaps that of penalties in GLS. However,
random moves could compensate GLS should the λ-coefficient be set to a value that is too small. On the
other hand, too much randomness defeats the purpose of local search. Therefore, some of the questions are:

� Would random moves really help GLS when λ-coefficient is too small?
� Would random moves degrade the performance of GLS when the λ-coefficient value is not too

small?
� How much randomness should one allow in GLS?
� Does this level of randomness need tuning from problem to problem, or from problem class to

problem class?
We extended GLS by giving it, in every move, a probability Pr to make a random move. We conducted

pilot experiments to test the effect of different combinations of Pr and λ-coefficient [25]. It was found that
Pr = 0.2 worked well with most λ-coefficients.

With Pr = 0.2 fixed, we extensively tested the effectiveness of this level of randomness in GLS, varying
λ-coefficient. Empirical results are summarised in the next section (see [25] for details). They basically
support the fact that randomness helped GLS when the value of λ-coefficient is too small, without seriously
degrading the performance of GLS when λ-coefficient is not too small. Random moves worked particularly
well with aspiration in QAPs. Our experimental results so far seem to indicate that Pr = 0.2 worked well in
GLS in general, without needing any fine-tuning to suit individual problems or problem classes.

6 Extended Guided Local Search
Readers should be reminded that our goal is to extend GLS so that there is no need to fine tune λ for

individual problems or problem classes. Our first extension is to turn the problem of tuning λ into tuning λ-
coefficient. Our analysis and experiments suggested that, at least in some problem classes, aspiration moves
enhances the performance of GLS when λ-coefficient is too large, while random moves enhances the
performance of GLS when λ-coefficient is too small. Therefore, we give the name Extended Guided Local
Search to the following algorithm:

GLS with λλλλ-coefficient replacing λλλλ, aspiration and random moves
We tested the following algorithms:

� GLS with λ-coefficient replacing λ
� GLS with λ-coefficient replacing λ and aspiration moves (GLS+A)
� GLS with λ-coefficient replacing λ and random moves (GLS+R); and
� GLS with λ-coefficient replacing λ and aspiration and random moves (GLS+A+R)

on three classes of problems (see [25] for details):
� SAT: the satisfiability problem where Boolean variables represent the truth values of

propositions and constraints are expressed in conjunctive normal form; the task is to find truth
values for all the variables satisfying all the constraints [8];

� Weighted MAX-SAT: this is an optimisation problem which is based on the SAT problem,
except that each clause is given a weight; the task is to minimize the total weights of the
unsatisfied clauses [14, 24];

CSM-371 Page 6

Extended Guided Local Search April 2002

� Quadratic Assignment Problem (QAP): this is an extensively studied optimisation problem in
Operations Research [4, 25].

These problem classes are very different in nature. The landscape of SAT problems mainly comprises
large plateaus. Although the MAX-SAT problem appears similar to the SAT problem, its landscape is
much more ragged. The QAP has a more complex cost function than MAX-SAT, as the cost of each
assignment depends on the values assigned to other variables. The performance of the GLS variants on
MAX-SAT and QAP are shown in Figures 1 and 2. On SAT, all GLS variants exhibit similar performance.

Figure 1: GLS Applied to MAX-SAT

0.03
0.035
0.04

0.045
0.05

0.055
0.06

0.065
0.07

0.1 0.3 0.5 0.7 0.9 2 4 6 8 10 30 50 70 90
Lambda-coefficient

Co
st

of
 be

st
so

lut
ion

s (
av

er
ag

e o
ve

r
all

 pr
ob

lem
s)

GLS
GLS+A
GLS+R
GLS+A+R

CSM-371 Page 7

Extended Guided Local Search April 2002

Figure 2: GLS applied to QAP

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

0.1 0.3 0.5 0.7 0.9 2 4 6 8 10 30 50 70 90
Value of Lambda Coefficient

Ex
ce

ss
 ov

er
 be

st
kn

ow
n s

olu
tio

n
(av

er
ag

e o
ve

r a
ll p

ro
ble

ms
)

GLS
GLS+A
GLS+R
GLS+A+R

Results in figure 1 and 2 show that aspiration and random moves complement each other. The

performance of GLS+A+R is quite close to the better of GLS+A and GLS+R as λ-coefficient changes its
value. This suggests that aspiration and random moves do not interfere with each other. Table 1 summarises
the results.

 SAT MAX-SAT QAP
GLS+A Under all λ-coefficients, GLS+A

produced solutions as good as, and
often better, than results by GLS alone
on MAX-SAT

Under all λ-coefficients values,
GLS+A produced better results than
GLS alone; the gap between GLS and
GLS+A grows as λ-coefficients grow,
especially after λ-coefficients = 0.8

When λ-coefficient is ≤ 0.8: GLS+R
produced solutions better than those
produced by GLS alone

When λ-coefficient is ≤ 1: GLS+R
produced better results than GLS
alone

When λ-coefficient is between 0.9
and 6: GLS+R is sometimes better
than GLS alone, sometimes not.

GLS+R

With λ-coefficient > 6, GLS+R
mostly performed poorer than GLS

When λ-coefficient is > 1: GLS+R
produced worse results than GLS
alone

GLS+A+R

No
significant
difference
among the
different
variations
of GLS

GLS+A+R out-performed GLS alone
under all λ-coefficient, with only one
exception (λ-coefficient=2).

GLS+A+R produced better results
than GLS alone under all λ-
coefficients values. In fact, GLS+A+R
performed better than GLS+R in all
but one points (λ-coefficient=0.3).

Table 1: Summary of performance of different GLS variants in SAT, MAX-SAT and the QAP
Keys: GLS = Guided Local Search; +A = GLS with Aspiration; +R = GLS with Randomness

CSM-371 Page 8

Extended Guided Local Search April 2002

7 Discussions
How easy is it to use metaheuristic methods? Tabu Search and Simulated Annealing are both relatively

easy to use. Sitting them on top of local search methods could potentially improve the effectiveness of the
local search. Basic Tabu Search is simple to use. There is only one parameter to set, namely the length of
the taboo list. However, Tabu Search is a class of algorithm, within which there are many variations to
choose from. To use simulated annealing, one needs to define the cooling schedule. Our aim is to make
GLS easier for users by fixing both the control strategy (GLS+A+R) and parameter setting in Extended
GLS.

Figure 1 shows that the setting of λ-coefficient is still relevant to the performance of GLS. But
experiments in all three applications seem to indicate that performance of GLS is reasonable when Pr is set
to 0.2 and λ-coefficient is set to1.

8 Conclusions and Future Work
There is no attempt to claim in this paper that GLS will get solutions of the best quality7. The aim of this

work is to extend GLS to one of the easiest algorithms to use. The basic control strategy has been proved
effective for a wide range of applications. The focus here is on how to set the parameter λ.

The Extended Guided Local Search algorithm has been tested on SAT, MAX-SAT and QAP. The basic
algorithm and its parameters were kept the same for all problems. The following conclusions can be drawn:

Conclusion 1: Adding aspiration and random moves to Guided Local Search improved its performance
under certain λ-coefficient values.

Conclusion 2: In the problems that we have tested so far, aspiration and random moves have not
caused any significant degradation in performance in GLS under any λ-coefficient
values.

This gives hope for finding an algorithm that does not have any parameter to tune carefully (with
Pr=0.2 and λ-coefficient=1). We intend to verify these results in more problem classes.

In our experiments, we observe a number of measures to monitor the performance of the extended GLS.
The hope is to find out more about when and why GLS and its individual components (including the
extensions) work.

GLS-Solver 1.0 is a piece of software that allows researchers to run GLS on SAT, MAX-SAT and QAP
problem instances [25]. It includes an option to output detailed monitored measures.

It is worth mentioning that GLS has not only been used to help improving the performance of local
search. GLS has been used to guide Genetic Algorithms. The resulting algorithms, Guided Genetic
Algorithm (GGA) [21], achieved robust, outstanding, results in the General Assignment Problem [19], the
Processors Configuration Problem [18, 20] and the Radio Length Frequency Assignment Problem [22].
Replacing GLS with Extended GLS in GGA would be a worthwhile exercise.

Acknowledgements
Chang Wang and Andrew Davenport played major roles in the development of GENET. Chris

Voudouris invented the original Guided Local Search algorithm. Tung Leng Lau applied Guided Local
Search in Genetic Algorithms. This project was partially sponsored by EPSRC funded projects GR/H75275
and GR/L20122 and Research Promotion Funds by the University of Essex. James Borrett, Jim Doran and
Paul Scott all contributed to this project.

7 In fact, we have not picked the problems in which GLS performed best – results it found in MAX-SAT were better

than other algorithms [24], but it was only as good as WalkSAT [28] in SAT and no better than Taillard [31] in QAP.

CSM-371 Page 9

Extended Guided Local Search April 2002

Bibliography
1. Aarts, E. & Korst, J., Simulated Annealing and Boltzmann Machines, John Wiley & Sons, 1989
2. Battiti, R. & Tecchiolli, G., The Reactive Tabu Search. In ORSA Journal on Computing, 6(2), 1994,

126-140
3. Bishop, C.M., Hinton, G., Neural Networks for Pattern Recognition. Clarendon Press 1995
4. Burkard, R.E., Karisch, S.E. & Rendl, F., QAPLIB - A Quadratic Assignment Problem Library. In

Journal of Global Optimization 10, 1997, 391-403
5. Davenport A., Tsang E.P.K., Zhu, K. & Wang C.J., GENET: A Connectionist Architecture for

Solving Constraint Satisfaction Problems by Iterative Improvement, in Proceedings of AAAI, 1994,
325-330

6. Davenport, A., Extensions and Evaluation of GENET in Constraint Satisfaction. PhD Thesis,
Department of Computer Science, University of Essex, Colchester, UK, July, 1997

7. Fleurent, C. & Ferland, J.A., Genetic Hybrids for the Quadratic Assignment Problem. In Pardalos, P.
& Wolkowicz, H., (eds.), Quadratic Assignment and Related Problems, Vol. 16, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 1994, 173-187

8. Gent, I.P., van Maaren, H. & Walsh, T., SAT2000, Highlights of satisfiability research in the year
2000, Frontiers in Artificial Intelligence and Applications, IOS Press, 2000

9. Glover, F., Tabu search Part I, in Operations Research Society of America (ORSA) Journal on
Computing, Vol. 1, 1989, 109-206

10. Glover, F., Tabu search Part II, in: Operations Research Society of America (ORSA) Journal on
Computing, Vol. 2, 1990, 4-32

11. Glover, F.W. & Laguna, M., Tabu Search, Kluwer Academic Publishers, 1997
12. GLS-Solver 1.0, Software (under Windows NT/2000) for applying Guided Local Search to SAT,

MAX-SAT and Quadratic Assignment Problems, Constraints and Optimisation Research Group,
Department of Computer Science, University of Essex, http://cswww.essex.ac.uk/CSP, May 2002

13. Gomes, C.P. & Shmoys, D.B., The promise of LP to boost CSP techniques for combinatorial
problems, Proc., Fourth International Workshop on Integration of AI and OR techniques in Constraint
Programming for Combinatorial Optimisation Problems (CP-AI-OR’02), Le Croisic, France, 25-27
March 2002, 291-305

14. Jiang Y., Kautz H., and Selman B., Solving Problems with Hard and Soft Constraints Using a
Stochastic Algorithm for MAX-SAT, 1st International Joint Workshop on Artificial Intelligence and
Operations Research, 1995

15. Kilby, P., Prosser, P., Shaw, P., Guided Local Search for the Vehicle Routing Problem. In
Proceedings of the 2nd International Conference on Metaheuristics, July 1997.

16. Kirkpatrick, S., Gelatt, C.D. Jr. & Vecchi, M.P., Optimization by Simulated Annealing, Science,
Vol.220, No.4598, May 1983, 671-680

17. Koopman B.O., The theory of search, part III, the optimum distribution of searching effort, Operations
Research, Vol.5, 1957, 613-626

18. Lau, T.L., Tsang, E.P.K., Solving the Processor Configuration Problem with a Mutation-Based
Genetic Algorithm. In International Journal on Artificial Intelligence Tools (IJAIT), World Scientific,
Vol.6, No.4, 567-585, December 1997.

19. Lau, T.L. & Tsang, E.P.K., The Guided Genetic Algorithm and its application to the General
Assignment Problems. In IEEE 10th International Conference on Tools with Artificial Intelligence
(ICTAI'98), Taiwan, November 1998.

20. Lau, T.L. & Tsang, E.P.K., Solving Large Processor Configuration Problems with the Guided Genetic
Algorithm. In IEEE 10th International Conference on Tools with Artificial Intelligence (ICTAI'98),
Taiwan, November 1998.

21. Lau, T.L., Guided Genetic Algorithm. PhD Thesis, Department of Computer Science, University of
Essex, 1999.

CSM-371 Page 10

Extended Guided Local Search April 2002

22. Lau, T.L. & Tsang, E.P.K., Guided genetic algorithm and its application to radio link frequency
assignment problems, Constraints, Vol.6, No.4, 2001, 373-398

23. Luenberger, D., Linear and nonlinear programming, Addison-Wesley Publishing Co., Inc., 1984
24. Mills, P. & Tsang, E.P.K., Guided Local Search for solving SAT and Weighted MAX-SAT Problems.

In Journal of Automatic Reasoning, Special Issue on Satisfiability Problems, Kluwer, Vol.24, 2000,
205-223

25. Mills, P., PhD Thesis, Extended Guided Local Search, Department of Computer Science, University
of Essex, July 2002

26. Pardalos, P.M., Rendl, F., Wolkowicz, H., The Quadratic Assignment Problem: A Survey of Recent
Developments. In P. Pardalos and H. Wolkowicz, editors, Quadratic Assignment and Related
Problems, volume 16, pages 1-42. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 1994

27. Selman, B. & Kautz, H., Domain-independent extensions to GSAT: solving large structured
satisfiability problems, Proc., 13th International Joint Conference on AI, 1993, 290-295

28. Selman, B., Kautz, H., Cohen, B., Noise Strategies for Improving Local Search. In Proceedings
AAAI-94. 1994

29. Shaw, P., Using constraint programming and local search methods to solve vehicle routing problems,
in Maher, M. & Puget, J-F. (ed.), Proceedings, 4th International Conference on Principles and Practice
of Constraint Programming – CP98, Pisa, Italy, October 1998, Springer Verlag, Lecture Notes in
Computer Science, 1520, 416-431

30. Stone L.D., The process of search planning: current approaches and continuing problems, Operations
Research, Vol.31, 1983, 207-233

31. Taillard, E.D., Robust Tabu Search for the Quadratic Assignment Problem. In Parallel Computing,
17,443-455, 1991

32. Taillard, E.D., Comparison of Iterative Searches for the Quadratic Assignment Problem. Location
Science, 1994

33. Taillard, E.D. & Gambardella, L.M., Adaptive Memories for the Quadratic Assignment Problem.
Research Report, IDSIA Lugano, Switzerland, 1997

34. Tsang, E.P.K. & Wang, C.J., A Generic Neural Network Approach for Constraint Satisfaction
Problems. In Taylor, J.G. (ed.), Neural network applications, Springer-Verlag, 1992, 12-22.

35. Tsang, E.P.K. & Voudouris, C., Fast Local Search and Guided Local Search and their application to
British Telecom's Workforce Scheduling Problem. In Operations Research Letters, Elsevier Science
Publishers, Amsterdam, Vol.20, No.3, 119-127, March 1997

36. Voudouris, C. Guided Local Search for Combinatorial Optimisation Problems, Ph.D. thesis,
Department of Computer Science, University of Essex, 1997

37. Voudouris, C. & Tsang, E.P.K., Solving the Radio Link Frequency Assignment Problem using
Guided Local Search. In Proceedings of NATO Symposium on Radio Length Frequency Assignment,
Sharing and Conservation Systems (Aerospace), Aalborg, Demark, October 1998, Paper 14a.

38. Voudouris, C., Guided Local Search - An Illustrative Example in Function Optimisation. In BT
Technology Journal, Vol.16, No.3, July 1998, 46-50

39. Voudouris, C. & Tsang, E.P.K., Guided Local Search and its application to the Travelling Salesman
Problem. In European Journal of Operational Research, Anbar Publishing, Vol.113, Issue 2, March
1999, 469-499

40. Wilhelm, M.R. & Ward, T.L., Solving Quadratic Assignment Problems by Simulated Annealing. In
IIE Transaction, 19/1, 1987, 107-119

41. Wang, C.J. & Tsang, E.P.K., Solving constraint satisfaction problems using neural-networks,
Proceedings, IEE Second International Conference on Artificial Neural Networks, 1991, 295-299

42. Wang, C.J. & Tsang, E.P.K., A cascadable VLSI design for GENET, in Delgado-Frias, J.G. & Moore,
W.R. (ed.), VLSI for Neural Networks and Artificial Intelligence, Plenum Press, New York, 1994,
187-196

CSM-371 Page 11

Extended Guided Local Search April 2002

