

Department of Computer Science

Hassan Rashidi Haramabadi

A thesis submitted for the degree of PhD

Date of conferment: 27 April 2006

Dynamic Scheduling of Automated

Guided Vehicles in Container
Terminals

University of Essex, Computer Science Department

 - ii –
PhD Thesis, Copyrights (H. Rashidi)

Supervisory Board:

Prof. Edward. P. K. Tsang (Supervisor)

Dr. John Ford

Prof. Huosheng Hu

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - iii -

Abstract

The growths of containerization and transporting goods in containers have created many
problems for ports. In this thesis, five scheduling decisions in the container terminals are
defined and formulated as Constraint Satisfaction Optimisation Problems (CSOPs). For each
of the decisions, an overview of literature is presented.

The objective of this thesis is to develop efficient and effective algorithms to solve the
scheduling problem of Automated Guided Vehicles (AGV) in the port. This problem is
formulated as a Minimum Cost Flow (MCF) model, which is a directed graph. Then, the
model is tackled by the Network Simplex Algorithm (NSA) and its extensions in both static
and dynamic aspects. These extensions are Network Simplex plus Algorithm (NSA+),
Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus
Algorithm (DNSA+). To solve the problems, NSA and NSA+ start from scratch whereas
DNSA and DNSA+ repair solutions when the changes occur.

In static problems (where there is no change in the situation), NSA and NSA+ can find the
global optimal solutions for 3,000 jobs and ten millions arcs in the graph model within two
minutes on a 2.4 GHz Pentium PC. Due to the efficiency of DNSA and DNSA+ (compared
with NSA and NSA+), these algorithms are applied to dynamic problems in which the graph
changes.

Although NSA and its extensions are efficient, they can only work on problems with certain
limits in size. When the size of the problem goes beyond the limits, incomplete search
methods are used. To complement the above algorithms, a greedy method (Greedy Vehicle
Search-GVS) is designed and implemented. This incomplete search method can be applied to
both static and dynamic problems.

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - iv -

Acknowledgements

I would like to thank my supervisor, Prof. Edward Tsang, who proposed me this topic for my
research. He enormously helped in the refinement of the ideas presented in this thesis by his
constant feedback and supervision. I have no doubt that I would have never achieved without
Tsang’s guidance and encouragement. I am grateful to Dr. John Ford for his suggestion on
development Dynamic Network Simplex Algorithm and his comments on this research. I would
like to thank Prof. Hu, the head of Robotics research group at University of Essex, who gave me
a few suggestions on my software.

I would also like to thank my family, especially my wife (Fatema), who lived in my country
without me, supported my children and encouraged me to do this research at University of Essex.

I would like to thank the Department of Computer Science for the harmonious environment and
the Computing Service at University of Essex for the excellent computer facilities to perform the
computational experiments reported here. I am grateful to Department of Electronic System
Engineering at University of Essex that provided a few chances for PhD Students to demonstrate
their research results and to get the academic staff’s views.

I also wish to thank my external examiner, Dr. Sanja Petrovic from the School of Computer
Science and IT at the University of Nottingham, for examining my senate viva and also giving
me some valuable comments. I would like to thank my internal examiner, Dr Klaus McDonald-
Maier, for his feedbacks and helping me through the final version of this thesis.

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - v -

Table of Contents

List of Tables.. viii
List of Figures ...ix
List of Abbreviations ...xi
Papers Published and Submitted ..vii

Chapter 1: Introduction ..1
Chapter 2: Problem Description and Decisions to be made ..5

2.1 Compartments... 5
2.2 Operations... 8
2.3 Decisions to be made .. 9

2.3.1 Allocation of berths to arriving vessels and QCs to docked vessels ... 10
2.3.2 Storage space assignment .. 11
2.3.3 Rubber Tyred Gantry Crane (RTGC) deployment .. 11
2.3.4 Scheduling and routing of vehicles ... 11
2.3.5 Appointment times to eXternal Trucks (XTs) ... 11

Chapter 3: Literature Review and Formulation of the Decisions ...12
3.1 Allocation of berths to arriving vessels and quay cranes to docked vessels. 12

3.1.1 Assumptions .. 14
3.1.2 Decision variables and domains .. 16
3.1.3 Constraints... 16
3.1.4 Objective function ... 17

3.2 Storage space assignment ... 18
3.2.1 Assumptions .. 19
3.2.2 Decision variables and domains .. 22
3.2.3 Constraints... 23
3.2.4 Objective function ... 25

3.3 Rubber Tyred Gantry Crane (RTGC) deployment ... 26
3.3.1 Assumptions .. 26
3.3.2 Decision variables and domains .. 28
3.3.3 Constraints... 29
3.3.4 Objective function ... 29

3.4 Scheduling and routing of vehicles... 30
3.4.1 Assumptions .. 32
3.4.2 Decision variables and domains .. 33
3.4.3 Constraints... 33
3.4.4 Objective function ... 35

3.5 Appointment times to eXternal Trucks (XTs) .. 36
3.5.1 Assumptions .. 37
3.5.2 Decision variables and domains .. 38
3.5.3 Constraints... 38
3.5.4 Objective function ... 38

3.6 Container terminals over the world, a survey ... 39
3.7 Solution methods and evaluation of the decisions .. 40
3.8 Summary and conclusion.. 49

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - vi -

Chapter 4: Scheduling of AGVs and Its Problem Formulation ...50
4.1 Reasons to choose this problem.. 50
4.2 Assumptions.. 51
4.3 Variables and notations... 55
4.4 The Minimum Cost Flow model... 58

4.4.1 Graph terminology... 58
4.4.2 The standard form of the minimum cost flow model .. 59

4.5 The special case of the MCF model for Automated Guided Vehicles Scheduling........................... 60
4.5.1 Nodes and their properties in the special graph... 61
4.5.2 Arcs and their properties in the special graph ... 62
4.5.3 The MCF-AGV model for the Automated Guided Vehicles Scheduling.................................. 64

4.6 Summary and conclusion.. 66
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs67

5.1 Reasons to choose NSA.. 67
5.2 The Network Simplex Algorithm ... 67

5.2.1 Spanning tree solutions and optimality conditions.. 68
5.2.2 The algorithm NSA ... 71
5.2.3 The difference between NSA and original simplex... 73
5.2.4 A short literature over pricing rules... 74
5.2.5 Strongly feasible spanning tree.. 75

5.3 Simulation software .. 77
5.3.1 The features of our software.. 77
5.3.2 The implementation of NSA in our software .. 81
5.3.3 How the program works .. 83
5.3.4 The circulation problem... 85

5.4 Experimental results ... 86
5.5 An estimate of the algorithm’s complexity in practice ... 89
5.6 Limitation of the NSA in practice... 92
5.7 Summary and conclusion.. 92

Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs93
6.1 Motivation... 93
6.2 The Network Simplex plus Algorithm (NSA+).. 93

6.2.1 Anti-Cycling in NSA+... 93
6.2.2 Memory technique and Heuristic approach in NSA+.. 94
6.2.3 The differences between NSA and NSA+... 95

6.3 A comparison between NSA and NSA+... 96
6.4 Statistical test for the comparison ... 98
6.5 Complexity of Network Simplex plus Algorithm (NSA+)... 99
6.6 Software architecture for dynamic aspect... 100
6.7 Experimental results from the dynamic aspect ... 103
6.8 Summary and conclusion.. 105

Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs106
7.1 Motivation... 106
7.2 Classification of graph algorithms .. 107
7.3 The Dynamic Network Simplex Algorithm.. 107

7.3.1 Data structures ... 107
7.3.2 Memory management .. 111
7.3.3 The algorithms DNSA and DNSA+ .. 112

7.4 Software architecture for dynamic aspect... 120
7.5 A comparison between DNSA+ and NSA+.. 121
7.6 Statistical test for the comparison ... 123

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - vii -

7.7 Complexity of the algorithm... 123
7.8 Summary and conclusion.. 124

Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs125
8.1 Motivation... 125
8.2 Problem formalization .. 125

8.2.1 Nodes and their properties in the incomplete graph .. 126
8.2.2 Arcs and their properties in the incomplete graph... 127
8.2.3 The special case of the MCF-AGV model for Automated Guided Vehicles Scheduling 128

8.3 Algorithm formalization ... 129
8.4 Software architecture for dynamic aspect... 130
8.5 A comparison between GVS and NSA+ and quality of the solutions .. 131
8.6 Statistical test for the comparison ... 133
8.7 Complexity of Greedy Vehicle Search ... 134

8.7.1 Complexity of GVS for static problem.. 134
8.7.2 Complexity of GVS for dynamic problem .. 136

8.8 A discussion over GVS and meta-heuristic .. 136
8.9 Summary and conclusion.. 137

Chapter 9: Conclusions and Future Research ..138
9.1 Summary of work done... 138
9.2 Observations and conclusions... 142
9.3 Research contributions.. 143
9.4 Future research.. 144

9.4.1 Scheduling and routing of the vehicles.. 144
9.4.2 Economic and optimization model .. 145
9.4.3 Other possible extension.. 146

Appendix: Information on Web ...148
References ...154
Index ...164

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - viii -

List of Tables
Table 3-1: Container Terminals around the world and their decisions ..39
Table 3-2: Considerations in choosing between major scheduling techniques [94]...42
Table 3-3: Summary of Vehicle Routing Problems and Solutions [32] ...43
Table 3-4: Summary of work reviews for AGVs in General Path Topologies [79] ...45
Table 3-5: Summary of Algorithms for AGVs in Specific Path Topologies [79] ..45
Table 3-6: Summary of Static and Dynamic Routing Algorithms for AGVs in General Path Topology [79]46
Table 3-7: Some important indices to evaluate the decisions in the container terminals ...49
Table 4-1: Example of traveling time (second) between two different points in the port ..53
Table 4-2: Appointment time of containers jobs..54
Table 5-1: Values of parameters for the simulation ...87
Table 5-2: Experimental results of Network Simplex Algorithm in static fashion ..87
Table 5-3: Regression result for CPU-Time required to solve the problem by NSA (Based on the number of jobs)90
Table 5-4: Regression result for CPU-Time required to solve the problem by NSA (Based on the number of arcs)90
Table 6-1: Experimental results for a comparison between NSA and NSA+ ..96
Table 6-2: The result of T-Test for the two algorithms, NSA and NSA+ ..99
Table 7-1: Memory allocation for the arcs of the MCF-AGV model and its algorithm..112
Table 7-2: The result of T-Test for the two algorithms, DNSA+ and NSA+ ...123
Table 7-3: A comparison between NSA and its extensions ...124
Table 8-1: The result of T-Test for the two algorithms, GVS and NSA+ ..133
Table 8-2: Regression result for CPU-Time required to finding a local optimum by GVS for static problem135
Table 9-1: A summary of the algorithms studied in this thesis for the MCF-AGV model...141

University of Essex, Computer Science Department

 - ix –
PhD Thesis, Copyrights (H. Rashidi)

List of Figures

Figure 1-1: The number of containers turnover in the ten largest container terminals over the world [87].2
Figure 2-1: The container storage area in a port [68]...5
Figure 2-2: An RTGC sits across the width of a block [68]...6
Figure 2-3: Transfer of a RTGC between two blocks [107]...6
Figure 2-4: A typical quay crane [68]..7
Figure 2-5: A Straddle Carrier (left) and an Automated Guided Vehicle (right) while they are carrying a container.8
Figure 2-6: Scheduling Decisions in the container terminals...10
Figure 3-1: Park and Kim’s two phases scheduling of berths and cranes [73]...14
Figure 3-2: An output of the berth and crane scheduling problem...15
Figure 3-3: Port’s layout with the primary and secondary storages [90] ...20
Figure 3-4: Cross over problem for two RTGCs in the storage area..28
Figure 3-5: Flow of outbound containers (SA = Storage Area, QS = Quayside) ...36
Figure 3-6: Flow of inbound containers (SA = Storage Area, QS = Quayside) ...36
Figure 4-1: Layout of the container terminal ...52
Figure 4-2: Phenomena arising in scheduling and rouging of AGVs [79]. ...53
Figure 4-3: Travelling time computations between the next location of vehicle and the next job ...57
Figure 4-4: Travelling time computations between job i and job j ...57
Figure 4-5: An example of the MCF-AGV model for 2 AGVs and 4 jobs ..65
Figure 5-1: A feasible spanning tree solution (dotted)...68
Figure 5-2: The Network Simplex Algorithm..71
Figure 5-3: An example of strongly feasible spanning tree [2]..76
Figure 5-4: The main screenshot of the software. ..78
Figure 5-5: Relationships between the tables of the Database. ..80
Figure 5-6: Flowchart of Network Simplex Algorithm (Block Pricing Scheme) to select an entering arc.......................................82
Figure 5-7: An example of the MCF-AGV model for 2 AGVs and 2 jobs in our software. ...84
Figure 5-8: The input of the algorithm (NSA) in DIMACS format ...84
Figure 5-9: The output of the algorithm (NSA) in DIMACS format ...85
Figure 5-10: An example of the circulation problem (P = Penalty) ...86
Figure 5-11: CPU-Time required to solve the problem by Network Simplex Algorithm, based on the number of jobs..................88
Figure 5-12: CPU-Time required to solve the problem by Network Simplex Algorithm, based on the number of arcs..................88
Figure 6-1: Flowchart of Network Simplex plus Algorithm to select an entering arc..95
Figure 6-2: A comparison of CPU-Time required to solve the same problems by NSA and NSA+..97
Figure 6-3: The T-Test acceptance and reject regions (NSA and NSA+H). ..99
Figure 6-4: Block diagram of the software and algorithm (NSA+) for dynamic aspect ..100
Figure 6-5: Operations of the software in dynamic aspect...102

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - x -

Figure 6-6: An experimental result from the dynamic scheduling problem of AGVs (NSA+ solved the problem).103
Figure 6-7: The attributes of the carried jobs in the dynamic scheduling problem of AGVs...104
Figure 7-1: A sample of the spanning tree and its attributes (FIX=’FIXED’, UFD=’UNFIXED’). ..109
Figure 7-2: The Dynamic Network Simplex Algorithm. ..113
Figure 7-3: The pseudo code of reconstructing the spanning tree in Dynamic Network Simplex Algorithm................................113
Figure 7-4: The pseudo code of removing a node from the spanning tree in Dynamic Network Simplex Algorithm.114
Figure 7-5: The new spanning tree after removing nodes 8 (See Figure 7-1). ...115
Figure 7-6: The new spanning tree after removing node 3 (See Figure 7-1)...116
Figure 7-7: The new spanning tree after removing node 4 (See Figure 7-6)..117
Figure 7-8: The pseudo code of inserting a node into the spanning tree in Dynamic Network Simplex Algorithm......................118
Figure 7-9: The new spanning tree after inserting node 9 and 10 (See Figure 7-1). ..119
Figure 7-10: Block diagram of the software and algorithm (DNSA+) in the dynamic aspect ...120
Figure 7-11: A comparison of the number of iterations in DNSA+ and NSA+ ...122
Figure 8-1: An example of the incomplete case of the MCF-AGV model with two AGVs and four jobs.....................................125
Figure 8-2: The block diagram of Greedy Vehicle Search...129
Figure 8-3: The pseudo code of Greedy Vehicle Search in dynamic aspect ..129
Figure 8-4: The block diagram of the software and algorithm (GVS) in dynamic aspect..130
Figure 8-5: A comparison of NSA+ and GVS for Travelling and Waiting Times of the Vehicles..131
Figure 8-6: The number of carried jobs by NSA+ and GVS during 6 hour simulation..132
Figure 8-7: A comparison of NSA+ and GVS for the Average Lateness from the appointment time ...133
Figure 8-8: CPU-Time required to solve the static problems by GVS...134
Figure 8-9: CPU-Time required to solve the dynamic problems by GVS..136

University of Essex, Computer Science Department

PhD Thesis, Copyrights (H. Rashidi) - xi -

List of Abbreviations

Abbreviation Term / Meaning
AGV Automated Guided Vehicle
BDE Borland Database Engine
CSOPs Constraint Satisfaction Optimisation Problems.
DNSA Dynamic Network Simplex Algorithm
DNSA+ Dynamic Network Simplex plus Algorithm
DSSAGV Dynamic Scheduling Software for Automated Guided Vehicles
ERD Entity Relationship Diagram
GVS Greedy Vehicle Search
HOTFRAME Heuristic OpTimisation FRAMEwork
IT Internal Trucks
MCF Minimum Cost Flow
MCF-AGV Minimum Cost Flow model for Scheduling problem of AGVs
NSA Network Simplex Algorithm
NSA+ Network Simplex Plus Algorithm.
OSA Original Simplex Algorithm
PSCDS PSCDS: Primary Storage Containers Discharge
PSCPI PSCPI: Primary Storage Containers Pickup
PSCSS Primary Storage Containers to Secondary Storage
QC Quay Cranes
RTGC Rubber Tyred Gantry Cranes
SAM Simulated Annealing Method
SC Straddle Carrier
SDSAGV Static and Dynamic Scheduling of Automated Guided Vehicles
SSCGD Secondary Storage Containers Grounding
SSCPI Secondary Storage Containers for Pickup
SSCPS Secondary Storage Containers to Primary Storage
TG Terminal Gate
TSS Taxi Service System
VRP Vehicle Routing Problem
VRPTW Vehicle Routing Problem with Time Window
XT eXternal Truck

University of Essex, Computer Science Department

- xii -
PhD Thesis, Copyrights (H. Rashidi)

Papers Published and Submitted

1- Rashidi H., and Tsang E.,” Applying the Extended Network Simplex Algorithm to
Dynamic Automated Guided Vehicles Scheduling”, the 2nd Multidisciplinary
International conference on Scheduling, Theory and Applications (MISTA), Volume 2,
pp 677-692, New York, USA, 18-21 July 2005.

2- Rashidi H., and Tsang E.,” Applying the Extended Network Simplex Algorithm and a

Greedy Search Method to Automated Guided Vehicle Scheduling”, submitted to the
Journal of Annals of Operations Research.

3- Rashidi H., and Tsang E.,” Container Terminals: Scheduling Decisions, their

Formulations and solutions”, submitted to Journal of Scheduling.

4- Rashidi H., and Tsang E.,” Dynamic Network Simplex Algorithm and its Application to
Dynamic Scheduling of Automated Guided Vehicles”, to be submitted to Journal of
Scheduling.

5- Rashidi H., and Tsang E.,” Extensions to Network Simplex Algorithm and its Application

to the Static Automated Guided Vehicles Scheduling”, to be submitted to Journal of
Scheduling.

University of Essex, Computer Science Department

- 1 -
PhD Thesis, Copyrights (H. Rashidi)

Chapter 1: Introduction

There are more than 2,000 ports over the world. These ports play an important role in global
manufacturing and international business, in where ships come to load and/or unload their
cargos. The cargo ships can be classified into two types. The first type transports huge quantity of
commodities like crude oil, coal, grains, etc. The second type usually carries goods that are
packed into steel containers of standard sizes. This research concentrates on the second type,
which attracted more attentions in both investment and automation during the last decade. The
main functions of these terminals are delivering containers to consignees and receiving
containers from shippers, loading containers onto and unloading containers from vessels and
storing containers temporarily to account either for efficiency of the equipment or for the
difference in arrival times of the sea and land carriers [107].

Since the 1960s, due to both the increasing containerisation (which means that the number of
goods transported in containers has steadily been grown) and increasing world trade, new
container terminals are being built and existing ones are extended. Today over 60% of the
world’s deep-sea general cargo is transported in containers, whereas some routes, especially
between economically strong and stable countries, are containerized up to 100% [87]. Figure 1-1
shows the number of containers turnover for the ten largest container ports over the world from
1993 to 2002. As we can see in the figure in the Hong Kong terminal, containers turnover has
been risen from 9 millions Twenty feet Equivalent Units (TEUs) in 1993 to 19 millions TEUs in
2002. In the same period, the number of TEUs in Singapore, as the second port around the world,
has been increased from 9 millions to 17 millions TEUs. The greatest increase of the number of
containers over the last decade is in Shanghai, China. In this port, the number of TEUs has
increased from less than 1 million in 1993 to more than 8 millions in 2002. The figure also shows
that the number of container handled in Hamburg, as a major port in Europe, grew up gradually
during the last decade, increased from 2 millions TEUs in 1993 to more than 5 millions in 2002.

University of Essex, Computer Science Department
Chapter 1: Introduction

PhD Thesis, Copyrights (H. Rashidi) - 2 -

Figure 1-1: The number of containers turnover in the ten largest container terminals over the world [87].

The growths of containerization and transporting goods have created many problems for the
container terminals. They face the challenge to cope with the growing number of containers. The
rapid unloading/loading and turning around of ships has been become an important problem in
the container terminals. To meet these challenges, the container terminals have to innovate and
often automate equipment and optimise their logistic processes. The main motivation for this
research is to make a response to the challenges.

The remaining of this thesis is organized as follows. Chapters 2 and 3 provide a general
framework and literature around the decisions in the container terminals. An outstanding matter
from the literature review is that vehicle’s problem is one of the challenging problems in the
ports. Hence, the remaining chapters are dedicated to the automated guided vehicles scheduling.
This research developed several algorithms for the problem in both static and dynamic aspects. In
the static aspect, there is no change in the situation whereas in the dynamic one some changes
could be happened. A short description of every chapter is presented below.

Chapter 2 describes problems and decisions to be made in container terminals. Containers are
usually handled in two major compartments. These compartments and the equipment involved in

University of Essex, Computer Science Department
Chapter 1: Introduction

PhD Thesis, Copyrights (H. Rashidi) - 3 -

them are described in this chapter. Then, the operations in container terminal are disclosed and
the main decisions are classified. The decisions are subdivided into five scheduling decisions;
namely (1) allocation of berths to arriving vessels and quay cranes to docked vessels, (2) storage
space assignment, (3) rubber tyred gantry crane deployment, (4) scheduling and routing of
vehicles and (5) making appointment times to external trucks.

Chapter 3 makes a literature review dealing with research done in container terminals and
formulates the decisions (defined in Chapter 2). Our approach is to formulate the decisions as
Constraint Satisfaction Optimization Problems (CSOPs). We formulate each of the decisions
independently, according to the particular assumptions. After the formulation, the latest
researches over some of the major container terminals in the world are summarized. A summary
of solutions for the problems are provided at the end of this chapter.

Chapter 4 focuses on one of the most important problems in the ports and then formulates it. One
of the equipment in an automated container terminal is Automated Guided Vehicles (AGVs).
These robotic vehicles travel along a predefined path inside the terminal and transport containers.
This chapter defines a scheduling problem for these kind of vehicles in container terminals. The
problem is to deploy several AGVs in a port to carry many containers from the quay-side to yard-
side or vice versa. This problem is formulated under the Minimum Cost Flow model, which is a
directed graph. There are two aspects for the problem, static and dynamic. In static problems
there is no change in the situation whereas in dynamic ones, the problem changes over time.

Chapter 5 applied the standard Network Simplex Algorithm (NSA) to the scheduling problem of
Automated Guided Vehicles (defined in Chapter 4) in static aspect. In this aspect the number of
jobs, the distance between the source and destination of the jobs, and the number of vehicles
don’t change. In this chapter, we collected experimental results from the efficient implementation
of NSA. The NSA can find the global optimal solution for 3,000 jobs and ten millions arcs in the
graph model within two minutes.

Chapter 6 presents a novel version of NSA, which is called Network Simplex plus Algorithm
(NSA+). In order to show NSA+ is faster than NSA, several random problems are tackled by the
both algorithms and CPU-time required to solve the problems are tested statistically. After that,

University of Essex, Computer Science Department
Chapter 1: Introduction

PhD Thesis, Copyrights (H. Rashidi) - 4 -

NSA+ is applied to solve the dynamic Automated Guided Vehicle scheduling problem and the
results of simulation are studied.

In Chapter 7, we extend Network Simplex Algorithm in dynamic aspect. In this aspect, the
Dynamic Network Simplex Algorithm (DNSA) and the Dynamic Network Simplex plus
Algorithm (DNSA+) are presented. The objectives of Dynamic Network Simplex Algorithm are
to solve the new problem faster, to use some parts of the previous solution for the next problem
and to respond to changes in the problem. In this chapter, NSA+ and DNSA+ are applied to the
dynamic scheduling problem of Automated Guided Vehicles in container terminals and their
results are compared.

Chapter 8 presents a greedy algorithm (Greedy Vehicle Search-GVS) to complement the above
solutions for the problem defined in Chapter 4. GVS is an incomplete solution for both static and
dynamic problems. In Chapters 5-7, the scheduling problem of Automated Guided Vehicles, the
problem in Chapter 4, is solved by NSA and its extensions. Although these complete solutions
are efficient, they can only work on problems with certain limits in size. When size of the
problem goes beyond the limits or the time available to solve the problem is too short, GVS is
used. To evaluate the relative strengths and weaknesses of GVS and NSA+, a few comparisons
are performed in this chapter.

Chapter 9 makes a summary and conclusions of this research. In this chapter, we provide a
comparative summary of the algorithms for the scheduling problem of automated guided vehicles
(defined in Chapter 4). Since the container terminals have an important role in globalisation and
international trade, several suggestions for further research are provided at the end of this chapter.

University of Essex, Computer Science Department

- 5 -
PhD Thesis, Copyrights (H. Rashidi)

Chapter 2: Problem Description and
Decisions to be made

This chapter describes problems in the container terminals. Containers are usually handled in two
important compartments. We shall first describe what the compartments are, including the
equipment involved in them. Then, the operations in container terminal are disclosed. After that,
main decisions in the container terminal are defined. These decisions are subdivided into five
scheduling problems.

2.1 Compartments

The first compartment is Yard-Side, which sometimes is referred to as Storage Area or Stacking
Lane [90]. In any container terminal, storage yard serves as temporary buffers for inbound and
outbound containers. Inbound containers are brought in the port by vessels for import into land,
whereas outbound containers are brought in by trucks and for loading onto vessels in order to
export. A large scale yard may comprise a number of areas called zones [107]. In each zone,
containers are stacked side by side and on top of one another to form rectangular shape, which is
called block [107]. A typical yard-side with 3½ blocks at the front row is shown in Figure 2-1.

Figure 2-1: The container storage area in a port [68]

B1
B2 B3

University of Essex, Computer Science Department
Chapter 2: Problem Description and Decisions to be Made

PhD Thesis, Copyrights (H. Rashidi) - 6 -

There is expensive equipment in the storage area for container handling, which is referred to as
Rubber Tyred Gantry Cranes (RTGCs) [107,68, 90]. In Figure 2-2, a RTGC can be seen across
the block from the front-left to the front-right, while it is unloading a container from a truck. The
efficiency of yard operations often depends on productivity of these RTGCs and their
deployment. To balance the workload among blocks, RTGCs are sometimes moved between
blocks so that they can be fully utilized.

Figure 2-2: An RTGC sits across the width of a block [68]

Figure 2-3 shows a typical set-up of blocks where a RTGC can move from one block to the
others. For example, a RTGC can move from block B1 to B2 along a straight line without any
rotation of its wheels because the two blocks are adjacent and align longitudinally.

Figure 2-3: Transfer of a RTGC between two blocks [107]

Rubber Tyred Gantry Crane

University of Essex, Computer Science Department
Chapter 2: Problem Description and Decisions to be Made

PhD Thesis, Copyrights (H. Rashidi) - 7 -

To move between blocks B1 and B3, or between blocks B1 and B4, an RTGC has to make a 90-
degree rotation (of its wheels) twice to move from one block to another. Since RTGCs are big in
size and slow in motion, their movements demand a large amount of road space in the terminal
for a non-trivial time period. Furthermore, any RTGC movement from one block to another takes
time, and will result a loss in productivity of the RTGC.

The second compartment in the container terminal is Quay-Side [108, 68, 90]. Usually, Quay-
Side consists of a limited number of berths, each of which is equipped by several Quay Cranes
(QC) [108, 68, 90]. The cranes are used to unload containers from vessels of the wharf and load
containers to vessels. The cranes are usually flexible to be moved from a berth to another. Figure
2-4 shows a typical QC, while it is unloading containers from a vessel to put it down on the truck
in order to transport to the storage area.

Figure 2-4: A typical quay crane [68]

Berths are essential resources in the container terminal. Therefore, with a high traffic of vessels,
it would be ideal to have optimal allocation of berths to vessel to prevent undue delays of vessel
in the terminal. At any time, only one ship can be docked at a berth.

Quay Crane

Internal Truck

University of Essex, Computer Science Department
Chapter 2: Problem Description and Decisions to be Made

PhD Thesis, Copyrights (H. Rashidi) - 8 -

2.2 Operations

The main operations in the port start by ship’s arrival. After a ship is berthed, it invokes a number
of delivery requests for discharging. There are some vehicles in a terminal, which are usually
Automated Guided Vehicles (AGV) [108, 90] (see Figure 2-5, right), or Internal Trucks (IT)
[107] (see Figure 2-4, right bottom corner). Idle vehicles are dispatched according to the
unloading request list to deliver containers from the berth to designated places in the storage
yard. The QCs first unload containers from the containership and put them onto the vehicles.
After that the vehicles carry the containers to designated storage area blocks and RTGCs unload
the containers from the vehicles. Then the containers are put onto the yard stacks. In some
terminals there is a number of Straddle Carrier (SC) [90] (see Figure 2-5, left), capable of
loading, transporting and unloading of containers.

Figure 2-5: A Straddle Carrier (left) and an Automated Guided Vehicle (right) while they are carrying a container.
Straddle Carrier can load/unload and transport containers.

After the unloading phase of the ship, the loading phase will begin. On the land side, eXternal
Truck (XT) [107] brings in outbound containers before loading process of the relevant vessel,
and they pick up inbound containers from the storage area or from the discharged vessel by QCs.
The ship issues a number of loading requests. Vehicles are dispatched corresponding to the
loading request list to deliver containers to the QCs. The operation is the reverse of the unloading
process.

There are two major types of waiting lists in the port. The first one related to vehicles while the
second one dedicated to the cranes. A vehicle has to wait if it has arrived at the crane's location

University of Essex, Computer Science Department
Chapter 2: Problem Description and Decisions to be Made

PhD Thesis, Copyrights (H. Rashidi) - 9 -

but the crane is busy with other vehicles. A QC has to wait for a vehicle if it is ready to put a
container onto a vehicle or to pick up a container from a vehicle but the vehicle has not arrived
on the quay-side. Usually the cranes waiting time is more critical than the vehicle waiting time
for efficiency of the terminal operations. Any delay in a quay crane operation will cause the same
amount of time delay in all subsequent operations assigned to the same quay crane [108]. This
delay may even affect the ship's stay at the berth. Usually every ship has a time window and any
delay lead to growing costs for the terminal. So one of the most important decisions in this
system is allocation of quay cranes so that satisfy ship timing window or minimize waiting times
of the ships in the port.

2.3 Decisions to be made

In this section, we classify the important problems to be made in the container terminals. There
are many inter-related decisions during the planning period in a port every day or week, for
example. Additionally, these scheduling-resource allocation decisions involve time, space and
routes in the terminal, which increase the complexity of the system. Henry et al. (2005) are
considering the interaction between QCs, AGVs and Automated Yard Cranes (AYCs) in an
integrated model [38]. They made a mixed-integer programming model and now are developing
a multi-layer genetic algorithm. Obviously, it is not possible to provide answers to all operations
in the previous section by solving a single problem within the scope of this thesis. The problem is
therefore divided into some sub-problems.

The first classification of problems in the container terminal has been suggested by Iris [45]. She
proposed four sub-problems (2005); i.e. arrival of the ship, unloading and loading of the ship,
stacking of containers and transportation of containers from ship to stacking area or vice versa. In
her classification, each of the decisions can be studied at strategic, tactical and operation levels.
At the strategic level plan over future horizons, it is decided which layout, material handling
equipment and ways of operations are used. These decisions lead to the definition of set of
constraints for both the tactical and operational levels. Another classification and literature
review over operations in the container terminal have been provided by Steenken et al. (2004).
They divided the decisions into ship planning processes, stowage and stacking logistics, and
transportation problems [87]. In their classification, the first one consists of berth allocation and
stowage planning and crane splitting whereas the decisions related to yard cranes and storage

University of Essex, Computer Science Department
Chapter 2: Problem Description and Decisions to be Made

PhD Thesis, Copyrights (H. Rashidi) - 10 -

area allocation are in the second category. The third category of the decisions refers to
transportation problems from the quay side to the storage area or vice versa, the equipment to
carry the container from their source to their destination and traffic inside the terminal.
Additionally, Murty et al. (2005) classified the daily operations of a container terminal into nine
decisions [68]; namely, allocation of berths to arriving vessels, allocation of QCs to docked
vessels, appointment times to XTs, routing of trucks, dispatch policy at the terminal gate and the
dock, storage space assignment, RTGC deployment, IT allocation to QC and IT hiring plans.

With respect to scheduling view, we classify important problems in the container terminals into
five decisions, as shown in Figure 2-6. These decisions are usually executed in different time
periods. A short description for each of the decisions is given as follows:

Figure 2-6: Scheduling Decisions in the container terminals.

2.3.1 Allocation of berths to arriving vessels and QCs to docked vessels

The first decision is to maximize utilization of the berths and QCs. Generally, a port has limited
number of berths, efficient allocation of berths to arriving vessels and QCs is essential to
guarantee ship's timing window, to minimize the ship's waiting time and to maximize port’s

Berth allocation (allocating berths to vessels)
QC allocation (allocating QCs to docked vessels)

Storage Space Assignment (determining a place in the
storage area for the inbound and outbound containers)

Rubber Tyred Gantry Crane deployment in the yard

Scheduling and Routing of Vehicles

Appointment times to XTs

1)

2)

3)

4)

5)

University of Essex, Computer Science Department
Chapter 2: Problem Description and Decisions to be Made

PhD Thesis, Copyrights (H. Rashidi) - 11 -

turnaround. This decision affects the turnaround time of vessels, and throughput rate of the
terminal.

2.3.2 Storage space assignment

Two kinds of storage areas (Primary and Secondary) are proposed for medium and short-term
storage of containers [90]. Assigning these storage spaces to arriving inbound and outbound
containers are another scheduling-resource allocation problem. In this decision it is desirable to
minimize reshuffling or reorganizing volume and minimize the costs of containers.

2.3.3 Rubber Tyred Gantry Crane (RTGC) deployment

To manoeuvre the containers in the blocks, RTGCs are used (Figure 2-3). One major decision in
port automation is to determine how many RTGCs work in each block, and when a RTGC needs
to move from one block to another. This decision affects the port time of vessels, the waiting
times of QCs and ITs or AGVs.

2.3.4 Scheduling and routing of vehicles

In each port, there are several vehicles to carry containers between the yard-side and quay-side or
vice versa. The scheduling and routing these vehicles is another important decision. The
objectives of this decision are to minimize transportation costs of the containers and the waiting
times of the QCs and RTGCs.

2.3.5 Appointment times to eXternal Trucks (XTs)

The fifth decision in our classification is to make appointment times for the external trucks
(XTs). In reality, all consignees book the time to pick up their inbound containers, by calling
beforehand and taking appointments. The customers also book a time to bring in their outbound
containers. This decision helps to minimize the waiting times of XTs, and congestion in the gate
of terminal.

University of Essex, Computer Science Department

- 12 -
PhD Thesis, Copyrights (H. Rashidi)

Chapter 3: Literature Review and

Formulation of the Decisions

In the previous chapter, we defined five scheduling decisions in container terminals. To
recapitulate, these decisions are:

• Allocation of berths to arriving vessels and quay cranes to docked vessels.
• Storage space assignment.
• Rubber Tyred Gantry Crane deployment.
• Scheduling and routing of vehicles.
• Appointment times to external trucks.

The objectives of this chapter are to survey on research done in these decisions and then
formulate them as Constraint Satisfaction Optimization Problems (CSOPs). The five decisions
are formulated separately so that they can be studied independently. After the formulation, the
latest researches over some of the main container terminals in the world are summarized. A
summary of solutions for the problems can be found at the end of this chapter.

3.1 Allocation of berths to arriving vessels and quay cranes to
docked vessels.

In container terminals, the berth is the most important resource that affects the capacity of the
terminal directly. The main reason is that the construction cost of the berths is relatively very
high compared with the investment on facilities in the port [73]. Thus, an effective way to
increase the capacity of a terminal is to improve the efficiency of its berth.

The problem here is to allocate berths to arriving vessels and to determine which cranes in the
berths process the docked vessels. The operator of the terminal usually creates and maintains a
berth schedule which shows the berthing position and time of each arriving vessel. For creating
the berth schedule, the calling schedule of vessels, favorable berthing location (near primary
storage, for example) and the number of available cranes must be considered simultaneously.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 13 -

The static and dynamic berth allocation problems have been studied by Hansen and Oguz
(2003). In the static problem they assumed that ships arrive to the port before the berths
become available. In the dynamic problem, there was no constraint on arrival time of the ships.
Their integer programming model has been tackled by CPLEX software [33].

The most important objective in berth scheduling is to reduce the amount of time required to
unload and load a ship. Thurston and Hu (2002) presented a distributed agent architecture to
achieve the objective and increase the container throughput of the port [90]. Under this
architecture, an intelligent planning algorithm was continuously optimized by the dynamic and
co-operative rescheduling of yard resources such as RTGCs and container vehicles. Another
research group, Rebollo et al. (2000) presented a multi-agent system architecture to solve the
automatic allocation problem in the container terminals in order to minimize the ship’s docking
time [84]. Their paper focused on the management of cranes by a ‘transtainer agent’. The
independence of subsystems obtained for a multi-agent approach was emphasized.

The berth-scheduling and crane-scheduling problems have been considered to be independent
of each other. Moon (2001) studied only the first problem by a Mixed Integer Linear Program
(MILP) model [65]. In the model each vessel requires a specific amount of the space on the
berth during a predetermined length of time for unloading and loading containers. Blażewics et
al. (2005) modelled the berth scheduling as a moldable task scheduling problem by considering
the relation between the number of quay cranes and the berthing time [7]. Moldable tasks form
one type of parallel tasks that can be processed simultaneously on a number of parallel
processors for which the processing times are a function of the number of processor assigned.
The aim of the model was to minimize the idle time on processors so as to increase the
utilization of the berths. On the second problem, the crane scheduling, Böse et al. (2000)
focused on maximising the productivity of the cranes and reducing the time in port for the
vessels by using evolutionary algorithm [8].

However, the duration of berthing of each vessel depends on the number of cranes assigned to
the corresponding vessel. When the number of cranes assigned to a vessel increases, berthing
duration of the vessel can be reduced. Because of this important reason, the berth-scheduling
and crane-scheduling problems should be considered simultaneously in the port. Park and Kim
(2003) made a MILP model to consider the both problems [73]. They suggested two phases for

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 14 -

solving the mathematical model, “berth scheduling phase” and “crane assignment phase”. These
two phases are summarised by Figure 3-1. The first phase determined the berthing position and
time of each vessel as well as the number of cranes assigned to every vessel at each time period.
The sub-gradient optimization technique was applied to obtain a near-optimal solution for the first
phase. In the second phase, a detailed schedule for each quay crane was constructed based on the
solution found from the first phase. In the second phase, dynamic programming technique was
applied to solve the problem.

Phase I : Berth Scheduling
Determine berthing time, position of each vessel and

the number of cranes assigned to the vessels

Phase II : Crane Assignment
Schedule the assignment of individual Crane

Figure 3-1: Park and Kim’s two phases scheduling of berths and cranes [73]

3.1.1 Assumptions

Here, we combine the two phases of Park and Kim’s model and convert it to CSOPs. The
followings assumptions are considered in formulating this decision:

Assumption 3-1-1: A fixed time-window is considered for the quay cranes to
discharging/loading a container. With this assumption, the duration of berthing of or processing
a vessel is inversely proportional to the number of cranes assigned to.

Assumption 3-1-2: Each vessel determines the maximum and minimum number of cranes that
can be assigned to it [73]. The number of cranes can change from a period to period.

Assumption 3-1-3: Each vessel has a pre-determined berthing time period. A cost penalty
applies if the vessel berths early or departs late.

Assumption 3-1-4: Each vessel has a preferred location of berthing [73]. This preferred
location can be the location nearest to the storage area where inbound/outbound containers for
the corresponding vessel are stacked. Another preference of a berthing location may also come
from the depth of water or the strength and direction of currents.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 15 -

The output of solution methods for this decision is illustrated in Figure 3-2. In the figure there
are five vessels and each rectangle represents the berthing schedule of a vessel. The berthing
locations are shown on the horizontal sides and the positions of the vertical sides correspond to
operation times of vessels. The number on the left side of every ship shows how many cranes
process the vessel at a specific time, while the crane number has been shown in the middle of
grid.

Time 2 1 2

T 2 1 2

 2 1 2
 2 1 2 E

 2 1 2 3 3 4 5
 2 1 2 3 6 7 8

 4 2 3 4 5 D
 4 2 3 4 5

 2 4 5

 2 1 2 2 4 5
10 3 1 2 3 2 4 5
9 3 1 2 3 2 4 5 C

8 3 1 2 3 B 2 4 5
7 3 1 2 3 2 4 5

6 3 1 2 3 2 4 5
5 3 1 2 3 2 4 5

5 5 1 2 3 4 5
4 5 1 2 3 4 5
3 5 1 2 3 4 5

2 5 1 2 3 4 5 A
1 5 1 2 3 4 5

 1 2 3 4 5 6 7 8 9 10 m Berth

Figure 3-2: An output of the berth and crane scheduling problem

The following variables are given at the beginning of the planning horizon:
T: The total number of time periods in the planning horizon. The time period is equal to the

time window of cranes (see Assumption 3-3-1).
ETA k : The expected time of arrival of vessel k.
a k : The processing time of vessel k (if only one crane is assigned to vessel k).
b k : The length of vessel k.
d k : The due time for the departure of vessel k.
sk : The least-cost berthing location of the reference point of vessel k.
c 1k : The penalty cost of vessel k if the vessel could not dock at its preferred berth.
c 2k : The penalty cost of vessel k per unit time of earlier arrival before ETAk.
c 3k : The penalty cost of vessel k per unit time of late arrival after ETAk.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 16 -

c 4k : The penalty cost of vessel k per unit time delay behind the due time.
Lk : The minimum number of cranes that can be assigned to vessel k.
Uk : The maximum number of cranes that can be assigned to vessel k.
l : The number of vessels in the planning horizon.
C : The total number of cranes in the terminal (C > Max (Uk), k=1,2,..,l).
m: The number of berths in the port.

3.1.2 Decision variables and domains

Atk : The arrival time of vessel k to the berth.

Domain (Atk)={1,2,3,4,…,T}
Dtk : The departing time of vessel k.

Domain (Dtk)={1,2,3,4,…,T}
Xitk : 1 if the berth i at time t is allocated to vessel k, otherwise 0.
 Domain (Xitk)={0,1}
Qitkc: Status of crane c ; it is 1 if the crane c in the i-th berth is processing vessel k at time t,

otherwise 0. Domain (Qitkc)={0,1}

3.1.3 Constraints

Constraint 3-1-1: The grid squares are covered by only one vessel. In fact, each berth at time t can
be assigned to only one vessel.

TtmiforX
l

k
itk ,..,3,2,1;,...,3,2,11

1
==≤∑

=

Constraint 3-1-2: Each berth is allocated for the vessel only between its arrival and departure.

lkformiforTtfor
XDttORtAt

XDttAt
itkkk

itkkk

,..,2,1;,..,2,1;,..,2,1
0)()(

1

===
=⇒>>

=⇒≤≤

Constraint 3-1-3: Only one crane operates on the vessel in a certain time and berth.

TtmiforQ
l

k

C

c
itkc ,..,3,2,1;,...,3,2,11

1 1
===∑∑

= =

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 17 -

Constraint 3-1-4: The number of quay cranes assigned to each vessel is limited and the vessels
have to be fully processed by the QCs.

Constraint 3-1-5: The crane c processes vessel k at berth i in time t, if the berth and crane are
allocated to the vessel.

Constraint 3-1-6: Two time periods are required to set-up any crane from one berth to another.

Constraint 3-1-7: If the length of a vessel is greater than the distance between two berths, other
vessels are not allowed to dock at the adjacent berth.

In the constraint, │i-i’│ denotes the distance between berths i and i’.

3.1.4 Objective function

The objective function of this decision is to minimize the total penalty cost. In order to present
the objective function, we introduce the following auxiliary variable:
Zk : The sum of the absolute distance between the preferred location of vessel k and the berths

allocated to the vessel. This variable is determined by the following function:

{ }∑ ∑
= =

=−==
T

t

m

i
itkkkitkk XsisXfZ

1 1
1:),(

Now the objective function is written as follows:

{ }∑
=

+++ −+−+−+=
l

k
kkkkkkkkkkk dDtcETAAtcAtETAcZcselsMinCostVes

1
4321)()()(.

The first factor is the penalty cost incurred by the distance between the berthing locations of a
vessel and the preferred location. The second and third factors are the penalty costs by the
actual berthing earlier or later than the expected time of arrival. The last factor is the penalty
cost caused by the delay of the departure after the promised due time. The three last terms have
impacts on the objective function provided that they are only positive.

lkforaQUQL
m

i

Dt

Att
k

C

c
itkc

m

i

Dt

Att
k

C

c
itkck

k

k

k

k

,..,2,1,,
1 11 1

==≤≤ ∑ ∑ ∑∑ ∑ ∑
= = == = =

TtforlkformiforCcforXANDQ itkitkc ,..,2,1;,...,2,1;,..,2,1;,..,2,1,1)(=====

miforttttTttfor
lkforCcforQANDQ kcititkc

,..,2,1);',1'(,,..,2,1',
,...,2,1;,..,2,1,0)('

=≠=−=
===

Ttforiimiiforkklkkfor
XANDXTruebiiORbii tkiitkkk

,..,2,1;';,..,2,1',;';,...,2,1',
,0)()''('''

=≠=≠=
=⇒=<−<−

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 18 -

3.2 Storage space assignment

There is evidence that the yard plays an important role in global productivity of the terminal
[55]. In fact, the efficiency and quality of management in the container yard operations affect
all terminal decisions, related to the allocation of available handling equipment and the
scheduling of all activities. The problem here is to determine a place in the storage area for the
inbound and outbound containers.

Ambrosino et al. (2002) studied the impact of yard organization on the stowage of containers in
terms of unproductive export containers movement in the port [5]. They tackled the problem
using a heuristic approach based on a 0-1 linear programming model. Another research group,
Murty et al. (2005), studied storage space assignment and vehicle routing problem, together in
the same problem [68]. For the former problem, they suggested two steps, block assignment
and storage position assignment. In the first step, they determined how many containers,
inbound or outbound containers, are stored in every block at each time period. In the second
step, the optimal available position in the block was determined for storing the containers.
While the reshuffling of containers that may arise was minimized [68], the containers flow and
scheduling problem have not been considered in that paper. In the same way, Steenken et al.
(2001) combined container stowage and transport planning problem [88]. Then a mixed integer
model was presented for just-in-time container scheduling with one quay crane. An exact and
heuristic methods to solve the model, has been presented in the paper. Moreover, the storage
space allocation in container terminals has been studied by Zhang et al. (2001). They
considered the problem in a rolling horizon approach [106]. For each planning horizon, the
problem was decomposed into two levels. At first level, the total number of inbound and
outbound containers to be placed in every part of the storage was determined. The second level
determined the number of containers in each block of the yard by solving a transportation
problem. The objective of the problem was to minimize travelling times of the vehicles in the
port. Gambardella et al. (1998) presented a decision support system for the management of an
inter-modal container terminal [27]. In their model, there were the spatial allocations of
containers in the terminal yard. They described some modules for the optimisation of the
allocation process and for the simulation of the terminal. The former was based on integer
linear programming; the latter was a discrete event simulation tool.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 19 -

Frankel (1987) suggested three main types of storage systems: short term, long term, and
specialized. Henesey et al. (2003) described these kinds of storages [37]. The short-term
storage system is for containers that may be transhipped onto another containership. Long-term
storage is for containers awaiting customs release or inspection. Specialized storage is reserved
for the refrigerated (they need to be supplied with electricity) and hazardous materials. Holguin
and Jara took into account the intrinsic and logistic values of containers and divided them into
different priority classes. For each class the optimal amount of space and price were determined
under welfare and profit maximizing rules (which has been surveyed in [18]).

3.2.1 Assumptions

We assume that the storage area is divided into the short-term and medium-term storages.
These two storages are usually referred to as the primary and secondary [90]. Figure 3-3 shows
a layout of the port with these storages. The purposes of the primary storage are to store transit
containers [37] (from one ship to another), to minimize waiting times of QCs and ships [90],
and to be used in emergency situations such as deadlock of the vehicles. The secondary storage
is where the inbound containers are picked up by their consignees and the outbound ones are
brought in by customers. The QCs and RTGCs handle containers in the primary and secondary
area, respectively. The size of the secondary storage is usually greater than the primary.

Our approach is to consider the interaction of containers between the primary and secondary
storages. Based on the layout of storages, containers are classified into the six following types
according to their status at different stages:

(a) Primary Storage Containers to Secondary Storage (PSCSS): Containers in the primary
storage waiting to be moved to the secondary storage.

(b) Secondary Storage Containers to Primary Storage (SSCPS): Containers in the
secondary storage waiting to be moved to the primary storage.

(c) Secondary Storage Container Pickup (SSCPI): Inbound containers in the secondary
storage waiting for pickup by consignees.

(d) Secondary Storage Container Grounding (SSCGD): Outbound containers before being
allocated to the secondary storage.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 20 -

(e) Primary Storage Container Pickup (PSCPI): Outbound containers in the primary storage
waiting to be loaded on the arriving vessels.

(f) Primary Storage Container Discharging (PSCDS): Inbound containers, being discharged
from the arriving vessels and to be allocated to the primary storage.

Figure 3-3: Port’s layout with the primary and secondary storages [90]

The following assumptions are considered to formulate this decision:

Assumption 3-2-1: As stated in Chapter 2, the storage areas are divided into different blocks.
In this decision, it is necessary to determine which blocks and how many spaces in them to be
allocated to the six types of containers.

Assumption 3-2-2: Several QCs might be busy with other operations. So we assume that there
is a tight constraint on the minimum and maximum of QCs in the primary storage during each
time period.

Vehicle

RTGC

QC QC’s Controller

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 21 -

Assumption 3-2-3: Our objectives are to balance the workload of RTGCs in the secondary
storage [106] and to minimize the handling costs of containers in those two kinds of storages.

Assumption 3-2-4: The maximum dwell times of the inbound and outbound containers
approximately equal the maximal free storage period, which is beyond the planning horizon
[106]. There are containers with unknown removal times at the planning period or containers
with known departure times beyond the planning horizon. Their associated workload does not
occur in the planning horizon and consequently such containers cannot be considered in this
storage allocation model. Instead, these containers are distributed to blocks in proportion to
their available storage capacities at the beginning of the planning horizon so as to balance the
block densities in the secondary storage.

Assumption 3-2-5: Within each block, the exact location of a container can be assigned to
shorten the handling time by minimizing reshuffling [106]. This decision about storage location
is a problem at a lower level, and is not considered in this formulation.

Assumption 3-2-6: The secondary storage is where the customers bring in their outbound
containers and the consignees pick up their inbound containers. The outbound containers then
transported to the primary storage. Also it is assumed the inbound containers are first stored in
the primary storage and then transported to the secondary storage. We assume that the primary
and secondary storages have enough space to store all the containers over the planning horizon.

In order to make the model, the following parameters are known at the beginning of a planning
horizon:

TPij: The travelling time between block i of the primary storage to block j of the secondary.
TSij: The travelling time between block i of the secondary storage to block j of the primary.
T: The total number of time periods in the planning horizon. The time period has to be

greater than the maximum travelling time between the primary storage and the
secondary storage or vice versa.

B: The total number of blocks in the secondary storage.
Ci: The storage capacity of block i of the secondary storage.
P: The total number of blocks in the primary storage.
Fi: The capacity of block i of the primary storage.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 22 -

Hi0: The initial inventory of block i of the primary storage, i.e., the number of containers in
primary storage at the beginning of the planning horizon.

Si0: The initial inventory of block i in the secondary storage, i.e., the number of containers
in block i at the beginning of the planning horizon.

PE0it: The expected number of initial SSCPI containers stored in block i of the secondary
storage to be picked up during period t.

L0it: The expected number of initial PSCPI containers stored in block i of the primary
storage to be moved to the arriving vessels during period t.

GEtk: The expected total number of SSCPS containers that to be allocated in the secondary
storage during period t and to be moved to primary storage in period t + k.

DEtk: The expected total number of PSCSS containers, allocated in the primary storage
during period t, and to be picked up from the secondary storage in period t + k.

Gt: The expected total number of SSCGD containers that arrive at the terminal during
period t and to be stored in the secondary storage.

Dt: The expected total number of PSCDS containers that arrive to the terminal during
period t by vessels and to be stored in the primary storage.

ααααt: The expected number of SSCGD containers storing in secondary storage during period t,
and to be moved to the primary storage in periods beyond the current planning horizon.

ββββt: The expected number of PSCDS containers arriving at the terminal during period t, and
to be moved to the secondary storage, with an unknown pickup time or pickup time
beyond the planning horizon.

Qt , Rt: The maximum and minimum number of available QCs, respectively, to handle
PSCSS, SSCPS, PSCPI and PSCDS containers in the primary storage during period t.

3.2.2 Decision variables and domains

The following decision variables are defined:
Xijt: The total number of PSCSS containers in block i of the primary storage to be moved to

block j in the secondary storage during time period t.
 Domain Xijt = {0,1,2,…, Max (Fi , Cj)|i=1,2,..P, j=1,2,..B}

Yijt: The total number of SSCPS containers in block i of the secondary storage to be moved to
block j in the primary storage during time period t.

 Domain Yijt = {0,1,2,…, Max (Ci , Fj)|i=1,2,..B, j=1,2,..P}

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 23 -

GSit: The total number of SSCGD containers that arrive at the terminal during period t and to
be stored in block i of the secondary storage.

 Domain GSit = {0,1,2,…, Max (Ci)|i=1,2,..B}
DPit: The total number of PSCDS containers that arrive to the terminal during period t by

vessels and to be stored in block i of the primary storage.
 Domain DPit = {0,1,2,…, Max (Fi)|i=1,2,..P}

3.2.3 Constraints

In order to present the constraints of this decision, we introduce the following auxiliary
variables:

PEit: The total number of SSCPI containers stored in block i of the secondary storage, that is

picked up by consignees during period t. This variable is determined by the following
expression:

TtforBiforPEXPE it
t

t

P

j
jitit ,..,2,1;,..2,1,0

1

1' 1
' ==+=∑∑−

= =

Lit: The total number of PSCPI containers stored in block i of the primary storage that to be
moved to the arriving vessels during period t. This variable is determined by the following
expression:

TtforPiforLYL it
t

t

B

j
jitit ,..,2,1;,..2,1,0

1

1' 1
' ==+=∑∑−

= =

Hit: The inventory of block i of the primary storage at the beginning of period t. This variable is
determined by the following expression:

PiforTtforLXYDPHH it
B

j
jit

B

j
jitittiit ,..,2,1;,..,2,1,

11
)1(==−−++= ∑∑

==
−

The expression represents updating of inventory in the primary storage from a period to the
next period. The first term is the initial inventory of block i. The second term is the number
of PSCDS containers, being allocated in block i. The third and forth terms state the
inventory of block i is increased and decreased by the number of SSCPS and PSCSS
containers, respectively. The last term is the number of PSSPI containers, being moved
from block i to the arriving vessels.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 24 -

Sit: The inventory of block i of the secondary storage at the beginning of period t. This variable
is determined by the following expression:

BiforTtforPEXYGSSS it
P

j
jit

P

j
jitittiit ,..,2,1;,..,2,1,

11
)1(==−+−+= ∑∑

==
−

The expression represents updating of inventory in the secondary storage from a period to
the next period. The first term is the initial inventory of block i. The second term is the
number of SSCGD containers, being allocated in block i. The third and forth terms state the
inventory of block i is decreased and increased by the number of SSCPS and PSCSS
containers, respectively. The last term is the number of SSCPI containers, being picked-up
from block i.

QCt: The number of QCs required to handle the four different type of containers (PSCPI,
SSCPI, PSCSS and PSCDS) in the primary storage during period t. This variable is
determined by the following expression:

∑∑∑∑∑∑
== == ==

+++=
P

i
it

P

i

B

j
ijt

B

i

P

j
ijt

P

i
itt DPXYLQC

11 11 11

Now we present the constraints for this decision:
Constraint 3-2-1: Constraints on inventory of each block in the primary and secondary storage
and their densities.

PiforTtforFH
BiforTtforCS

iit

iit
,..,2,1;,..,2,1,
,..,2,1;,..,2,1,

==≤
==≤

γ
λ

The first constraint ensures that the inventory in each block of the secondary storage in each
time period will not exceed the threshold level (which is being controlled by λ; λ<1). The
later ensures that the inventory of each block of the primary storage in each planning period
will not exceed the allowable block density (which is being controlled by γ; γ <1).

Constraint 3-2-2: Constraints on flow of the containers.

∑
∑

∑∑ ∑
∑∑ ∑

=

=

+== =

+== =

==

==

=+=

=+=

B

i
itt

P

i
itt

t
T

tk
tk

B

i

P

j
ijt

t
T

tk
tk

P

i

B

j
ijt

TtforGSG

TtforDPD

TtforGEY

TtforDEX

1

1

11 1

11 1

,..,2,1;

,..,2,1;

,..,2,1;

,..,2,1;

α

β

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 25 -

The first constraint ensures that the expected total number of PSCSS containers to be
moved to the secondary storage, DEtk, and the number of containers with known departure,
βt, is the sum of PSCSS containers moved from each block of the primary storage to all
blocks in the secondary storage during period t. The second constraint has a similar
meaning but for the SSCPS containers. The third constraint ensures that the expected total
number of PSCDS containers allocated to all blocks in the primary storage is the sum of
total number of containers arriving to the terminal by the vessels during period t. The forth
constraint has a similar meaning but for the SSCGD containers.

Constraint 3-2-3: Constraints on the number of available QCs in the primary storage.

TtforQQCR ttt ,..,2,1, =≤≤

3.2.4 Objective function

The objective function is to minimize distribution of the total number of containers among
blocks in the secondary storage and sum of the transportation costs between the both storages.
In order to present the objective function in the simpler form, we define the following auxiliary
variables:

RTGCit: The number of RTGCs required to handle the four different types of containers

(SSCGD, SSCPS, PSCSS and SSCPI) in block i of the secondary storage during
period t. This variable is determined by the following expression:

it
P

j
jit

P

j
ijtitit PEXYGSRTGC +++= ∑∑

== 11

Mt , Nt : The maximum and minimum number of RTGCit during period t, respectively. These
variables are determined by the following constraints:

TtforRTGCMinN
TtforRTGCMaxM

itBit

itBit

,..,2,1),(
,..,2,1),(

,..2,1

,..2,1

==

==

=

=

Now the objective function is written as follows:

∑
= 





++−= ∑∑ ∑∑
= = = =

T
t

TSYTPXWNMWragesMinCostSto
P

i

B

j

B

i

P

j
ijijtijijttt

1
)..()(

1 1 1 1
21

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 26 -

Note that W1 is the weight of distribution of containers among blocks in the secondary storage
and W2 is the weight of transportation cost inside the terminal.

3.3 Rubber Tyred Gantry Crane (RTGC) deployment

The RTGC is a critical resource, whose performance in the storage yard affects the waiting
times of XTs, ITs or AGVs, and QCs [68]. The waiting time of vessels is also indirectly
effected by the productivity of RTGCs. As the workload in the different storage blocks changes
over time, deployment of RTGCs among storage blocks in order to provide more RTGCs to
blocks with heavier workloads is an extremely important problem in the terminal. The problem
here is to determine how many RTGCs work in each block, and when a RTGC needs to be
moved from one block to another.

Lim et al. (2002) studied a set of spatial constraints in crane scheduling problem [55]. The most
interesting one was the non-crossing constraint, i.e. the crane arms could not be crossed over
each other simultaneously. It was a structural constraint on cranes and crane tracks. The
problem was modelled as bipartite graph matching. Then, the model was tackled by squeaky
wheel optimization with local search technique. Murty et al. (2005) studied this decision with
some restriction assumptions [68]. They made an integer programming model by defining a
sink block in where the expected workload exceeds the capacity of its RTGCs. Their model
was tackled by Vogel solution. Also dynamic RTGC deployment in container storage yard was
studied by Zhang et al. (2002). They minimized the total delayed workload in the yard by a
mixed integer programming model and tackled it through Lagrangean relaxation [107].
Moreover, Lin (2000) studied the movement problem of yard cranes in the container terminal
so as to minimize workloads at the end of each time period. He made a MILP model, which
was tackled by Lagrangian decomposition [56].

3.3.1 Assumptions

Here, we present a combination of the assumptions in Zhang’s model [107] and Lim’s
formulation [55] for this decision. These assumptions are:

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 27 -

Assumption 3-3-1: The capacity of RTGCs are measured in time-unit (minutes, for example)
[107]. Similarly, the workload of each block is converted to time-unit. It is also assumed the
nominal numbers of container moves are given in each time period. These containers are
handled by the RTGCs in the yard. Since containers are stacked on each other and may be
stored in a predefined pattern, each nominal container retrieval or storage may take more than
one real RTGC move. So the total number of container moves is converted into the workload-
times by multiplying the average number of real moves per nominal move with the average
time needed per move.

Assumption 3-3-2: Because of the limitation of blocks size and the potential danger of RTGCs
collision, there is a limited number of RTGCs in each block at any time. There are situations
where up to two RTGCs can be worked in each block [107]. But we do not allow more than K
RTGCs to be moved from one block to another in a time period.

Assumption 3-3-3: Every RTGC movement starts and finishes within the same time period
[107]. This assumption entails that the time period has to be greater than the maximum
travelling times of RTGCs among blocks.

Assumption 3-3-4: It is assumed that unfinished work in a block at the end of a time period
will be carried over to the next period [107]. As a result, the workload of a block in a time
period is the sum of the workload in the current period and the workload carried over from the
previous time period. The workload carried over from the previous period will be finished
during the early part in the current period.

Assumption 3-3-5: The maximum and minimum available numbers of RTGCs or Yard Cranes
in the yard, respectively, are known and fixed during each time period.

Assumption 3-3-6: The RTGCs can not cross over each other in the same period [55]. Figure
3-4 shows a part of the storage yard. Moving an RTGC from block 1 to block 4 and another
one from block 3 to block 2 at the same period produces a dangerous situation in the yard.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 28 -

Figure 3-4: Cross over problem for two RTGCs in the storage area

The following parameters are known at the beginning of the planning horizon:

TTij: The travelling time of a RTGC from block i to block j.
T: The total number of time periods in the planning horizon. The time period has to be greater

than the maximum travelling time of RTGCs between the blocks.
Xii0: The numbers of RTGCs in block i at the beginning of the planning horizon.
C: The capacity of a RTGC within a time period.
K: The total permitted number of RTGCs in each block.
N: The total number of blocks in the yard.
Bit: The workloads of block i within time period t. Average time to handle a container are used

to determine the workload of each block in time-unit.
Mt , Nt: The maximum and minimum available number of RTGCs or Yard Cranes in the yard,

respectively, during period t.
Lij, kl: 1 if the movement of RTGC from block i to block j and from block k to block l creates

cross over problem. Otherwise it is zero. These parameters are determined according to the
layout of the storage area.

Wi0: The workload of block i at the beginning of the planning horizon.

3.3.2 Decision variables and domains

The decision variables are defined as follows:
Xijt: The number of RTGCs moving from block i to block j during time period t.
 Domain (Xijt) = {0,1,2,…,K}, for i, j=1,2,..,N; t=1,2,3,..,T, i≠j
 Note that when i = j, Xijt indicates the RTGCs stay in the same block during period t.

X

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 29 -

Zijt: The workload fulfilled in block i by RTGCs that move from block i to block j during time
period t. Domain (Zijt) = {0,1,2,…,Bit}

3.3.3 Constraints

Constraint 3-3-1: Maintaining the RTGC flow or movement conservation in each block when
RTGCs are deployed from one period to the next period [107].

Constraint 3-3-2: Only K RTGCs can serve a block in a time period.

Constraint 3-3-3: The total maximum and minimum available numbers of RTGCs or Yard
Cranes in the yard are limited.

Constraint 3-3-4: Two RTGCs can not cross over each other in the same time period.

3.3.4 Objective function

The objective function of this decision is to minimize the remaining workload at each block
[107] and travelling time of the RTGCs among blocks during the planning horizon. In order to
formulate the objective function, we introduce the following auxiliary variables:

Yijt: The workload fulfilled in block j by the RTGCs that move from block i to block j during

time period t. This variable is determined by the following expression:

∑ ∑
= =

− …=…==
N

j

N

j
tjiijt XX

1 1
)1(T. , , 2 1, t N; , 2, 1, ifor ,

∑ ∑
= ≠=

…=…=≤+
N

j

N

ijj
jitijt KXX

1 ,1
 T. , , 2 1, t N; , 2, 1, ifor ,

TtforjliklkjiNlkjifor
XXXORXXORXL kltijtkltijtklij

,...,2,1,,,,;,..,3,2,1,,,
)]0()0()0[(1,

=≠≠≠≠=

=+>>⇒=

TtNjiforZXTTCY ijtijtijijt ,..,3,2,1;,...,2,1,,)(==−−=

TtforMXN t
N

i

N

j
ijtt ,...,2,1;

1 1
=≤≤ ∑∑

= =

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 30 -

The first term represent the total net capacity of RTGCs that move from block i to block j
(a part of their capacities is missed due to the travelling time from block i to block j). The
second term is the workload fulfilled in block i by the RTGC.

W it: The workload left in block i at the end of time period t. This variable is determined by the
following expression:

The first term is the workload in block i from the previous period. The second term is the
workload of block i within time period t. The third term states the workload fulfilled in
block i by RTGCs that move from this block to others. The last term represents the
workload fulfilled in block i by RTGCs that move from the other blocks to this block.

Now the objective function is written as follows:

The first term is the sum of workload left in all blocks and the second term is travelling times
of RTGCs between the blocks. Note that w1 and w2 are the weights of those two terms in the
objective function.

3.4 Scheduling and routing of vehicles

The Vehicle Routing Problem (VRP) is a well known integer programming problem which
falls into the category of NP Hard problems, meaning that the computational effort required
solving this problem increase exponentially with the problem size. The VRP is being studied in
a broad class of routing problems [99]. Some of these variants are Capacitated Vehicle Routing
Problem (CVRP), Vehicle Routing Problem with Time Windows (VRPTW), Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW), Multiple Depot Vehicle Routing
Problem (MDVRP), Periodic Vehicle Routing Problem (PVRP), Split Delivery Vehicle
Routing Problem (SDVRP), Stochastic Vehicle Routing Problem (SVRP), Vehicle Routing
Problem with Backhauls (VRPB), Vehicle Routing Problem with Satellite Facilities (VRPSF),
Time Dependent Vehicle Routing Problem (TDVRP).





+= ∑ ∑∑∑∑

= = = ==

N

i

T

t

N

i

N

j
ijtij

T

t
it XTTwWwCsMinCostRTG

1 1 1 11
.2)(1

TtNiforYZBWW
N

j

N

j
jitijtittiit ,..,3,2,1;,...,2,1;

1 1
)1(==−−+= ∑ ∑

= =
−

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 31 -

In each port, there are several vehicles to carry containers in the port. The scheduling and
routing these vehicles is an extremely important decision. In this section, we review the latest
research around dispatching and scheduling of AGVs. After that, scheduling and routing
problem of vehicles in the container terminal is formulated as a VRPTW.

During the recent years, several researches have been devoted on dispatching of vehicles in the
port [8, 108, 14, 103, 31]. Zhang et al. (2002) made two integer programming model for
dispatching vehicles in a container terminal [108]. Two heuristic algorithms have been
constructed based on the models and Lagrangian relaxation has provided a better solution for
the second model. They applied the models to a real size virtual terminal. Grunow et al. (2004)
studied dispatching multi-load AGVs in highly automated seaport container terminals [31].
They made a Mixed Integer Linear Program (MILP) model and presented some priority rules to
handle container jobs in the container terminals. Then, the performance of the priority rule
based approach and the MILP model have been analysed for different scenarios with respect to
total lateness of the AGVs. The main focus of their numerical investigation was on evaluating
the priority rule based approach for single and dual-load vehicles as well as comparing its
performance against the MILP modelling approach. Additionally, dispatching automated
guided vehicles in a container terminal has been studied by Cheng et al. (2003). They presented
a network flow formulation to minimize the waiting time the AGVs at the berth side [14]. Böse
et al. (2000) focused on the process of container transport by gantry cranes and straddle carriers
between the container vessel and the container yard [8]. Their primary objective was the
reduction of the time in port for the vessels by maximizing the productivity of the gantry cranes.
They tackled the problem using evolutionary algorithm. Wook and Hwan (2000) applied two
different dispatching strategies for AGVs in container terminals [103], “dedicated dispatching”
and “pooled dispatching”. In the dedicated dispatching, every AGV is assigned to a single QC.
In pooled dispatching, an AGV performs delivery tasks for more than one QC. Their primary
goal of dispatching AGVs was to complete all the loading and discharging operations as early
as possible and their secondary goal was to minimize the total travel distance of AGVs. Their
integer programming models were tackled by LINDO software.

Qiu and Hsu (2000 and 2001) addressed scheduling and routing problems for AGVs. They
developed conflict-free routing algorithms for two different path topologies and two scheduling
strategies. The methods were applied together in a case study [76, 77, 78]. Another

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 32 -

phenomenon in the container terminal for AGVs, while they are moving inside the port and
carrying the jobs, is deadlock. This aspect has been studied by Moorthy et al. (2003). They
proposed an algorithm for cyclic deadlock prediction and avoidance for zone-controlled AGV
system [66]. The algorithm is based on wait and proceeds strategy.

3.4.1 Assumptions

It is assumed that there are several vehicles in the port, which can transport the inbound and
outbound containers from a pickup location to a delivery location, inside the terminal. The
inbound containers in the berth are transported to the storage area, whereas the outbound
containers in the storage area are moved to the berth. The following assumptions and notations
are used to formulate this decision:

Assumption 3-4-1: The problem is to serve a number of transportation requests. Each request
involves moving a number of container jobs. A directed graph or network is considered for this
transportation system. Given n request in the problem, let node i and node n+i represent the
pickup and delivery location of the ith job, respectively. In this network, different nodes
obviously may represent the same physical location in the yard or berth. By adding node 0 and
node 2n+1, as the depot, to the network, it has the node set N={0,1,2,..,n,n+1,n+2,..,2n, 2n+1}.
The pick up and delivery points are respectively included into two sets P+={1,2,..,n} and P-
={n+1,n+2,..2n}. Therefore, P = P+ U P- is the set of nodes other than the depot node.

Assumption 3-4-2: We are given a fleet of V={1,2,..,│V│} vehicles. The vehicles are
heterogeneous and every vehicle transports a few containers from a given node, i, to a
destination node, j (j≠i). At the start of the process, vehicles are assumed to be empty.

Assumption 3-4-3: It is assumed the vehicles move with an average speed so that there are no
Collisions, Congestion, Live-locks, Deadlocks [79] and breakdown problem.

Assumption 3-4-4: To load/unload the containers from the vessel or in the yard, a QC or
RTGC is used. Every pick up/delivery node has a certain time window.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 33 -

Assumption 3-4-5: We assumed the container jobs are distributed in the terminal so that each
node is visited once only by a vehicle. In other word, a QC and RTGC are not busy in each
node by different container jobs at the same time.

Assumption 3-4-6: In practice, it is not possible to serve every job. Hence, the objective
function is to minimize the transportation costs, to serve each job within its time window as
much as possible and to minimize the total number of jobs left at the end of process.

The following parameters are known at the beginning of the process:
TSvo : The times at which the vehicle v leaves the depot.
S : The processing time of a container job to be picked up or dropped off.
qv: The capacity of vehicle v.
TTLi, Lj : The travel time from the physical location of node i, Li , to physical location of

node j , Lj (for each pair of i, j in N).
CLi, Lj : The cost of travelling from the physical location of node i, Li , to physical location

of node j , Lj (for each pair of i, j in N).
dj : the number of container jobs to be moved from node j to node n+j.
[ai , bi]: The time window to pick up container jobs at node i.
[an+i , bn+i]: The time window to deliver container jobs at n+i.
[a0 , b0]: The time window of the vehicles to departure the depot.
[a2n+1, b2n+1]: The time window of the vehicles to back to the depot.

3.4.2 Decision variables and domains

Xijv : 1 if vehicle v moves from node i to node j. otherwise it is 0.

Domain (Xijv) = {0,1}, i, j ∈ P, v ∈ V.
Fj : the number of jobs that fulfilled at node j.

Domain (Fj) = {0,1,..,dj}, i, j ∈ P+ , v ∈ V.

3.4.3 Constraints

To present the constraints and objective function, we need the following auxiliary variables:

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 34 -

Zj : the number of jobs left at node i at the end of process. At the start of the process Zj=0.
Yvi : the load of vehicle v when it leaves node i. At the start of the process Yv0=0.
Qj : the number of jobs to be lifted or dropped off at node j.

These variables are determined by the following conditional statements:

jiPjPiVvQYYX

jiPiPjVvQYYZdQQFdZFdX
QYYdQQZFdX

PjVvQYZdQQFdZFdX
QYdQQZFdX

jvivjijv

jvivjjjjnjjjjjjijv

jvivjjjnjjjjijv

jvjjjnjjjjjjjjv

jvjjnjjjjjjv

≠∈∈∈−=⇒=

≠∈∈∈






+=−==−=⇒>⋅=

+====⇒=⋅=

∈∈






=−==−=⇒>⋅=

====⇒=⋅=

−

+

+

+

+

+

+

,,,,1)3(

,,,,,)()1(
,,0)()1()2(

,,,)()1(
,,0)()1()1(

0

0

The first set of the statements represents the number of jobs left and lifted at node j as
well as the load of the vehicle when it leaves the first pickup point after the depot. The
number of jobs left at node j is the difference between the number of jobs requested and
the number of jobs fulfilled. The number of jobs to be picked up at node j and the number
of deliveries at the destination node are updated. Additionally, the load of vehicle v when
it leaves node j is equal to the number of jobs picked up at the node. The second set of the
statements has a similar meaning but for when the vehicle goes to any pick up or drop-off
point after the first pickup. The last set of the statements means that if the vehicle goes to
any delivery point, its load is decreased by the number of deliveries.

TSvi : The time at which the vehicle v starts service at node i (TSv0=0). This variable is

determined by the following conditional statements:

VvPiTTQSTSTSX
VvPjiTTQSTSTSX

VvPjTTTSTSX

nLLiivinvvni

LjLiivivjijv

LjLvvjjv

∈∈+×+=⇒=

∈∈+×+=⇒=

∈∈+=⇒=

−
+++

+

,,1
,,,1

,,1

)12(,)12()12(

,

,000

The first statement represents leaving the depot where the vehicles follow by a pickup
point. The second statement shows that the vehicles can go to any pickup or delivery
point after the first pickup. The last statement represents going the depot where the
vehicles have a delivery before that. To calculate the starting service time at each node,
the service time of the current node and the travelling time between the previous and
current nodes have to be considered.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 35 -

Constraint 3-4-1: Constraints on pick-up and delivery points.

The first constraint ensures that each pick-up point is visited once by one of the vehicles. The
second constraint indicates that if a vehicle enters a node it exits it. The third constraint ensures
that if a vehicle visits a pickup node then it has to visit the associated delivery node.

Constraint 3-4-2: Constraints on the first and last visit points.

∑
∑

−

+

∈
+

∈

∈=

∈=

Pi
vni

Pj
jv

VvX

VvX

,1

,1

)12(

0

The first constraint ensures that the first visit of every vehicle is a pick up node. The second
constraint ensures that the last visit of the vehicles is a delivery node.

Constraint 3-4-3: Constraints on the capacity of the vehicles.

PiVvqY vvi ∈∈≤ ,,
The load of vehicle v when it leaves node i must not exceed the capacity of the vehicle.

3.4.4 Objective function

According to Assumption 3-4-6, the objective function is as follows:









+




 −+−+⋅= ∑ ∑∑ ∑ ∑∑

∈ +∈∈ ≠∈ ∈

+
+

∈Vv Pi
i

Pi ijPj Pi
ivi

Pi
viiLjLiijv ZwbTSwTSawCXwsMinCostJob 4

,
32,1

The first term is the sum of transportation costs of the vehicles. The second and third terms are
the penalty cost by the actual arriving of vehicle v to the node i earlier than the expected time
and the penalty by the delay of the arriving time after the promised due time. These two last
terms have impacts on the objective function provided that they are only positive. The last term
is the jobs left at the end of process. Note that w1, w2 , w3 and w4 are the weights of those four
terms in the objective function.

VvPiXX

VvPiXX

PiX

Nj Nj
vinjijv

Nj Nj
jivijv

Vv Nj
ijv

∈∈=−
∈∈=−

∈=

+

∈ ∈
+

∈ ∈

∈ ∈
+

∑ ∑
∑ ∑
∑ ∑

,,0

,,0

,1

)(

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 36 -

3.5 Appointment times to eXternal Trucks (XTs)

A port usually serves as an interface and temporary storage of containers between ocean and
land. In this way the main functions are to receive outbound containers from customers for
loading into vessels, and unload inbound containers from vessels for picking up by consignees.
The outbound containers are brought in by XTs. The inbound containers are also received by
XTs. The problem here is to make appointment times for these XTs.

The flow of outbound containers is represented by Figure 3-5 [68]. These containers are
brought in by customer’s XTs into the terminal through the Terminal Gate (TG) where the
containers and their documentations are checked. The TG then instructs the XT to go to the
storage block where the container will be stored until the vessel arrives. The Yard Crane (YC)
or RTGC working at that block removes the container from the XT and puts it in its storage
position. When the time to load comes true, the YC removes the container from the stored
position, puts it on an IT or AGV. Then, the IT or AGV carries the container to a QC for
loading into the vessel. The flow of inbound containers is reverse as depicted in Figure 3-6.

Figure 3-5: Flow of outbound containers (SA = Storage Area, QS = Quayside)

Figure 3-6: Flow of inbound containers (SA = Storage Area, QS = Quayside)

Murty et al. (2005) described a dispatching policy at the terminal gate [68]. According to their
policy, the consecutive trucks are dispatched to different blocks in the storage yard, so that each
block has adequate time to process the truck reaching it before the next truck sent to this block.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 37 -

Also, the dispatching policy should distribute these trucks in all directions to ensure that the
truck traffic on the roads is evenly distributed in all directions. In order to execute this
dispatching policy, we considered a component in the objective function of Storage Space
Assignment (see Assumption 3-2-3) to distribute the containers among blocks in the storage
area.

3.5.1 Assumptions

In order to make appointments for the XTs, we consider the following assumptions:

Assumption 3-5-1: According to Assumption 3-2-6, the inbound containers are stored in the
storage area (secondary storage) before they are picked up by their consignees. Also it is
assumed the outbound containers are stored in the storage area before they are loaded to the
corresponding vessels.

Assumption 3-5-2: According to the definition of SSCPI and SSCGD in Section 3.2.1, they are
inbound containers in the storage area waiting for pickup by consignees and outbound
containers before being allocated to storage area, respectively.

Assumption 3-5-3: The storage area has enough space to store all outbound containers in the
planning horizon. Note the Storage Space Assignment (see Section 3.2.1) has considered this
problem for the outbound containers.

The following parameters are known at the beginning of the planning horizon:
N: The total number of SSCPI containers over the planning horizon.
M: The total number of SSCGD containers over the planning horizon.
TSSCPIi: The time at which the SSCPI container i is placed into the secondary storage area

after discharging from the ships.
TPGi: The processing time of a container i, including unloading/loading time and gating time.
T: The number of time periods in the planning horizon. The time period has to be greater than

the maximum of TPGi, i=1,2,..,M+N.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 38 -

3.5.2 Decision variables and domains

The following decision variables are defined:
DTi: Delivery time of SSCGD container i to the port.
 Domain (DTi)={1,2,..,T}
PTj: Pick up time of SSCPI container j from the port.
 Domain (PTj)={1,2,..,T}

3.5.3 Constraints

Constraint 3-5-1: Delivery time of any SSCGD container to the gate and pick up time of any
SSCPI from the terminal is different.

 MiforNjforDTTPGPTORPTTPGDT ijjjii ,..2,1;,...,2,1);()(==≥+≥+
Constraint 3-5-2: Any SSCPI container can be picked up after it is moved to the storage area.

NjforTSSCPIPT jj ,...,2,1, =≥
Constraint 3-5-3: Delivery time of any two SSCGD containers and pick up time of any two
SSCPI containers are different.

',,..,2,1',);()(
',,..,2,1',);()(

'''

'''
jjMjjForPTTPGPTORPTTPGPT

iiMiiForDTTPGDTORDTTPGDT
jjjjjj

iiiiii
≠=≥+≥+

≠=≥+≥+

3.5.4 Objective function

The objective function of this decision is to minimize the terminal gate’s cost. In fact, delivery
of the outbound containers and pickup of the inbound containers should be carried out as soon
as possible in the planning horizon. This function is written as follows:

∑∑
==

+=
M

i
i

N

i
i PTwDTweMinCostGat

1
2

1
1

The first term is the sum of time periods that spend on delivery time of the outbound
containers. The second term is the sum of time periods that spend on pick up time of the
inbound containers. Note that w1 and w2 are the weights of those two terms in the objective
function.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 39 -

3.6 Container terminals over the world, a survey

In this section, we summarized the latest research in some of the major container terminals in
the world. Table 3-1 shows this summary. In the table the first and third columns show the port
name and authors respectively, in where and who has done the research. The second column
shows decisions and solutions for the problem. From this table it can be clearly seen that the
most of the container terminals considered their vehicles problems in the research.

Table 3-1: Container Terminals around the world and their decisions

Ports Decisions and Solution Method Authors (Year)[Ref. No]
1. Port of Hamburg,
Germany
2. Port of Bremen,
Germany

• Storage Space Allocation (MILP)
• Generating Scenarios (Simulation)
• Vehicle Scheduling (Evolutionary/Genetic

Algorithm)

Steenken et al(2001) [88]
Hartman (2002) [34]
Böse et al (2000) [8]

1. Contship La
Spezia , Italy
2. Maritime Terminal
in Genoa, Italy

• Storage Space Allocation (Simulation)

• Yard Storage Management (Integer Programming)

Gambardella et al (1998) [27]
Amberosino et al (2002) [5]

Port of Pusan, Korea • Berth Allocation (MILP)
• Berth Allocation and Quay Crane Assigning

(Lagrangean Relaxation, Dynamic
Programming)

• Dispatching of Automated Guided Vehicles (Linear
Programming Relaxation)

Moon (2001) [65]
Park & Kim (2003) [73]
Wook & Hwan (2000) [103]

1. Port of Rotterdam,
The Netherlands
2. Port of
Amsterdam, The
Netherlands

• Vehicle and Crane Scheduling, but its data has been
collected by simulation (Branch and Bound/
Beam Search Heuristic Method)

• Deadlock prediction and avoidance (Wait and
Proceed strategy).

Meersman et al (2001) [61]
Meersman et al (2001)[62]
Moorthy et al (2003) [66]

Port of Singapore,
Singapore

• Routing AGVs(Sorting Techniques)
• Whole System (Simulation)
• Dispatching of Automated Guided Vehicles

(Network Flow Model)

Qiu & Hsu(2000) [81]
Liu et al(2002) [57]
Cheng et al(2003) [14]

Port of Los Angeles,
USA

• Vehicle Scheduling and Routing (Dynamic
Programming and Genetic Algorithms).

Ioannou et al(2002) [42]

Hong
Kong Container
Terminal No 9 (New)

• RTGC Deployment in the yard (Vogel Solution)
• Storage Space Assignment and Vehicle Routing

(Linear Programming).
• Storage Space Allocation (Integer Programming).
• Crane/RTGC Deployment in the yard (MILP and

Lagrangean relaxation).

Murthy et al (2005) [68]
Zhang et al(2001) [106]
Zhang et al(2002) [107]

Real Size Terminal

Virtual Terminal

• Vehicle Scheduling (Heuristic
Algorithm/Lagrangean Relaxation)

• Rescheduling of Quay Cranes and Vehicles
(Distributed-Agent System)

Zhang et al (2002) [108]

Thurston & Hu(2002)[90]

Real Port (Not
mentioned)

• Whole System (Multi-Agent System, Not
Implemented)

Rebollo(2000) [84]

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 40 -

3.7 Solution methods and evaluation of the decisions

In the previous sections, we formulated the problems. There are three important phases to
provide a practical software for the decisions: requirement analysis, selecting the design
architecture and solution methods. In this section, we briefly review the first two phases and
suggest two frameworks for the solutions. After that, the solutions for the problems are
summarized and some indices to evaluate each decision are presented.

The first step is requirement analysis. For this phase, we propose to provide a program to
animate or simulate some operations in the terminal. The program will be very useful to
understand the problem and to generate some input data for next steps. In the problem
specification, some operations or decisions should be synchronized to each other, if two or
more decisions are likely to be studied together. For example scheduling and routing of
vehicles (the problem in Section 3.4), can be combined with the storage space assignment (the
problem in Section 3.2). In the complex system, a few parameters should be considered in the
integrated model to synchronize the decisions. Tsang (1998) suggested some methods to
represent time and space [95]. Gambardella et al. (1998) [27], Hartman (2002) [34] as well as
Thurston and Hu (2002) [90] applied some scenarios for simulation of terminal systems with
several restrictions. Additionally, Kim et al. (2000) introduced a simulation-based test-bed to
test various control rules. They suggested a control system consists of ship operation manager,
system controllers for automated guided vehicle, automated yard crane, and quay crane [51].
Three control strategies, synchronization, postponement, and re-sequencing, were introduced in
the paper as promising alternatives for controlling traffics of vehicles.

The second phase is to design a architecture for the system. Two distinct systems architecture
including Centralised system and Distributed system have been suggested by Thurston and Hu
(2002) [90]; the latter was implemented by agents. For the first architecture, Tsang (1993)
provided different solutions to satisfy the constraints of every Constraint Satisfaction Problem
(CSP) [93]. The solutions are divided into four groups, including problem reduction, complete
search methods, stochastic method and synthesize the solutions. For the distributed system,
Yokoo et al. (1998) formalized Distributed Constraint Satisfaction Problem [104]. They also
developed asynchronous backtracking, asynchronous weak-commitment search solutions,
distribution breakout and distributed consistency algorithms for these kinds of problem [105].

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 41 -

Some well-known software such as GAMS (Generalised Algebraic Modeling System),
LINDO (Linear INteger and Discrete Optimizer), and others can be used to solve the problems.
But our suggestion is ILOG Solver or HOTFRAME since a lot of the classical, heuristics and
meta-heuristics approaches have been used in their components library [26, 40]. The
components of ILOG Optimization Suite rely on mathematical programming and constraint-
based optimization. A core of large number of successfully deployed applications was provided
in ILOG. In addition, it is the most comprehensive portfolio of optimization components for
efficient resource allocation, involved in scheduling and planning of resource utilization. For
the second suggestion, Fink and Voβ (2002) surveyed, designed and implemented
HOTFRAME [26], a Heuristic OpTimisation FRAMEwork that provides reusable software
components in the meta-heuristics domain. The framework architecture, in which has been
implemented by C++, defined the collaborations among software components, in particular
with respect to the interface between meta-heuristic components and problem-specific
components. Also in this framework different applications have been considered. The scope of
HOTFRAME comprises meta-heuristic solutions such as iterated Local Search, Simulated
Annealing method and its variations, different kinds of Tabu Search (e.g. static, strict, and
reactive), Evolutionary Algorithms, Candidate Lists, Neighbourhood Depth variations, and
Pilot Method [98, 26]. The primary design objectives of HOTFRAME have provided run-time
efficiency and a high degree of flexibility with respect to adaptations and extensions. Then,
their developers built generic meta-heuristic components, which are parameterized by some
concepts such as the solution space, the neighbourhood structure, or Tabu-criteria. Note that in
C++, generic components can be implemented as template classes or a function, which enables
achieving abstraction without loss of efficiency.

Several different solutions methods can be applied to the problems. Tsang (1995) provided a
comparative study of scheduling techniques [94]. In that paper, the techniques have been
divided into two groups. The first group consists of Linear Programming, Branch and Bounds
and Tabu Search, which are studied extensively in Operation Research. In the second group,
some other techniques such as Hill Climbing, Simulated Annealing, Connectionism, Expert
Systems and Genetic Algorithm have been studied in Artificial Intelligence. Tsang summarized
his studies by Table 3-2, including considerations in choosing between the major scheduling
techniques.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 42 -

Table 3-2: Considerations in choosing between major scheduling techniques [94]

Solution
Methods General Considerations Major technique-specific

considerations
Linear

Programming
• Used for optimisation with

linear functions.
• Intractable.

• Problem must be specified by a set of
inequalities

Branch-and-
Bound

• Used for optimisation.
• Intractable

• Requires heuristic for pruning.
• Ordering of branches is important.

Constraint
satisfaction

• Most existing algorithms
used for finding single or all
solution satisfying
constraints.

• Both complete and
incomplete algorithms
available.

• Large number of algorithms available.
• Particularly useful when problem involves

non-trivial amount of constraints.

Hill climbing
Simulated
Annealing

Tabu Search

• Useful for both constraint
satisfaction and optimisation
when near-optimal solutions
are acceptable.

• Flexible in computation time,
this makes them widely
useful.

• Hill climbing could be
trapped in local optima.

• Simulated annealing and
Tabu search attempt to
escape from local optimal

• Requires a neighbourhood function which is
crucial to its effectiveness.

• Neighbourhood function is crucial to its
effectiveness.

• Cooling schedule could be important.
• Effectiveness mainly depends on strategy on

Tabu-list manipulation.
• Representation is crucial.
• Effectiveness could be sensitive to choice of

parameters values and operators.

Genetic
Algorithms

• Useful for finding near-
optimal solutions.

• Requires non-trivial time, but
hopefully will search a wider
part of the solution space.

• Representation is crucial.
• Effectiveness could be sensitive to choice of

parameter values and operators.

Connectionisms

• Useful for satisfiability
problems or for finding near
optimal solutions.

• Good potential for parallel
implementation which may
suit real time application.

• Set up and network updating mechanism are
crucial to it effectiveness.

• Specialized network may be expensive to
build.

Expert systems

• Wide range of applicability,
can be tailor-made to meet
the requirements (including
time and optimality
requirement)

• Power comes from domain-
specific knowledge

• Expert knowledge elicitation is important and
may be difficult.

• Conflict resolution may be non-trivial.

Another research group, Gunadi et al. (2002), studied different types of problems and solutions
to vehicle routing problem [32]. They classified the solutions into three groups; Operations
Research algorithms, Artificial Intelligence techniques and Decision Support System solutions.
They summarized their studies by Table 3-3.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 43 -

Table 3-3: Summary of Vehicle Routing Problems and Solutions [32]

Classifications Solutions &
Authors Application Characteristics

Sweep Algorithm:
Gillet & Miller (1971)

• Goods delivery vehicle
• Public bus with capacity

constraint

• Minimum total length of route is a
major concern

• Additional distance may occur
• Demand is uncertain

Matching Based
Savings Algorithm:
Desrochers & Verhoog
(1990)

• Goods delivery vehicle • Solving fleet size and mix vehicle
• Short distance is a major concern

Chain Exchange
Principle: Fahrion &
Wrede (1990)

• Goods delivery vehicle
• Vehicle routing problem

with time windows

• Number of customer is known
• Time constraint is major concern

Branch and Bound
Algorithm: Laporte et
al. (1992)

• Shortest Path Problem and
goods delivery

• Short distance is major concern
• Focuses on the minimum number

of visit
New Crossover:
Uchimura & Sakaguchi
(1995)

• Shortest round trip tour • Short distance and time constraint

Parallel Branch and
Bound Algorithm: Lau
& Kumar (1997)

• Vehicle routing problem
on Networks of
Workstation

• Minimum total distance for goods
delivery

Dijkstra Method: Ikeda
et al. (1994)

• Shortest-Path Problem • Short distance is major concern
• All-directional approach

Modified Dijkstra
Method: Eklund et al.
(1996)

• Emergency service
vehicles routing

• Shortest path is the main concern

Tabu Search : Taillard
et al. (1996)

• Shortest-Path Problem
• One depot VRP

• Short distance is major concern
• Number of customer is known

Tabu Search : Garcia et
al. (1993)

• VRP with time windows
constraint

• Solving VRP with time windows
constraint

• Demand is known.
A* Algorithm • Shortest-Path Problem • Shortest distance is major concern
2-opt* Exchange:
Potvin & Rousseau
(1995)

• VRP with time windows
• Best implemented for

travelling salesman
problem

• Time constraint is a major concern

Operation
Research

Algorithms

Or-opt-1 & Or-opt
exchange

• Goods delivery vehicle • Focus on node exchange
• Number of customer is known;

GENESIS: Thangiah &
Gubbi (1993)

• Goods delivery vehicle • Demand is known

Niche Search: Pedroso
et al. (1998)

• Goods delivery vehicle • Route is selected based on time
average

Artificial
Intelligence
Techniques

 Bimodal Dial-A-Ride:
Liaw et al. (1996)

• Paratransit vehicle routing • Involves transit between
paratransit vehicle and fixed bus
route

Micro-ALTO: Potvin et
al. (1994)

• Goods delivery vehicle • Concerns on minimum operational
cost, service quality and service
time

Fuzzy-neural approach:
Takahashi et al. (1995);

• In-vehicle route guidance
system

• Route selection based on driver’s
preference

Decision
Support
System

Solutions Fuzzy Route Choice:
Shaout et al. (1993),
Pang et al. (1995)

• Automotive Navigation
System, Dynamic Route
Guidance

• Route selection based on driver
behaviour

For the first group, they considered the algorithms of Sweep, Matching Based Savings, Chain-
exchange, Branch and Bound, Crossover, Tabu Search, Dijkstra, A* and 2-opt* exchange

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 44 -

heuristic. They expressed that GENESIS, Niche Search and Biomodal Dial-A-Ride methods
are in the second group. They believed that Micro-ALTO method, fuzzy neural approach and
fuzzy Route Choice are in Decision Support System solutions.

Qiu et al. (2002) provided a survey of scheduling and routing algorithms for AGVs [79]. They
showed similarities and differences between scheduling and routing AGVs and related
problems like the vehicle routing problem, the shortest path problem and scheduling problem.
They classified algorithms in groups for general path topologies, for path optimization, for
specific path topologies and dedicated scheduling algorithms. In the general path topologies,
the methods adopted have been classified into three categories: (a) Static methods, where an
entire path remains occupied until a vehicle completes the tour; (b) Time-window-based
methods, where a path segment may be used by different vehicles during different time-
windows; and (c) Dynamic methods, where the utilization of any segment of path is
dynamically determined during routing rather than before routing as with cases (a) and (b). In
the path optimization, the methods have been classified into three categories: (d) 0/1 integer
programming model, where the path layout problem is as a binary integer programming model
with considerations of the given facility layout and Pickup/Delivery stations; (e) Intersection
graph method, where only a reduced subset of nodes in path network is considered and only
intersection nodes are used to find optimal for solving AGV; (f) Integer LP model, where the
problem is modeled as an Integer linear programming of selecting the path and location of
Pickup/Delivery stations. In the specific path topologies, the three different layouts could be
considered: Linear, Circle and Mesh topology. Tables 3-4 to 3-6 summarize the works
reviewed in the paper.

Moreover, Voβ (2000) provided high-quality solutions to important applications in business,
engineering, economics and science in reasonable time-horizons [98]. A family of meta-
heuristics search methods including simple Local Search, Adaptive Memory Procedures, Tabu
Search, Ant System, Greedy Randomised Adaptive Search, Variable Neighbourhood Search,
Evolutionary Methods, Genetic Algorithms, Scatter Search, Neural Network, Simulated
Annealing and their hybrid have been presented briefly in the study. Also important references
for solving combinatorial optimisation problems have been provided in the paper.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 45 -

Table 3-4: Summary of work reviews for AGVs in General Path Topologies [79]
Authors Gaskins &

Tanchoco (1987)
Kaspi &

Tanchoco (1990)
Goetz & Egbelu

(1990)
Sinriech &

Tanchoco (1991)
Problems

Solved
Path optimization to
minimize total distance
traveled by loaded
vehicles

Path optimization to
minimize total distance
traveled by loaded
vehicles

Path optimization to
minimize total distance
traveled by loaded and
unload vehicles

Path optimization to
minimize total distance
traveled by loaded
vehicles

Basic
Algorithms

Zero-one integer
programming

Zero-one integer
programming;
branch-and bound

Integer linear
programming

Intersection Graph
Method;
Branch-and-bound

Path
Topologies General General General General

Path
Direction

Uni-directional Uni-directional Uni-directional Uni-directional

Advantages

Very easy to
implement for a fleet
of AGVs with the
same origins and
destinations

An improvement of the
approach in [Gaskins &
Tanchoco 1987];
reduced
computation; optimality
guaranteed

Problem size is
reduced; distance
traveled by unloaded
vehicles is considered
together; optimality is
hence better
ensured

An improved model of
that proposed in [Kaspi
& Tanchoco 1990];
reduced number of
problem branches;
optimality
guaranteed

Disadvantages

Conflicts may occur
when there are AGVs
with different origins
and destinations; heavy
computation; low
system throughput

Distance traveled by
unloaded AGVs is not
considered; low
system throughput;
still heavy
computation

Routing control and
vehicle number are not
considered in the study
which are important for
AGV systems

Only intersection nodes
of the path network are
considered; optimal
solutions may be
missed

Table 3-5: Summary of Algorithms for AGVs in Specific Path Topologies [79]

Authors
Tanchoco &

Sinriech
(1992)

Lin & Dgen
 (1994)

Sinriech & Tanchoco
(1994)

Hsu & Huang
(1994)

Problems
Solved

Optimizing the path
layout configuration
in a closed single
circle

Routing AGVs among
several non-overlapping
closed circles; finding
shortest travel time path

Routing AGVs among
several non-overlapping,
path segments; finding
shortest travel time path

Route planning for basic
routing functions on
several specific basic path
topologies

Basic
Algorithms

Integer programming The task-list time-
window algorithm

Integer programming -

Path
Topologies

Closed single-circle

Multi-circle

Segmented path
topology

Linear array, ring, H-tree,
star, 2D-mesh, n-cube,
cube-connected cycles,
complete graph,

Path
Direction

Uni-directional Bi-directional or
Unidirectional

Bi-directional or
Unidirectional

Bi-directional

Advantages

Routing control is
very easy; no
conflicts or
deadlocks will
occur; easy for
implementation

Easy for routing control
since every circle is
served by a single
vehicle;

An alternative design of
that in [Lin & Dgen
1994]; relatively low
value of flow’s distance

Give the time and space
complexities for basic
routing functions which
are upper- bounded by
O(n2) and O(n3)
respectively

Disadvantages

Low system
throughput ; only
suitable for small
system

Low system throughput;
additional cost needed
for transit device
between two adjacent
circles; indirect
transportation
may cause delay

Low system throughput
with one vehicle serving
in a segment; additional
cost for transit device;
indirect transportation
may cause delay

Routing control not given
in detail; the assumption
of
arbitration capability for
every buffer is too
idealized

University of Essex, Computer Science Department

- 46 -
PhD Thesis, Copyrights (H. Rashidi)

Table 3-6: Summary of Static and Dynamic Routing Algorithms for AGVs in General Path Topology [79]
 Static Routing Problem Dynamic Routing Problem

Authors Broadbent et
al. (1985) Daniels (1988) Huang et al.

(1989)
Kim & Tanchoco

(1991, 1993)
Taghaboni &

Tanchoco (1995) Langevin et al. (1996)
Problems

Solved
Finding conflict-
free shortest time
routes for AGVs

Finding conflict-free
shortest time routes
for AGVs

Finding conflict-
free shortest time
routes for AGVs

Finding conflict-free
shortest time routes
for AGVs

Finding a conflict-free
route for AGVs

Integrated solution for AGV
dispatching, conflict-free routing
and scheduling

Basic
Algorithms

Dijkstra’s shortest
path algorithm

Partitioning shortest
path algorithm Labeling Algorithm

Dijkstra’s shortest
path algorithm;

conservative myopic
strategy

Incremental route planning

Dynamic programming

Computational
Complexity

O (N2)
(average case)

O (N×A)
 (average case)

O ((N+A)2 Log
(N+A))
 (average case)

O (V4×N2)
 (worst case)

Not available;
Not guaranteed Optimality

Not available;
Not guaranteed Optimality

Path Direction Bi-directional Bi-directional Bi-directional Bi-directional Bi-directional & Uni-

directional
Bi-directional

Advantages Easy to execute
Easy to execute and
faster than
Broadbent’s

Time windows are
used for every
node; the utilization
of path segments
are increased

Easy to execute and
control; fast

Relatively fast in routing
decision

Easy to execute and control

Disadvantages
Heavy
computation; low
utilization of path
segments

Heavy computation;
low utilization of
path segments; may
cause failure in
finding routes that
actually exist

Heavy
computation; large
amount of data of
converted network
to maintain

Heavy computation;
large amount of data
of path network to
maintain

Low efficiency when the
umbers of tasks and
vehicles increase; also no
optimal routing solutions
could be guaranteed;

Since only two vehicles are
allowed in the system, the system
throughput and path utilization
could be very low; only suitable
for very small system with a few
stations

N – The number of nodes in the path network; A – The number of arcs in the path network; V – the number of AGVs.

University of Essex, Computer Science Department
 Chapter 3: Literature Review and Formulation of the Decisions

- 47 -
PhD Thesis, Copyrights (H. Rashidi)

Furthermore, hyper-heuristic methods emerged to solve scheduling problems. Burke et al.
(2003) defined hyper-heuristic idea based on the heuristics approach [10]. The main
motivations behind development of the hyper-heuristic were to automate scheduling methods
and to raise the level of generality. They suggested a framework for the hyper-heuristic and
investigated it on various instances of two distinct timetabling and rostering problems. In the
framework, heuristics compete using rules based on the principles of reinforcement learning. A
Tabu list of heuristics was also maintained which prevented certain heuristics from being
chosen at certain times during the search. In another paper [49], Kendall and Hussin (2005)
investigated a Tabu search based hyper-heuristic for solving examination timetabling problems.
They claimed that their approach is able to produce good quality solutions.

In recent years, agent systems have been used to solve scheduling problem. Cowling et al.
(2004) presented a multi-agents system and used it as a case study for integrated dynamic
scheduling of steel milling and casting [20]. In the system, a set of heterogeneous agents was
used to integrate and optimize a range of scheduling objectives related to different processes of
steel production, and could adapt to changes in the environment while still achieving overall
system goals. In another papers [71, 72], Quelhadj et al. (2003, 2005) described a negotiation
protocol in the multi-agent system. The purpose of that protocol was to allow the agents to
cooperate and coordinate their actions in order to find globally near-optimal robust schedules,
whilst minimising the disruption caused by the occurrence of unexpected real-time events.

In some situations when scheduling problem is dealing with imprecision and uncertainty, fuzzy
sets are employed. Petrovic and Fayad (2004) described a fuzzy Shifting Bottleneck Procedure
(SBP) hybridised with genetic algorithm for a real-world job-shop scheduling problem [75]. In
each iteration, the SBP selects a machine and the genetic algorithm proposed a sequence of
job’s operations to be processed on that machine. In another paper, Petrovic et al. (2005)
proposed an algorithm for a real-world job shop-scheduling problem, where both lot-sizing and
batching processes were considered [74]. A fuzzy rule-based system was developed for
determining lot sizes, where the input variables were workload on the shop floor, size of the job
and its urgency. A fuzzy multi-objective genetic algorithm was developed to generate
schedules of jobs whose processing times and due dates were imprecise and modelled by using
fuzzy sets. A genetic algorithm took into consideration the determined size of lots for jobs, and
considered batching together jobs of similar characteristics in order to reduce the required set-

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 48 -

up time. The objectives considered were to minimize average tardiness, number of tardy jobs,
set-up times, idle times of machines and throughput times of jobs.

In order to evaluate the decisions, different indices may be considered to measure efficiency of
the terminal. Liu et al. (2002) studied four automated container terminals, Port of Rotterdam,
Port of Hamburg, Port of Hong Kong and Port of Singapore, and then evaluated their
operations by simulation [57]. They evaluated ship turnaround time, throughput of terminals,
gate utilization, idled time of yard crane and buffer cranes, dwelling times of containers and
average cost of a container during the simulation time.

Another research group, Inoannou et al. (2001) proposed a microscopic simulation model [43].
In their paper an ACT (Automated Container Terminal) system was proposed. They collected
data from a conventional terminal and simulated the ACT system for the same operational
scenario in order to evaluate, and compare their performances. A cost model was also
developed to calculate the average cost per container. They assessed the performance of the
model by throughput (moves per hour per quay crane), throughput per acre, annual throughput
per acre (number of processed TEUs per acre per year), ship turn-around time, truck turn-
around time, gate utilization, container dwell time, idle rate of equipment.

Additionally, Duinkerken and Ottjes (2000) implemented a simulation model for automated
container terminal and applied their model to Delta Sealand container terminal of ECT
Rotterdam [23]. Their objectives was to determine the sensitivity concerning a number of
parameters like number of AGVs, maximum AGV speed, crane capacity and stack capacity.
They concluded that the most critical performance indicators are average number of moves per
hour per quay crane, QC-utilization (percentage of time that the quay crane is not waiting for
AGVs) and average trip duration ratio (the ration between the actual duration of a trip divided
by the technical trip time-Distance/Speed) and averaged over all connections between the yard-
side and quay-side.

Here, we provide some indices to evaluate the decisions as Table 3-7. The right column of the
table lists corresponding indices to evaluate each of the five defined decisions.

University of Essex, Computer Science Department
Chapter 3: Literature Review and Formulation of the Decisions

PhD Thesis, Copyrights (H. Rashidi) - 49 -

Table 3-7: Some important indices to evaluate the decisions in the container terminals
Decisions Indices

Allocation of berths to arriving
vessels and quay cranes to docked

vessels

� Ship around time
� Throughput of Terminal (container/ship)
� Idle Time of QCs
� Total Waiting Time of QCs
� Berths and QCs Utilization
� Average cost per ship

Storage Space Allocation
� Average size of block in the yard
� Largest and Smallest Block in the yard
� Average Cost of containers in the yard
� Container dwell time

RTGC deployment in the yard
� Idle rate of yard cranes or RTGCs
� Maximum, minimum and average workload in the yard
� Average movement of RTGCs in the yard

Scheduling and Routing of Vehicles

� IT or AGV turnaround time
� Average transportation cost per container
� Number of AGVs used
� Number/Percentage of idle AGVs
� Total Waiting Time of AGVs
� Total Delay Times of AGVs
� Route Utilization
� Average trip duration ratio
� Longest and Shortest trip
� Number of trips for each vehicle
� Percentage of Moving vehicle with/without container

Appointment times to XTs � Gate utilization
� Container dwell time

3.8 Summary and conclusion

In this chapter, we systematically surveyed the literature over decisions in container terminals.
The literature also includes solutions, implementation and performance. The five scheduling
decisions in Chapter 2 have been formulated as CSOPs. The solutions have been classified and
summarized. Two frameworks for the implementation have been suggested. The latest
researches around the decisions in some of the major container terminals have been
summarized. From the summarized table (see Table 3-1), we observed that most container
terminals have considered their vehicles in the research. Therefore, it is one of the most
important and challenging problems in the ports.

For the next stage of this research, we will focus on scheduling problem of Automated Guided
Vehicles in the port. It is clear that any implementation of those decisions requires additional
studies where the assumptions should be refined and adapted with particular container terminal.

University of Essex, Computer Science Department

- 50 -
PhD Thesis, Copyrights (H. Rashidi)

Chapter 4: Scheduling of AGVs and Its

Problem Formulation

This chapter focuses on scheduling problem of Automated Guided Vehicles (AGVs) in the
container terminals. The problem is to deploy several AGVs in a port to carry many containers
from the quay-side to yard-side or vice versa. This problem is defined in Section 4.2 and is
formulated as a Minimum Cost Flow (MCF) model in Section 4.5 of this chapter.

4.1 Reasons to choose this problem

In the past few decades, much research has been devoted to technology of AGVs system, both in
hardware and software [79]. Nowadays they have been become popular over the world for
automatic material-handling and flexible manufacturing systems. Qiu et al. (2002) surveyed the
scheduling and routing algorithms for AGVs. One of their suggestions for future research is to
develop more efficient algorithms for different path topologies, where AGVs are employed [79].
These unmanned vehicles are also increasingly becoming common mode of container transport in
the seaport [79]. Moreover there are some other reasons for concentration on this decision
including:

• The efficiency of a port is directly related to the amount of time that each vessel spends in
the port. A major challenge in the port management is to reduce the turnaround time of
the container ships. If the management can use the AGVs with full efficiency at minimum
waiting and travelling times, the performance of the port is increased.

• However, most of existing scheduling and routing solutions are applicable to a small

number of AGVs [79]. Although major of references in the paper were over use of AGVs
in material handling systems, we investigated the latest research in container terminals.
The number of AGVs in the problems, which have been experienced by Wook and Hwan
(2000) [103], Böse et al. (2000) [8], Grunow et al. (2004) [31], Thurston and Hu (2002)

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 51 -

[90] and Cheng et al. (2003) [14] were 5, 5, 6, 12 and 80, respectively. The largest
problem in the recent research experienced was a problem with 100 vehicles. This
experiment has been done by Zhang et al. (2002) [108], but the problems were static.
When the number of container jobs and AGVs increase, we need to find some efficient
solutions to tackle over the huge search space of this problem.

• We believe that some of its solutions and algorithms can be applied to other

transportation systems such as Pickup/Delivery system in real time.

• From Table 3-1, it can be seen that most container terminals have considered this problem

in their research.

• Decreasing costs of the terminal, speed up the transportation system inside the port, rising

customer demand and globalisation of trade outside the terminal are affected by making a
good operational plan for the AGVs.

4.2 Assumptions

The problem is to transport many containers in the port from the storage areas to the berth or vice
versa by AGVs in their appointment times. Each container job involves the loading of the
container onto the AGV, the movement of the vehicle to the destination, and the unloading of the
container by the QCs or RTGCs.

In order to define and formulate the decision, the following assumptions and notations are
considered:

Assumption 4-1: The layout of a port container terminal can be visualized in Figure 4-1 [103].
In this example, there are five working positions of QCs in the berth (Seaside workplace) and
five yard blocks in the storage area for containers (block A to block E). In the figure, the
locations of RTGCs or yard cranes for unloading or picking up the containers are in front of each
block. The path between two points is not necessary unique and the system controller may
change the route of AGVs to designated points, due to congestion in the next lane or junction.

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 52 -

Figure 4-1: Layout of the container terminal

Assumption 4-2: We assume that the problem involves only one ship and therefore the number
of QCs and their location don’t change until all container jobs under consideration for the
docked-ship are completed.

Assumption 4-3: Generally the following listed phenomena are happened when scheduling and
routing AGVs are being studied [79]:

• Collisions: When more than one AGV attempt to occupy the same segment of the path at
the same time, there is potentially a collision. Figure 4-2(a) shows two examples.

• Congestion: Congestion arises at a location where there is insufficient resource such that
for a period of time there are too many vehicles in a path. Figure 4-2(b) depicts such a
case. Congestion must be reduced or eliminated because it will produce a lower
throughput of the system or even leads to deadlock.

• Live-locks: As shown in Figure 4-2(c), a live-lock may arise at the junction where the
horizontal stream of traffic is given higher priority over the vertical one. In this case, the
queue in the vertical line never moves.

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 53 -

• Deadlocks: A deadlock will arise when multiple AGVs mutually wait for the release
(which will never occur) of the resource held by the others. Figure 4-2(d) shows two
cases: local deadlock and non-local deadlock.

Figure 4-2: Phenomena arising in scheduling and rouging of AGVs [79].

We assume that the AGVs are reliable and travel at certain predetermined average speed so that
Collisions, Breakdowns, Live-Locks as well as Deadlocks can be eliminated in our model.

Assumption 4-4: There are several paths between every combination of Pickup (P) /Drop-off (D)
points for the AGVs, according to our layout (see Figure 4-1). But we assume that at any time,
the travel time between every two points is provided in a table like Table 4-1 [103]. In the table
the notation W/P shows Working Position of the cranes in the berth.

Table 4-1: Example of traveling time (second) between two different points in the port

To →
From ↓

Block
A

Block
B

Block
C

Block
D

Block
E

W/P
A

W/P
B

W/P
C

W/P
D

W/P
E

Block A - 30 60 90 120 150 195 200 225 265
Block B 80 - 30 60 90 175 165 205 195 235
Block C 110 80 - 30 60 145 135 175 165 205
Block D 140 110 80 - 30 175 165 145 135 175
Block E 170 140 110 80 - 205 195 175 165 145
W/P A 205 175 145 175 205 - 50 90 80 120
W/P B 215 185 155 185 215 10 - 80 70 110
W/P C 225 205 175 145 175 30 20 - 50 90
W/P D 235 215 185 155 185 40 30 10 - 80
W/P E 265 235 205 175 145 60 50 30 20 -

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 54 -

Assumption 4-5: There are M AGVs in the container terminal. Every AGV can transport only
one container. This simplification, however, ensures that the problem remains tractable and that
an efficient operational plan can be devised and implemented in real time. In fact, most of the
current literature focuses on AGVs with unit capacity. This is often the reality in container
terminals [14]. Henceforth, we consider unit capacity for the AGVs.

Assumption 4-6: RTGCs or yard crane resources are always available [13], i.e., the AGVs will
not suffer from delays in the storage yard location due to waiting for the yard cranes. This is not a
restrictive assumption in the real implementation, since a good yard storage plan will be able to
minimize the amount of congestion in a particular yard location, and hence reduce the amount of
delays suffered by the AGVs. Furthermore, yard cranes or RTGCs are relatively much cheaper
than QCs. Hence, yard cranes/RTGCs are assumed to be readily available when it is needed.

Assumption 4-7: There are N container jobs in the problem. The source and destination of them
are given. Each job has an appointment time at its source/destination on the quay side. This
appointment time is the time at which the job is to be unloaded/loaded from/on the vessel by a
QC on the W/Ps. The appointment time, source and destination of jobs can be shown by a table
like Table 4-2.

Table 4-2: Appointment time of containers jobs
Container Job

(i)
Appointment time of Container

Job i on the Quay side (ti) Source Destination
1 00:30 W/P A Block A
2 00:35 Block B W/P B
3 00:40 W/P C Block C
4 00:45 Block D W/P A
.. ..
. ..
N ..

Assumption 4-8: There is a predetermined crane job sequence, consisting of loading jobs, or
unloading/discharging jobs, or a combination of both for every QC. Given a specified job
sequence, the corresponding drop-off (for loading) or pickup (for discharging) times of the jobs
on the quayside depends on the work rate of the quay cranes. For example, assuming an average
work rate of 5 minutes for one container (see Table 4-2), we need the horizontal transportation
system to feed a container to the quay crane in every 5 minutes. This assumption for the cranes
has the following two special properties that must be considered in developing any solution
procedure:

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 55 -

• The container jobs must be carried out in the exact same order that is predetermined as in a
sequence list. Planners in terminals make a discharging and loading sequence list before the
ship operation begins. The sequence list is confirmed by the corresponding shipping
company. Then, the ship operation is performed in the exact same order as specified in the
sequence list.

• A delay in a quayside operation of a QC results in delays, by the same amount of time, to
all succeeding seaside operations assigned to the same QC.

Assumption 4-9: The problem is divided into two types, static and dynamic. In the static
problem, we assume that the number of vehicles, the number of jobs and the distance between
every two points in the container terminal don’t change. In the dynamic problem, we assume that
the number of vehicles is fixed but the number of jobs, and the distance between the source and
destination of the jobs may change (since the system controller may change the route of AGVs,
due to congestion in the next lane or junction; see Figure 4-1). Note that in this problem each
vehicle might be in different location of the port, on the quay side or in the yard side or in the
middle of road between its source and destination.

Assumption 4-10: In this scheduling problem, our goal is to deploy the AGVs such that all the
imposed appointment time constraints are met with minimum cost. Cheng et al. (2003)
minimized waiting times of the AGVs [14]. Our objectives are to minimize (1) the total AGV
waiting time on the quay side; (2) the total AGV travelling time in the route of port; (3) the total
lateness times to serve the jobs. If our objectives are achieved by a deployment scheme for the
AGVs, the terminal operates at the desired throughput rate.

4.3 Variables and notations

To make a model for the problem, the following variables and notations are used:
a) ti : Appointment time of job i at the quay side.

According to Assumption 4-7, the appointment time of the jobs are given. After the ship
docked at the berth, the appointment time of the first jobs are calculated by the following
expression:

ti = Ship_docked_time + i × W.

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 56 -

The Ship_docked_time is the time at which the ship is ready for discharge/loading at the berth.
The time window W is the duration of discharging/loading a container. The appointment time
of new jobs (after serving the first i jobs) is calculated by the following expression:

ti+k = CTi + k × W
where CTi denotes the actual completion time of the i-th job. Note that CTi is available at the
time of deployment of the job (i+k).

b) RTAm: Ready time of AGV m at the next location (either the quay-side or yard-side).

TTAmj: Travel Time of AGV m from the next location to the location of job j on the quay
side.

In the dynamic problems (see Assumption 4-9), the AGVs can be in different location and
status. In reality, at any instant an AGV can be in one of the four states –waiting on the quay
side, Going or Idle or unloading/loading the job. Each of these states, as the names suggest,
corresponds to a different mode of operation for the AGV. The RTAm for AGV m and
calculation of its travelling time to the location of container job j, TTAmj, is illustrated by
Figure 4-3. As an example, consider the first case in the figure (case a). The RTAm is the time
for the AGV to get the yard and TTAmj is the time distance from the yard to the destination of
job j on the quay side. Thus, TTAmj is the sum of the time needed for travelling from the next
location of the vehicle to the source location of job j and from the source to the destination of
the job. Other cases are calculated based on the next location of the vehicle and type of
operation associated with job j.

c) DTij : the Distance Time between two distinct jobs i and j.

Given the source and destination of container jobs (see Table 4-2), the calculation of DTij is
illustrated by Figure 4-4. It is calculated based on the type of operations associated with jobs i
and j (unloading or loading). As an example, consider the first case in the figure (case a). In
this case job i is unloaded from the ship and job j is loaded on to. In this case, DTij is the sum
of distance from source location of job i to its destination, the distance between the
destination of job i and source location of job j and the distance between the source and
destination of job j. The other cases of the figure are calculated based on the type of
operations associated with jobs i and j.

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 57 -

Figure 4-3: Travelling time computations between the next location of vehicle and the next job

Figure 4-4: Travelling time computations between job i and job j

Quay
Side

Yard
Side

Quay
Side

a) Unloading i, Loading j: DTij = a + b + c
After the vehicle picked up job i from the quay
side, it has to go though the yard to unload the job,
then the vehicle goes through job j to pick it up
and transport it to the quay side.

b
c a

Si Dj

Di Sj Yard
Side b) Unloading i, Unloading j: DTij = a + b

After the vehicle picked up job i, it has to go
though the yard to unload the job, then it goes
to the quay side to unload the job j.

b a
Si Sj

Di Dj

c) Loading i, Loading j: DTij = b + c
After the vehicle drops off job i on the quay
side, it has to return back to the yard to pick
up job j. Then it goes to the quay side.

b c

Di Dj

Si Sj

d) Loading i, Unloading j: DTij = b
After the vehicle drops off job i on the
quay side, it has to go though the source
location of job j on the quay side.

b
Di Sj

Si Dj

Quay
Side

Yard
Side

Quay
Side

a) Vehicle-Yard, Loading j: TTAmj = b +c
After the vehicle dropped off the current job in
the yard, it has to pick job j up and transport it to
the quay side.

b
c

 Dj

 Sj Yard
Side b) Vehicle-Yard, UnLoading j: TTAmj = b

After the vehicle dropped off the current
job in the yard, it has to go though the
quay side to pick job j up.

b

 Sj

 Dj

c) Vehicle-Quay, Loading j: TTAmj = b + c
After the vehicle dropped off the current job
on the quay, it has to return back to the yard to
pick job j up and transport it to the quay side.

b c

 Dj

 Sj

d) Vehicle-Quay, UnLoading j: TTAmj = b
After the vehicle dropped off the current
job on the quay, it has to go through the
source location of job j in the quay side.

b Sj

 Dj

RTAm RTAm

RTAm RTAm

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 58 -

d) w1 : the weight of waiting time of the AGVs,
 w2 : the weight of travelling time of the AGVs,

P : the weight of the lateness time. P stands for Penalty of delay to serve the jobs.

 According to assumption 4-10, these weights are required to be considered in the objective

function.

4.4 The Minimum Cost Flow model

The scheduling problem of AGVs in the container terminal will be formulated as a Minimum
Cost Flow (MCF) model [2]. In this section, we present the standard form of the MCF model
with a few definitions, systematically. These definitions are related to Graph (G), the special
Graph of G for the MCF model (GMCF) and the MCF model itself.

4.4.1 Graph terminology

There are following standard definitions in graph theory (see Carre [11], Weber [101]).
Definition 4-1: A graph G = (N, A) consists of a finite set of nodes, N, together with a finite set

of arcs, A.
Definition 4-2: In an undirected graph the arcs are unordered pairs of nodes {i, j} ∈ A, i, j ∈ N.

In a directed graph the arcs are ordered pairs of nodes (i, j).
Definition 4-3: A walk is an ordered list of nodes i 111, i2, …., it such that, in the case of an

undirected graph, {ik, ik+1} ∈ A, or, in the case of a directed graph, that either (ik,
ik+1) ∈ A or (ik+1, ik) ∈ A, for k = 1, . . . , t-1.

Definition 4-4: A walk is a path if i 111, i2, . . . , ik are distinct, and a cycle if i 111, i2, . . . , ik-1 are
distinct and i1 = ik. A graph is connected if there is a path connecting every pair
of nodes.

Definition 4-5: A loop in a directed graph is an arc which goes from a node to itself.
Definition 4-6: A network is a directed graph which is connected without loops.
Definition 4-7: A network is acyclic if it contains no cycles. A network is a tree if it is connected

and acyclic. A network (Ne, Ae) is a sub-network of (N, A) if N e⊂ N and A e⊂ A.

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 59 -

4.4.2 The standard form of the minimum cost flow model

The Minimum Cost Flow (MCF) model deals with a directed graph. In the graph, the problem is
to send flow from a set of supply nodes, through a sub-network of the graph, to a set of demand
nodes, at minimum total cost, and without violating the lower and upper bounds on flows through
the arcs [2]. The MCF problem is defined as follows:
Definition 4-8 [2]: For the MCF problem, let graph G = (N, A) be a directed network defined by
a set of nodes, N, together with a set of arcs, A. Each arc (i, j) ∈ A has an associated cost cij that
denotes the cost per unit flow on that arc. It is assumed that the flow cost varies linearly with the
amount of flow. The maximum and minimum amount of flow on each arc (i, j) ∈ A are limited
by Mij and mij (mij ≤ Mij), respectively. A real number bi is associated with each node,
representing its supply/demand. If bi > 0, node i is a supply node; if bi < 0, the node i is a
demand node with a demand of -bi; and if bi =0, node i is a transhipment node. The decision
variables in the MCF problem are arc flows, which is represented by fij for arc (i, j) ∈ A. The
standard form of Minimum Cost Flow problem is as follows:

These constraints state that flows must be feasible and conserve each node, i.e. the flow does not
exceed the supply at a node and satisfies the demand. For the feasible flows to exist the MCF
problem must also have 0=∑

∈Ni
ib , which means that the network is balanced. An important

special case is that of incapacitated flows, mij = 0 and Mij = ∞.

We now define a special graph for the MCF problem as follows:
Definition 4-9: A graph GMCF = (G, NP, AP) consists of a graph G with a couple of properties
for the nodes and arcs in G. The NP and AP are the Node’s and Arc’s Properties, respectively.
The node property function NP: N→R (Real numbers; possibly negative) gives the amount of
supply/demand of the nodes. This function for each node is defined as follows:

NP(i) = NPi= bi where








=
<
>

nodeaisinodeifb
nodeaisinodeifb

nodeaisinodeifb

i

i

i

enttransshipm0
demand0
supply0

so that ∑
∈

=
Ni

iNP 0)(





∈≤≤
∈=−

=

∑∑
∑

∈∈

∈

AjiallforMfm

Niallforbff
ToSubject

fcwMinCostFlo

ijijij

Aijj
iji

Ajij
ij

Aji
ijij

),(,

,

.

),(:),(:

),(

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 60 -

The arc property function AP: A→R×R×R (Real numbers; nonnegative) gives the lower bound,
the upper bound and the cost of the arcs. This function for each element in A is defined as
follows:

AP(i,j)=APij = [mij, Mij, cij]

Based on Definitions 4-8 and 4-9, we define the standard Minimum Cost Flow (MCF) problem,
formally as follows:
Definition 4-10: a MCF model is defined as:
 MCF = (GMCF, f, D, CS, FC)
where GMCF = ((N,A), NP, AP) is a special graph for the MCF problem;

f = a finite set of decision variables on A (f stands for flow),f ={ fij | (i, j) ∈ A} ;
D = a function which determines a lower and upper bound for f;

D: f → R×R (to be pulled out from AP); We shall take
ijfD as the lower bound and

upper bound of fij by D (D stands for Domain);

CS = a finite set of ConstraintS on NP and f;

FC = an objective function for the Flow’s Cost on AP and f;
The task in a MCF model is to assign a value to each fij that satisfy all constraints in CS with
regard to the minimum value for FC.

For the standard form of the MCF model we have:

a) For each element D and f,
ijfD = [mij, Mij], for ∀ (i, j) ∈ A;

b) The CS is ∑∑
∈∈

∈∀=−
Aijj

iji
Ajij

ij NiforNPff
),(:),(:

,

c) The FC is ∑
∈Aijj

ijij fc
),(:

.

4.5 The special case of the MCF model for Automated Guided Vehicles

Scheduling

Here, we present a special case of the MCF model for the Scheduling problem of Automated
Guided Vehicles (SAGV) in the container terminal. The problem differs primarily in the
arrangement of nodes and arcs with their properties. In this special case, the property function of

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 61 -

nodes assigns integer value to every node. Additionally, the property function of arcs assigns
integer values to the lower bound, the upper bound and the cost of each arc. Moreover, the lower
bound and the upper bound of each arc take the binary values, 0 or 1. We present the special
Graph of GMCF for the Automated Guided Vehicles Scheduling (GMCF-AGV) and the special case
of the MCF model for the Scheduling problem of Automated Guided Vehicles (MCF-AGV).

Based on Definition 4-9, we introduce the following definition for the GMCF in a special case:
Definition 4-11: A graph GMCF-AGV = (GS, NPS, APS) is a special case of GMCF = (G, NP, AP).
The graph GS = (NS, AS) is a Special case of G = (N, A); the node and arcs properties of GS,
NPS and APS, are also special cases of NP and AP, respectively (NPS: NS→N and APS:
AS→N×N×N; N is the set of Natural numbers). In this section, we formally describe the
elements of GMCF-AGV in the two following sub-sections:

4.5.1 Nodes and their properties in the special graph

As we mentioned, there are three types of nodes in the standard form of a MCF model: supply
nodes, transhipment nodes, and demand nodes [2]. Here, our problem is formalized with four
different types of nodes: a supply node for each AGV, a couple of nodes for each container job as
transhipment nodes (the reason is in the next section, see the Auxiliary Arcs) and a demand node.
Given N jobs and M AGVs in the problem, the elements in each set, the sets themselves and the
nodes properties are defined as follows:
a) AGVNm: a supply node corresponding to AGV m with one unit supply (AGVN stands for

the AGV Node). There are M AGVs in the problem. Hence, there are M supply nodes in the
GMCF-AGV. We define the following set for these supply nodes along with their properties:
 SAGVN: a set of M supply nodes in the GMCF-AGV.
 SAGVN = {AGVNm │ m=1,2,…,M; NPS(m)=1}

b) JINi: a node through which an AGV enters job i. It stands for the Job-Input Node. There is

neither supply nor demand in this node, i.e. it is a transhipment node. We define the
following set for these transhipment nodes along with their properties:
 SJIN: a set of N Job-Input nodes in the GMCF-AGV.
 SJIN = {JINi │ i=1,2,…,N; NPS(i)=0}

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 62 -

c) JOUTi: a node from which an AGV leaves job i. It stands for the Job-Output Node. Like the
previous nodes, there is neither supply nor demand in this node. We define the following set
for these transhipment nodes along with their properties:
 SJOUT: a set of N Job-Output nodes in the GMCF-AGV
 SJOUT = {JOUTi │ i=1,2,…,N; NPS(i)=0}

d) SINK: It stands for a Sink node or a demand node in the GMCF-AGV with M units demand. This
node corresponds to the end state of the process, after all container jobs have been served.
Hence, for the property of this node, we have:

 NPS(SINK) = -M.

Therefore, there are M+2×N+1 nodes in the GMCF-AGV so that:
NS=SAGVN U SJIN U SJOUT U SINK

4.5.2 Arcs and their properties in the special graph

The following four types of arcs with their properties connect the nodes in the GMCF-AGV :
1) Inward Arcs: There is a directed arc from every AGV node, to the Job-Input node of job i.

We define the following notation for these arcs along with their properties:
ARCinward : a set of arcs from SAGVN to SJIN.
ARCinward ={ (m, j)│ m ∈ SAGVN, j ∈ SJIN, APS(m, j) = [0,1,Cmj] }

The number of these arcs in the GMCF-AGV is M×N. Each arcs has the lower bound zero, and
the upper bound one, i.e., only one AGV goes through each of these arcs. As we mentioned
before (see Assumption 4-10), our objectives are to minimize waiting and travelling times of
the AGVs and the lateness times of jobs. The cost between node m and node j is calculated as
follows:




−+×

+≥+×++−×
= otherwisetTTARTAP

TTARTAtifTTARTAwTTARTAtwC
jmjm

mjmjmjmmjmj
mj)(

)()())((21

If AGV m could arrive on the quay side before the appointment time of the job associated
with node j (tj ≥ RTAm+TTAmj), there is no lateness time to serve the job. Therefore the
waiting and travelling times of AGV m to serve the job associated with node j are calculated
as the cost. Otherwise, the lateness time to serving node j with a penalty (P) is considered.
Note that there is neither waiting nor travelling time for the AGV in the second case.

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 63 -

2) Intermediate Arcs: There is a directed arc from every Job-Output node i to other Job-Input
node j. We define the following notation for these arcs along with their properties:

ARCintermediate : a set of arcs from SJOUT to SJIN.
ARCintermediate ={ (i, j)│ i ∈ SJOUT, j ∈ SJIN, j≠JINi , APS(m, j) = [0,1,Cij] }

The number of these arcs in the GMCF-AGV is N×(N-1). Each arcs has the lower bound zero,
and the upper bound one, i.e., only one AGV goes through from one job to another. The cost
between node i and node j in the GMCF-AGV is calculated as follows:


 −+×

+≥×++−×
= OtherwisetDTtP

DTttifDTwDTttwC
jiji

ijijijijij
ij)(

)())((21

The first case shows that an AGV can serve the job associated with node j after serving the
job associated with node i (tj ≥ ti +DTij). In this case waiting and travelling times of the AGV
are calculated without any lateness time. In the second case, there is neither waiting nor
travelling time for the AGV and only the lateness time of serving node j with a penalty (P) is
considered for the cost.

3) Outward Arcs: There is a directed arc from every Job-Output node i and AGV node m to
SINK. We define the following notation for these arcs along with their properties:

 ARCoutward : a set of arcs from SJOUT and SJAGVN to SINK.
 ARCoutward ={ (i, j)│ i ∈ SAGVN U SJOUT, j=SINK; APS(m, j) = [0,1,0] }

These arcs show that an AGV can remain idle after serving any number of jobs or without
serving any job. Therefore, a cost of zero is assigned to these arcs.

4) Auxiliary Arcs: There is a directed arc from every Job-Input node i to its Job-Output node.
We define the following notation for these arcs along with their properties:

 ARCauxiliary : a set of arcs from SJIN to SJOUT.
ARCauxiliary ={ (i, j)│ i ∈ SJIN, j=an unique Job-Output node in SJOUT,

correspond to the Input-Node i; APS(i, j) = [1,1,0]}
These arcs have unit lower and upper bounds. The transition cost across these arcs is zero.
These auxiliary arcs guarantee that every Job-Input and Job-Output node is visited once only

so that each job is served.

Therefore, there are M×N+N× (N-1)+M+2×N arcs in the GMCF-AGV so that:

AS= ARCinward U ARCintermediate U ARCoutward U ARCauxiliary

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 64 -

4.5.3 The MCF-AGV model for the Automated Guided Vehicles Scheduling

Now we present the special case of the MCF model for the Automated Guided Vehicles
Scheduling with the following definition.
Definition 4-12: A MCF-AGV model is a special case of the MCF (Definition 4-10) for the
Scheduling problem of Automated Guided Vehicles in the container terminals. A MCF-AGV
model is defined as

MCF-AGV = (GMCF-AGV, f, D, CS, FC)
Where GMCF-AGV = (GS, NPS, APS) is a graph for the MCF-AGV problem;

f = a finite set of integer decision variables on AS, f ={ fij | (i, j) ∈ AS} ;
D = a function which determines a lower and upper bound for f; D: f→N×N (to be pulled

out from APS); For each element in D, corresponding to the type of arcs:
1)

ijfD = [0,1] for (i, j) ∈ ARCinward U ARCintermediate U ARCoutward

2)
ijfD = [1,1] for (i, j) ∈ ARCauxiliary

CS = The constraints of the MCF-AGV are:

The first constraint shows every node i (i ∈ SAGVN) sends one unit flow into the
network. The second constraint ensures SINK node receives M units flow (the
flows sent from nodes in SAGVN set). The third constraint shows the flow
balance at every Job-Input and Job-Output node.

 FC = ∑
∈

⋅
ASji

ijij fC
),(

Solving the MCF-AGV model generates M paths, each of which commences from a node in
SAGVN and terminates at SINK. Each path determines a job sequence for every AGV. The
decision variable fij for every arc (i,j) ∈ AS (the flow between nodes i and j in the GMCF-AGV) is
either 1 or 0. fij = 1 means that an AGV goes from node i to node j. Otherwise, moving the AGV
from node i to node j is not possible.





















∈∀=−
==

∈∀=

∑∑
∑
∑

∈∈

∈

∈

}{;0)3

;)2

;1)1

),(:),(:

),(:

),(:

SJOUTSJINiff

SINKiforMf

SAGVNif

ASijj
ji

ASjij
ij

ASijj
ji

ASjij
ij

U

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 65 -

AGV 1

AGV 2

1

2

3 4

5

7

9 10

11
6

8

NPS (1)=1;
One unit supply

NPS(11)=-2;
-2 units demands

NPS (2)=1;
One unit supply

Arc type=Inward
APS(1,3)=[0,1,C1,3]

Arc type=Outward
APS(1,11)=[0,1,0]
APS(4,11)=[0,1,0]

Arc type=Auxiliary
APS(3,4)=[1,1,0]

Arc type=Intermediate
APS(4,5)=[0,1,C4,5]

Job-Input and Job-
Output nodes for Job 4;
NPS(9)=NPS(10)=0

Sink

The MCF-AGV model of the problem can be illustrated by Figure 4-5 for two AGVs and four
container jobs. According to our definitions for nodes and arcs in the MCF-AGV model, we
have the following sets with their properties:

• SAGVN = {1,2}; NPS(1)=NPS(2)=1
• SJIN = {3,5,7,9}; NPS(j)=0, j ∈ SJIN

• SJOUT = {4,6,8,10}; NPS(j)=0, j ∈ SJOUT

• SINK = {11}; NPS(11)=-2
• ARCinward = {(1,3),(1,5),(1,7),(1,9), (2,3),(2,5),(2,7),(2,9)}; APS(m,j)=[0,1,Cm,j], m ∈ SAGVN, j ∈ JIN

• ARCintermediate = {(4,5), (4,7), (4,9), (6,3),(6,7),(6,9), (8,3),(8,5),(8,9),(10,3),(10,5),(10,7)}; APS(i,j)=[0,1,Ci,j]
 i ∈ SJOUT, j ∈ SJIN

• ARCoutward = {(1,11),(2,11),(4,11),(6,11),(8,11),(10,11)}; APS(i,j)=[0,1,0], i ∈ SJOUT, j ∈ SJIN

• ARCauxiliary = {(3,4),(5,6),(7,8),(9,10)} ; APS(i,j)=[1,1,0]; i ∈ SJOUT, j ∈ SJIN

Figure 4-5: An example of the MCF-AGV model for 2 AGVs and 4 jobs

We showed one example for each type of the arcs with their properties (the lower bound, upper
bound and cost, respectively) in the figure. Suppose that for some values of arc costs, the solution
paths are 1→3→4→9→10→11 and 2→5→6→7→8→11. This states that AGV 1 is assigned to
serve container jobs 1 and 4, and AGV 2 is assigned to serve container jobs 2 and 3, respectively.

University of Essex, Computer Science Department
Chapter 4: Scheduling of AGVs and Its Problem Formulation

PhD Thesis, Copyrights (H. Rashidi) - 66 -

The MCF-AGV model has a huge search space and the solution should provide the optimal paths
for each AGV from every node in SAGVN to SINK. As we mentioned before, there are
M+2×N+1 nodes and M+M×N+N×(N-1)+2×N arcs in the graph model where N and M specify
the number of jobs and the number of AGVs in the problem, respectively. The number of paths
in the search space is determined by the following equation:

)!(!
!

)!1(....2)!1(21!1

QPQ
P

Q
Pwhere

MMNM
MNMNMMthsNumberOfPa

−×
=





×+−×





++×−×





+××





+=

The equation calculates every possible path in the search space. The first term represents paths
from every node in SAGVN to SINK. The remaining terms shows the number of paths when 1,
2,.. , M (M ≤ N) AGVs, respectively, is selected to serve the jobs.

4.6 Summary and conclusion

In this chapter, a scheduling problem in the container terminal was presented and formulated.
The problem was to carry many container jobs from quay-side to yard-side or vice versa by
several Automated Guided Vehicles. Each job has an appointment time on the quay-side and the
jobs should be served in their appointment time by the AGVs.

The formulation was based on the Minimum Cost Flow (MCF) model. We introduced the GMCF =
(G, NP, AP), a graph G with a couple of functions for the Node’s Properties (NP) and the Arc’s
Property (AP) for the MCF model. After that, we presented a formal definition for the MCF
model; MCF=(GMCF, f, D, CS, FC) where f, D, CS and FC were the decision variables, domain of
f, constraints and objective function, respectively.

We established the scheduling problem of Automated Guided Vehicles on the MCF model. In
order to do that, we defined a graph, GMCF-AGV, for the problem. Then, we introduced the MCF-
AGV model for the scheduling problem, as a special case of the MCF model. The decision
variables with value one identified the path for the AGVs inside the graph GMCF-AGV. There are
always feasible and optimal solutions since the formulation is based on the standard form of the
MCF model.

University of Essex, Computer Science Department

- 67 -
PhD Thesis, Copyrights (H. Rashidi)

Chapter 5: Network Simplex Algorithm and

Static Scheduling of AGVs

In Chapter 4, the scheduling problem of Automated Guided Vehicles (AGVs) in the container
terminals was formulated as a special case of Minimum Cost Flow model. The model was
introduced as the MCF-AGV. This chapter focuses on the standard Network Simplex Algorithm
(NSA) to tackle the MCF-AGV in static aspect. In this aspect the number of jobs, the distance
between the source and destination of the jobs, and the number of vehicles don’t change (see
Assumption 4-9).

5.1 Reasons to choose NSA

The main reasons to choose NSA are as follows:
• The Minimum Cost Flow (MCF) model has a rich history. This problem arises in almost all

industries, including agriculture, communications, defence, education, energy, health care,
manufacturing, medicine, retailing, and transportation [2]. NSA is a solution for the MCF
model.

• The area of development algorithm to tackle the MCF model by NSA is under-researched and
offers fertile research opportunities for large scale problems. Several researches have been
devoted on this matter [1, 3, 24, 36, 46, 58, 67, 70] in the recent years.

• NSA is based on simple network operations. With simple network operations, the MCF
model can be solved more than 100 times faster than equivalently sized Linear Programs1. It
is the fastest algorithm for solving the generalized network flow problem in practice [2].

5.2 The Network Simplex Algorithm

In Network Simplex Algorithm, the linear algebra of original simplex algorithm (in Operation
Research) is replaced by simple network operations. Ahuja, Magnanti, and Orlin (1993)
described the network simplex algorithm and gave pseudo-codes, implementation and hints [2].

1 http://mat.gsia.cmu.edu/classes/networks/node8.html (Last check of the address: 3 Sep 2005)

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 68 -

Here, the standard form of Network Simplex Algorithm is presented. More details and several
other algorithms for the MCF problem can be seen in the text book [2].

5.2.1 Spanning tree solutions and optimality conditions

Given graph GMCF = ((N, A), NP, AP) for the MCF problem (see Definition 4-8), the standard
form of Minimum Cost Flow problem [2] was as follows:

In network simplex algorithm, it is assumed that the network is connected. Every connected
graph has a spanning tree [2]. Some preliminary definitions related to the spanning tree are:
Definition 5-1: A spanning tree solution for the MCF problem is divided into three sets of arcs
(T, L, U) of the graph. Given n as the number of nodes in the graph, T ⊂ A is a set consist of n-1
arcs. The remaining arcs are divided into the two sets L and U. For these two sets, fij = mij for
each arc (i, j) ∈ L and fij = Mij for each arc (i, j) ∈ U.
Definition 5-2: A spanning tree solution with mij ≤ fij ≤ Mij is a feasible spanning tree solution. In
Figure 5-1, the spanning tree is a feasible spanning tree solution provided that for each dotted arc
mij ≤ fij ≤ Mij.

Figure 5-1: A feasible spanning tree solution (dotted)

Before stating the optimality condition of Network Simplex Algorithm, a couple of theorems and
a property for the algorithm are presented.





∈≤≤
∈=−

=

∑∑
∑

∈∈

∈

AjiallforMfm

Niallforbff
ToSubject

fcwMinCostFlo

ijijij

Aijj
iji

Ajij
ij

Aji
ijij

),(,

,

.

),(:),(:

),(

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 69 -

Theorem 5-1 [2]: The Minimum Cost Flow problem is a special form of the Linear Program (in
Operation Research). Given n nodes and k arcs in the graph model, the MCF problem can be
represented as follows:




≤≤
=

=

×××

×××

××

111

11

11

kkk

nkkn

kk

Mfm
bfHtoSubject

fcwMinCostFlo

In this formulation, the matrixes of b, c, f, m, M are the same as the MCF problem (see Section
4.4.2). The coefficient matrix, H, is called the node-arc incidence matrix. The elements of this
matrix are defined as follows:





−
+

=
otherwise

arcjofendtheisinodeIf
arcjofstarttheisinodeIf

H th

th

ij
0

1
1

Theorem 5-2 [2]: A flow vector of a basic solution for the Linear Program is a spanning tree
solution of the MCF problem. Flows on non-basic arcs are either mij or Mij.

Property 5-1 [2]: Suppose that a number π(i) is associated with each node i ∈ N, which is
referred to as the potential of that node. With respect to the node potentials π = (π(1), π(2),…,
π(n)), the reduced cost ijC

− of an arc(i, j) is defined as follows:

)()(jiCC ijij ππ +−=
−

Theorem 5-3 (Necessary optimality conditions): The Optimality Conditions of the spanning
tree solution (T, L, U) is obtained by the Lagrangian of the Minimum Cost Flow (MCF) problem.
The Lagrangian of the minimum cost flow problem is:

Minimizing L(f , π) over mij ≤ fij ≤ Mij gives dual feasibility and complementary slackness
conditions [101]. If the reduced cost is zero, fij could have any values between mij and Mij.

∑∑
∑∑∑∑

∈∈

∈∈∈∈

++−=

−−−=

Ni
ii

Aji
ijjiij

i
Aijj

ji
Ajij

ij
Ni

i
Aji

ijij

bfc

bfffcfL

.)(

).(.),(

),(

),(:),(:),(

πππ
ππ

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 70 -

Otherwise, the fij has the maximum (minimum) value when the reduced cost is negative (positive).
Hence, the optimality conditions are:

TjiMfmjiCC
UjiMfjiCC

LjimfjiCC

ijijijijij

ijijijij

ijijijij

∈≤≤⇒=+−=

∈=⇒+−=

∈=⇒+−=

−

−

−

),(;0)()(
),(;0)()(

),(;0)()(

ππ
ππ
ππ

p

f

Given n nodes in the network, the spanning tree (T) has n-1 arcs. The potential of each node is
calculated by the last equation (π(i)-π(j)=Cij). The potential of one node is set arbitrarily. Usually
it is the root of the tree with value 0 for its potential [2].

In NSA, it is worked with the reduced cost, instead of the actual cost [2]. It is important to
determine the relationship between the objective functions ∑

∈

−=
Aji

ijij fz c
),(

.)(π and ∑
∈

=
Aji

ijij fz c
),(

.)0(.

Suppose, initially, that π= 0 and then we increase the potential of node k to π(k). The definition
of reduced costs implies that this change reduces the reduced cost of each unit of flow leaving
node k by π(k) and increases the reduced cost of each flow unit entering node k by π(k). Thus the
total decrease in the objective function equals π(k) times the outflow of node k minus the inflow
of node k. By the constraint for each node, the outflow minus inflow equals the supply/demand
of the node. Consequently, increasing the potential of node k by π(k) decreases the objective
function value by π(k)×b(k) units. Repeating this argument iteratively for each node establishes
that:

∑ =
∈

=−
Ni

bibizz πππ)()()()0(

Given node potential π, π.b is a constant. Therefore, a flow that minimizes z(π) also minimizes
z(0). This result is used in Theorem 5-4.

Theorem 5-4 (Sufficient Optimality Conditions) [2]: Let f* be the solution associated with the
spanning tree structure (T, L, U). Suppose that some set of node potential π, together with the
spanning tree structure (T, L, U) satisfy the optimality conditions.
It is needed to show that f* is an optimal solution of the minimum cost flow problem. Previously,
it was showed that minimizing ∑

∈

−=
Aji

ijij fz c
),(

.)(π is equivalent to minimize ∑
∈

=
Aji

ijij fz c
),(

.)0(. The

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 71 -

optimality conditions stated as above imply that for the given node potential π, ∑
∈

−=
Aji

ijij fz c
),(

.)(π is

equivalent to minimizing the following expression:

ij
Uji

ij
Lji

ijij ffMinimize cc ..
),(),(
∑∑
∈

−

∈

− −

The definition of the solution f* implies that for any arbitrary solution f, fij ≥ f*ij for all (i,j) ∈ L
and fij ≤ f*ij for all (i,j) ∈ U. The above expression implies that the objective function value of the
solution f will be greater than or equal to that of f*.□

In economic aspect, the following interpretations can be stated [2]:

• cij
− is the amount of change in the objective function, if there is one unit change in fij .

• πi is the cost of sending one unit of flow from node i to the root along the tree path.
• cij - πi is the cost of obtaining one unit of the commodity at node i and then shipping it to

node j.

5.2.2 The algorithm NSA

The network simplex algorithm maintains a feasible spanning tree structure at each iteration and
successfully transforms it into an improved spanning tree structure until it becomes optimal. The
algorithm in Figure 5-2 specifies steps of this method [2, 48].

Figure 5-2: The Network Simplex Algorithm

1: Algorithm Network Simplex Method
2: Begin
3: Create Initial BFS; (T, L, U)
4: (k, l) entering arc ∈ {L + U }
5: While (k, l) <> NULL Do
6: Find Cycle W ∈ {T + (k, l) }
7: θ Flow Change
8: (p, q) Leaving Arc ∈ W
9: Update Flow in W by θ
10: Update BFS; Tree T
11: Update node potentials
12: (k, l) entering arc∈ {L+ U}
13: End while
14: End Algorithm

Step 2: Determine the leaving arc

Step 3: Exchange the entering and leaving arc

Step 1: Select an entering arc
Step 0: Create a Basic Feasible Solution

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 72 -

Figure 5-2 shows four main steps in the algorithm:
• Step 0: Initial or create a Basic Feasible Solution (BFS).
• Step 1: Select an entering arc (which is appended to the spanning tree).
• Step 2: Determine the leaving Arc (which must be removed from the spanning tree).
• Step 3: Pivoting (exchange the entering and leaving Arc).

Step 0: To create an initial or Basic Feasible Solution, the graph has to be connected, which is
correspond to the MCF-AGV model in Chapter 4. In Line 3, creating an initial feasible spanning
tree solution (see Definition 5-2) for every connected graph can be made by an easy way [2]. It is
obtained by adding an artificial root node ‘0’ to N and the artificial slack arcs (i,0) and (0,i),
respectively, to A. Each artificial slack arc has the lower bound of zero, the upper bound of
infinity, and a sufficiently large cost coefficient. The initial basic tree is consisting of all artificial
arcs, each original arc becomes non-basic at its lower bound and no arc becomes non-basic at the
upper bound. We examine each node j, other than ‘0’, one by one. If b (j) ≥ 0, we include (j, 0) in
T with a flow value of b (j). If b (j) <0, we include arc (0, j) in T with a flow value of –b(j). The
set L consist of the remaining arcs, and the set U is empty.

Step 1: At each iteration of the algorithm, an entering arc is selected by some pricing scheme [48
46, 48]. This arc is selected from the non-basic arcs (L + U). There are several schemes for
selecting the entering arc, and these determine the speed of algorithm. A literature review over
these schemes is presented later in this chapter. An arc may be admitted to the basis to improve
the objective function if it violates the optimality conditions. Thus an arc (i,j) ∈ A, with the
following conditions are admissible:

ijijij

ijijij

MfandCor

mfandCIf

=

=
−

−

0

0

f

p

If no admissible arc exists, then the current solution is optimal, and the algorithm terminates.
Otherwise, Step 2 is performed.

Step 2: Appending the entering arc, (k, l), to the spanning tree forms a unique cycle, W, with the
arcs of the basis. In Line 6, the algorithm finds out the cycle. In order to eliminate this cycle in
the tree, one of its arcs must leave the basis. By augmenting flow in a negative cost augmenting
cycle, the objective value of the solution can be improved. The cycle is eliminated when there is

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 73 -

an augmented flow by a sufficient amount to force the flow in one or more arcs of the cycle to
their upper or lower bounds. In Line 7, the flow change is determined by the following equation:

θ = Min {∆fij for all (i, j) ∈ W} .
The leaving arc is selected based on cycle W and θ, in Line 8.

Step 3: In this step, the entering arc and the leaving arc are exchanged, and the new BFS is
constructed. The construction of a new basis tree is called the pivot; adjusting flows, making the
new spanning tree and updating the node potentials accordingly in the spanning tree solution (T,
L, U). These operations are performed in Lines 9, 10 and 11, respectively. We refer to cycle W
(see Step 2) as the basis cycle. The algorithm sends a maximum possible amount of flow in the
basis cycle without violating any of the lower and upper bound constraints on arcs. An arc which
blocks further increase of flow in the basis cycle is called a blocking arc. The flow in every arc of
the cycle W is increased or decreased by the amount θ depending on the orientation of the arc in
relation to the orientation of the cycle. Generally, a basic arc is exchanged with a non-basic arc.
The algorithm drops a blocking arc, say (p, q), from T. This gives a new basis structure. Let T1
and T2 be the two sub-trees formed by deleting arc (p, q) from the previous basis T where T1
contains the root. In the new basis, potentials of all nodes in T1 remain unchanged and potentials
of all nodes in T2 change by a constant amount. If (k, l) was a non-basic arc at its lower bound in
the previous basis structure, then the amount of change is an increase by klC

−
 , else it is

decrease by an amount klC
− .

5.2.3 The difference between NSA and original simplex

Those steps in Network Simplex Algorithm (NSA) can be compared with the Original Simplex
Algorithm (OSA) (to solve Linear Program in Operation Research). Note that the main difference
is that NSA is based on graph and operations in the graph while the OSA needs matrix and
matrix manipulations. Step 0 is taken to finding an initial solution in both algorithms. An initial
basic spanning tree is created by adding the artificial node and arcs in NSA. In the similar way,
OSA uses the artificial variables to generate an initial basic solution. Steps 1 and 2 in the both
algorithms are choosing the entering and leaving arc in NSA, which are similar to choosing the
entering and leaving variable in OSA. Constructing a new spanning tree in NSA and new basic

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 74 -

solution in OSA are Step 3 for the both algorithms. In this way, OSA needs some matrix
manipulation and inversion, whereas a new spanning tree can be easily constructed by some
operation in the graph without any multiplication and division. Both algorithms continue Steps 1-
3 until they meet the optimality conditions. Obviously, the matrix manipulations are different
from graph operations, which have significant negative impacts on the performance of OSA.

5.2.4 A short literature over pricing rules

In order to find out an entering arc for the basic solution, there are different rules, which called
pricing schemes. The performance of the Network Simplex Algorithm is affected by these
schemes. A literature review over these schemes is given below:

The standard textbook [2] provided a detailed account of the literature on those schemes. We
now briefly review this literature. Bradley, Brown and Graves (1977), used a dynamic queue,
containing the indices of so-called ‘interesting’ nodes and admissible arcs. Their method is called
BBG Queue pricing scheme. An ‘interesting’ node is a node whose incident arcs have not been
re-priced in recent iterations. At each iteration, the entering arc is selected from the queue.
Another candidate list scheme has been described by Mulvey (1978). In the Mulvey scheme, there
is a major and minor loop to select the entering arc. A limited number of favourably priced
entering arcs are collected by scanning the non-basic arcs in a major iteration. In the minor
iteration, the most favourably priced arc in the list is chosen to enter the basis. Grigoriadis (1986)
describes a very simple arc block pricing scheme based on dividing the arcs into a number of
subsets of specified size. At each iteration, the entering arc is selected from a block with most
negative price. Only the arcs of one block are re-priced at any iteration. Taha (1987) suggested
the most negative pricing scheme for the algorithm. At each iteration, all non-basic arcs are re-
priced, and the arc with the most negative price is selected as the entering arc. Kelly and Neill
(1993) implemented a variation of the arc block pricing scheme, which is called arc sample [48].
Instead of selecting the entering arc from among the required number of consecutive arcs, this
method considers arcs at constant intervals, called the skip factor, from throughout the entire arc
set. Andrew (1993) studied practical implementation of minimum cost flow algorithms and
claimed that his implementations worked very well over a wide range of problems [6].

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 75 -

Istvan reviewed a collection of some known pricing schemes in the original simplex algorithm
[46]. They are First improving candidate, Dantzig rule, Partial pricing, Multiple pricing and
Sectional pricing. These schemes can be applied to NSA. First improving candidate chooses the
first violate arc as the entering arc. It is cheap but it usually leads to a very large number of
iterations. In Dantzig rule all non-basic arcs are checked (full pricing) and one which violates the
optimality condition the most is selected. This rule is quite expensive but overall is considerably
better than the previous method. The Partial pricing scans only a part of the non-basic arcs and
the best candidate from this part is selected. In the next step, the next part is scanned, and so on.
In Multiple pricing, some of the most profitable candidates (in terms of the magnitude) are
selected during one scanning pass. They are updated and a sub-optimization is performed
involving the current basis and the selected candidates using the criterion of greatest
improvement. The Sectional pricing behaves as a kind of partial pricing, but in each iteration
sections or clusters of arc are considered.

In recent years, several researches have been devoted on network simplex algorithm. Muramatsu
(1999) used a primal-dual symmetric pivoting rule and proposed a new scheme in which the
algorithm can start from an arbitrary pair of primal and dual feasible spanning tree [67].
Eppstein (1999) presented a clustering technique for partitioning trees and forests into smaller
sub-trees or clusters [24]. This technique has been used to improve the time bounds for optimal
pivot selection in the primal network simplex algorithm for minimum-cost flow problem. Lobel
(2000) developed and implemented the multiple pricing rules to select an entering arc, a mixture
of several sizes for the arc block [58]. A general pricing scheme for the simplex method has been
proposed by Istvan (2001). His pricing scheme is controlled by three parameters. With different
settings of the parameters, he claimed that it creates a large flexibility in pricing and applicable to
general and network simplex algorithms [46]. Ahuja et al. (2001) developed a network simplex
algorithm with O(n) consecutive degenerate pivot [3]. They presented an anti-stalling pivot rule,
based on concept of strong feasible spanning tree, which is described in the following section.
Their rule uses a negative cost augmenting cycle to identify a sequence of entering variables.

5.2.5 Strongly feasible spanning tree

The definition of strongly feasible solution for Network Simplex Algorithm and a property are
given below:

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 76 -

3 (4)

1

3
2

4

6 5

8 7

9 10

0 (3)

3 (4)

2 (2)

3 (4)

3 (3)

2 (3)

0 (2)

4 (6)

0 (5) k l

p

q

w

Definition 5-3 [2]: The basis structure (T, L, U) is strongly feasible if we can send a positive
amount of flow from any node to the root along arcs in the spanning tree without violating any of
the flow bounds. An equivalent way of stating this property is that no upward pointing arc of the
spanning tree can be at its upper bound and no downward pointing arc can be at its lower bound.
An example of a strongly feasible basis is given in Figure 5-3. Note that the current flow and
upper bound of every arc are given on each arc in the figure. The Lower bound of the arcs is zero.

Figure 5-3: An example of strongly feasible spanning tree [2]

The network simplex algorithm can maintain a strongly feasible basis at every iteration. In order
to do this, the initial basic solution, which was described in the previous section, should be
strongly feasible. The algorithm may also select the leaving arc appropriately so that the next
basis would be also strongly feasible. Suppose that the entering arc (k, l) is at its lower bound and
node w is the first common predecessor of nodes k and l. Let W be the basis cycle formed by
adding arc (k, l) to the basis tree. This cycle consists of the basis path from node w to node k, the
arc (k, l), and the basis path from node l to node w. After updating the flow, the algorithm
identifies blocking arcs. If the blocking arc is unique, then it leaves the basis. If there are more
than one blocking arcs, then the algorithm should select the leaving arc to be the last blocking arc
encountered in traversing W along its orientation starting at node w. For example, in Figure 5-3,
the entering arc is (9, 10), the blocking arcs are (2, 3) and (7, 5), and the leaving arcs is (7, 5). It

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 77 -

can be shown that the above rule guarantees that the next basis is strongly feasible [2]. A strongly
feasible basis has the following property.
Property 5-2 [2]: Due to degeneracy, cycling may occur in the network simplex algorithm. By
maintaining strongly feasible basis due to Cunningham (1976, 1979), cycling can be prevented
without restrictions on the entering variable.

5.3 Simulation software

In order to evaluate our model and the employed algorithms in this thesis, we developed a piece
of software. Our software is called DSSAGV (Dynamic Scheduling Software of Automated
Guided Vehicles).

The main objectives of the software were:

• To define a few terminal ports and their layout.
• To simulate a Job Generator.
• To test and measure the efficiency of the algorithms.
• To solve the scheduling problem (defined in Chapter 4) in both static and dynamic aspects.
• To produce a system for Dynamic Scheduling of Automated Guided Vehicles.
• To produce a set of benchmarks for the future research.

We implemented the software in C++ programming language along with Borland Database
Engine (BDE) for its database [39]. In this section, the features of our software are described
briefly. Then the detail implementation of the standard version of Network Simplex Algorithm is
presented. After that, we explain the input and output of the algorithm for an example.

5.3.1 The features of our software

Figure 5-4 shows the main screenshot of the software. It shows a couple of vessels, six Quay
Cranes (QCs), one Rubber Tyred Gantry Crane (RTGC) in each block of the Storage Area and
several AGVs. The figure also shows the main menu as well as several buttons including ‘Port’,
‘Route’, ‘Containers’, ‘Vehicles’ and ‘Process’. These buttons have been shown under the main
menu and designed as hotkeys to facilitate the software execution.

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 78 -

Figure 5-4: The main screenshot of the software.

Some important features of DSSAGV are described briefly as follows:

• The user can define a few ports, a number of blocks in the yard, a number of working

positions or cranes in the berth and a number of Automated Guided Vehicles in each port.
The ‘port’ button activates this feature.

• A facility to generate a random distance between every two points in the yard or berth has
been considered. The user can change the distance. The ‘route’ button activates this feature.

• At the beginning of the process, the start location of each vehicle may be any point of the port.
The user can define or change the ready time of the vehicles at the start location and the
location as well. But at the first stage, the software generates them randomly. The ‘vehicle’
button activates this feature.

• A Job Generator was designed and implemented in the software. For static and dynamic
fashion, a few container jobs may be generated to transport from their source to their
destination. Either the source or destination of each job is the quay side, which can be chosen

AGV

QC

RTGC

Storage Area

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 79 -

randomly by the Job Generator. There are three options for quay cranes: single crane and
multiple cranes randomly and circular. In the first option, crane number 1 is selected to
handle the jobs whereas in the second option one crane, among different cranes in the berth,
will be selected to handle the jobs. In the last option, choosing the crane number will be
circular; the first job for the first crane, the second job for the second crane and so on. After
the next job is allocated for the last crane, the turn goes to the first crane.

• The initial time of the operation, time window for the cranes and vehicles are defined by the
user. The first parameter plays a role as the ship arrival’s time; the second one determines the
processing time of a container job by the crane; namely the time between two consecutive
jobs. The last one is the time taken by a vehicle to pick-up (drop-off) the job from (to) the
crane. We assume some default values for these parameters.

• The user can monitor some indices to measure the efficiency of the model and algorithm. The
waiting or delay time for every job, the number of jobs and the total travelling and waiting
times for every vehicle are calculated in the static and dynamic problems. The ‘process’
button activates another screenshot of the software. In the screenshot2, several panels and
facilities for verification and validation of the software have been designed and implemented
to help the user. These panels are “Static”, “Model”, ”Dynamic”, “Result”, “Graph”,
“Algorithm” and “Performance”. The ‘Static’ and ‘Dynamic’ panels are used for the static
and dynamic problems. The input and output of the algorithm, before and after solving a
problem, can be observed by the user. The ‘Model’ panel shows the input and output of the
algorithm. The ‘Algorithm’ panel shows the employed algorithms from which the user can
choose one. The ‘Performance’ panel shows the CPU-Time and the number of iterations
required to solve the model. The ‘Graph’ panel shows and compares the ‘Quay crane time’
(when the crane is ready to pick-up/drop-off the job from/on the vehicle), the ‘Vehicle time’
(when the vehicle is ready to deliver/pick-up the job to/from the crane) and the ‘Actual time’
(the maximum of ‘Quay crane time’ and ‘Vehicle time’).

• A real time analogue clock has been designed and implemented. In dynamic aspect, the
performance of different parts of the software can be monitored by the clock.

• A relational database has been designed and implemented, along side the software by Borland
Database Engine (BDE). The relationships between tables or the Entity Relationship Diagram
(ERD) of the database have been illustrated by Figure 5-5.

2 http://privatewww.essex.ac.uk/~hrashi

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 80 -

Figure 5-5: Relationships between the tables of the Database.

There are six tables in the database and their fields are shown in Figure 5-5. The relationships
between the tables have been illustrated by one or two fields into the diamond. The Table 1 is
considered to store port specification, including the name of ports, the number of blocks in the
yard, the number of cranes or working positions, the number of AGVs and a description for
the port. The distance between every different two points either in the yard or in the berth will
be stored in Table 2. While the system is doing its processes, the remaining jobs, the jobs to be
carried for each vehicle and the vehicles status are updated in Tables 3, 4 and 5 respectively.
The start location, previous location, time travelled and waited of the vehicles are stored and
updated in Table 5. The ready time of the vehicles to pick-up (deliver) the job from (to) the

2. Layout Table
PortName
SourcePoint
DestPoint
Distance

1. Ports Table
Portname
NumberOf BlocksInYard
NumberOfWorkingPosition
(In the Berth)
Description
NumberOfAGV

3. Table of Remaining Jobs
PortName
ContainerId
SourcePoint
DestPoint
ReadyTime
QuayCraneTime

5. Vehicle’s Table
PortName
AGVName
StartLocation
ReadyTime
NumberOfJobs
CostAGV
Status
Load
WaitedTime
IdleTime
PreviousLocation

4. Table for Jobs to be carried
===================
PortName
AGVName
ContainerId
VehicleTime
ContainerReadyTime
QuayCraneTime
ActualTime
SourcePoint
DestPoint

PortName

PortName

PortName,
AGVName

6. Carried Job’s Table
PortName
AGVName
ContainerId
ContainerReadyTime
SourcePoint
DestPoint
VehicleTime
QuayCraneTime
ActualTime

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 81 -

crane, the time that the crane picks-up (delivers) the job from (to) the vehicle and the ‘Actual
time’ of the job served (maximum of the two former times) are stored in Table 4.

5.3.2 The implementation of NSA in our software

Before going to the detail of our implementation, Unimodularity theorem in network flow
problem is stated.

Theorem 5-5 (Unimodularity theorem) [2]: For every network flow problem with integer data,
every basic feasible solution and, in particular, every basic optimal solution assigns an integer
value to the flow of every arc.

To get a higher performance in our software, we considered Theorem 5-5 in the implementation.
There is no multiplication, division and floating point variable during the process.

We implemented the standard version of Network Simplex Algorithm (see Figure 5-2). The
operations of the algorithm were described in Section 5.2.2. As we mentioned, the pricing rule or
scheme to choose the entering arc in Step 1 determines the speed of algorithm. In the literature,
we reviewed the pricing rules. Actually, there is the trade-off between time spent in pricing at
each iteration and the ‘goodness’ of the selected arc in terms of reducing the number of iterations
required to reach the optimal solution. The First improving candidate and Dantzig rule represent
two extreme choices for the entering arc. Other pricing schemes strike an effective comprise
between these two extremes and have proven to be more efficient in practice [2]. Kelly and Neill
[48] implemented several pricing schemes and ran their software for different classes of
minimum cost flow problems. In their results, the block pricing scheme provided a better
performance compared with others. We therefore chose the block pricing scheme. This scheme is
based on dividing the arcs of the graph into a number of subsets of specified size. A block size of
between 1% and 8.5% of the size of the arcs in the graph has been recommended by Grigoriadis
[48], for large MCF problems. We set the number to 5% by the try and error. In our software,
there is a procedure to select the entering arc. The flowchart of this procedure is depicted by
Figure 5-6.

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 82 -

Figure 5-6: Flowchart of Network Simplex Algorithm (Block Pricing Scheme) to select an entering arc.

We now explain the flowchart. To solve every problem, it is needed to initialize the block
number (BN) to 1 and to calculate the number of blocks (NB). At each iteration, the reduced cost
of the arcs in a block, identified by BN, is calculated and the optimality condition is checked.
Only the arcs of one block are re-priced. Then, the most violated arc within the block is selected
as the entering arc. If there is no violated arc in the block, the block number (BN) is increased
circularly (1, 2, .., NB, 1,..). If there is no violated arc in the graph (BN=SBN), then the current
solution is optimal.

BN ← 1
NB ← Number of Arcs/Block’s size

N

Start

Return the most
violated arc in

the block as the
entering arc

a) Calculate the reduced cost of the arcs in
the block BN

b) Scan the block BN for violation of the
optimality condition

Is there any
violated arc within

the block BN?

Increase BN circularly

Return Null
(Current

solution is
optimal)

Initialization
is needed?

Y

Y

BN =
SBN ?

Y

N

N

 SBN ← BN

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 83 -

5.3.3 How the program works

As we mentioned in Section 4.5, the container jobs to be served and the AGVs to be deployed
were considered as nodes in the MCF-AGV model. There were M AGV nodes, 2×N job nodes
and a sink node, all together M+2N+1 nodes in the model. The AGV nodes were considered as
supply nodes and the sink was a demand node. Each job was considered with a couple of nodes,
Job-Input and Job-Output nodes (see Section 4.5).

A graph GMCF-AGV = (GS, NPS, APS) is made by the software. In the graph, NS is a set of nodes
and AS is a set of arcs; NPS, APS are the properties of the nodes and arcs, respectively. We
defined the NS and AS and their elements (see Section 4.5 of Chapter 4) as below:

NS=SAGVN U SJIN U SJOUT U SINK
AS= ARCinward U ARCoutward U ARCauxiliary U ARCintermediate

As an example, assume there are 2 AGVs to be deployed and 2 jobs to be served. The nodes and
arcs with their properties are:

• SAGVN = {1,2}; NPS(1)=NPS(2)=1
• SJIN = {3,5}; NPS(3)=NPS(5)=0
• SJOUT = {4,6}; NPS(4)=NPS(6)=0
• SINK = {7}; NPS(7)=-2
• ARCinward = {(1,3),(1,5),(2,3),(2,5) };APS(1,3)=[0,1,132], APS(1,5)=[0,1,400], APS(2,3)=[0,1,80],

APS(2,5)=[0,1,360]
• ARCintermediate = {(4,5), (6,3) };APS(4,5)=[0,1,280], APS(6,3)=[0,1,10000]
• ARCoutward = {(1,7),(2,7),(4,7),(6,7)};APS(1,7)=APS(2,7)=APS(4,7)=APS(6,7)=[0,1,0]
• ARCauxiliary = {(3,4),(5,6) }; APS(3,4)=APS(5,6)=[1,1,0]

 Figures 5-7 to 5-9 illustrate the MCF-AGV model, the input and output of the algorithm for
above example, respectively. In Figure 5-7, nodes 1 and 2 are AGV nodes, nodes 3 and 5 are Job-
Input nodes, nodes 4 and 6 are Job-Output nodes, and node 7 is the Sink node.

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 84 -

Figure 5-7: An example of the MCF-AGV model for 2 AGVs and 2 jobs in our software.

Figure 5-8: The input of the algorithm (NSA) in DIMACS3 format

In Figure 5-8, the prefixes of ‘p’, ‘c’, ‘n’ and ‘a’ identify defining the problem, comments, nodes
and arcs in the graph, respectively. The first line in the figure defines a problem with 7 nodes and
12 arcs, which has to be minimized. Lines 3 and 4, define supply nodes with amount of flow to
be sent into the network. Line 6 defines the Sink node with amount of its demand. Other lines in
the figure specify the arcs with their tail and head nodes, lower and upper bounds, and transition
cost.

3 Centre for Discrete Mathematics and Theoretical Computer Science

3 4

5 6

7
1

2

1 : p min 7 12
2 : c Create Supply nodes
3 : n 1 1
4 : n 2 1
5 : c Create Demand node
6 : n 7 -2
7 : c Create Inward arcs from every vehicle node to every Job-Input node
8 : a 1 3 0 1 132
9 : a 1 5 0 1 400
10: a 2 3 0 1 80
11: a 2 5 0 1 360
12: c Create Outward arcs from every vehicle nodes to the Sink node
13: a 1 7 0 1 0
14: a 2 7 0 1 0
15: c Create Auxiliary arcs from every Job-Input node to its Job-Output node
16: a 3 4 1 1 0
17: a 5 6 1 1 0
18: c Create Outward arcs from every Job-Output node to the Sink node
19: a 4 7 0 1 0
20: a 6 7 0 1 0
21: c Create Intermediate arcs from every Job-Output node to others Job-Input nodes
22: a 4 5 0 1 280
23: a 6 3 0 1 10000

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 85 -

Figure 5-9 shows the output of the algorithm. In the figure, the prefixes of ‘s’ and ‘f’ identify the
objective function and solution for the problem. The numbers after prefixes of ‘f’ determine
which arcs have been chosen as the optimal paths for the vehicles. According to the solution for
this example, jobs 1 and 2 are served by AGV 2 and there is no job for AGV 1.

Figure 5-9: The output of the algorithm (NSA) in DIMACS format

5.3.4 The circulation problem

There is a special case for the MCF model, which have no supply nodes and demand nodes.
Given G = (N, A) and bi (i ∈ N) as the amount of supply/demand flow at node i, for the
Minimum Cost Flow problem (see Definition 4-8), the circulation problem is defined as follows:
Definition 5-4 [2]: The circulation problem is a Minimum Cost Flow problem with only
transhipment nodes; that is, bi=0 for all i ∈ N.

The circulation problem may be occurred in the solutions for the MCF-AGV model. If every
AGV could not arrive before the appointment times of the Job-Input nodes (the transition cost
from every AGV to the Job-Input node incurs the Penalty) and the cost between any two distinct
jobs has not Penalty, the circulation will be happened. This problem can be demonstrated by an
example in Figure 5-10. In the figure, the number on each arc is its cost and P shows the penalty
(see Section 4.5.2 for the cost and Penalty).

1 : c Output to minimum-cost flow problem.
2 : c The problem was solved with the
3 : c standard version of network simplex
4 : c algorithm.
5 : c
6 : c It needed 6 iteration(s) in 0 second(s).
7 : s Objective function: 360
8 : f 2 3 1
9 : f 1 7 1
10: f 3 4 1
11: f 5 6 1
12: f 6 7 1
13: f 4 5 1
14: c
15: c All other flow variables are zero

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 86 -

AGV 1 1

2

3 4

5

7

6 AGV 2
0

100

0

0

0
P

P

P

P

0

0
Sink

P

Figure 5-10: An example of the circulation problem (P = Penalty)

In the figure, there are two AGVs and two container jobs. In order to send two units flow from
AGV nodes 1 and 2 to the Sink node with minimum cost, the solution is 1→7 and 2→7. Other
nodes have one unit input and one unit output flow (3→4→5→6→3), according to the
constraints. The cost of problem is 100 + P, which is less than any other possible solution in the
network. In this case, neither job1 nor job2 is served.

Although the circulation problem never has happened in our experience (in static aspect), the
following operations are performed to fix the problem. When the solution became ready, status of
every job is checked to see whether it was assigned to a vehicle or not. There are two solutions
for the problem. The first solution is to assign the remaining jobs to an idle vehicle. This scheme
has a higher priority because moving the vehicles is preferred over their stopping. Among the
idle vehicles, a vehicle with minimum cost is assigned to the job. This process continues until
there is no remaining job. If the first solution could not solve the problem no idle vehicle), the
second solution is to distribute the remaining jobs among the vehicles randomly.

5.4 Experimental results

 In this section, the results of our implementation and running the algorithm, to tackle the static
problem of the MCF-AGV model, are presented. In the static problem the number of jobs, the
distance between source and destination of the jobs, and the number of vehicles don’t change
(see Assumption 4-9). The values in Table 5-1 were used as parameters in the objective function,
for the port specification and to generate the jobs. We considered ECT (European Container

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 87 -

Terminal) [23] for the port specification. It includes 7 quay-cranes, 32 automatic stacking cranes,
and a maximum of 50 AGVs is in operation.

Table 5-1: Values of parameters for the simulation

Parameters Values
Weight of Waiting Times for the AGVs (W1 in the costs of the objective function) 1
Weight of Travelling Times for the AGVs (W2 in the costs of the objective Function) 5
Number of AGVs in the port 50
Number of Quay Cranes 7
Number of Blocks in the yard (Storage area inside the port) 32
Time Window of the Cranes (the duration of discharging/loading a container) 120 second
The Distance Table (see Table 4-1) Uniform Random Distribution

between 1 and 100
Time Window of the Vehicles, time to unload/load a job 2 Second
P as a penalty (see the costs of the MCF-AGV model in Chapter 4) 10000

Some outputs of running the program in static fashion were taken. Table 5-2 shows the result,
including the number of jobs, the number of nodes and the number of arcs in the MCF-AGV
model. The CPU-time required to solving the MCF-AGV problems also is shown in the table.

Table 5-2: Experimental results of Network Simplex Algorithm in static fashion

Problem Number of Jobs Number of Nodes Number of ARCS CPU-Time (Second)
1 500 1,051 275,550 1
2 700 1,451 525,750 2
3 1,000 2,051 1,051,050 4
4 1,200 2,451 1,501,250 6
5 1,300 2,651 1,756,350 7
6 1,400 2,851 2,031,450 6
7 1,500 3,051 2,326,550 9
8 1,500 3,051 2,326,550 11
9 1,600 3,251 2,641,650 13

10 1,700 3,451 2,976,750 15
11 1,800 3,651 3,331,850 17
12 2,000 4,051 4,102,050 27
13 2,100 4,251 4,517,150 28
14 2,200 4,451 4,952,250 33
15 2,300 4,651 5,407,350 47
16 2,500 5,051 6,377,550 49
17 2,700 5,451 7,427,750 59
18 2,710 5,471 7,482,360 64
19 2,715 5,481 7,509,740 65
20 2,718 5,487 7,526,192 66
21 2,800 5,651 7,982,850 68
22 2,900 5,851 8,557,950 86
23 2,930 5,911 8,734,380 100
24 2,940 5,931 8,793,590 99
25 3,100 6,201 9,768,150 122
26 3,200 6,401 10,403,250 136
27 3,300 6,601 11,058,350 137

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 88 -

Note that those results have been collected by running our software on Pentium PC with 2.4 GHz
processor and 1GB RAM. Obviously on different computers the CPU-time is different.

The CPU-time required to solve the MCF-AGV model is demonstrated by Figures 5-11 and 5-12,
according to both the number of jobs and number of arcs in the graph model. Based on our
observations the estimated values by a polynomial equation for the CPU-time are also shown on
the figures. We assumed degrees 3 and 2 for the polynomial equations, respectively in Figure 5-
11 and Figure 5-12.

CPU-Time to Solve the MCF-AGV Model by NSA

0
20
40
60
80

100
120
140
160

0 500 1,000 1,500 2,000 2,500 3,000 3,500
Number of Jobs

Se
co

nd

Solving the Model (Second) Estimated values by Polynomial equation
Figure 5-11: CPU-Time required to solve the problem by Network Simplex Algorithm, based on the number of jobs

CPU-Time to Solve the MCF-AGV Model by NSA

0
20
40
60
80

100
120
140
160

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000
Number of Arcs

Se
co

nd

Solving the Model (Second) Estimated values by Polynomial equation

Figure 5-12: CPU-Time required to solve the problem by Network Simplex Algorithm, based on the number of arcs

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 89 -

From the figures, we can observe that:

Observation 5-1: The Network Simplex Algorithm (NSA) is fast and efficient. It could find out
the global optimal solution for the problem of 3,000 jobs and ten millions arcs in the MCF-AGV
model within two minutes.
Observation 5-2: From the figures, it seems that NSA is run in polynomial time to solve the
MCF-AGV model, in practice.

There are two different types of iteration in NSA, degenerate and non-degenerate [2]. In every
non-degenerate iteration, the value of the objective function is decreased whereas degenerate
iterations do not change the objective function’s value. In the degenerate iterations, a flow
change of zero causes cycling. In the literature, Grigoriadis experienced that cycling is rare in
practical application [48]. Observations 5-1 confirms the experience.

In order to confirm that NSA is run in polynomial time to solve the MCF-AGV model
(Observations 5-2), we estimated complexity of the algorithm in the next section.

5.5 An estimate of the algorithm’s complexity in practice

The time complexity can be expressed in CPU-Time required to solve the MCF-AGV model.
The CPU-Time is estimated based on the number of jobs and number of arcs in the graph model.
Based on Observations 5-1 and 5-2, we considered the following equations to estimate the CPU-
Time:

csNumberofArbcsNumberofArbTimeCPU
bsNumberofJoabsNumberofJoabsNumberofJoaTimeCPU

NSA

NSA

×+×=−
×+×+×=−

2
2

1

3
2

2
3

1

The experimental results in Table 5-2 were used to estimate the parameters of ‘a1’, ‘a2’, ‘a3’,
‘b1’ and ‘b2’ in the equations. The estimation’s results for the parameters have been shown in
Table 5-3 and Table 5-4. The Coefficient section of the tables specify values for ‘a1’, ‘a2’, ‘a3’,
‘b1’ and ‘b2’ in the equations.

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 90 -

Table 5-3: Regression result for CPU-Time required to solve the problem by NSA (Based on the number of jobs)

Multiple R R-Square
Adjusted-
R-Square

Standard
Error Observations

0.99 0.99 0.94 5.24 27

 DF SS MS F
Significance

-F
Regression 3.00 47310.45 15770.15 574.17 0.00
Residual 24.00 659.18 27.47

Total 27.00 47969.63

 Coefficients
Standard-

Error t-Stat P-value Lower 95% Upper 95%
X Variable 1 1.54E-02 6.14E-03 2.50 1.95E-02 2.71E-03 2.81E-02
X Variable 2 -1.83E-05 5.52E-06 -3.31 2.94E-03 -2.96E-05 -6.87E-06
X Variable 3 8.11E-09 1.19E-09 6.83 4.58E-07 5.66E-09 1.06E-08

Table 5-4: Regression result for CPU-Time required to solve the problem by NSA (Based on the number of arcs)

Multiple R R-Square Adjusted-
R -Square

Standard
-Error Observations

0.99 0.99 0.95 5.07 27

 DF SS MS F
Significance-

F
Regression 2 47327.497 23663.75 921.29 2.0415E-23
Residual 25 642.1324 25.68

Total 27 47969.63

 Coefficients
Standard-

Error t-Stat P-value Lower 95% Upper 95%
X Variable 1 1.40E-06 6.30E-07 2.23 3.50E-02 1.07E-07 2.70E-06
X Variable 2 1.05E-12 7.41E-14 1.41 1.98E-13 8.95E-13 1.20E-12

Based on the Coefficients in the tables for values of the parameters, we have the following
equations for the CPU-Time to solve the MCF-AGV model:

csNumberofArcsNumberofArTimeCPU
bsNumberofJobsNumberofJobsNumberofJoTimeCPU

NSA

NSA

××+××=−
×+××−××=−

−−

−−

6212

2539

104.11005.1
154.01083.11011.8

The degree of the second equation is less than the first one’s, because the number of arcs is
extremely greater than the number of jobs.

Note that for any prediction, the equation for the CPU-Time depends on other factors such as the
speed of processor, other active programs when the problem is being solved in multi-task
operating system and so on, in practice. Our program has been run on Windows-2000 computer
with Pentium 2.4 GHz processor in the normal situation.

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 91 -

More details about information in the two tables and their explanations are as follow:
• DF: It stands for the degrees of freedom. There are 27 samples in this experiment.
• SS: It refers to the Sum of Squares differences between the values of curve fitted and the

average of dependent variable (for Regression), and the Sum of Squares differences between
the actual values of dependent variable and the values of curve fitted (for Residual).

• MS: It stands for the Mean Square, which is calculated by dividing the SS over the DF.
• F: This is a test statistic. A large value indicates that the estimated equation is significant in

the sense, i.e. it is unlikely to have resulted from random variation.
• Significance-F: It gives us the probability that we would get this result by random chance.

This value for the both estimations is zero.
• R-Square: This is the percentage of the SS of Regression over the SS of Total. It reveals how

closely the values of the estimated curve correspond to the actual data. Its value is 0.99 for
the both estimations.

• Multiple-R: This is the square root of the R-Square. It is the correlation between the
dependent variable and curve fitted.

• Adjusted-R-Square: This indicates the percentage of the variations explained by the model.
Its value for the both estimations is 0.99. This is useful because we assumed two independent
variables in the model.

• Standard-Error: This is the square root of the Residual Mean Square discussed above. It is
essentially the standard deviation of the points around the regression curve. This is very
useful in evaluating how big of a mistake we are likely to make when using the model for
prediction. Its value is 5.24 and 5.07, respectively for the both estimations.

• t-Stat: This is a statistic for a null hypothesis that the coefficient is zero. The ‘t-Stat’ value is
calculated by dividing the coefficient by its standard error. The large value of ‘t-Stat’
indicates that it is low probability to have occurred by chance. Usually a ‘t-Stat’ greater than
2 is considered to indicate a model is significant.

• P-value: This gives a probability that the coefficient is zero. Its value for each coefficient of
the both estimations is almost zero.

• Lower and Upper 95%: These give an upper and lower bound on a 95% confidence interval
for the coefficients. Given α as a coefficient, Sα as its standard error and t as the critical value
of the t distribution at 95% confident limit, the values are calculated as follows:

)(αα St ×±

University of Essex, Computer Science Department
Chapter 5: Network Simplex Algorithm and Static Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 92 -

5.6 Limitation of the NSA in practice

The question is how big (the number of vehicles, the number of jobs) of a problem can be solved
by NSA within time t, a minute for example? The answer is that there is no limitation in NSA,
theoretically. In practice, the answer is based on the platform and implementation. Given the
number of jobs and number of vehicles, N and M respectively in our formulation, there are
M+2×N+1 nodes and M+M×N+N×(N-1)+2×N arcs in the MCF-AGV model. The limitation is
due to available memory to put the MCF-AGV model into. The largest problem, which has been
solved by our software, was a MCF-AGV model consists of 11,058,350 arcs (M=50; N=3,300;
see Table 5-2). Based on this maximum number of arcs and the related formula, the number of
vehicles (M) and number of jobs (N) can be had different values. Hence, we have another
observation from the experiment:

Observation 5-3: Although NSA is efficient and provides the optimal solution, it can only work
on problem with certain limits in size. The limitation is due to available memory to put the MCF-
AGV model into.

5.7 Summary and conclusion

In this chapter, the steps of network simplex algorithm were reviews. To select the next basic
solution at each step of the algorithm, the literature over different pricing schemes was presented.
Then, the standard version of Network Simplex Algorithm (NSA) with the block pricing scheme
was applied to the MCF-AGV model (defined in Chapter 4). To test the program, Random data
were generated and fed to the model for fifty vehicles.

Based on our experiment, now we can conclude that with simple network operation in the graph
and specializations, Network Simplex Algorithm is efficient. Our software, which has been
implemented in Borland C++ and run on a 2.4 GHz Pentium PC, could find the global optimal
solution for 3,000 jobs and ten millions arcs in the MCF-AGV model within two minutes.
Although the algorithm is efficient and provides the optimal solution, it can only work on
problems with certain limits in size. When the size of problem goes beyond the limit, incomplete
solution methods should be used.

University of Essex, Computer Science Department

- 93 -
PhD Thesis, Copyrights (H. Rashidi)

Chapter 6: Network Simplex plus Algorithm and
Dynamic Scheduling of AGVs

In Chapter 5, the static scheduling problem of Automated Guided Vehicles (AGVs) in container
terminals was solved by the standard version of Network Simplex Algorithm (NSA). In this
chapter, some modifications are applied to NSA to be obtained a novel version of the algorithm.
The new algorithm then is applied to the dynamic scheduling problem of Automated Guided
Vehicles in container terminal (the problem defined in Chapter 4 and modelled as the MCF-
AGV).

6.1 Motivation

Although NSA is efficient, cycling may occur in the algorithm. Additionally, to tackle the
dynamic scheduling problem in Chapter 4, we need more efficient algorithms. In dynamic
problems, new jobs arrive continually, the fulfilled jobs are removed, and the distance between
the source and destination of jobs may be changed. The objective of this chapter is to develop a
new version of NSA, which avoids cycling and is faster. We call it Network Simplex plus
Algorithm (NSA+). Like NSA, NSA+ is a complete algorithm, which means it guarantees
optimality of the solution if it finds one within the time available.

6.2 The Network Simplex plus Algorithm (NSA+)

NSA+ is an extension of NSA. Compared with the standard version of NSA, it has two features.
Firstly, it deals with the concept of strongly feasible solution [2]. Secondly, a mixture of heuristic
approach and memory technique are used in NSA+. These features are explained below.

6.2.1 Anti-Cycling in NSA+

The first feature is related to maintaining the strongly feasible basis at each iteration (see
Definition 5-3 in Chapter 5). At the beginning, NSA+ chooses a strongly feasible solution (see
Step 0 of NSA in Chapter 5). In each pivot, the leaving arc is selected appropriately by the last

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 94 -

blocking arc in the cycle so that the next basis is also strongly feasible (see Figure 5-3 as an
example). We avoid cycling in NSA+ by this feature (see Property 5-2 in Chapter 5).

6.2.2 Memory technique and Heuristic approach in NSA+

The second feature of NSA+ is concerned with the entering arc (Step 1 in Figure 5-2). In order to
find the entering arc, there is a procedure in our software. The flowchart of this procedure is
depicted by Figure 6-1.

The arcs in the graph are divided into several blocks with the same size. At each iteration, a
packet of the violated arcs are collected. The capacity of the packet is more than the block’s size
and the most violated arcs are kept at the top of the packet. The number of most violated arcs
may be a percentage of block’s size. We set the block’s size and number of most violated arcs to
200 and 25, respectively. For each problem, the number of blocks depends on the number of arcs
in the graph and the block’s size. In our software, DSSAGV, the blocks are identified by a Block-
Number and the first one is chosen Randomly or by a Heuristic method (based on location of the
largest cost in the graph, for example). To solve every problem, we need to initialize the Block-
Number and calculate the number of blocks. At the initial stage, the packet is empty. Then,
scanning of the arcs for violation of the optimality conditions among the blocks is performed
circularly. At each scan, one violated arc (at most) from each block is put in the packet.

At the beginning of the entering arc procedure, the reduced costs of the most violated arcs in the
previous stage are recalculated. If they violate the optimality conditions again, they are kept in
the packet. Otherwise they could be replaced by new violated arcs. Then, some new violated arcs,
based on scanning of arcs from the blocks, are put into the packet so long as it has empty place.
At the end of the procedure if the packet is empty (there is no violated arc in the graph), then the
current solution is optimal. Otherwise the packet will be sorted decreasingly, based on the
absolute value of the reduced costs, and the most violated arc (at the top of the packet) will be
chosen as the entering arc.

As we mentioned, there are two options to choose the first block, Randomly and Heuristically.
With this aspect, NSA+ has two extensions:

• NSA+R: The entering arc procedure chooses the first block by Random selection.

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 95 -

• NSA+H: The entering arc procedure chooses the first block by a Heuristic method (based
on location of the largest cost in the graph).

Figure 6-1: Flowchart of Network Simplex plus Algorithm to select an entering arc.

6.2.3 The differences between NSA and NSA+

The main difference between NSA and NSA+ are in the pricing scheme and the entering arc
procedure. As we mentioned (see Section 5.2.4), the role of the pricing scheme is that how the

N

Start

Return the
first element
of the Packet

a) Choose the Block-
Number, Randomly or
by a Heuristic method.

b) Calculate the number of
blocks.

Recalculate the Reduced Costs of the
most violated Arcs in the Packet

The most violated
elements satisfy the

optimality conditions?

Remove the elements
from the packet

{ a) Calculate the reduced cost of an arc from the block
associated with the Block-Number.

 b) Put the arc into the Packet if it violates the optimality
condition.

 c) Increase the Block-Number circularly.
} as long as the Packet has empty place AND there is any

violated arc in the graph

Sort the Packet Descending,
based on the absolute value
of the reduced costs (Quick
Sort)

Return Null
(Current Solution

is Optimal)

Initialization
is needed?

Y

Y

The Packet is
Empty?

Y

N

N

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 96 -

entering arc to be selected from the violated arcs in the graph. In this way, the flowcharts of
Figures 6-1 and 5-6 can be compared. The differences between NSA and NSA+ are as flows:

• At each iteration, a packet of violated arcs from different blocks is collected in NSA+ and
the most violated arc is selected as the entering arc, whereas NSA selects the most
violated arc from one block.

• There is no memory technique in NSA while NSA+ uses a few elements at the top of the
packet for the next iteration. It benefits from the current violated arcs for the next iteration.

• The first block is selected Randomly or by a Heuristic method in NSA+, whereas NSA
always chooses the first block for scanning the violated arcs.

• In NSA, the leaving arc is selected by Step 2 (see Figure 5-2), while NSA+ considers a
restriction on the step. NSA+ selects the leaving arc appropriately so that the spanning
tree is strongly feasible at each iteration.

6.3 A comparison between NSA and NSA+

In order to compare the performances of the two algorithms, several static problems of the MCF-
AGV model were generated randomly and solved by NSA and NSA+. This experiment was run
on Windows-XP computer with 2.2 GHz Pentium processor and 1GB RAM when the number of
vehicles is 50. Table 6-1 shows the results.

Table 6-1: Experimental results for a comparison between NSA and NSA+

Problem Number
of Jobs

CPU-
Time by

NSA
(second)

CPU-
Time by
NSA+H

(second)

CPU-
Time by
NSA+R

(second)
Problem Number

of Jobs

CPU-
Time by

NSA
(second)

CPU-
Time by
NSA+H

(second)

CPU-
Time by
NSA+R

(second)
1 50 0.005 0.005 0.005 17 1100 6.741 3.2532 4.644
2 60 0.005 0.005 0.005 18 1200 8.217 3.5577 6.885
3 70 0.009 0.0047 0.005 19 1300 11.996 5.1795 8.180
4 80 0.009 0.0048 0.005 20 1400 11.039 12.3 10.500
5 90 0.009 0.0045 0.010 21 1500 12.548 7.092 7.092
6 100 0.024 0.0093 0.011 22 1600 15.980 14.208 17.208
7 150 0.033 0.0327 0.033 23 1700 20.592 10.734 18.246
8 200 0.061 0.0468 0.050 24 1800 26.462 12.342 18.426
9 300 0.103 0.117 0.113 25 1900 36.526 17.081 27.294
10 400 0.600 0.225 0.525 26 2000 30.951 21.651 30.810
11 500 0.394 0.3795 0.381 27 2100 37.152 23.301 24.816
12 600 1.415 0.6984 0.745 28 2200 48.683 25.546 28.242
13 700 1.003 0.8298 0.950 29 2300 46.588 36.069 39.609
14 800 1.307 0.9981 1.298 30 2400 57.050 33.613 35.113
15 900 4.566 1.7718 3.272 31 2500 64.084 40.018 61.179
16 1000 5.259 2.5359 3.849 32 2600 70.553 62.952 55.735

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 97 -

Figure 6-2 shows the CPU-Time required to solve the MCF-AGV model by the both algorithms.
From the figure and Table 6-1, we can observe that:
Observation 6-1: The average CPU-Time required to solve the problems by NSA+ is less than
NSA.

CPU-Time required to solve the MCF-AGV Model

0
10
20
30
40
50
60
70
80

0 500 1000 1500 2000 2500
Number of Jobs

Se
co

nd

NSA NSA+H NSA+R

Figure 6-2: A comparison of CPU-Time required to solve the same problems by NSA and NSA+

In order to calculate the average CPU-Time required to solve the problems and to compare
performance of the algorithms in this experiment, we introduce the following terms:

TiNSA: The CPU-Time used to solve the problem i by NSA.
TiNSAH : The CPU-Time used to solve the problem i by NSA+H.
TiNSAR: The CPU-Time used to solve the problem i by NSA+R.
PIHi: The Percentage of Improvement in CPU-time used to solve the problem i by NSA+H

compared with NSA.
PIRi: The Percentage of Improvement in CPU-time used to solve the problem i by NSA+R

compared with NSA.
TPIH: The Total Percentage of Improvement in CPU-Time used to solve the problems by

NSA+H compared with NSA.
TPIR: The Total Percentage of Improvement in CPU-Time used to solve the problems by

NSA+R compared with NSA.

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 98 -

Wi: The Weight of improvement for the problem i. In this experiment we consider the number of
arcs in the MCF-AGV model for the weight. Given N jobs and M AGVs in the problem, the
number of arcs is M+M×N+N×(N-1)+2×N.

Now we calculate the percentage of improvements in the CPU-Time used for problem i by the
following terms:

)(*100 PIR

)(*100PIH

i

i

NSA
i

NSA
i

NSAR
i

NSA
i

NSA
i

NSAH
i

T
TT

T
TT

−=

−=

The total percentages of improvement in the CPU-Time used to solve the problems by NSA+H
and NSA+R, compared with NSA, are calculated by the following equations:

%28.21

%16.35

32

1

32

1

32

1

32

1

−=
×

=

−=
×

=

∑
∑

∑
∑

=

=

=

=

i
i

i
ii

i
i

i
ii

W

PIRW
TPIR

W

PIHW
TPIH

In order to determine which factor, from the two features, made these improvements, we disabled
the first feature (maintaining the strongly feasible spanning tree) and ran the software for some
problems. We got the following observation:
Observation 6-2: There was no significant change in the improvement for the non-strongly
feasible spanning tree. In the literature, Grigoriadis had experienced that cycling is rare in
practical application [48]. Therefore, the second feature has significant impact on the CPU-Time
required to solve the problems. In fact, the memory technique and scanning method are the most
important features of NSA+.

6.4 Statistical test for the comparison

The CPU-time required to solve the problems by the two algorithms, NSA and NSA+, were
analysed statistically. We tested the null hypothesis that the means produced by the two
algorithms were statistically indifferent. Table 6-2 provides the test’s result along with the critical

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 99 -

values of T-distribution for the particular degree of freedom. The T-test confirms that NSA+ is
significantly better than NSA with 95% degree of confidence.

Table 6-2: The result of T-Test for the two algorithms, NSA and NSA+

Statistical Parameters NSA+H vs.
NSA

NSA+R vs.
NSA

Observations 32 32
T-Test (Paired Two Sample For Means) -4.1799 -3.3617
Degree of Freedom 31 31
Critical T-Value -1.6955 1.6955

The values and hypotheses to do the test between the means of NSA+H and NSA are
demonstrated by Figure 6-3. The hypotheses are the mean CPU-Time for NSA+H is greater than
NSA or not. The value of ‘T-test’ and ‘Critical t-value’ are shown in the figure. As we can see
the result of the T-Test is inside the reject region. The same examination is performed to do
statistical test analysis between the means of NSA+H and NSA. The result of this test also shows
the mean of CPU-Time for NSA+H is less than NSA.

Figure 6-3: The T-Test acceptance and reject regions (NSA and NSA+H).

6.5 Complexity of Network Simplex plus Algorithm (NSA+)

Assume that the Maximum Flow, MF, in each of the m arcs, at maximum cost, C, for the
minimum cost flow model. So there is an upper bound on the value of the objective function.
This upper bound is given by m·C·MF. There are two different types of pivots in the algorithm,
non-degenerate and degenerate pivots. The former is bounded by m·C because the number of
non-degenerate pivots in the algorithm is bounded by m·C·MF (MF=1 in the MCF-AGV model).
The number of degenerate pivots is determined by the sum of nodes potential and maintaining
the strongly feasible spanning tree. Given n as the number of nodes in the graph model, the sum
of nodes potential is bounded by n2·C. It is decreased at each iteration when the spanning tree is

t 0

Reject H 0

.05

H0: µµµµ1 - µµµµ2 > 0; i.e. (µµµµ1 > µµµµ2)
H1: µµµµ1 - µµµµ2 <=<=<=<= 0; i.e. (µµµµ1 <=<=<=<= µ µ µ µ2)
αααα = 0.05

-4.18 -1.7

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 100 -

strongly feasible [2]. A series of degenerate pivots may occur between each pair of non-
degenerate pivots, and thus a bound on the total number of iterations is m·n2·C2. Find the entering
arc is O(m) and sorting the packet is O(K·LogK) operation (K is size of the packet, K=225).
Finding the cycle, amount of flow change, leaving arc and updating the tree are O(n) operations.
Hence the complexity of each pivot is O((m + n) K·LogK). Based on the complexity of the
number of iterations and the complexity of each pivot, the total complexity of this algorithm is
determined as follows:

))((22 KLogKCmnnmO +
Given N and M (M < N), respectively, as the number of jobs and AGVs in the MCF-AGV model
(see Section 4.5 in Chapter 4), we have the following results:

m=O(N2) ; n=O(N)
Therefore, the total complexity of NSA+ Algorithm to tackle the MCF-AGV model is:

)(6NO
We estimated the performance of NSA+ by the experimental results of Table 6-1 (see Section
5.5). The results support this complexity.

6.6 Software architecture for dynamic aspect

The architecture of main part of the software for the dynamic scheduling problem of Automated
Guided Vehicles is demonstrated by Figure 6-4.

Figure 6-4: Block diagram of the software and algorithm (NSA+) for dynamic aspect

Remaining

Jobs

Generate Jobs for
any Idled Crane

Making the
MCF-AGV

Model

Solve the
Model

(Network
Simplex plus
Algorithm)

Generate New
Schedule based
on the solution

List for
Vehicle

 1

List for
Vehicle

2

List for
Vehicle

M

While the time is being progressed:
 (a)Updating Status of each vehicle
and crane; (b) Deleting Jobs from the
remaining and vehicle lists and crane;
(c) Make a few changes in the
Distance Table, from time to time

List for
Vehicle

m

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 101 -

At the start of the process, the Job Generator generates a few jobs for each crane. These jobs will
be appended to the remaining jobs, which is empty at the beginning. The remaining jobs are used
to make up a MCF-AGV model. Then the model will be tackled by NSA+. The output of this
algorithm is a few job sequences for the vehicles. Based on these sequences the software will
prepare a job list for each vehicle.

Flowchart of Figure 6-5 demonstrates what is done in the real time processing and dynamic
aspect while the time is being progressed. Note that the termination condition for the end of
simulation is determined by meeting a specific time, ten hours or a day, for example.

At the beginning, based on the solution to the current problem, a job is assigned to each vehicle
and crane. During the simulation, handling of the jobs by the cranes and vehicles are executed in
parallel.

Briefly, the software does two tasks. The first task is related to updating status of the vehicles and
cranes whereas the second one takes influence from any change in the problem or any idle crane.
As depicted in the flowchart, the status of each crane and the travelling and waiting times of
every vehicle are updated while the time is being progressed. At the same time, if the vehicles
pick up the job from the quay side, the job will be removed from the crane, list of jobs for the
vehicles and the remaining jobs. After that, the new job will be assigned to the vehicles and
cranes. If a job has to be delivered to the crane on the quay side, it could not be removed until the
meeting time between the crane and the vehicle. Note that, the appointment place of the jobs is
on the quay side, not the yard side.

The second task refers to any change in the problem or status of the cranes. In the both cases, a
new MCF-AGV model will be made by the remaining jobs (except the current job for every
vehicle) and the new jobs (if there is any). The new model will be tackled by Network Simplex
plus Algorithm from scratch. Then, the new solution will be used for updating the list of jobs for
every vehicle. Every 5 minutes, the software makes a few random changes in the distance table in
order to produce dynamic problems (see Table 4-1). Additionally, when the Job Generator finds
out any idle crane, it has to generate a few jobs for the crane.

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 102 -

Note that generating jobs for any idle crane, making the MCF-AGV model, solving the model
and generating new schedule for the vehicles are performed sequentially. These tasks are non-
preemptive, i.e. when a task starts execution on the processor, it finishes to its completion.

Figure 6-5: Operations of the software in dynamic aspect

Start

Update Status of each AGV (Ready Time, Next Location)
based on Time Progress; Update travelling and waiting
time of the Vehicles; Update waiting times of the Cranes.

Is there any
Idle Crane?

Generate New Jobs for Idle Cranes
and append them to the remaining jobs

Y

N

Initialise Time; Assign a job to each vehicle and crane; Update status of the cranes
and vehicles (Ready Time, Next Location, travelling and waiting time)

Check status of the jobs and delete them (Depending on picking them
up from or delivering them to the Quay Crane); Assign a new job to
the Vehicles and Cranes; Make a few changes in the Distance Table,
from time to time (every 5 minutes).

Make the MCF-AGV Model
and solve it (Network
Simplex plus Algorithm)

Generate Schedule for Every
Vehicle

Termination
Condition?

N

Y

Increase the Time

End

Is there any
Change in the

problem?

Y

N

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 103 -

One important question is remained, how many new jobs should be generated for any idle crane
and what is the best situation for the problem? The answer of this question depends on the
stability of the schedule and the software’s performance. Generally, the first factor is related to
any change in the problem and traffic in the routes such as congestion, collision, live-lock and
deadlock. Since we assume that the vehicles are moving with an average speed so that there is no
traffic problem, the answer to this question is determined by the rate of change in the problem
and software’s performance.

6.7 Experimental results from the dynamic aspect

In order to evaluate the result of Network Simplex plus Algorithm for the Scheduling problem of
Automated Guided Vehicles in dynamic aspect, we did a simulation for six hours. In this
simulation, the distance between every two points in the port as well as the source and
destination of jobs were chosen randomly. During the simulation, the Job Generator generated 5
jobs for any idle crane. Other parameters were the same as Table 5-1.

We put some parts the simulation’s results in Figures 6-6 and 6-7. Figure 6-6 shows the
travelling and waiting times of the vehicles as well as the waiting times of the cranes.

An experimnetal result from the dynamic aspect

0
10

20
30
40

50
60

0 2000 4000 6000 8000 10000

Thousands

Time (Second)

Se
co

nd

NSA+:Total Waiting times of Cranes NSA+:Total Waiting Times of the Vehicles
NSA+:Total Travelling Times of the Vehicles

Figure 6-6: An experimental result from the dynamic scheduling problem of AGVs (NSA+ solved the problem).

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 104 -

Figure 6-7 shows three attributes of the carried jobs based on ‘Appointment time’ of jobs. These
attributes are ‘QCraneTime’ (when the crane is ready to pick-up/drop-off the job from/on the
vehicle), ‘VehicleTime’ (when the vehicle is ready to deliver/pick-up the job to/from the crane)
and ‘ActualTime’ (when the job has been served).

The attributes of the carried jobs in dynamic aspect

0
500
1000
1500
2000
2500
3000
3500
4000

22
0

34
0

46
0

58
0

70
0

82
0

94
0

10
60

11
80

12
70

13
90

15
10

16
60

17
52

18
72

19
94

21
38

22
60

23
80

25
43

26
76

28
20

29
93

31
25

32
60

33
82

35
90

Appointment Time (Second)

Tim
e (

Se
co

nd
)

ActualTime VehicelTime QCraneTime

Figure 6-7: The attributes of the carried jobs in the dynamic scheduling problem of AGVs.

In this experiment, our observations were:
Observation 6-3: As we can see in Figure 6-6, the travelling times of the vehicles is significantly
greater than their waiting times after 2,700 seconds. This indicator shows the vehicles were used
efficiently to handle the container jobs. The waiting times of cranes are at a reasonable level.
Since the cranes are a critical resource in the container terminal, their waiting times should be
kept at minimum level.

Observation 6-4: In Figure 6-7, ‘ActualTime’ is the maximum of ‘QCraneTime’ and
‘VehicleTime’. If we draw a straight line between the left-down and the right-up corners of the
figure, it can be seen that the ‘ActualTime’ has a good fitting with the ‘Appointment times’.
Hence, the jobs were served efficiently.

University of Essex, Computer Science Department
Chapter 6: Network Simplex plus Algorithm and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 105 -

Note that in the experiment, we assumed the distance table is in range of the time window of
cranes (see Table 5-1). We did some changes in the values of Table 5-1 and ran the software. Our
observations from that experiment were:
Observation 6-5: If the time window of cranes (e.g. 200 seconds) was significantly greater than
the distance between every two points in the container terminal (e.g. 50 seconds, on average),
then waiting times of the cranes would be less than our results. In this situation, the vehicles
waited for the cranes more and therefore the jobs were served with more delay.

Observation 6-6: If the time window of cranes (e.g. 20 seconds) was significantly less than the
distance between every two points in the container terminal (e.g. 200 seconds, on average), then
waiting times of the cranes would be greater than our results. In this situation, the cranes waited
for the vehicles more and therefore the jobs were served with more delay.

6.8 Summary and conclusion

In this chapter, some modifications were applied to NSA to have obtained a new version of the
algorithm, Network Simplex plus Algorithm (NSA+). The main features of NSA+ deals with the
entering arc and leaving arc. In order to find an entering arc, the algorithm uses a mixture of
memory technique and heuristic method. Additionally, the leaving arc is chosen appropriately so
that the spanning tree of the graph always becomes strongly feasible. NSA+ prevents cycling by
this feature.

Then, the same static problems were solved by both algorithms NSA and NSA+, and CPU-Time
required to solve the problems has been compared. Our experiments showed that NSA+ can
solve the problems faster than NSA.

NSA+ is a complete and polynomial algorithm. We employed NSA+ to solve the dynamic
scheduling problem of Automated Guided Vehicles in container terminal (defined in Chapter 4
and presented by the MCF-AGV). The result of a six-hour simulation showed the ‘Actual time’
of jobs, at which they have been handled by the vehicles and cranes, had a good fitting with their
‘Appointment times’. Based on our experiments, NSA+ is a practical algorithm for dynamic
Automatic Vehicle Scheduling.

University of Essex, Computer Science Department

- 106 -
PhD Thesis, Copyrights (H. Rashidi)

Chapter 7: Dynamic Network Simplex

Algorithms and Dynamic Scheduling of AGVs

In this chapter, we extend Network Simplex Algorithm in dynamic aspect. In this aspect
Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm
(DNSA+) are presented. Then, NSA+ and DNSA+ are applied to the dynamic scheduling
problem of Automated Guided Vehicles in container terminals (the problem defined in Chapter 4)
and their results are compared.

7.1 Motivation

The objectives of Dynamic Network Simplex Algorithm are to solve the new problem faster, to
use some parts of the previous solution for the next problem and to respond to changes in the
problem. These objectives are explained below:

Firstly, although Network Simplex Algorithm is much faster than the traditional simplex
algorithm for Linear Programs, for dynamic scheduling with large scale problems it still takes
time to make a new MCF-AGV model and to solve it. The dynamic problem arises when new
jobs are introduced, fulfilled jobs are removed, and the distance between the source and
destination of the jobs are changed. The dynamic problems need more efficient algorithms.

Secondly, in most practical environments, scheduling is an ongoing reactive process where the
presence of real time information continually forces reconsideration and revision of pre-
established schedules. The second goal of DNSA is to repair the solution based on dynamic
changes, rather than having to resolve it from scratch each time.

Thirdly, in many applications of graph algorithms, including communication networks, graphics,
assembly planning, and scheduling, graphs are subject to discrete changes, such as additions or
deletions of arcs or nodes. In the last decade there has been a growing interest in such
dynamically changing graphs, and a whole body of algorithms and data structures for dynamic

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 107 -

graphs has been discovered [82]. In a typical dynamic graph problem one would like to respond
to the changes in the graph that are under-going a sequence of updates, for instance, insertions
and deletions of arcs and nodes.

7.2 Classification of graph algorithms

Given the powerful versatility of dynamic algorithms, it is not surprising that these algorithms
and dynamic data structures are often more difficult to design and analyse than their static
counterparts. Rauch (1992) classified dynamic graph problems according to the types of updates
allowed [82]. A graph is said to be fully dynamic if the update operations include unrestricted
insertions as well as deletions of arcs and nodes. A graph is called partially dynamic if only one
type of update, either insertions or deletions, is allowed. If only insertions are allowed, the graph
is called incremental; if only deletions are allowed it is called decremental. In this chapter our
graph is fully dynamic.

7.3 The Dynamic Network Simplex Algorithm

In this section, Dynamic Network Simplex Algorithm with some examples is presented. The data
structures of the problem and graph are basic components for the algorithm. Additionally,
efficient memory management plays an important role for the algorithm. Before presenting
details of the algorithm, the data structures and memory management are explained.

7.3.1 Data structures

The defined problem in Chapter 4 is considered to be solved by the algorithm. We formulated the
problem and presented it as the MCF-AGV model (see Section 4.5). The MCF-AGV model was
established on a directed graph. There are three dynamic data structures for the algorithm and
problem. The memory is allocated for these structures based on the maximum number of jobs in
the dynamic problem. These main structures are explained briefly below:

a) The first structure maintains the status of nodes in the graph model and its spanning tree. For
each node we considered the Node number, Predecessor, first Child, Right sibling (next Child of
the Predecessor), Left sibling (previous Child of the Predecessor), Balance (amount of supply or

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 108 -

demand of the node), Sub-tree’s size, Basic arc of the node, Orientation of the Basic arc, Flow
value of the Basic arc and Potential of the node. We explain these attributes with an example.

Figure 7-1 shows an example of the spanning tree [58, 2] for a small problem like Figure 4-5
when nodes 9 and 10 (the Job-Input and Job-Output nodes for Job 4) have been deleted. Given a
graph G = (N, A), let Tt ⊂ A be a spanning tree in G at time t. The Root is identified with node
‘0’. Consider some node ν∈N–{0}:
• There is a unique (undirected) path, denoted by P (ν), from ν to the Root node ‘0’. The arc in

P (ν), which is incident to ν, is called the Basic arc of ν.
• The Orientation of the Basic arc is called Upward (Downward) if ν is the tail (head) node of

its Basic arc.
• The other terminal node u of the Basic arc is called the Predecessor (node) of ν. If ν is the

Predecessor of some other node u, we call u a Child (node) of ν.
• The number of nodes in the sub-tree, rooted by ν, including itself, is called the Sub-tree size

of ν.
• Every node may have a Right and/or Left sibling, but it has at most one Child reference. The

other children of the node are accessible by traversing the Siblings.
• The Sub-tree’s size and Predecessor variables are used to find a cycle and pivoting. The

Orientation, Child, and Sibling variables are used for the computation of the node Potentials.
(see the main loop in Figure 5-2)

The Predecessor, Child, Left sibling, Right sibling, Sub-tree’s size, Basic arc of each node,
Orientation of the Basic arc are shown in a table, below Figure 7-1. For the status of the nodes,
we introduce the following property.
Property 7-1: Every node has an Identification flag. At any time, the Identification of a node
specifies whether the node belongs to the model or not. There are two cases for the Identification
of nodes, ‘FIXED’ and ‘UNFIXED’. At each stage of the dynamic problem, the ‘FIXED’ nodes
are considered by the algorithm whereas the ‘UNFIXED’ nodes are ignored. We introduce the
following notations for these sets:

FNt: The set of ‘FIXED’ nodes of the current graph model at time t.
DNt: The set of ‘UNFIXED’ nodes after repairing the solution at time t.

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 109 -

At each stage of the dynamic problem, a few existing jobs are fulfilled and a few new jobs are
arrived. Based on the fulfilled jobs, a set of nodes for deletion is collected (we call it the
‘DELETION’ nodes). The elements of this set are a couple of nods associated with every
fulfilled job (we called them the Job-Input and Job-Output nodes; see Section 4.5). The nodes of
this set have to be removed from the graph model in the next stage. Additionally, when a new job
arrives, a set of new nodes associated with the job are collected (we call it the ‘INSERTION’
nodes). These nodes have to be inserted into the graph model in the next stage of the dynamic
problem.

Node number 0 1 2 3 4 5 6 7 8 9 10 11
Predecessor Nil 0 3 1 3 4 3 1 7 - - 8

Child 1 3 Nil 4 5 Nil 11 8 Nil - - Nil
Right sibling Nil Nil 7 7 6 Nil 2 Nil Nil - - Nil
Left sibling Nil Nil 6 Nil Nil Nil 4 3 Nil - - Nil

Sub-tree’ size 9 8 1 6 2 1 2 2 1 - - 1
Orientation - Up Up Down Down Down Up Down Down - - Down

Identification FIX FIX FIX FIX FIX FIX FIX FIX FIX UFD UFD FIX
Figure 7-1: A sample of the spanning tree and its attributes (FIX=’FIXED’, UFD=’UNFIXED’).

Nil

Nil

Child

Root
0

1

3

4

5

2 6

7

Nil Nil

8

Basic Arc Left Sibling

Nil

Nil

Nil

Nil

Nil

Nil

Nil

Nil
Nil

Nil Nil

9 10

11 Nil

Right Sibling

Fulfilling Job 4: Nodes
9 and 10 have been
deleted

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 110 -

When a node is removed from the graph model, the arcs associated with the node are marked as
the ‘DELETION’ arc (we use the notation D to show these arcs after repairing the solution).
When a node must be inserted into the model, the arcs associated with the node are marked as the
‘INSERTION’ arc.

b) The second data structure is considered for arcs in the MCF-AV model, including the Tail
node, Head node, Lower bound, Upper bound, Cost and Value of the arcs. For the status of the
arcs, we introduce another property below.
Property 7-2: Every arc has an Identification flag. The Identification of an arc specifies the arc
is in which set of the spanning tree structure. There are four cases for the Identification of an arc
at time t; the arc is in the Tt set, the Lt set, the Ut set (according to the spanning tree structure (T,
L, U); see Definition 5-1 in Section 5.2.1) or in the Dt set.

Suppose that the paths in the solution for the problem in Figure 4-5 are 1→3→4→5→6→11 and
2→7→8→11. According to Figure 7-1 for the solution, those sets at time t are as follows:

Tt = {(1,0), (1,3), (3, 4), (4,5), (6,3), (6,11), (2,3), (1,7), (7,8)}
Lt = {(1,5), (2,5), (1,11), (2,11), (4,7), (4,11),(6,7), (5,6), (8,3),

(8,5),(2,0),(0,3),(4,0),(0,5),(6,0),(0,7),(8,0) ,(0,11)}
Ut = {(2, 7), (8,11)}
Dt = {(1,9), (9,10), (2,9), (10,3), (10,5), (10, 7), (10, 11), (4, 9), (6,9), (8,9),(0,9),(10,0) }

Note that the flow on every Basic arc in the spanning tree is between the Lower bound and the
Upper bound of the arc. The flow of every arc in the set L is at the Lower bound of the arc. The
flow of every arc in the set U is at the Upper bound of the arc. Moreover, we considered the
Artificial arcs that connect the Root to the other nodes in the sets. These Artificial arcs were
explained in Section 5.2.2 (Step 0).

c) The third data structure is a Job Buffer. There is a direct mapping between the Job-Input and
Job-Output nodes in the MCF-AGV model and a particular location in the buffer for every job.
For example, the nodes 3 and 4 in Figure 7-1 are associated with the fist location in the Job
Buffer. When a job is fulfilled, its location in the Job Buffer is marked as empty or hole.
According to Figure 7-1, we have a hole in the Job Buffer. The nodes 9 and 10 associated with
the job 4 were the ‘DELETION’ nodes in the MCF-AGV model. When a new job is arrived, it is
put into a hole of the Job Buffer.

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 111 -

7.3.2 Memory management

A small memory management facility has been designed, implemented and embedded in the
software. The objectives of this facility are to make independent software, to get a higher
performance (most programming languages, including C/C++, have the Garbage Collection
facility in dynamic memory allocation; It has negative impacts on the efficiency) and prevent any
missing job (when the Job Generator generates a job and the memory could not be allocated).

There are two aspects of memory management in the software. The first one is relevant to the
jobs whereas the second one refers to the graph model. There is a buffer for the jobs, which is
allocated at the start of operation. Once a job is fulfilled, a hole will be created in the buffer and
when the Job Generator generates a job, it puts the job into the first hole. For the arcs and nodes
in the graph model, an Identification flag has been considered. The Identification flag associated
with each arc identifies whether the arc is in the Tt set, Lt set, Ut set, or Dt set (see Property 7-2)
at time t. There is the one-to-one mapping between every location in the Job Buffer and the nodes
associated with the job in the graph model. When a job is fulfilled, the nodes associated with this
job are marked for ‘DELETION’. For each node belonged to the fulfilled jobs, the node and the
relevant arcs are removed from the spanning tree of the graph. In order to make a new spanning
tree, we use a ‘Remove-Node-Algorithm’, which will be presented in the next section. When a
new job arrives the relevant nodes, which has been deleted from the graph model, will be marked
for ‘INSERTION’. The ‘INSERTION’ nodes and the arcs associated with the new jobs are
inserted into the spanning tree consistently. This task is performed by ‘Insert-Node-Algorithm’,
which will be presented later in the next section.

As stated before (Section 4.5 in Chapter 4), given N jobs and M AGVs in the problem, there are
M+2×N+1 nodes and M+M×N+N×(N-1)+2×N arcs in the MCF-AGV model. The challenge here
is to control them correctly. The memory management routine allocates the memory based on the
maximum number of jobs. This parameter is determined by the user and here is represented as
MNJ. Table 7-1 shows a memory map of the allocated space. There were four different types of
arcs in the MCF-AGV model: Inward Arcs, Outward Arcs, Auxiliary Arcs, and Intermediate
Arcs (see Figure 4-5). Additionally, we needed the Artificial Arcs to generate initial Basic
Feasible Solution (see ‘Step 0’ in Section 5.2.2). Two blocks of the memory are allocated for
these arcs and two pointers are used to access them; the first one is for arcs in the MCF-AGV

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 112 -

model and the second one is for the Artificial Arcs. In order to address on a certain type of arc, it
is needed to have an offset. The offset is the difference in the address from the beginning of the
block.

Table 7-1: Memory allocation for the arcs of the MCF-AGV model and its algorithm

7.3.3 The algorithms DNSA and DNSA+

We base the Dynamic Network Simplex Algorithms on the Network Simplex Algorithm. DNSA
is a standard dynamic form of NSA and DNSA+ is DNSA with the features of NSA+ (see
Section 6.2). The inputs of the dynamic algorithms are:

• s: Stage for the dynamic problem, which is increased by the algorithm.
• Set of ‘DELETION’ Nodes: it determines which nodes have to be removed from the model.
• Set of ‘INSERTION’ Nodes: it determines which nodes have to put into the new model.

Figure 7-2 shows the Dynamic Network Simplex Algorithm. At the beginning, when the
container or Job buffer became full and the software made a MCF-AGV model, an initial feasible
solution is generated by the ‘Generate-Initial BFS’ procedure. The operation of this procedure
was described in Section 5.2.2 (Step 0). In fact, an initial feasible spanning tree solution (T0, L0,
U0) is created (see Definition 5-1). The difference between NSA and DNSA is the ‘Reconstruct
New BFS’. When the ‘s’ is zero, the ‘Generate Initial BFS’ is called. Otherwise, the ‘Reconstruct
New BFS’ procedure repairs the current solution and spanning tree at time t; (Tt, Lt, Ut) is
reconstructed. The main body of the algorithms, NSA and DNSA, are the same. The operation of
the main body was described in Section 5.2.2. Here, we describe the ‘Reconstruct New BFS’.

Type of Arcs Specification Offset Size
(the number of arcs)

Example for 2 AGVs and
2 Jobs (See Figure 5-7)

ARCinward Arcs from every vehicle node
to Job-Input nodes 0 M×MNJ (1,3);(1,5);(2,3);(2,5)
Arcs from every vehicle node
to the sink

M × MNJ
 M (1,7);(2,7)

ARCoutward Arcs from every Job-Output
node to the sink M×MNJ+M MNJ (4,7);(6,7)

ARCauxiliary Arcs from every Job-Input
node to its Job-Output node

M×MNJ+M
+ MNJ MNJ (3,4);(5,6)

ARCintermediate Arcs from every Job-Output
node to other Job-Input node

M×MNJ+M
+MNJ+MNJ MNJ ×(MNJ – 1) (4,5);(6,3)

ARCartificial Artificial Arcs to generate
initial feasible solution 0 2×MNJ+ M + 1 (1,0);(2,0);(0,3);

(4,0);(0,5);(6,0);(0,7)

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 113 -

Figure 7-2: The Dynamic Network Simplex Algorithm.

Figure 7-3 shows the algorithm of reconstructing the new spanning tree. There are three main
steps in the algorithm; Step 01, Step 02 and Step 03.

Figure 7-3: The pseudo code of reconstructing the spanning tree in Dynamic Network Simplex Algorithm.

1: Procedure Reconstruct New BFS (Set of ‘DELETION’ Nodes,
 Set of ‘INSERTION’ Nodes)

2: Begin
3: While (the set of ‘DELETION’ nodes is not empty)
4: Do
5: Select a couple of nodes from the set (the Job-Input and Job-Output nodes).
6: Put the set of associated arcs with the nodes in the set Dt.
7: Remove-Node-Algorithm (the Job-Input node).
8: Remove-Node-Algorithm (the Job-Output node).
9: Remove the job from the solution paths.
10: Remove the nodes from the set of ‘DELETION’ nodes.
11: End While
12: While (the set of ‘INSERTION’ nodes is not empty)
13: Do
14: Select a couple of nodes from in the set. (the Job-Input and Job-Output nodes)
15: Put the set of associated arcs with the nodes in the set Lt.
16: Insert-Node-Algorithm (the Job-Input node).
17: Insert-Node-Algorithm (the Job-Output node).
18: Assign the job to a vehicle randomly.
19: Remove the nodes from the set of ‘INSERTION’ nodes.
20: End While
 21: Assign node potentials for each node of the spanning tree.
22: End Procedure.

Algorithm Dynamic Network Simplex Method (Stage s,
 Set of DELETION Nodes,

 Set of INSERTION Nodes);
Begin
 If (s is zero)
 Generate Initial BFS; // (T0, L0, U0)
 Else
 Reconstruct New BFS (Set of DELETION Nodes,
 Set of INSERTION Nodes); // (Tt, Lt, Ut)
 End If
 (k, l) ← entering arc ∈ { Lt + Ut }
 While (k, l) ≠ NULL Do
 Find Cycle W ∈ { Tt + (k, l) }
 θ ← Flow Change
 (p, q) ← Leaving Arc Є W

 Update Flow in W by θ
 Update BFS; Tree T
 Update node potentials
 (k, l) ← entering arc ∈ { Lt+ Ut }
 End while
 s ← s + 1
End Algorithm

Main
difference
between NSA
and DNSA

Step 01

Step 02

Step 03

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 114 -

In Step 01, all ‘DELETION’ nodes and their arcs are removed from the model, spanning tree of
the graph and the solution paths. After that, the ‘INSERTION’ nodes and their arcs are put into
the model, its spanning tree and solution in the second step (Step 02). In Step 03, according to the
current solution a value is assigned to the potential of each node in the new spanning tree. There
is no challenge in Step 03 since it is easy task. The Steps 01 and 02 are elaborated by some
examples as follows:

Step 01: There is a loop for this step. At first, a couple of nodes associated with every fulfilled
job (from the ‘DELETION’ set) are selected and transferred into the Dt set. These two tasks are
performed in Lines 5 and 6, respectively. Then, in Lines 7 and 8 a procedure, which called
‘Remove-Node-Algorithm’, is used to remove the nodes from the spanning tree consistently.
After that in Line 9, the fulfilled job associated with the nodes is removed from the solution paths.
Based on removing the job from the solution, some arcs may be transferred into the set Lt or Ut.

Figure 7-4 shows the operation of the ‘Remove-Node-Algorithm’. Removing a node from the
spanning tree, splits Tt into several clusters, say T1, T2, …and so on. Depending on whether the
deleted node has a Child or not, there is a branch in the algorithm. Based on the location of the
deleted node in the spanning tree, appropriate operations are done.

Figure 7-4: The pseudo code of removing a node from the spanning tree in Dynamic Network Simplex Algorithm.

If the ‘DELETION’ node has not any Child (Line 3) and its Predecessor has not any other Child
(Line 4), then the Child of the Predecessor is set to Nil. After that in Lines 5 and 6, the Right and
left siblings of other nodes are adjusted and the Sub-tree’s size of the new spanning tree is
updated. If the ‘DELETION’ node has a Child, the Right and left siblings of other nodes are

1: Procedure Remove-Node-Algorithm (Node)
2: Begin
3: If (the Node has not any Child)
4: Set the Child of the Predecessor of node to Nil (if its parent had only one Child).
5: Set the Right sibling, Left sibling of the other nodes if it is necessary.
6: Set the Sub-tree’s size of the new spanning Tree.
7: Else
8: Set the Right sibling, Left sibling of the other Nodes.
9: Find the last Child of the root.
10: Set the Sub-trees (Children of the deleted node) as the new Children for the root.
11: Set a Basic-arc for every root-node of the sub-trees using Artificial arcs.
12: Set Predecessor, Sub-tree’s size of the nodes in the new spanning tree.
13: End If
14: End Procedure.

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 115 -

adjusted in Line 8. In Lines 9 and 10, the last Child of the Root is found out and the sub-trees
(Children of the ‘DELETION’ node) are connected to the root with the Artificial arcs. Then in
Lines 11 and 12, the Basic arc of the root in the sub-trees, and their Predecessor as well as the
sub-tree’s size is adjusted. Some examples for a ‘DELETION’ node are demonstrated below:

Example 7-1: Suppose that the job associated with nodes 7 and 8 is fulfilled. Imagine the node 8
in Figure 7-1 must be deleted, first. In this case, the ‘DELETION’ node has not any Child, Right
sibling and Left sibling. In this case T1 is the rooted spanning tree and T2 is empty. What is
necessary to do is to delete the Child of its Predecessor and then update the Sub-tree’s size from
the Predecessor of the deleted-node to the Root. The spanning tree after removing node 8 is
shown in Figure 7-5. The same operation is done for deleting the node 7.

Figure 7-5: The new spanning tree after removing nodes 8 (See Figure 7-1).

Nil

Nil

Child

Root

0

1

3

4

5

2 6

7

Nil Nil

Basic Arc

Left Sibling

Nil

Nil

Nil

Nil

Nil

Nil

Nil
Nil

Nil Nil

11 Nil Right Sibling

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 116 -

After these operations the solution paths are 1→3→4→5→6→11 and 2→11. According to
Property 7-1, the sets of nodes in the graph at time t are:
 FNt = {1, 2, 3, 4, 5, 6, 11}
 DNt = {9, 10, 7, 8}
According to Property 7-2, the sets of arcs in the current graph are:

Tt = {(1,0), (1,3), (3, 4), (4,5), (6,3), (6,11), (2,3) }
Lt = {(1,5), (2,5), (1,11), (4,7), (4,11), (5,6), (2,0),(0,3),(4,0),(0,5),(6,0)}
Ut = {(2,11) }
Dt = {(1,9), (9,10), (2,9), (10,3), (10,5), (10, 7), (10, 11), (4, 9), (6,9),
 (8,9),(0,9),(10,0),(0,11), (1,7), (2,7), (7,8) (0,7),(6,7),(7, 8), (8, 11), (8,0), (8,3), (8,5)}

Example 7-2: Suppose that the job associated with nodes 3 and 4 is fulfilled in Figure 7-1.
Imagine the node 3 is deleted first. The spanning tree after removing node 3 and the
reconstruction operation is shown in Figure 7-6.

Figure 7-6: The new spanning tree after removing node 3 (See Figure 7-1).

Nil

Nil

Nil

Nil

Root 0

1

7

4 6

8

5

2

Basic Arc
Right Sibling
Left Sibling

Child

Nil

Nil Nil

Nil

Nil

Nil

11

Nil
Nil

T1: The first
part of the
broken
spanning Tree

T2: The second
part of the broken
spanning Tree

T3: The third part
of the broken
spanning tree

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 117 -

In this case, the ‘DELETION’ node had a Child and its Right sibling exists. The following
operations were necessary for this case:

• Adjust the Child of node 1 to node 7.
• Connect the sub-trees T1 (node 4 and 5), T2 (node 6 and 11) and T3 (node 2) to the Root.
• Adjust the Right and Left siblings from the most left side (node 1) to the most right side

(node 2).
• Recalculate the Sub-tree size for the node 1 and Root.

Note that, the best and fastest way to recover the spanning tree is to connect the minor
fragmented sub-trees to the Root, in our experience. We used the artificial arcs for reconnecting
T1, T2 and T3 to the Root or main part of the spanning tree. The Orientation of the Artificial-
Basic arc depends on the amount of supply/demand of the node. For the node j, if j is a Job-
Output node we include (j, 0) in Tt. If j is a Job-Input node, we include arc (0, j) in Tt.

After deleting the node 3, the node 4 in Figure 7-6 must be deleted. The spanning tree after
removing node 4 and the reconstruction operation is shown in Figure 7-7.

Figure 7-7: The new spanning tree after removing node 4 (See Figure 7-6).

Nil

Nil

Nil

Nil

Root 0

1

7

6 2

8

11

5

Basic Arc

Right Sibling
Left Sibling

Child

Nil

Nil

Nil

Nil

Nil

Nil

Nil

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 118 -

After these operations the solution paths are 1→5→6→11 and 2→7→8→11. According to
Property 7-1, the sets of nodes in the graph at time t are:
 FNt = {1, 2, 5, 6, 7, 8, 11}
 DNt = {9, 10, 3, 4}
According to Property 7-2, the sets of arcs in the graph are:

Tt = {(1,0), (6,11), (1,7), (7,8), (2,0), (0,5),(6,0)}
Lt = { (2,5), (1,11), (2,11), (4,7), (4,11),(6,7), (5,6), (8,3), (8,5), (0,7),(8,0) ,(0,11)}
Ut = {(1,5), (2,7), (8,11)}
Dt = {(1,9), (9,10), (2,9), (10,3), (10,5), (10, 7), (10, 11), (4, 9), (6,9),
 (8,9),(0,9),(10,0), (1,3), (3, 4), (4,5), (6,3), (0,3),(4,0) , (2,3)}

Step 02: In this step every new job is inserted into the spanning tree and the solution paths. At
first, a couple of nodes associated with a new job (from the ‘INSERTION’ set) are selected and
transferred into the Lt set. Then, a procedure, which called ‘Insert-Node-Algorithm’, is used to
insert the nodes into the spanning tree. After that, the new job associated with the nodes is
assigned to a vehicle randomly. This job is inserted into a solution path. Based on the insertion,
some arcs may be transferred into the set Lt or Ut. This process is repeated for each new job.

Figure 7-8 shows the operations of the ‘Insert-Node-Algorithm’. The input of the algorithm is a
node, which is appended to the new spanning tree by an Artificial arc. The attributes of these arc
is the same as the Artificial arcs in the Basic Feasible Solution (see Step 0 in Figure 5-2). Firstly,
the most Right sibling of the Root’s Child is found and the new node is put at the right side of the
existing Children of the Root. These operations are performed in Lines 3-5. Then in Line 6, the
Basic-arc, Predecessor, Child, Right-sibling, Left-sibling and Sub-tree’s size of this node are
adjusted.

Figure 7-8: The pseudo code of inserting a node into the spanning tree in Dynamic Network Simplex Algorithm

1: Procedure Insert-Node-Algorithm (Node)
2: Begin
3: Find the Child of the root.
4: Find the most Right sibling of the Child.
5: Set the node as a new Child for the Root by an Artificial arc.
6: Set Basic-arc, Predecessor, Child, Right-sibling, Left-sibling and Sub-tree’s size for this node and the

root.
7: End Procedure.

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 119 -

Example 7-3: Suppose that node 9 and 10 have to be inserted into the spanning tree of Figure 7-
1. The spanning tree after the insertion is demonstrated by Figure 7-9. According to the algorithm
in Figure 7-8, the Artificial arcs connect the nodes to the spanning tree. In this example, we
assumed that the new job is inserted in the second path for AGV 2.

After these operations the solution paths are 1→3→4→5→6→11 and 2→7→8→9→10→11.
Now, the sets of nodes in the graph at time t are:
 FNt = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
 DNt = {}

According to Property 7-2, the sets of arcs in the current graph are:

Tt = {(1,0), (1,3), (3, 4), (4,5), (6,3), (6,11), (2,3), (1,7), (7,8) ,(0,9),(10,0)}
Lt = {(1,5), (2,5), (1,11), (2,11), (4,7), (4,11), (5,6), (2,0),(0,3),(4,0),(0,5),(6,0), (10,3),
 (10,5), (10,7), (0,7),(6,7),(7,8), (8,11), (8,0), (8,3), (8,5),(1,9), (2,9), (4, 9), (6,9) }
Ut = { (2,7) , (8,9), (9,10), (10, 11) }
Dt = {}

Figure 7-9: The new spanning tree after inserting node 9 and 10 (See Figure 7-1).

Nil
Nil

Child

0

1

3

4

5

2 6

7

Nil Nil

8

Basic Arc Left Sibling

Nil

Nil

Nil
Nil

Nil
Nil

Nil

Nil Nil
Nil Nil

9 10

11 Nil
Right Sibling

Root Inserting nodes 9
and 10 into the
spanning tree

Nil

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 120 -

7.4 Software architecture for dynamic aspect

At the start of the process, a few jobs are generated for each crane and the memory for the jobs
and graph are allocated. Then, the MCF-AGV model is made and tackled by Network Simplex
plus Algorithm. The output of this algorithm is a few job sequences for the vehicles. Based on
these sequences, the software will prepare a job list for each vehicle.

The main architecture of the software is demonstrated by Figure 7-10 for dynamic aspect. Note
that this architecture is for the time when ‘s’ > 0 (see the algorithm in Figure 7-2).

Figure 7-10: Block diagram of the software and algorithm (DNSA+) in the dynamic aspect

Execute main body of the Algorithm
(Solve the MCF-AGV Model and
Generate New Schedule based on the
solution)

List for
Vehicle

1
List for
Vehicle

2

List for
Vehicle

M

 While the time is
being progressed.

List for
Vehicle

m

Generate Jobs for
any Idled Crane

Find a Hole in the
Buffer and put the
job into the hole

Delete a fulfilled

Job

Delete the job from the
list of vehicle and mark
the associated arcs and

nodes for deleting

Make a Hole in the
Buffer & mark the

job for deleting

Mark the job and
associated arcs and nodes

with it for inserting

Update the MCF-AGV
model in the memory

Reconstruct New BFS (Repair
the Basic Feasible Solution
based on the ‘DELETION’

nodes and ‘INSERTION’ nodes
associated with the fulfilled and

new jobs)

(a) Update Status of each
vehicle; (b) Make a few
random changes in the
Distance Table, from

time to time

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 121 -

While the time is being progressed, the vehicles and cranes are carrying and handling the
containers. From time to time, the software makes a few random changes in the distance table
(see Table 4-1) in order to produce dynamic problems. The Job Generator has to generate a few
new jobs, when it finds out any crane is in idle state.

As we see in the figure, every event is recorded in order to be processed latter. The events
include modification of the vehicle’s position, the fulfilled jobs and new jobs, and any change in
the distance table. As we mentioned (see Section 7.3.2), a hole will be created in the Job Buffer
when a job is fulfilled. After the Job Generator generates a job, it puts the job into a hole of the
buffer. The software marks the nodes and arcs associated with the fulfilled and new jobs. The
most important events that affect the spanning tree are the fulfilled and new jobs. The fulfilled
jobs are removed from the list of vehicles and model whereas the new jobs are appended to
remaining jobs and inserted into the model. Note that any change in the problem, without any
fulfilled or new job, doesn’t affect the spanning tree. In this case, only body of the algorithm is
executed and finds out the optimal solution.

The software processes the recorded events and updates the MCF-AGV model. After removing
the nodes and arcs (associated with the fulfilled jobs) from the model and omitting the jobs from
the vehicle’s lists, a new spanning tree is made. Next, the nodes and arcs associated with the new
jobs are put into the new model and then the spanning tree is repaired. These jobs are assigned to
one or more vehicles, randomly. These two tasks are made by ‘Reconstruct New BFS’. After
repairing the spanning tree, the main body the algorithm is executed and it finds out the optimal
solution. Note that these tasks are non-preemptive, i.e. when a task starts execution on the
processor, it finishes to its completion.

7.5 A comparison between DNSA+ and NSA+

To test and compare the performance of the algorithms, many jobs in dynamic fashion have been
generated. Their sources, destinations and the distance between every two points in the port have
been chosen randomly. During three hours simulation, about 90 problems with a condition of
generating 5 jobs for any idle crane have been solved by DNSA+ and NSA+H. In these samples
we assumed that there were 50 AGVs and 7 cranes in the port (see Table 5-1). It was very
difficult to isolate the CPU-Times required to tackle the problems by the algorithms and the

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 122 -

CPU-Time required for memory management. Hence, we considered the number of iterations as
an indicator to compare the algorithms. The numbers of iterations required to solving the
problems have been drawn by Figure 7-11. A sample was collected every time when there were
changes in the problem and the algorithms had to solve the new problem.

Number of Iterations required to solve the dynamic problems

0
200
400
600
800

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88
Stage (Time)

DNSA+ NSA+
Figure 7-11: A comparison of the number of iterations in DNSA+ and NSA+

From Figure 7-11, we can observe that:
Observation 7-1: As we can see in the figure, the number of iterations in DNSA+ greatly has
been decreased compared with NSA+. Therefore, the average number of iterations in DNSA+ is
less than NSA+ for the dynamic problem. Since the major process of the algorithms is performed
in the body and the operations of the body are identical (see Figures 5-2 and 7-2), the CPU-time
required to solve the problems is also decreased practically.

In these results for 90 problems, there was about 40 percent reduction in the number of iterations
by DNSA+ compared with NSA+. The percentage of improvement, in reduction of the number
of iterations, is calculated by the following terms and equation:

NSAi

+ : The number of iterations in NSA+ for the dynamic problem at stage i.
DNSAi

+ : The number of iterations in DNSA+ for the dynamic problem at stage i.
TPR : The Total Percentages of Reduction in the number of iterations in the experiment.

%79.38100*
)(

90

1

90

1 −=
−

=
∑

∑
=

+

=

++

i
i

i
ii

DNSA

NSADNSA
TPR

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 123 -

7.6 Statistical test for the comparison

The number of iterations of running the two algorithms, DNSA+ and NSA+ (Figure 7-11), has
been analysed statistically. We tested the null hypothesis that the means produced by the two
algorithms were statistically indifferent (α=5%). Table 7-2 provides the test’s result along with
the values of T-distribution for a particular degree of freedom. Since we cared the change (the
difference between the two means) was positive or negative, ‘One-tail’ test was chosen. The
Paired T-test determines the two means are significantly different at 95% degree of confidence
since the test’s result is in the reject region (see Figure 6-3 for the acceptance and reject regions).

Table 7-2: The result of T-Test for the two algorithms, DNSA+ and NSA+
Statistical Parameters Values

Observations 90
T-Test (Paired Two Sample For Means) -5.0936
Degree of Freedom 89
Critical T-Value -1.662

7.7 Complexity of the algorithm

The complexity of Network Simplex plus Algorithm was calculated in Section 6.5. In this section,
it is shown that Network Simplex plus Algorithm and Dynamic Network Simplex plus Algorithm
have the same complexity. Both the algorithms run the ‘BFS’ procedure, which finds a Basic
Feasible Solution at the beginning. The Dynamic Network Simplex plus Algorithm then calls the
‘Reconstruct New BFS’ procedure to repair the spanning tree and current solution when ‘s’ (the
input of the algorithm) becomes greater than zero. Given n as the number of nodes in the graph, it
is easy to understand that the complexity of both BFS and ‘Reconstruct new BFS’ are n and 3n2,
respectively. Based on the number of iterations and the complexity of each pivot (see Section
6.5), the total complexity of this algorithm is determined as follows:

))(3(222 KLogKCmnnmnO ++
Note that m is the number of arcs in the graph model. In Section 6.5, we had the following
equations:

m = O (N2); n = O(N) (N is the number of jobs)

Therefore, the total complexity of the algorithm for the problem is:

)(6NO

University of Essex, Computer Science Department
Chapter 7: Dynamic Network Simplex Algorithms and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 124 -

7.8 Summary and conclusion

In this chapter, the dynamic extensions of NSA and NSA+ were presented. These extensions are
Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm
(DNSA+). To evaluate the performance of the algorithms, we considered the dynamic scheduling
problem of AGVs in the container terminal (the problem defined in Chapter 4). Many random
problems have been solved by both DNSA+ and NSA+. The comparison showed that the number
of iterations significantly are improved.

To conclude Network Simplex Algorithm and its three extensions (NSA+, DNSA and DNSA+),
we made a summary. Table 7-3 shows this summary, including the important features of these
algorithms as well as their advantages and disadvantages. In dynamic problems, NSA and NSA+
start from the scratch and reconsider the pre-established schedules. Memory management in
these two algorithms is easy task since a block of memory is allocated for the whole of the graph.
Also there is no partitioning in the graph and its spanning tree to solve the problem by those
algorithms. The disadvantage of these algorithms is to take a time to rebuild the graph and put it
into memory. DNSA and DNSA+ repair the solution rather than starting from scratch. The main
advantage of these dynamic algorithms over NSA and NSA+ is the performance. On the other
hand, DNSA and DNSA+ deal with memory management, partitioning of the graph and its
spanning tree. However, they are disadvantages and have to be paid for the performance.

Table 7-3: A comparison between NSA and its extensions
Algorith

ms

Data
Structure Features Memory

Management Advantages Disadvantages

NSA The standard version of
the algorithm

Faster than
equivalently size
Linear Program

NSA+ NSA with enhanced
features

Easy: One block
of memory is
allocated for the
whole graph Faster than NSA

Time-consuming
to rebuild the
graph in dynamic
problem

DNSA
Dynamic version of NSA;
Repairs the solution and
spanning tree

Faster than NSA
and NSA+ in
dynamic
problems

DNSA+

Graph and
operations

on the
graph

Dynamic version of
NSA+; Repairs the
solution and spanning tree

Difficult:
Partitioning of the
graph and its
spanning tree

Faster than
DNSA in
dynamic
problems

Needs memory
management;
adding,
removing and
updating nodes
and arcs

University of Essex, Computer Science Department

- 125 -
PhD Thesis, Copyrights (H. Rashidi)

AGV 1

AGV 2

1

2

3

4

5

6

7

(-2 units demand)

Sink

(One unit supply)

(One unit supply)

Chapter 8: Greedy Vehicle Search and

Dynamic Scheduling of AGVs

In this chapter, an incomplete algorithm to the scheduling problem of AGVs is presented. We
called it Greedy Vehicle Search (GVS). To evaluate the relative strength and weakness of
Network Simplex plus Algorithm (NSA+) and GVS, results of the two algorithms are compared.

8.1 Motivation

In the previous three chapters, the scheduling problem of Automated Guided Vehicles, the
problem in Chapter 4, was solved by NSA and its extensions. Although these complete solutions
are efficient, they can only work on problems with certain limits in size (see Section 5.6). When
size of the problem goes beyond the limits or the time available for computation is too short,
incomplete search methods are used. To complement the solutions, Greedy Vehicle Search (GVS)
method is designed and implemented in this chapter. This incomplete search method can be
applied to both the static and dynamic problems.

8.2 Problem formalization

The problem here is the problem defined in Chapter 4, but we model it as an incomplete case of
the MCF-AGV model (see Definition 4-12). The MCF formulation requires this incomplete
model. Given M AGVs and N jobs in the problem, there are M vehicle nodes, N job nodes and
one sink node in the model. The graph model is illustrated by Figure 8-1 for two AGVs and four
container jobs.

Figure 8-1: An example of the incomplete case of the MCF-AGV model with two AGVs and four jobs

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 126 -

The MCF-AGV model and its incomplete case can be compared. There were four different types
of arcs in the MCF-AGV model; the Inward arcs, Intermediate arcs, Auxiliary arcs and Outward
arcs. In the incomplete case of the MCF-AGV model, there are only Inward and a partial of
Outward arcs. Moreover, in the MCF-AGV model we considered two nodes for each job. In the
incomplete case of the MCF-AGV model, there is only one node for each job (see Figures 8-1
and 4-5 for the differences). We formalize this incomplete case with two definitions.

Based on Definitions 4-11, we introduce the following definition:
Definition 8-1: A graph GMCF-AGV-I = (GSI, NPSI, APSI) is an Incomplete graph of GMCF-AGV =
(GS, NPS, APS). The elements of GMCF-AGV-I, nodes and arcs in the GSI = (NSI, ASI), are
formally defined in the two following sub-sections:

8.2.1 Nodes and their properties in the incomplete graph

There are three types of nodes in the GMCF-AGV-I. The elements in each set and the sets themselves
with their properties are defined as follows:

a) AGVNm: a supply node corresponding to vehicle m. Each node has one unit supply.
Hence, there are M supply nodes in the model. We define the following set for these
supply nodes:

SAGVN: a set of M supply nodes in the GMCF-AGV-I.
SAGVN = {AGVNm │ m=1,2,…,M; NPS(m)=1}

b) JNj: a node for job j. There is neither supply nor demand in this node, i.e. it is a
transhipment node. We define the following set for these transhipment nodes:

SJN: a set of N job nodes in the GMCF-AGV-I.
SJN = {JNj │ j=1,2,…,N; NPS(j)=0}

c) SINK: This is a demand node in the GMCF-AGV-I with M units demand. This node
corresponds to the end state of the process. For the property of this node, we have:

NPS(SINK)=-M
Therefore, there are M+N+1 nodes in the GMCF-AGV-I :

NSI=SAGVN U SJN U SINK

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 127 -

8.2.2 Arcs and their properties in the incomplete graph

The following two types of arcs connect the nodes in the GMCF-AGV-I :

1) Inward Arcs: There is a directed arc from every vehicle node, to the node of job i. We
use the following notation for these arcs:
ARCinward : a set of arcs from SAGVN to SJN.
ARCinward ={ (m, j)│ m ∈ SAGVN, j ∈ SJN, APS(m, j) = [0,1,Cmj] }

The number of these arcs is M×N. Each arc has the lower bound zero, and the upper
bound one, i.e., only one AGV goes through each of these arcs. Given the appointment
time of container job j, ti, the ready time of AGV m to get the next location, RTAm, and

the travel time of the AGV from its next location to the source/destination of job j on the
quay side, TTAmj, the cost of arc (m, j) is calculated as:




−+×

+≥+×++−×
= otherwisetTTARTAP

TTARTAtifTTARTAwTTARTAtwC
jmjm

mjmjmjmmjmj
mj)(

)()())((21

Note that this cost is exactly the same as what we calculated in Chapter 4 (see Section
4.5.2 and Assumption 4-10); w1 and w2 are the weight of waiting and travelling times of
the vehicles, and P is a penalty.

2) Outward Arcs: There is a directed arc from every job node i to SINK. We use the
following notation for these arcs:
ARCIoutward : a set of arcs from SJN to SINK.
ARCIoutward ={ (i, j)│ i ∈ SJN, j=SINK, APS(i, j) = [0,1,0] }

The number of these arcs is N. Each arc has the lower bound zero; the upper bound one
and the cost zero, i.e., the AGV (that visited a job node in SJN) goes through each of
these arcs.

Therefore, there are M×N+ N arcs in the GMCF-AGV-I:
ASI = ARCinward U ARCIoutward

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 128 -

8.2.3 The special case of the MCF-AGV model for Automated Guided Vehicles
Scheduling

Now we present an incomplete version of the MCF-AGV model for the Automated Guided
Vehicles Scheduling with the following definition.
Definition 8-2: A MCF-AGV-I model is defined on graph of GMCF-AGV-I as an Incomplete case of
the MCF-AGV (Definition 4-12) for the Scheduling problem of Automated Guided Vehicles.
The elements of D, CS and FC in the MCF-AGV-I = (GMCF-AGV-I, f, D, CS, FC) are introduced as
follows:

a) For each element in D, we have:

ijfD = [0, 1] for (i, j) ∈ ARCinward U ARCIoutward

b) The constraints of CS in the MCF-AGV-I are:

























=∈∀






 =

=

==

∈∀=

∑
∑
∑

∈

∈

∈

SINKsSJNi
otherwise

fif
f

SINKiMf

SAGVNif

inwardARCimm
mi

is

ASIijj
ji

ASIjij
ij

,,
0

11
)3

,)2

,1)1

),(:

),(:

),(:

The first constraint shows every node i (i ∈ SAGVN) sends one unit flow into the
network. The second constraint ensures SINK node receives M units flow (the flows sent
from nodes in SAGVN set). The third constraint shows that one unit flow can be sent
from every node in SJN to SINK provided that it received one unit flow.

c) The objective function is:
mjmj

Nj
Mm

fCMinFC ×=
=
=

,..,2,1
,..,2,1

Solving the MCF-AGV-I model generates M paths, each of which commences from a node in
SAGVN and terminates at SINK. Each path determines a job for every AGV. The decision
variable fij for every (i,j) ∈ ASI (the flow between nodes i and j in the GMCF-AGV-I) is either 1 or 0.
fij = 1 means that an AGV goes from node i to node j. Otherwise, moving the AGV from node i
to node j is not possible.

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 129 -

8.3 Algorithm formalization

The block diagram of Greedy Vehicle Search method is demonstrated by Figure 8-2.

Figure 8-2: The block diagram of Greedy Vehicle Search.

There are N container jobs and M vehicles in the problem (the same as Chapter 4). In this simple
search method, every time a job needs to be served, as what a Taxi Service System (TSS) does.
In fact, for any unassigned job and the list of idles AGVs, a job is assigned to a vehicle with
minimum cost, including waiting and travelling times of the vehicles as well as lateness of the
jobs.

The pseudo code of GVS in dynamic aspect is demonstrated by Figure 8-3. This pseudo code is
divided into two parts. In the first part, the cost for any combination between the remaining jobs
and the idle vehicles is calculated. In the second part, one vehicle is assigned to a job, based on
the minimum cost.

Figure 8-3: The pseudo code of Greedy Vehicle Search in dynamic aspect

AGV 1
AGV 2

AGV m

AGV M

For Job j

List of available vehicles

Calculate the

objective
functions for
every vehicle

Assign Job
j to vehicle
m with the
minimum

cost

If there is any remaining job and there is any idle vehicle
 Calculate the cost (v, j).
 For ν=1, 2, #Idle vehicles; for j=1, 2,.., #Remaining jobs
Else
 Stop
End If
Again:
Select a vehicle m and a job j with the minimum cost.
Assign the vehicle m to the job j.
Remove the vehicle m from the list of idle vehicles and the job j from the remaining jobs
If there is any idle vehicle and any left jobs
 Go to again
End If
Stop

Part1

Part 2

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 130 -

8.4 Software architecture for dynamic aspect

The architecture of main part of the software is demonstrated by Figure 8-4. At the start of the
process, the Job Generator generates a few jobs for the cranes. These jobs will be appended to the
remaining jobs, which is empty at the beginning. The remaining jobs are used by Greedy Vehicle
Search and the output of this method is an individual job for every vehicle.

The software does two tasks in the real time processing and dynamic fashion. The first task is
related to updating the vehicle’s status and assigning a job to any available vehicle whereas the
second one takes influence from any idle crane. While the time is running, the amount of time
travelled and waited for every vehicle is updated. At the same time, if a vehicle picks up a job
from the quay side, the assigned job will be deleted from the list of jobs for the vehicle and will
removed from the list of remaining jobs. If the job has to be delivered to the crane on the quay
side, it could not be removed until the meeting time between the crane and the vehicle (note that,
the appointment place is on the quay side, not the yard side). The second task refers to any
change in the crane’s status. The Job Generator has to generate a few new jobs, when it finds out
any idle crane.

Figure 8-4: The block diagram of the software and algorithm (GVS) in dynamic aspect

From time to time, the software makes a few random changes in the distance table (see Table 4-1)
in order to produce dynamic problems. These changes are applied to the problem directly. Since
the algorithm is reactive, it finds out a solution for the new problem in each run.

Remaining

Jobs

Generate Jobs
for any Idled

Crane

Calculate the cost
for the available

vehicles and
remaining jobs

Assign a job to any idle vehicle
(with minimum cost)

Job for
Vehicle

 1

Job for
Vehicle

2

Job for
Vehicle

M

While the time is being progressed:
(a) Update Status of each vehicle; (b)
Delete the fulfilled Jobs from the
remaining list and vehicles; (c) Make
a few random changes in the Distance
table, from time to time

Job for
Vehicle

m

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 131 -

8.5 A comparison between GVS and NSA+ and quality of the solutions

To evaluate the relative strength and weakness of GVS and NSA+ in the dynamic scheduling
problem, we used randomly generated problems. Distance between every two points in the port
as well as the source and destination of jobs were chosen randomly. We did a simulation for 6
hours subject to generating 5 jobs for any idle crane. Other parameters for this simulation were
the same as Table 5-1. We compared solutions of the both algorithms, NSA+H and GVS. The
components in the objective function, the number of carried jobs and delay from the appointment
time were compared in this experiment. Our observations were:

Observation 8-1: Figures 8-5 shows components in the objective function, the waiting and
travelling times of vehicles for both the algorithms. As we can see from the figure, waiting times
of the vehicles for Greedy Vehicle Search is significantly greater than waiting times of the
vehicle in Network Simplex plus Algorithm, although travelling times of the vehicles for both
algorithms are almost the same during the 6 hours. The main reason for the result is that Network
Simplex plus Algorithm solves the MCF-AGV model (in Chapter 4) and produces the global
optimum solution for the problem whereas GVS does a search in the search space and finds out a
local optimum for the MCF-AGV-I model.

Components in the Objective Function

0
50000

100000
150000
200000
250000
300000
350000
400000

0 5000 10000 15000 20000
Time (Second)

Se
co

nd

GVS:Total Waiting Times of the Vehicles GVS:Total Travelling Times of the Vehicles
NSA+:Total Waiting Times of the Vehicles NSA+:Total Travelling Times of the Vehicles

Figure 8-5: A comparison of NSA+ and GVS for Travelling and Waiting Times of the Vehicles

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 132 -

Observation 8-2: Figure 8-6 shows the number of carried jobs during the six hour simulation
(21,600=6×3,600). As we can see in the figure, the number of carried jobs for both algorithms,
NSA+ and GVS, approximately is the same. Generally, due to the tight schedules of the quay
cranes, it is undesirable for containers to be served early or too late for the appointment.

Number of Carried Jobs

0
200
400
600
800

1000
1200

0 5000 10000 15000 20000
Time (Second)

Nu
m

be
r

GVS:Number of Carried Jobs NSA+:Number of Carried Jobs
Figure 8-6: The number of carried jobs by NSA+ and GVS during 6 hour simulation

However, it may be argued that the average lateness from the appointment times is another
indicator for goodness of the algorithms. Given the number of served jobs, N, the time at which
the job i is served, ACTi , and the time of Appointment, APTi , the Average Lateness is
calculated by the following equation:

N
APTACT

LatenessAverage

N

i
ii)(

1
∑

=

−
=

For this indicator, we got the following observation:

Observation 8-3: Figure 8-7 presents the Average Lateness indicator for both NSA+ and GVS
during the six-hour simulation. The figure shows that both algorithms performed well, but GVS
is superior to NSA+ in the Average Lateness. GVS sacrifices the waiting and travelling times of
the vehicles to the Average Lateness.

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 133 -

Average Lateness From the Appointment Times

0

10

20

30

40

0 5000 10000 15000 20000
Time (Second)

Se
co

nd

GVS:Average Lateness from the appointment times
NSA+:Average Lateness from the appointment times

Figure 8-7: A comparison of NSA+ and GVS for the Average Lateness from the appointment time

8.6 Statistical test for the comparison
The waiting and travelling times of the vehicles as well as the average lateness of jobs, produced
by NSA+ and GVS, were analysed statistically. During the simulation, the samples were
collected at regular 30 second intervals. We tested the null hypothesis that the means produced
by the two algorithms were statistically indifferent (α=5%). Table 8-1 provides the test’s result
along with the Critical t-value for a particular degree of freedom.

Table 8-1: The result of T-Test for the two algorithms, GVS and NSA+

Statistical Parameters Total Waiting Times
of the Vehicles

Total Travelling
Times of the Vehicles

Average Lateness from
the appointment times

Observations 720 720 720
T-Test (Paired Two
Sample For Means) -43.4054744 -43.5902651 73.6809406
Degree of Freedom 719 719 719
Critical T-Value -1.646972 -1.646972 -1.646972

Since we cared the change (the difference between the two means) was positive or negative,
‘One-tail’ test was chosen. The Paired T-test confirms that NSA+ is significantly better than
GVS in both travelling and waiting times of the vehicles with 95% level of confidence (see
Figure 6-3 for the acceptance and reject regions). On the other hand, GVS is statistically better
than NSA+ in the Average Lateness.

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 134 -

8.7 Complexity of Greedy Vehicle Search

As we mentioned, GVS can be applied to both static and dynamic problem. In this section,
complexity of the algorithm is calculated.

8.7.1 Complexity of GVS for static problem

For static problems, we assume that every job has to be served by the vehicles. The algorithm
operates as follows:
In the first run, it finds out one job with minimum cost (among N jobs) for a vehicle. In the
second run, another job among N-1 jobs is assigned to a vehicle, which could be the selected
vehicle in the first run or others. This process is continued until there is no remaining job. Hence,
given N jobs and M vehicles in the problem, the complexity of the algorithm is calculated by the
following equation:

2
)1(1)2()1(+××=×+⋅⋅⋅⋅⋅⋅+−×+−×+× NNMMNMNMNM

Therefore, the complexity of GVS is O(M·N2). It is less than the complexity of NSA+ (see
Section 6.5)

We got some samples to show the performance of GVS. The CPU-Time required to solve the
problems by GVS is shown in Figure 8-8.

CPU-Time to solve the problem (GVS)

0
5

10
15
20
25
30
35
40

0 2000 4000 6000 8000
Number of Jobs

Se
co

nd

CPU-Time To solve the problem by GVS
Estimated Value by Polynomial Equation

Figure 8-8: CPU-Time required to solve the static problems by GVS

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 135 -

The estimated values by a polynomial equation (with degree 2) have also been shown on the
figure. As we can see when the number of jobs is 8,000, it takes 35 seconds CPU-time to solve
this large problem (M = 50). Note that these samples have been collected by running GVS on
Windows-XP computer with 2.2 GHz processor and 1GB RAM.

From a comparison between Figure 8-8 and Figure 5-11, we can observe that:
Observation 8-4: Greedy Vehicle Search (GVS) is faster than NSA and NSA+. Moreover, GVS
could solve the larger problems, which are beyond of the limits of NSA and NSA+. GVS could
find a local optimum for the problem of 8,000 jobs within 35 seconds whereas NSA and NSA+
solve the problem with 3,000 jobs within 2 minutes. The reason is that GVS is an incomplete
algorithm while NSA and NSA+ are complete.

We made an estimate of time complexity of the algorithm by the experimental results in Figure
8-8. The time complexity can be expressed in CPU-Time required to find for a local optimum.
The CPU-Time is estimated based on the number of jobs. We considered the following equation
to estimate CPU-Time required to find a local optimum:

2)(bsNumberofJobbsNumberofJoaJobsofNumberfTimeCPU GVS ×+×==−
The estimation’s results for the CPU-Time have been shown in Table 8-2. The coefficients of ‘a’
and ‘b’ have been calculated and put in the Coefficients section of the table.

Table 8-2: Regression result for CPU-Time required to finding a local optimum by GVS for static problem
Multiple R R-Square Adjusted-

R-Square
Standar
d Error Observations

0.99988 0.99977 0.92832 0.1640 16
 DF SS MS F Significance-F

Regression 2 1656.086 828.043 30780.79811 1.28E-24
Residual 14 0.3766 0.0269

Total 16 1656.46

 Coefficients
Standard-

Error t-Stat P-value Lower 95%
Upper
95%

X Variable 1 -7.488E-05 4.121E-05 -1.8171 0.0906578 -0.00016 1.35E-05
X Variable 2 5.33383E-07 6.332E-09 84.242 2.40409E-20 5.198E-07 5.46E-07

Based on the Coefficients in the table, we have the following equation for the CPU-Time to find
a local optimum:

275 1033.510488.7 bsNumberofJobsNumberofJoTimeCPU GVS ××+××−=− −−
More details about information in the table are the same as Section 5.5.

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 136 -

8.7.2 Complexity of GVS for dynamic problem

In dynamic problems, we assume that only one job is assigned to an idle vehicle. Here, there is
no doubt that GVS is very fast. We got some samples to show its performance. The CPU-Time
required to solve the problems by GVS is shown in Figure 8-9. As we can see when the number
of jobs is 10,000, it doesn’t get too much CPU-time to solve the large problems (less than 1
second). Note that these samples have been collected by running the software on Windows-XP
computer with 2.2 GHz Pentium processor and 1GB RAM for 50 vehicles.

Given the number of jobs and vehicles in the problem, N and M, respectively for this algorithm,
its complexity is O(N·M). It is easy to understand this complexity by Figure 8-3 (Pseudo code of
the algorithm).

CPU_Time to solve the problems (GVS)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 2000 4000 6000 8000 10000
Number of Jobs

Se
co

nd

Figure 8-9: CPU-Time required to solve the dynamic problems by GVS

8.8 A discussion over GVS and meta-heuristic

A discussion could be arisen in using GVS compared with some well-known meta-heuristics
(stochastic search methods) such as Genetic Algorithms, Tabu Search, Simulated Annealing
method and others when the problem is too big or when the time available to tackle the problem
is too short. In the literature, we reviewed these solutions methods, including general
considerations and major specific considerations in them (see Section 3.7). In this section, we
have a short discussion on the matter.

University of Essex, Computer Science Department
Chapter 8: Greedy Vehicle Search and Dynamic Scheduling of AGVs

PhD Thesis, Copyrights (H. Rashidi) - 137 -

According to the literature, GVS could be considered as a heuristic. Voβ (2000) [98] defines
heuristic as follows: “A heuristic is a technique (consisting of a rule or a set of rules) which seeks
(and hopefully finds) good solutions at a reasonable computational cost. A heuristic is
approximate in the sense that it provides (hopefully) a good solution for relatively little effort, but
it does not guarantee optimality”. We based GVS on two simple rules, the idle vehicles and jobs
remained. Moreover, GVS doesn’t get too much CPU-Time to tackle the problem and for that
reason it finds out a local optimum solution.

We had the problem with memory to put the MCF-AGV model into (see Section 5.6). One of the
reasons to use GVS is that it has no memory technique. In the literature, we studied that “the
meta-heuristics manipulate a complete (or incomplete) single solution or a collection of solutions
at each iteration” [98]. In order to do that, they require memory. Although, we didn’t provide any
numerical comparison for the matter, our judge is that the memory usage of GVS is nil compared
with the meta-heuristics.

Our work shows that GVS solves a huge problem in a short time. The problem of 10,000 jobs
and 50 AGVs could be solved in a second (see the previous section). Additionally, GVS is
effective in the average lateness to serve the jobs (see Section 8.5). The weakness of the meta-
heuristics is that effectiveness could be sensitive to choice of parameters values and operators
[94]. Basically, finding out a set of suitable parameters for the meta-heuristics and their training
to tackle the problem will be beyond of the scope of this thesis.

8.9 Summary and conclusion

In this chapter a greedy method, Greedy Vehicle Search (GVS) for the scheduling problem of
Automated Guided Vehicles was presented. Then, we compared some solutions of GVS and
NSA+ for the Dynamic Automated Vehicle scheduling problem. Many random problems with
the same distribution were generated and solved by both algorithms. Given the results of the six-
hour simulation, we claim that NSA+ is efficient and effective in both waiting and travelling
times of the vehicles. GVS is useful when the problem is too big for NSA+ to solve or when the
time available to tackle the problem is too short. Being an incomplete algorithm, GVS sacrifices
completeness.

University of Essex, Computer Science Department

- 138 –
PhD Thesis, Copyrights (H. Rashidi)

Chapter 9: Conclusions and Future Research

This thesis was devoted to solution methods for Static and Dynamic Scheduling problem of
Automated Guided Vehicles (SDSAGV) in the container terminals. A special case of Minimum
Cost Flow (MCF) model was defined and presented for the problem. Then, we studied the
effectiveness and efficiency of the Network Simplex Algorithm (NSA) in the literature. We
proposed three new versions of the algorithm; Network Simplex plus Algorithm (NSA+),
Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm
(DNSA+). NSA, NSA+, DNSA and DNSA+ are complete algorithms. They were designed to
find optimal solutions. To complement the solutions, Greedy Vehicle Search (GVS) method was
designed and implemented. GVS is an incomplete algorithm which can be used for reactive
scheduling or when the problem is too big for the complete algorithms. In this final chapter, we
summarise the research conducted on NSA, NSA+, DNSA, DNSA+ and GVS and also discuss
the prospects of future research on the subject.

9.1 Summary of work done

The research started with the study of problems in container terminals. We classified these
problems into five scheduling decisions (Chapter 2). Then we systematically and thoroughly
surveyed the literature over these decisions and formulated them as Constraint Satisfaction
Optimization Problems (Chapter 3). The survey showed that vehicles are important equipment in
the ports and their scheduling is one of the most challenging problems.

We then focused on scheduling problem of Automated Guided Vehicles (AGVs) in container
terminals. Another reason to choosing this problem is that the efficiency of a container terminal
is directly related to use the AGVs with full efficiency. The problem was to carry many container
jobs by several AGVs in their appointment times. We formulated the problem as a Minimum
Cost Flow (MCF) model, a directed graph with particular assumptions. The main motivation to
formulate the problem as a MCF model is that MCF has a rich history and arises in almost all
industries, including agriculture, communications, defence, education, energy, health care,
manufacturing, medicine, retailing, and transportation. The MCF problem is to send flow from a

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

PhD Thesis, Copyrights (H. Rashidi) - 139 -

set of supply nodes, through the arcs of the network, to a set of demand nodes at minimum total
cost, without violating the lower and upper bounds on flows through the arcs. We defined and
presented a special case of Minimum Cost Flow (MCF) model for the Scheduling problem of
Automated Guided Vehicles (Chapter 4). The MCF-AGV is an established name for our model.
The cost of each arc in the MCF-AGV model was the waiting and travelling time of vehicles as
well as the lateness times to serve the container jobs.

The main objectives of this thesis were to solve the Scheduling problem of Automated Guided
Vehicles efficiently and effectively. The MCF-AGV model, formulated in Chapter 4, had a huge
search space and its solution had to provide the optimal paths for each vehicle. Additionally, the
problem was dynamic. From time to time a few new jobs arrived and the distance between the
source and destination of the jobs could be changed.

We first tackled the Static problems (defined in Chapter 4). In order to do that, we used Network
Simplex Algorithm (NSA), which is one of the solution methods for MCF model. In Chapter 5,
we applied the standard version of the algorithm to the problem. We reviewed the literature over
NSA and different schemes to select the next basic solution. Then, implementation of the
algorithm and finding the optimal solution in static problems were considered. Many random
data were generated and fed to the MCF-AGV model for 50 vehicles. Our software, implemented
in Borland C++, by running on a 2.4 GHz Pentium PC, could find the global optimal solution for
3,000 jobs and ten millions arcs in the MCF-AGV model within two minutes. It has been found
that, in practice, the NSA runs in polynomial time to solve the problems.

To tackle the Dynamic Scheduling problem of Automated Guided Vehicles (the problem in
Chapter 4), we extended Network Simplex Algorithm (NSA). In Chapter 6, some enhanced
features were added to NSA to have obtained a novel version of the algorithm, Network Simplex
plus Algorithm (NSA+). The same MCF-AGV models were solved by both algorithms, NSA and
NSA+, and CPU-Time required to solve the problems has been compared. Our experiments
showed that NSA+ can solve the problems faster than NSA. Then, complexity of NSA+ was
calculated. After that, the software for dynamic aspect of the problem has been executed for six
hour simulation. The result of simulation showed the ‘Actual time’ of jobs, at which they have
been handled by the vehicles and cranes, have a good fitting with their ‘Appointment times’.

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

PhD Thesis, Copyrights (H. Rashidi) - 140 -

Another goal of this thesis was to extend NSA in dynamic aspect. In Chapter 7, Dynamic
Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+)
were presented. The objectives of these algorithms were to solve the new problem faster, to use
some parts of the previous solution for the next problem and to respond to change in the situation.
In order to confirm the validity of DNSA+, again we used the Dynamic Scheduling problem of
Automated Guided Vehicles (the problem defined in Chapter 4). The same problems have been
solved by NSA+ and DNSA+. Our experiment showed that the number of iterations is decreased
if we repair the current solution for the next problem when any changes happen, compared with
starting from the scratch by NSA+.

NSA and its extensions are complete algorithms. Although they are efficient, they can only work
on problems with certain limits in size. To complement the algorithms, the Greedy Vehicle
Search (GVS) method was designed and implemented (Chapter 8). GVS is useful for problems
which sizes go beyond the limits, or in dynamic scheduling where reactive responses are called
for, or when the time available to tackle the problem is too short.

To evaluate the relative strength and weakness of GVS and NSA+ in the Dynamic Scheduling
problem (the problem defined in Chapter 4), we used randomly generated problems. The
objective function of the problem had three terms, waiting times of the AGVs, travelling times of
AGVs and the lateness time to serve the jobs. We did a simulation for 6 hours. By the end of the
simulation, we claimed that (a) NSA+ is efficient and effective in both waiting and travelling
times of the vehicles; (b) GVS is efficient in the average lateness to serve the container jobs.

Table 9-1 makes a summary of the solution methods for the problem in Chapter 4. NSA and its
extensions, as complete algorithms, and GVS, as an incomplete algorithm, have been studied in
this thesis. These algorithms have been applied to the defined scheduling problem of Automated
Guided Vehicles. The main features, complexity, performance and effectiveness of the
algorithms have been compared in the table. Additionally, we specified which algorithms were
designed and convenient for the static/dynamic problem.

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

- 141 –
PhD Thesis, Copyrights (H. Rashidi)

Table 9-1: A summary of the algorithms studied in this thesis for the MCF-AGV model
Algorithms
(Reference) Main Feature

Complete/
Incomplete
algorithm

Static/Dynamic
Problem Performance Complexity

(Reference)
Effectiveness
(Reference)

NSA

(Chapter 5)
A graph algorithm to
solve MCF model

Faster than
equivalently size
Linear Program. It has
a lower complexity
than Original Simplex
Method.

NSA+

(Chapter 6)

A graph algorithm
with enhanced
feature to solve MCF
model

Designed for static
problems; when applied
to dynamic problems, the
changed problems are
tackled from scratch.
 Faster than NSA in

both static and
dynamic problems

DNSA
(Chapter 7)

Dynamic version of
NSA to solve MCF
model

Faster than NSA and
NSA+ in dynamic
problems

DNSA+
(Chapter 7)

Dynamic version of
NSA+ to solve MCF
model

Complete; Produce
optimal solution.

Designed for dynamic
problems; graph
structure is changed
incrementally.

Faster than DNSA in
dynamic problems

O (N6); N is the number
of jobs in the problem
(Sections 6.5 and 7.7).

We assumed the number
of jobs is greater than the

number of vehicles.

Effective in minimizing
both travelling and
waiting times of the

vehicles (Section 8.5).

GVS
(Chapter 8)

Greedy Vehicle
Search to solve MCF
model in the special
case

Incomplete;
Produce a local
optimum.

Designed for both static
and dynamic problems,
preferred when size of
the problem is beyond
the limits of NSA,
NSA+, DNSA and
DNSA+ or when the
time available to tackle
the problem is too short

Faster than NSA and
its extensions (NSA+,
DNSA, DNSA+).

Given N jobs and M
vehicles in the problem
1) O (M·N2): for static
problems (Section 8.7.1)
2) O (M·N): for dynamic
problems (Section 8.7.2).

Effective in minimizing
the lateness time to serve

the jobs (Section 8.5).

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

- 142 –
PhD Thesis, Copyrights (H. Rashidi)

9.2 Observations and conclusions

Based on the experimental results by the algorithms, studied in this thesis for the problem defined
in Chapter 4, we summarize the conclusions as follows:

• NSA, NSA+, DNSA and DNSA+ are complete algorithm whereas GVS is incomplete.
The solutions of the complete algorithms are optimal while GVS provides a local
optimum solution for the problem.

• NSA, NSA+, DNSA and DNSA+ solve the whole problem and assign every job to the
vehicles. In GVS, each job is assigned to just one vehicle with minimum cost. In the
normal situation the number of vehicles is less than the number of jobs in the port. In this
case, if the problem is solved by GVS, then the number of remaining jobs after the first
run is not zero. This shows the search is continued and the rate of execution to find out a
job for the vehicles is significant (when the number of jobs is high) compared with other
algorithms.

• NSA, NSA+, DNSA and DNSA+ are efficient and effective in both traveling and waiting
times of the vehicles. GVS is more effective and efficient in the lateness time to serve the
jobs.

• GVS is useful for both static and dynamic problems when the problem is too big. GVS
has a lower complexity than the complete algorithms. It can be used when the size of
problem is beyond of the limit of the complete algorithms or when the time available to
solve the problem is too short.

• The performance of NSA+ is better than NSA in both static and dynamic problems.
• In dynamic aspect when there are changes in the problem, DNSA and DNSA+ have a

better performance than NSA and NSA+, respectively. We therefore suggest DNSA and
DNSA+ for dynamic problem and NSA and NSA+ for static one. If the percentage of
changes is more than 60 percent, NSA+ is preferred in our experience.

• Given the results, we claim that NSA, NSA+, DNSA and DNSA+ as well as GVS are
practical algorithms for Automatic Vehicle Scheduling.

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

PhD Thesis, Copyrights (H. Rashidi) - 143 -

9.3 Research contributions

The main contributions of this thesis are as follows:

• We formulated the five scheduling decisions, defined in Chapter 2, as Constraint
Satisfaction Optimization Problems (Chapter 3).

• We presented a definition for the special Graph of the MCF model and a formal
definition for the MCF model itself. We formulated the Scheduling problem of
Automated Guided Vehicles in container terminals and modelled it under the MCF.
We established a name for the model, the MCF-AGV (Section 4.5 in Chapter 4). The
objective function of the MCF-AGV model is to minimize the travelling and waiting
times of vehicles as well as the lateness time to serve container jobs, as a single
objective optimization problem.

• We have applied the standard version of Network Simplex Algorithm to the static
problem (Defined in Chapter 4). Our software can find the global optimal solution for
3,000 jobs and ten millions arcs in the MCF-AGV model within two minutes4 by
running on 2.4 GHz Pentium PC (Chapter 5).

• We have developed a novel version of Network Simplex Algorithm (NSA), Network
Simplex plus Algorithm (NSA+). We have demonstrated that NSA+ is faster than
NSA (Chapter 6).

• We have extended NSA to dynamic problems. In this aspect two algorithms, Dynamic
Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm
(DNSA+) were presented. The objectives of these algorithms are to respond to change
in the problem and to use some parts of the previous solution for the next problem. In
dynamic aspect, DNSA and DNSA+ are faster than NSA and NSA+, respectively
(Chapter 7).

• We have developed Greedy Vehicle Search (GVS) algorithm for Scheduling
Automated Guided Vehicles in the container terminals. It can be applied to both static
and dynamic problems. GVS is an incomplete algorithm and useful when the problem
is too big for the complete algorithms or when the time available to tackle the
problem is too short (Chapter 8).

4 http://privatewww.essex.ac.uk/~hrashi/Overview%20of%20this%20research.htm

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

PhD Thesis, Copyrights (H. Rashidi) - 144 -

• We have produced a set of benchmark5 problems for Automated Guided Vehicles in
the container terminals. These are published in our benchmark web pages, which
enable other researchers to compare other algorithms to the one proposed in this
thesis. Now there are four sizes of the problem (Small, Medium, Large and very
Large) with their solutions.

9.4 Future research

The research reported in this thesis (discussed in Chapters 4 to 8) focused on certain topic of
Scheduling problem of Automated Guided Vehicles in the container terminals. In this section,
several topics for further research are presented.

9.4.1 Scheduling and routing of the vehicles

The first interesting extension to this research is to combine scheduling and routing of the
vehicles together. In Chapter 4, this research assumed that there are no traffic problems such as
breakdown, congestion, collision, live-lock and deadlock for the vehicles while they are carrying
and handling the jobs. Therefore, a possible extension is to relax this assumption and develop a
new algorithm for routing of vehicles according to different port layout with respect to those
traffic problems.

A few different topologies for container terminal including linear path, single-circle and mesh-
like path [79] may be considered. In linear path topology the scheme is to schedule and route a
batch of AGVs concurrently. In the second topology, circle, including single-circles and multi-
circles, few vehicles are running in same direction within the circle. In the last topology, mesh-
like path, the the storage area are usually arranged into rectangular blocks, which leads to a
mesh-like path topology for the vehicles.

In an automated container terminal, the traffic problems are critical. An AGV malfunction or
breakdowns lead to an interruption in container handling. Collision occurs when more than one
AGV attempt to occupy the same segment of the path at the same time. Congestion arises at a

5 http://privatewww.essex.ac.uk/~hrashi/Current%20Research.htm#CurrentResearch

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

PhD Thesis, Copyrights (H. Rashidi) - 145 -

location where there is insufficient resource so that for a period of time the number of arrivals is
greater than that of serviced requests. A live-lock may arise at the junction where the horizontal
stream of traffic is given higher priority to obtain the left-of-way such that the vertical one may
keep waiting indefinitely. A deadlock will arise when multiple AGVs mutually wait for the
release (which will never occur) of the resource held by the others. The problem, here, will be to
find a suitable route for the AGVs from origin to destination based on current traffic situation,
according to the port topology.

It should be clear that AGV systems are, intrinsically, parallel and distributed systems that
require a high degree of concurrency. Our feeling is that the routing and scheduling of these
systems are a fertile area where engineers and computer scientists can have significant
contributions.

9.4.2 Economic and optimization model

Investments in container terminals are very substantial and scheduling of their equipment are
very challenging problem. In order to obtain maximum benefits it is necessary to develop an
economic model and combine it with an optimisation model. It should be pointed out that in the
literature there is no significant model with links between economic indicators and the
optimisation model. Further research on this topic is needed.

As we mentioned, the main functions of container terminals are delivering containers to
consignees and receiving containers from shippers, loading containers onto and unloading
containers from vessels and storing containers temporarily. A complete economic plan has to
identify and represent the fundamental components in container terminal and transportation
system. These components are demand, supply, cost, performance measures, and decision criteria.
Their interactions may be considered. Developing a demand function to receiving containers
from shippers, developing a supply model to delivering containers to consignees, estimating a
cost function for the vehicles, quay cranes, yard cranes and even container terminal are in the list
for the future. The research may estimate the weights of travelling and waiting times of the
vehicles, the weights of holding cost of jobs on the quay-side or in the yard-side with particular
assumptions. A performance function based on some economic indicators may be maximized.

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

PhD Thesis, Copyrights (H. Rashidi) - 146 -

Constraints of the function are the spatial allocation of containers in the terminal yard, the
allocation of resources and the scheduling of operations.

Therefore development an integrated system for both aspects, economic and optimisation, is
suggested for future research. Automatic adaptation and estimation methods in real time are
necessary.

9.4.3 Other possible extension

Automated Guided Vehicles in the container terminals, as the most flexible equipment, affect
other decisions in the port. Therefore, another possible extension is to integrate the scheduling of
Automated Guided Vehicles with other decisions. Allocation of berth to arriving vessels, Quay
Cranes to docked vessels, storing the incoming containers in the yard and deployment of the
Yard Cranes may be in the candidate lists for this integration. These decisions have been
formulated in Chapter 3 of this thesis.

Firstly, allocation problem of berth and quay cranes to arriving vessel may be integrated with
Scheduling of Automated Guided Vehicles. An objective function of the integrated decision is to
minimize the sum of handling costs of containers. A set of assumptions and constraints according
to the berth, quay cranes and vehicles should be considered. New solution methods may need to
be developed.

Secondly, storing incoming containers in the yard has an important role in global productivity of
the terminal. It can be combined with Scheduling of Automated Guided Vehicles. An objective
function of this decision is to minimize distribution of the total number of containers among
blocks in the yard and the sum of container transportation costs. A set of assumptions and
constraints according to layout of the yard and movement of the vehicles should be considered in
the model. New solutions may be needed to be developed.

Thirdly, deployment of yard cranes is also highly interrelated to the movement and Scheduling of
Automated Guided Vehicles. These two decisions can be combined together. The objective
function of this decision is to minimize the remaining workload at each block, travelling and
waiting times of the vehicles as well as travelling time of the RTGCs among blocks during the

University of Essex, Computer Science Department
Chapter 9: Conclusions and Future Research

PhD Thesis, Copyrights (H. Rashidi) - 147 -

planning horizon. Developing new algorithms and new deployment policy for RTGC are
recommended.

University of Essex, Computer Science Department

- 148 –
PhD Thesis, Copyrights (H. Rashidi)

Appendix: Information on Web

This research is focused on Dynamic Scheduling of Automated Guided Vehicles6 (AGV). The
problem is to schedule several AGVs in a port to carry many containers from the quay-side to
yard-side or vice versa. This problem is formulated as a minimum cost flow problem and then
solved by Network Simplex Algorithm (NSA), Network Simplex plus Algorithm (NSA+),
Dynamic Network simplex Algorithm (DNSA) and Dynamic Network simplex Plus Algorithm
(DNSA+). In this research my contributions are NSA+, DNSA and DNSA+. NSA+ is faster than
NSA. DNSA and DNSA+ repair the previous solution when any changes happen.

Instances for Static Problems
and their Solutions

Distance Table
Problem1 (Small Size)
Problem2 (Medium Size)
Problem3 (Large Size)
Problem4 (Extra Large Size)

Instances for Dynamic
Problems and their Solutions

Problems
Solutions

Performances

Links

 The VRP Web b

To test the model and performance of the algorithms in our implementation, many jobs have been
generated. Their sources, destinations and the distance between every two points in the port have
been chosen randomly. As it can be seen in Figure web-1, our software, which has been
implemented by C++, running on 2.4 GHz Pentium PC, can find the global optimal solution for
3,000 jobs within two minutes.

6 http://privatewww.essex.ac.uk/~hrashi

University of Essex, Computer Science Department

Information on Web

PhD Thesis, Copyrights (H. Rashidi) - 149 -

CPU-Time to Solve the MCF-AGV Model by NSA

0
20
40
60
80

100
120
140
160

0 500 1,000 1,500 2,000 2,500 3,000 3,500
Number of Jobs

Se
co

nd

Solving the Model (Second) Estimated valur by Polynomial equation

Figure web-1: CPU-Time required to solve the graph model

Overview of this research:
This research concerns itself with the scheduling of Autonomous Guided Vehicles (AGV’s) in
a port. Port components that are relevant to our problem include berths, Quay Cranes (QC),
container storage areas, and a road network. A transportation requirement in a port is described
by a set of jobs. Each job is described by (a) the source location of a container; (b) the target
location, where the container is to be delivered to; and (c) the time at which it is available for
pick-up or drop-off on the quay-side. Any delay will incur heavy penalties. Given a number of
AGVs and their availability, the task is to schedule the AGVs to meet the transportation
requirements.

Assumptions:

• The layout of a port container terminal is given. Also it is assumed the vehicles move with

an average speed so that there are no Collisions, Congestion, Live-locks and Deadlocks
problem.

• The travel time between every combination of pick-up /drop-off points is provided
according to our layout.

• Every AGV can transport only one container. Also it is assumed that the start location of
each AGV at the beginning of the process is given.

University of Essex, Computer Science Department

Information on Web

PhD Thesis, Copyrights (H. Rashidi) - 150 -

• Rubber Tyred Gantry Cranes or yard crane resources are always available, i.e., the AGVs
will not suffer delays in the storage yard location or waiting for the yard cranes.

• The source and destination of container jobs over the port are given.
• For each QC, there is a predetermined crane job sequence, consisting of loading jobs, or

unloading/discharging jobs, or a combination of both. For each loading (discharging) job,
there is a predetermined pickup (drop-off) point in the yard, which is the origin (destination)
of the job.

• Appointment time of every container job at its source (destination) on the quay side is given.
• For the dynamic aspect of the problem, it is assumed that the number of vehicles is fixed,

but the number of jobs and the distance between every two points in the port may be
changed.

Development:
Our software consists of the optimisation, scheduling and a simulation program. The software
can find the global optimal solution for 3,000 jobs and ten millions arcs in the graph model
within 2 minutes by 2.4 GHZ Pentium processor on PC. Figure web-2 shows the main form of
the software.

Some important features of our program are described briefly in the following sections:
• The user can define a few ports, the number of blocks in the yard, the number of working

positions or crane and the number of Automated Guided Vehicles in each port.
• A facility to generate the distance between different points in the yard or in the berth has

been considered. At the first step, this distance is generated randomly, but it is modifiable
by the user.

• For static and dynamic fashion, a few container jobs might be generated, which have to be
transported from their sources to their destinations. Either the source or the destination of
them is the quay side, which is chosen randomly by the Job-Generator. There are three
options for quay cranes: single crane and multiple cranes randomly and circular. In the first
option, crane number 1 is selected to handle the job whereas in the second option one crane,
among several cranes in the berth, is determined to handle the job. In the latter option,
choosing the crane number is circular; the first job for the first crane, second job for the

University of Essex, Computer Science Department

Information on Web

PhD Thesis, Copyrights (H. Rashidi) - 151 -

second crane and so on. After the next job is assigned to the last crane, the turn goes to the
first crane.

Figure web-2: The main form of the software

• At the start of the process, the start location of each vehicle may be any point in the port.

The user can define or change the ready time of the vehicles at the start location and the
location as well. But at the first stage, we generate them randomly.

• The initial time for the operation, the time window of the cranes and vehicles should be
defined by the user. The first parameter plays a role as the ship-arrival time; the second one
means how long it takes for every job to be picked-up or dropped-off by the crane. The last
one is the time for the vehicle to pick-up or drop-off a job from/to the crane. We assume
some defaults values for these parameters.

• The use can monitor some indices to measure the efficiency of the terminal. The waiting or
delay time for every job, the number of jobs and the travelling and waiting times for every
vehicle are calculated in the static and dynamic fashion.

University of Essex, Computer Science Department

Information on Web

PhD Thesis, Copyrights (H. Rashidi) - 152 -

Some interfaces of our Software:

Figure web-3: The output of Static fashion.

Figure web-4: Monitoring some indicators of the output in Dynamic aspect

University of Essex, Computer Science Department

- 153 –
PhD Thesis, Copyrights (H. Rashidi)

University of Essex, Computer Science Department

- 154 –
PhD Thesis, Copyrights (H. Rashidi)

References

1. Aggarwal C.C, Kaplan H, Tarjan R.E., “A Faster Primal Network Simplex

Algorithm”, Massachusetts Institute of Technology, Operations Research Centre,
Working Paper; OR 315-96, 1996.

2. Ahuja R.K, Magnanti T.L, Orlin J. B, “Network Flows: Theory, Algorithms and
Applications”. Prentice Hall. 1993.

3. Ahuja R.K, Orlin J.B, Sharma P, Sokkalingam P.T, “A network simplex algorithm
with O(n) consecutive degenerate pivots”. Operations Research Letters, Volume 30(3),
pp 141-148, 2002.

4. Akturk M.S, Yilmaz M, "Scheduling of Automated Guided Vehicles in a Decision
Making Hierarchy," International Journal of Production Research, Volume 34, pp
577-591, 1996.

5. Ambrosino D, Marina M.E, Sciomachen A, “Decision rules for the yard storage
management”, University of Genova, Technical Report, Italy, 2002

6. Andrew V.G, “An efficient implementation of a scaling minimum-cost flow
algorithm”. Journal of Algorithms, Volume 22(1), pp 1-29, January 1997.

7. Blażewicz J, Machowiak M, Edwin Cheng T.C, Qğuz C, “On a certain Berth
Scheduling Problem”, Proceedings of the 2nd Multidisciplinary International
conference on Scheduling, Theory and Applications (MISTA), Volume 2, pp 694-
697, 2005.

8. Böse J, Reiners T, Steenken D, Voß S, “Vehicle Dispatching at Seaport Container
Terminals Using Evolutionary Algorithms”. Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences, IEEE, Piscataway, pp 1-10, 2000.

9. Burke E., Hart E., Kendall G., Newall J., Ross P. and Schulenburg S. “Hyper-
Heuristics: An Emerging Direction in Modern Search Technology”, Handbook of
Meta-Heuristics, pp 457 – 474, 2003.

10. Burke E.K., Kendall G. and Soubeiga E. “A Tabu-Search Hyper-Heuristic for
Timetabling and Rostering”, Journal of Heuristics, Volume 9(6), pp 451-470, 2003.

11. Carre B., “Graphs and Networks”. Oxford University Press, Oxford, UK, 1979.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 155 -

12. Cave A, Nahavandi S, Kouzani A, “Simulation optimization for process scheduling
through simulated annealing”. Proceedings of the 2002 Winter Simulation Conference,
pp 1909–1913, 2002.

13. Chan S.H, “Dynamic AGV-Container Job Deployment”, Master of Science,
University of Singapore, 2001.

14. Cheng Y, Sen H, Natarajan K, Teo C, Tan K, "Dispatching automated guided
vehicles in a container terminal", Technical Report, National University of
Singapore, 2003.

15. Chiang W.C, Russell R.A, “Simulated Annealing Metaheuristics for the Vehicle
Routing Problem with Time Windows”. Annals of Operations Research, Volume 63,
pp 3-27, 1996.

16. Chowdhury M.S, Chein S.I, “Dynamic Vehicle Dispatching at inter-modal Transfer
station”, Transportation research board, 80th Annual meeting, Washington, 2001.

17. Christiansen M, Fagerholt K, Ronen D, “Ship Routing and Scheduling - Status and
Trends”, Norwegian University of Science and Technology, Trondheim, Norway.
University of Missouri, USA. Accepted for publication in Transportation Science,
2003.

18. Chuanyu C, “Simulation and optimization of container yard operation: A survey”,
Technical Report, Nanyang Technological University, Singapore, 2003.

19. Cowling P I, Ouelhadj D, Petrovic S. “A Multi-agent Architecture for Dynamic
Scheduling of Steel Hot Rolling”, Journal of Intelligent Manufacturing, Volume 14(5),
pp 457-470, 2003.

20. Cowling P, Ouelhadj D. and Petrovic S, “Dynamic scheduling of steel casting and
milling using multi-agents”, Production Planning and Control, Volume 15, pp 1-11,
2004

21. Czech Z.J, Czarnas P, "Parallel simulated annealing for the vehicle routing problem
with time windows", 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands - Spain, pp 376-383, 2002.

22. Dondo R, Mndez C.A, Cerd J, ”An optimal approach to the multiple-depot
heterogeneous vehicle routing problem with time window and capacity constraints”,
Latin American Applied Research, Volume 33, pp 129-134, 2003.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 156 -

23. Duinkerken M.B, Ottjes J.A, “A simulation model for automated container terminals”.
Proceedings of the Business and Industry Simulation Symposium (ASTC2000). April
2000.

24. Eppstein D, “Clustering for faster network simplex pivots”, Proceeding of 5th ACM-
SIAM Symposium. Discrete Algorithms, pp 160–166, 1994.

25. Eppstein D, Galil Z, Italiano G.F, “Dynamic graph algorithms”, In CRC Handbook of
Algorithms and Theory, chapter 22. CRC Press, 1997.

26. Fink A, Voß S, ”HOTFRAME: A Heuristic Optimisation Framework”, Optimisation
Software Class Libraries, Kluwer, Boston, pp 81-154, 2002.

27. Gambardella L.M, Rizzoli A.E. Zaffalon M, “Simulation and Planning of an
Intermodal Container Terminal”, Simulation, Volume 71(2), pp 107-116, 1998.

28. Gebraeel N.Z, Lawley M.A, "Deadlock Detection, Prevention, and Avoidance for
Automated Tool Sharing Systems", IEEE Transactions on Robotics and Automation,
Volume 17 (3), pp 342-356, June 2001.

29. Goldberg A.V, Kennedy R, “An Efficient Cost Scaling Algorithm for the Assignment
Problem”. Technical Report, Stanford University, 1993.

30. Gribkovskaia I, Halskau O, Bugge M, Kim N, ”Models for Pick-Up and Deliveries
from Depots with Lasso Solutions”. Working Paper, Molde University College,
Norway, 2002.

31. Grunow M, Günther H.O, Lehmann M: “Dispatching multi-load AGVs in highly
automated seaport container terminals”, OR Spectrum, Volume 26 (2), pp 211-235,
2004.

32. Gunadi W.N, Rose A.A, Shamsuddin S.M, Mohd N.M. “Vehicle Routing Problem
For Public Transport: A Case Study”. Proceeding Of International Technical
Conference on Circuits/Systems, Computers and Communications, Volume 2, pp.
1180-1183, 2002.

33. Hansen P, Oguz C, “A Note on formulation of the Static and Dynamic Berth
Allocation Problems”, Technical Report, Department of Management, Hong Kong
Polytechnic University, 2003.

34. Hartmann S, “Generating scenarios for simulation and optimisation of container
terminal logistics”. Working paper 564, University of Kiel, Germany. 2002.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 157 -

35. Hasama T, Kokubugata H, Kawashima H, “A Heuristic Approach Based on the String
Model to Solve Vehicle Routing Problem with Backhauls”, Proceeding of the 5th
World Congress on Intelligent Transport Systems (ITS), Seoul, 1998.

36. Helgason R, Kennington J, "Primal Simplex Algorithms for Minimum Cost Network
Flows," Handbook on Operations Research and Management Science, Volume 7,
Amsterdam, pp 85-133, 1995.

37. Henesey L, Wernstedt F, Davidsson P, “Market-Driven Control in Container
Terminal Management “, 2nd International Conference on Computer Applications and
Information Technology in the Maritime Industries, 2003.

38. Henry Y. K. L, Ying Z, Chuanyou P, “Integrated Scheduling of different Types of
Handling Equipment at Automated Container Terminals”, Proceedings of the 2nd
Multidisciplinary International conference on Scheduling, Theory and Applications
(MISTA), Abstract paper, Volume 2, pp 536-537, 2005.

39. Hollingworth J, Gustavson P, Swart B, Cashman M., “Borland C++Builder 6
Developer’s guide”, Sams Publishing, 2003.

40. ILOG optimisation suite- White papers. Available via http://www.ilog.com. Last
check of the address: 3 July 2005.

41. Indra-Payoong N, Kwan R.S.K, Proll L.G. “Constraint-Based Local Search for Rail
Container Service Planning”, Proceeding of the MISTA Conference, Nottingham,
August 2003.

42. Ioannou P, Chassiakos A, Jula H, Unglaub R, "Dynamic optimization of cargo
movement by trucks in metropolitan areas with adjacent ports”, Metrans Technical
Report, Center for Advanced Transportation Technologies, University of Southern
California, June 2002.

43. Ioannou P.A, Jula H, Liu C.I, Vukadinovic K, Pourmohammadi H. “Advanced
Material Handling: Automated Guided Vehicles in Agile Ports”, CCDoTT Technical
Report, Center for Advanced Transportation Technologies, University of Southern
California, Jan. 2001.

44. Ioannou P.A, Kosmatopoulos E.B, Vukadinovic K, Liu C.I, Pourmohammadi H,
Dougherty E, “Real time testing and verification of loading and unloading algorithms
using Grid Rail (GR)”, Center for Advanced Transportation Technologies, University
of Southern California, Los Angeles, Technical Report, Oct. 2000.

45. Iris F.A. Vis, “http://www.ikj.nl/container/”, Last check of the address: 3 July 2005.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 158 -

46. István M, “A General Pricing Scheme for the Simplex Method “, Department of
Computing, Imperial College, Technical Report, London, 2001-3

47. Jianyang Z, Wen-Jing H, Yee V.V, “An AGV-Routing Algorithm in the Mesh
Topology with Random Partial Permutation”, Centre for Advanced Information
Systems, School of Computer Engineering, Nanyang Technological University,
Singapore, Technical Report, Singapore, 2003.

48. Kelly D.J, O’Neill G.M, "The Minimum Cost Flow Problem and The
Network Simplex Solution Method", Master Degree Dissertation, University College,
Dublin, 1993.

49. Kendall G. and Mohd Hussin N. “An Investigation of a Tabu-Search-Based Hyper-
heuristic for Examination Timetabling, Multidisciplinary Scheduling; Theory and
Applications”, Springer, pp 309-328, 2005.

50. Kilby P, Prosser P, Shaw P, “Guided local search for the vehicle routing problem”,
Proceeding of 2nd International Conference on Mataheuristics - MIC97, Sophia-
Antipolis, France, July 1997.

51. Kim K.H, Won S.H, Lim J.K, Takahashi T, “A simulation-based test-bed for a control
software in automated container terminals”, Department of Industrial Engineering,
Pusan National University, Technical report, Pusan, 2000.

52. Kozan E,Wong A, ”An Optimisation model for export and import container process in
seaport terminals”, 25th Australasian Transport Research Forum, Canberra, CD-ROM,
2002.

53. Lau H.C, Liang Z, ”Pickup and Delivery with Time Windows : Algorithms and Test
Case Generation”, 13th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI-2001, Dallas, USA, pp 333-340. 2001.

54. Lau T.L, Tsang E.P.K, “Guided genetic algorithm and its application to radio link
frequency assignment problems”, Journal of Constraints, Volume 6, pp 373-398, 2001.

55. Lim A, Rodrigues B, Zhu Y, “Crane scheduling using squeaky wheel optimization
with local search”. Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution and Learning, Singapore, 2002.

56. Lin W, “On Dynamic Crane Deployment in Container Terminals”, Master of
Philosophy in industrial engineering and engineering management, University of
Science & Technology, Hong Kong, Jan. 2001.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 159 -

57. Liu C.I, Jula H, Ioannou P.A, “Design, simulation, and evaluation of automated
container terminals,” IEEE Trans. on Intelligent Transportation Systems, Volume 3(1),
pp 12–26, 2002.

58. Löbel A.,“MCF: A Network Simplex Implementation”, Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB), Technical Report, 2000.

59. Marco E. L Ubbecke, “Combinatorial Simple Pickup and Delivery Paths”, Central
European Journal of Operations Research, 2003.

60. Meersmans P.J.M, Dekker R, “Operations research supports container handling”,
Technical Report EI 2001-22, Erasmus University of Rotterdam, Econometric
Institute, 2003.

61. Meersmans P.J.M, Wagelmans A.P.M, “Dynamic scheduling of handling equipment
at automated container terminals”, Technical Report EI 2001-33, Erasmus University
of Rotterdam, Econometric Institute, 2001.

62. Meersmans P.J.M, Wagelmans A.P.M, “Effective algorithms for integrated
scheduling of handling equipment at automated container terminals”. Technical
Report EI 2001-19, Erasmus University of Rotterdam, Econometric Institute, 2001.

63. Mitrovic-Minic S, “Pickup and delivery problem with time window: A survey.
Technical Report 1998-12, School of Computing Science, Simon Fraser University,
Burnaby, BC, Canada, May 1998.

64. Moin N.H, “Hybrid Genetic Algorithms for Vehicle Routing Problems with Time
Windows”, submitted to Computers & Operations Research, 2002.

65. Moon K.C, “A Mathematical Model and a Heuristic Algorithm for Berth Planning”,
Industrial Engineering / Pusan National University, Telecommunication Grooming,
Volume 2 (3), May/June 2001.

66. Moorthy R.L, Hock-Guan W, Wig-Cheong N, Chung-Piaw T, “Cyclic deadlock
prediction and avoidance for zone controlled AGV system”. International Journal of
Production Economics, Volume 83, pp 309-324, 2003.

67. Muramatsu M, "On network simplex method using primal-dual symmetric pivoting
rule", Journal of Operations Research of Japan, Volume 43, pp 149-161, 2000.

68. Murty K.G, Liu J, Wan Y.W, Linn R.J, “A Decision Support System for operations in
a container terminal”. Decision Support System, Volume 39, pp 309-332, 2005.

69. Nuhut Ö, “Scheduling of Automated Guided Vehicles”, Technical Report,
Department of Industrial Engineering, Bilkent University, 1999.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 160 -

70. Orlin J.B, “A Polynomial Time Primal Network Simplex Algorithm for Minimum
Cost Flows (An Extended Abstract)”, Mathematical Programming 78 Series B, pp
109-129, 1996.

71. Ouelhadj, D., Cowling, P., Petrovic, S., “Contract Net Protocol for Cooperative
Optimisation and dynamic Scheduling of Steel Production”, published in the Book of
Intelligent Systems Design and applications, Springer-Verlag, pp 457-470, 2003.

72. Ouelhadj, D., Petrovic, S., Cowling, P. and Meisels, A., “Inter-agent cooperation and
communication for agent-based robust dynamic scheduling in steel production”,
Accepted for publication in Advanced Engineering and Informatics (Artificial
Intelligence in Engineering), 2005.

73. Park Y.M, Kim K.H, “A scheduling method for Berth and Quay cranes”, OR
Spectrum, Volume 25, pp 1–23, 2003.

74. Petrovic S., Fayad C. and Petrovic D., "Job Shop Scheduling with Lot-Sizing and
Batching in an Uncertain Real-Wold Environment", The 2nd Multidisciplinary
Conference on Scheduling: Theory and Applications, pp 363-379, 2005.

75. Petrovic, S., Fayad, C., "A Fuzzy Shifting Bottleneck Hybridised with Genetic
Algorithm for Real-world Job Shop Scheduling", Proceedings of Mini-EURO
Conference, Managing Uncertainty in Decision Support Models, Coimbra, Portugal,
pp 1-6, 2004.

76. Qiu L, Hsu W.J, “A bi-directional path layout for conflict-free routing of AGVs”.
International Journal of Production Research, Volume 39 (10), pp 2177-2195, 2001.

77. Qiu L, Hsu W.J, “Conflict-free AGV routing in a bi-directional path layout”,
Proceedings of the 5th International Conference on Computer Integrated
Manufacturing, Volume 1, pp 392-403, Singapore, 2000.

78. Qiu L, Hsu W.J, “Scheduling of AGVs in a mesh-like path topology”. Technical
Report CAIS-TR-01-34, Centre for Advanced Information Systems, School of
Computer Engineering, Nanyang Technological University, Singapore, July 2001.

79. Qiu L, Hsu W.J, Huang S.Y, Wang H. “Scheduling and Routing Algorithms for
AGVs: a Survey”. International Journal of Production Research, Taylor & Francis
Ltd, Volume 40 (3), pp 745-760, 2002.

80. Qiu L, Hsu W.J,“Algorithms for routing AGVs on a mesh topology”, Proceedings of
the 6th European Conference on Parallel Computing (Euro-par 2000), pp 595-599,
Munich, Germany, 2000.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 161 -

81. Qiu L, Hsu W.J. “Routing AGVs by sorting”. Proceedings of International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA 2000), Volume 3, pp 1465-1470, Las Vegas, Neveda, USA, 2000.

82. Rauch M, “Fully dynamic graph algorithms and their data structures”. PhD thesis,
Department of computer science, Princeton University, 1992.

83. Ravindra K.A, Thomas L.M, James B.O, Giovanni M.S, Zuddas P, “Algorithms for
the simple equal flow problem”, Management Science, Volume 45(10), pp 1440-1455,
1999.

84. Rebollo M, Julián V, Carrascosa C, Botti V, "A Multi-Agent System for the
Automation of a Port Container Terminal", Workshop in Agents in Industry.
Barcelona, 2000.

85. Seifert R.W, Kay M.G., Wilson J.R., “Evaluation of AGV routing strategies using
hierarchical simulation”, International Journal of Production Research, Volume 36 (7),
pp 1961–1976, 1998.

86. Shih L.H, Chang H.C, “A routing and scheduling system for infectious waste
collection”. Environmental Modelling & Assessment, Volume 6, pp 261-69, 2001.

87. Steenken D, Vob S, Stahlbock R, “Container Terminal Operation and Operations
Research- a classification and literature review”, OR Spectrum, Volume 26, pp 3-49,
2004.

88. Steenken D,Winter T, Zimmermann U.T, “Stowage and transport optimisation in ship
planning”, Springer, Berlin, pp 731-745, 2001.

89. Tan K.C, Lee L.H, Zhu Q.L, Ou K, “Heuristic Methods for Vehicle Routing Problem
with Time Windows”, Artificial Intelligent in Engineering, pp 281-295,2000.

90. Thurston T, Hu H, “Distributed Agent Architecture for Port Automation”,
Proceedings of the 26th Annual International Computer Software and Applications
Conference, Oxford, England, August 2002.

91. Toth P, “The Vehicle Routing Problem Discrete Math”, SIAM (Society for Industrial
and Applied Mathematics) Press, 2003.

92. Tsang E.P.K, Wang C, Davenport A, Voudouris C, Lau T, “A Family of Stochastic
Methods for Constraint Satisfaction and Optimisation”, Proceedings of the First
International Conference on the Practical Application of Constraint Technologies and
Logic Programming (PACLP'99), London, pp 359-383, April 1999.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 162 -

93. Tsang E.P.K., “Foundations of constraint satisfaction”, Academic Press, London,
1993.

94. Tsang E.P.K., “Scheduling techniques -- a comparative study”, British Telecom
Technology Journal, Volume 13 (1), pp 16-28, Martlesham Heath, Ipswich, UK, 1995.

95. Tsang E.P.K.: "Spatio-Temporal Conflict Detection and Resolution", Constraints,
Volume 3(4), pp 343-361, 1998.

96. Voudouris C, Tsang E.P.K, “Guided local search and its application to the travelling
salesman problem”, European Journal of Operational Research, Volume 113 (2), pp
469-499, March 1999.

97. Voudouris C, Tsang E.P.K., “Guided local search joins the elite in discrete
optimisation”, Proceedings of DIMACS Workshop on Constraint Programming and
Large Scale Discrete Optimisation, Rutgers, New Jersey, USA, September 1998.

98. Voβ S, “Meta–heuristic: the state of the art”, Local Search for Planning and
Scheduling: ECAI 2000 Workshop, Berlin, Germany, August 2000.

99. VRP Web, “http://neo.lcc.uma.es/RADI-AEB/WebVRP/links.html”, Last check of the
address: 3 July 2005.

100. Wayne K.D, “A polynomial combinatorial algorithm for generalized minimum cost
flow”. Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp
11-18, 1999.

101. Weber R, “Mathematics for Operational Research”, Lecture Notes, Department of
Pure Mathematics and Mathematical Statistics, University of Cambridge, 2003.

102. Westbrook J, “Algorithms and data structures for dynamic graph problems”, PhD
Thesis, Princeton University, 1989.

103. Wook B.J, Hwan K.K,”A pooled dispatching strategy for automated guided vehicles
in port container terminals”, International Journal of management science, Volume
6(2), pp 47-67, 2000.

104. Yokoo M, Durfee E.H, Ishida T, Kuwabara K, ”The distributed constraint
satisfaction problem: Formalization and algorithms”. IEEE, Transaction on
Knowledge and Data Engineering, Volume 10(5), pp 673-685, 1998.

105. Yokoo M, Hirayama K, “Algorithms for Distributed Constraint Satisfaction: A
Survey”, Autonomous Agents and Multi-Agent Systems, Volume 3(2), pp 198-212,
2000.

University of Essex, Computer Science Department

References

PhD Thesis, Copyrights (H. Rashidi) - 163 -

106. Zhang C, Liu J, Wan Y.W, Murty K.G, Linn R.J, “Storage space allocation in
container terminals”. Transportation Research B 37, 2001.

107. Zhang C, Wan Y, Liu J, Linn R.J, “Dynamic Crane Deployment in Container Storage
yard”. Transportation Research B 36. 2002.

108. Zhang L.W, Ye R, Huang S.Y, Hsu W.J: “Two Equivalent Integer Programming
Models for Dispatching Vehicles at a Container Terminal”. School of Computer
Engineering, Nan yang Technological University, Technical Report, Singapore, 2002.

University of Essex, Computer Science Department

- 164 –
PhD Thesis, Copyrights (H. Rashidi)

Index
AGV, 8, 49, 51, 52, 53, 54, 55, 57, 62, 65, 66, 83, 86, 112, 120, 127, 139, 144, 155, 158, 160
Automated Guided Vehicle, 8, 31, 32, 36, 48, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 83,
85, 86, 112, 120, 126, 127, 128, 139, 144, 145, 148, 149, 155, 158, 159, 160, 161
BDE

Borland Database Engine, 77, 79
Branch and Bound, 39, 41, 43
Complexity, 99, 123, 134, 136, 141
CSOPs

Constraint Satisfaction Optimisation Problems, 3, 12, 14, 49, 143
Dijkstra, 43
DNSA

Dynamic Network Simplex Algorithm, 4, 106, 112, 120, 121, 122, 123, 124, 138, 140, 141,
142, 143, 148

DNSA+
Dynamic Network Simplex plus Algorithm, 4, 106, 112, 121, 122, 123, 124, 138, 140, 141,

142, 143, 148
DSAGV

Dynamic Scheduling of Automated Guided Vehicles, 138
DSSAGV

Dynamic Scheduling Software for Automated Guided Vehicles, 77, 78, 94
ERD

Entity Relationship Diagram, 79
Expert Systems, 41
Genetic Algorithms, 39, 42, 44, 159
Graph

Node Potential, 58, 61, 79, 124, 143
Optimality Conditions, 58, 61, 79, 124, 143
Reduced Cost, 58, 61, 79, 124, 143
Spanning Tree, 58, 61, 79, 124, 143
Strongly Feasible Basic, 58, 61, 79, 124, 143

GVS
Greedy Vehicle Search, 4, 105, 125, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140,

141, 142, 143
Hill Climbing, 41
HOTFRAME, 41, 156
ILOG, 41, 157
Integer Programming, 39, 163
IT

Internal Trucks., 8, 10, 36, 49, 154
MCF

Minimum Cost Flow, 50, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 81, 85, 87, 89, 90, 101, 102,
111, 125, 126, 127, 128, 138, 139, 141, 143, 159

MCF-AGV
Minimum Cost Flow model for Scheduling problem of AGVs, 61, 64, 65, 66, 87, 89, 90, 101,

102, 111, 125, 126, 127, 128, 139, 141, 143
MILP

Mixed Integer Linear Program, 13, 26, 31, 39

University of Essex, Computer Science Department

Index

PhD Thesis, Copyrights (H. Rashidi) - 165 -

NSA
Network Simplex Algorithm, 3, 4, 67, 70, 71, 73, 75, 81, 84, 85, 87, 89, 90, 92, 93, 94, 95, 96,

97, 98, 99, 100, 101, 103, 105, 106, 112, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135,
137, 138, 139, 140, 141, 142, 143, 148

NSA+
Network Simplex Plus Algorithm., 3, 4, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106,

112, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143,
148

OSA
Original Simplex Algorithm, 73

PSCDS
Primary Storage Containers Discharge, 20, 22, 23, 24, 25

PSCPI
Primary Storage Containers Pickup, 20, 22, 23, 24

PSCSS
Primary Storage Containers to Secondary Storage, 19, 22, 23, 24, 25

QC
Quay Cranes., 7, 9, 10, 31, 32, 36, 48, 52, 54, 55, 149, 150

RTGC
Rubber Tyred Gantry Cranes, 6, 7, 10, 11, 26, 27, 28, 29, 30, 32, 36, 39, 49, 146

SAM
Simulated Annealing Method, 41, 42, 44,136

SC
Straddle Carrier., 8

SDSAGV
Static and Dynamic Scheduling of Automated Guided Vehicles, 138

Simulation, 39, 77, 155, 156
SSCGD

Secondary Storage Container Grounding, 19, 20, 22, 23, 24, 25, 37, 38
SSCPI

Secondary Storage Container Pickup, 19, 20, 22, 23, 24, 25, 37, 38
SSCPS

Secondary Storage Containers to Primary Storage, 19, 22, 23, 24, 25, 38
Tabu Search, 41, 42, 43, 44
TG

Terminal Gate, 36
TSS

Taxi Service System, 129
VRP

2-Opt Exchange, 30, 33, 43, 148, 162
Vehicle Routing Problem, 30, 33, 43, 148, 162

VRPTW
Vehicle Routing Problem with Time Window, 30, 31

XT
eXternal Truck., 8, 11, 36

