
Computers and Mathematics with Applications 61 (2011) 630–641

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A complete and an incomplete algorithm for automated guided vehicle
scheduling in container terminals
Hassan Rashidi a,∗, Edward P.K. Tsang b,1

a Department of Statistics, Mathematics, and Computer Science, Allameh Tabataba’i University, No. 4, Ahmad Ghasir St., Shahid Beheshti st., Tehran, Iran
b School of Computer Science and Electronic System Engineering, University of Essex, Colchester CO4 3SQ, UK

a r t i c l e i n f o

Article history:
Received 16 June 2009
Received in revised form 6 December 2010
Accepted 6 December 2010

Keywords:
Search methods
Scheduling problems
Network Simplex Algorithm
Optimization
Container terminals

a b s t r a c t

In this paper, a scheduling problem for automated guided vehicles in container terminals
is defined and formulated as a Minimum Cost Flow model. This problem is then solved by
a novel algorithm, NSA+, which extended the standard Network Simplex Algorithm (NSA).
Like NSA, NSA+ is a complete algorithm, which means that it guarantees optimality of the
solution if it finds one within the time available. To complement NSA+, an incomplete
algorithm Greedy Vehicle Search (GVS) is designed and implemented. The NSA+ and
GVS are compared and contrasted to evaluate their relative strength and weakness. With
polynomial time complexity, NSA+ can be used to solve very large problems, as verified
in our experiments. Should the problem be too large for NSA+, or the time available for
computation is too short (as it would be in dynamic scheduling), GVS complements NSA+.

© 2010 Elsevier Ltd. All rights reserved.

0. Introduction

Scheduling problems arise in areas as diverse as production planning, personnel planning, product configuration, and
transportation. An overview of the wide range of constraints in scheduling, together with the most powerful propagation
algorithms for these constraints are given [1,2]. This paper has been motivated by a need to schedule Automated Guided
Vehicles (AGVs) in container terminals. The container terminal components that are relevant to our problem include quay
cranes (QC), container storage areas, rubber tyred gantry crane (RTGC) or yard crane, and a road network (see e.g. [3–8]). A
transportation requirement in a port is described by a set of jobs, each of which is being characterized by the source location
of a container, the destination location and its pick-up or drop-off times on the quay side by the quay crane. Given a number
of AGVs and their availability, the task is to schedule the AGVs to meet the transportation requirements. This transportation
problem is formulated as a Minimum Cost Flow (MCF) model.

Pricing scheme is certainly an important step in theNetwork SimplexAlgorithm (NSA) since the total computational effort
to solve a problem heavily depends on its choice. This step does two things. It checks whether the optimality conditions for
the non-basic arcs are satisfied, and if not it selects a violated arc to enter the spanning tree structure [9]. The selected
arc has a potential to improve the current solution. According to the theory [9] the NSA terminates in a finite number of
iterations regardless of which profitable candidate is chosen if degeneracy is treated properly. Some well-known schemes
inNSA are the steepest edge scheme (byGoldfarb andKennedy [10]), theMulvey’s list (byMulvey [11]), the block pricing scheme
(by Grigoriadis [12]), the BBG Queue pricing scheme (by Bradley et al. [13]), the clustering technique (by Eppstein [14]), the
multiple pricing schemes (by Lobel [15]), the general pricing scheme (by Maros [16]). Masakazu [17] proposed a new scheme
in which the algorithm can start from an arbitrary pair of primal and dual feasible spanning tree. In this paper we present a
new pricing scheme, which significantly reduces the CPU-time required to tackle theMCF model.

∗ Corresponding author. Tel.: +98 21 88725400 2.
E-mail addresses: hrashi@gmail.com, hrashi@atu.ac.ir (H. Rashidi), edward@essex.ac.uk (E.P.K. Tsang).

1 Tel.: +44 1206 872774.

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.12.009

http://dx.doi.org/10.1016/j.camwa.2010.12.009
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:hrashi@gmail.com
mailto:hrashi@atu.ac.ir
mailto:edward@essex.ac.uk
http://dx.doi.org/10.1016/j.camwa.2010.12.009

H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641 631

The structure of this paper is as follows. Section 1 presents the MCF model by a new notation. Then the scheduling
problem of AGV is defined and formulated as a special case of theMCF model. We present our problem with theMCF–AGV
model in Section 2. Section 3 presents two algorithms to tackle the MCF–AGV model. Experimental results from applying
the two algorithms to tackle the problem are compared in Section 4. Section 5 includes the summary and conclusion.

1. Minimum Cost Flow (MCF) model

In this section, we systematically introduce a formal definition for theMCF model:

Definition 1 ([9]). In an informal description of theMCF model, let graph G = (N, A) be a directed network defined by a set
of nodes, N , together with a set of arcs, A. Each arc (i, j) ∈ A has an associated cost cij that denotes the cost per unit flow on
that arc. It is assumed that the flow cost varies linearly with the amount of flow. The maximum and minimum amount of
flow on each arc (i, j) ∈ A are limited byMij andmij (mij ≤ Mij), respectively. A real number bi is associated with each node,
representing its supply/demand. If bi is greater (less) than zero, node i is a supply (demand) node; and if bi = 0, node i is
a transhipment node. The decision variables in the MCF model are arc flows, which are represented by fij for arc (i, j) ∈ A.
The standard form of theMCF model is as follows:

MinCostFlow =

−
(i,j)∈A

cij.fij

Subject To

−

j:(i, j)∈A

fij −
−

j:(j, i)∈A

fji = bi, for all i ∈ N

mij ≤ fij ≤ Mij, for all (i, j) ∈ A.

These constraints state that flows must be feasible and conserve each node. For the feasible flows to exist the MCF model
must also have

∑
i∈N bi = 0, which means that the network is balanced. We now define a special graph for the MCF model

as follows:

Definition 2. A MCF Graph GMCF = (G,NP, AP) consists of a graph G with a couple of properties for the nodes and arcs in
G. The NP and AP are the Node’s and Arc’s Properties, respectively. The node property function NP : N → R (Real numbers;
possibly negative) gives the amount of supply/demand of the nodes. This function for each node is defined as follows:

NP(i) = NP i = bi where

bi > 0 if node i is a supply node
bi < 0 if node i is a demand node
bi = 0 if node i is a transshipment node

so that

−
i∈N

NP(i) = 0.

Each arc in A has three properties: a lower bound, an upper bound and a cost. The arc property function AP maps each
arc to these properties, AP : A → R × R × R (Real numbers; nonnegative). For each arc ∈ A, we denote the mapping by
AP(i, j), or AP ij for short. We denote the lower bound, upper bound and cost bymij,Mij and cij. Based on Definitions 1 and 2,
we define the standardMCF model formally as follows:

Definition 3. A MCF model is defined as MCF = (GMCF , f ,D, CS, FC) where GMCF = ((N, A),NP, AP) is a graph with
nodes and arcs specific to the MCF model (Definition 2); f is a finite set of decision variables on A (f stands for flow),
f = {fij | (i, j) ∈ A}; D = a function which determines a lower and an upper bound for f ;D : f → R × R (to be
pulled out from AP); we shall take Dfij as the lower bound and the upper bound of fij (D stands for Domain); CS is a finite set
of Constraint on NP and f ; FC is an objective function for the Flow’s Cost on AP and f . The task in a MCF model is to assign
a value to each fij that satisfy all constraints in CS with regard to the minimum value of FC . In the standard form of theMCF
model we have:
(a) For each element in D and f , Dfij = [mij,Mij], for ∀(i, j) ∈ A;
(b) The CS is

∑
j:(i,j)∈A fij −

∑
j:(j,i)∈A fji = NP i, for ∀i ∈ N;

(c) The FC is
∑

j:(j,i)∈A cij.fij.

2. The special case of theMCF model for automated guided vehicle scheduling

In this section, a scheduling problem of AGVs in the container terminals is introduced. The problem is to deploy several
AGVs in a port to carry many containers from the quay side to yard side or vice versa. The main reason for choosing this
problem is that the efficiency of a container terminal is directly related to the use of the AGVs with full efficiency (see
e.g. [3–7]). This problem is formulated as a special case of theMCF model.

2.1. Assumptions

Assumption 1. The layout of a port container terminal is given [18]. According to a specific layout, the travel time between
every combination of Pick-up (P)/Drop-off (D) points is provided.

632 H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641

Assumption 2. The yard is divided into several blocks and RTGCs or yard crane resources are always available [4], i.e., the
AGVswill not suffer delays in the storage yard location or waiting for the yard cranes.

Assumption 3. The quay side consists of several Quay Cranes (QCs). For each QC , there is a predetermined job sequence,
consisting of loading or unloading jobs, or a combination of both. For each loading (unloading) job, there is a predetermined
pick-up (drop-off) point in the yard, which is the origin (destination) of the job.

Assumption 4. There areN jobs andM AGVs in the problem. The source and destination of jobs as well as their appointment
time on the quay side are given. Each job has an appointment time on the quay side and the jobs should be served in their
appointment time by the AGVs.

Assumption 5. The problem is divided into two types, static and dynamic. In the static problem,we assume that the number
of vehicles, the number of jobs and the distance between every two points in the container terminal do not change. In the
dynamic problem the distance between every two points of the port may be changed. It is due to the fact that the system
controller may change the route of AGVs, based on congestion in different points of the terminal. Hence it is assumed that
there are no Collisions, Livelock and Deadlock [19] problems while the AGVs are carrying the containers.

Assumption 6. Our objectives are to minimize (a) the total AGV waiting time at the quay side (b) the total AGV travelling
time in the route to the port (c) the total lateness times to serve the jobs. Cheng et al. minimized the impact of delays and
waiting times of the AGVs at the quay side [4].

2.2. Formulation of the problem

Here, we present a special case of theMCF model for the scheduling problemof AGVs in a container terminal. The problem
differs primarily in the arrangement of nodes and arcs with their properties. In this special case, the property function
of nodes assigns integer values to the nodes. Additionally, the property function of arcs may assign integer values to the
lower bound, the upper bound and the cost of each arc. Here, we present the special Graph of GMCF for the AGV scheduling
(GMCF–AGV) and the special case of theMCF model for the scheduling problem of AGVs (MCF–AGV).

Based on Definition 2, we introduce the following definition for the GMCF in a special case:
A MCF Graph for AGV , GMCF–AGV = (GS,NPS, APS), is a special case of GMCF = (G,NP, AP) (Definition 2). The graph

GS = (NS, AS) will be defined in the sub-sections below; the node and arc properties of GS, NPS and APS, are also special
cases of NP and AP , respectively (NPS : NS → N and APS : AS → N × N × N; N is the set of Natural numbers). We formally
describe the components of GMCF–AGV in the following two sub-sections:

2.2.1. Nodes and their properties in the special graph
Let N be the number of jobs and M be the number of AGVs in the problem. The nodes of the MCF Graph for the AGV

scheduling problem are defined as follows:
(a) Supply nodes: For each vehicle m, a supply node AGVNm with one unit supply is considered. Therefore, the set of supply

nodes in the graph is SAGVN = {AGVNm | m = 1, 2, . . . ,M;NPS(m) = 1}.
(b) Transhipment nodes: for each job j, a couple of nodes, Job-Input and Job-Output, are considered. Hence, the sets of

transhipment nodes in the graph are SJIN ∪ SJOUT where:

SJIN = {JIN i | i = 1, 2, . . . ,N;NPS(i) = 0} where JIN i is a node through which an AGV enters job i.
SJOUT = {JOUT i | i = 1, 2, . . . ,N;NPS(i) = 0} where JOUT i is a node from which an AGV leaves job i.

(c) SINK : It stands for a Sink node or a demand node in the GMCF–AGV withM units demand. This node corresponds to the end
state of the process, after all container jobs have been served. Hence, for the property of this node, NPS(SINK) = −M .

Therefore, there areM + 2 ∗ N + 1 nodes in GMCF–AGV : NS = SAGVN ∪ SJIN ∪ SJOUT ∪ SINK .

2.2.2. Arcs and their properties in the special graph
Below we describe the four types of arcs that join the nodes in GMCF–AGV , together with their properties:

(1) Intermediate arcs: These arcs are directed arcs from every Job-Output node i to every other Job-Input node j.
These arcs with their properties are ARC intermediate = {(i, j) | i ∈ SJOUT , j ∈ SJIN, j ≠ JIN i,APS(m, j) = [0, 1, Cij]}

where Cij =

w1 × (tj − (ti + DTij)) + w2 × DTij if tj ≥ ti + DTij
P × (ti + DTij − tj) otherwise.

In the cost, w1 and w2 are the weights of waiting and travelling times of the AGVs, respectively; tj and tj are the
appointment time of jobs i and j, respectively, on the quay side (to be unloaded or dropped-off); DT ij is travelling time
from location of job i to location of job j; (calculation of the DT ij is illustrated by Fig. 1 in different cases). If an AGV
can serve job j after serving job i (tj ≥ ti + DT ij), the waiting and travelling times of the AGV are calculated without
any lateness time. Otherwise, only the lateness time of serving job j with a penalty (P) is considered for the cost. This
penalty cost causes to serve the job with minimum delay (see Assumption 6).

H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641 633

Fig. 1. Travelling time computations between two jobs.

(2) Inward arcs: a set of arcs from SAGVN to SJIN . These arcs along with their properties are:

ARC inward = {(m, j) | m ∈ SAGVN, j ∈ SJIN, APS(m, j) = [0, 1, Cmj]}

where Cmj =

w1 × (tj − (RTAm + TTAmj)) + w2 × (RTAm + TTAmj) if (tj ≥ RTAm + TTAmj)
P × (RTAm + TTAmj − tj) otherwise.

In the cost, w1 and w2 are the weights of waiting and travelling times of the AGVs, respectively; tj is the appointment
time of job j at the quay side (to be unloaded or dropped-off); RTAm is the ready time of AGV m at the start location, which
may be either the quay side or the yard side; TTAmj is the travel time of AGV m from the start location to the location of
job j on the quay side; (the TTAmi should be calculated in a similar manner as the calculation of DT ij; see Intermediate
arcs). If AGV m could arrive at the quay side in the appointment time of job j (tj ≥ RTAm + TTAmj), the waiting and
travelling times of AGV m to serve job j are calculated as the cost. Otherwise, the lateness time to serving job j with a
penalty (P) is considered.

(3) Outward arcs: These are directed arcs from every Job-Output node i and AGV nodem to SINK . These arcs along with their
properties are ARCoutward = {(i, j) | i ∈ SAGVN ∪ SJOUT , j = SINK ; APS(m, j) = [0, 1, 0]}. These arcs show that an AGV
can remain idle after serving any number of jobs or without serving any job. Therefore, a cost of zero is assigned to these
arcs.

(4) Auxiliary arcs: There is a directed arc fromevery Job-Input node i to its Job-Output node. These arcs alongwith their prop-
erties are ARCauxiliary = {(i, j) | i ∈ SJIN, j = an unique Job-Output node in SJOUT , correspond to the Input-Node i;
APS(i, j) = [1, 1, 0]}. These arcs guarantee that every Job-Input and Job-Output nodes is visited once only so that each
job is served.

There areM × N + N × (N − 1) +M + 2× N arcs in the graph (AS = ARC inward ∪ ARC intermediate ∪ ARCoutward ∪ ARCauxiliary).

2.2.3. The MCF–AGV model for automated guided vehicle scheduling
Now we present our model for the AGVs Scheduling with the following definition:

Definition 4. A MCF–AGV model is a special case of the MCF (see Definition 3) for the scheduling problem of AGVs in the
container terminals. AMCF–AGV model is defined as

MCF–AGV = (GMCF–AGV , f ,D, CS, FC)where GMCF–AGV = (GS,NPS, APS) is a graph for theMCF–AGV problem; f = a finite
set of integer decision variables on AS, f = {fij | (i, j) ∈ AS}; D = a function which determines a lower and upper bound
for f ;D : f → N × N (to be pulled out from APS). For each element in D, we have:

(1) Dfij = [0, 1]; for ∀(i, j) ∈ (ARC inward ∪ ARC intermediate ∪ ARCoutward)

(2) Dfij = [1, 1]; for ∀(i, j) ∈ ARCauxiliary.

The constraints are given below,

CS =

(1)
−

j:(i,j)∈AS

fij = 1; ∀i ∈ SAGVN; Sending one unit flow into the network from each node in SAGVN

(2)
−

j:(j,i)∈AS

fji = M; for i = SINK ; ReceivingM units flow (the flows sent from the nodes in SAGVN set)

(3)
−

j:(i,j)∈AS

fij −
−

j:(j,i)∈AS

fji = 0; ∀i ∈ SJIN ∪ SJOUT ; Flow balance at every Job-Input and Job-Output node

and FC =

∑
(i,j)∈AS Cij · fij.

634 H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641

Fig. 2. An example of theMCF–AGV model for two AGVs and four jobs.

Fig. 3. The Network Simplex Algorithm (NSA).

TheMCF–AGV model can be illustrated by Fig. 2 for two AGVs and four jobs. The problem has a huge search space and the
solution should provide the optimal paths for each AGV from every vehicle node to the sink node. Solving the MCF–AGV
model generates M paths, each of which commences from a vehicle node and terminates at the sink node. Each path
determines a job sequence of every vehicle. Suppose that for some values of arc costs, the paths given by a solution are
1 → 3 → 4 → 9 → 10 → 11 and 2 → 5 → 6 → 7 → 8 → 11. This states that AGV 1 is assigned to serve jobs 1 and 4,
and AGV 2 is assigned to serve jobs 2 and 3, respectively.

3. The algorithms

In this section, a complete algorithm (NSA+) and an incomplete search method (GVS) to tackle theMCF–AGV model are
presented. Since NSA+ is an extension of the Network Simplex Algorithm (NSA), we describe NSA first.

3.1. Network Simplex Algorithm (NSA)

Every connected network has a spanning tree [9]. The Network Simplex Algorithmmaintains a feasible spanning tree at
each iteration and successfully goes toward the optimality conditions until it becomes optimal. At each iteration, the arcs in
the graph are divided into three sets; the arcs belong to the spanning tree (T); the arcs with flow at their lower bound (L);
the arcs with flow at their upper bound (U). A spanning tree structure (T , L,U) is optimal if the reduced cost for every arc
(i, j) ∈ L is greater than zero and at the same time the reduced cost for every arc (i, j) ∈ U is less than zero [9]. With those
conditions, the current solution is optimal. Otherwise, there are arcs in the graph that violate the optimal conditions. An arc
is a violated arc if it belongs to L(U) with negative (positive) reduced cost. The algorithm in Fig. 3 specifies the steps of the
method [9,20,21].

To create the initial or Basic Feasible Solution (BFS) in Step 0, an artificial node 0 and artificial arcs are appended to the
graph. The node ‘0’ will be the root of the spanning tree (T) and the artificial arcs, with sufficiently large costs and capacities,
connect the nodes to the root. The set L consists of themain arcs in the graph, and the setU is empty [9]. Selection of a pricing
scheme is an important decision in Step 1. During this step the reduced costs of the non-basic arcs are recalculated. If there

H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641 635

Fig. 4. Pseudo-code of selecting an entering arc in the Network Simplex plus Algorithm.

is at least one that violates its optimality condition it is a candidate to enter the basis. In Step 1, appending the entering arc
(k, l), an arc with violation, to the spanning tree forms a unique cycle, W , with the arcs of the basis. In order to eliminate
this cycle (Step 2), one of its arcs must leave the basis. The cycle is eliminated when we have augmented flow by a sufficient
amount to force the flow in one or more arcs of the cycle to their upper or lower bounds. By augmenting the flow in a
negative cost augmenting cycle, the objective value of the solution is improved. The first task in determining the leaving arc
is the identification of all arcs of the cycle. The flow change is determined by the equation θ = min{fij for all (i, j) ∈ W }.
The leaving arc is selected based on cycle W . The substitution of entering for the leaving arc and the reconstruction of new
tree is called a pivot (Step 3). After pivoting to change the basis, the reduced costs for each arc (i, j) ∉ T is calculated. If
the reduced costs for all (i, j) ∈ {L + U} satisfy the optimality condition then the current basic feasible solution is optimal.
Otherwise, an arc (i, j) where there is a violation should be chosen and operations of the algorithm should be repeated.

Different pricing schemes are available for finding out an entering arc for the basic solution. The standard textbook [9]
provided a detailed account of the literature on these schemes. The performance of the algorithm is affected by the choice
of a proper pricing scheme.

3.2. The Network Simplex plus Algorithm (NSA+)

NSA+ is an extension of NSA. Compared with the standard version of the blocking scheme presented by Grigoriadis [12]
and maintaining the strongly feasible spanning tree [22], NSA+ has three new features. These features are concerned with
the starting point/block for scanning violated arcs, the memory technique and the scanning method. The pricing scheme of
NSA+ is designed based on these features.

There is a function for the pricing scheme to find out an entering arc. The pseudo-code for this function is illustrated in
Fig. 4. The arcs in the graph of theMCF model are divided into several blocks with the same size and each block is identified
by a specific number, known as Block-Number. For each problem, the number of blocks is calculated by dividing the number
of arcs in the graph by the block’s size.

At first iteration, when the initialization is needed and the packet is empty, the number of blocks is calculated and the
first one to be scanned for the optimality condition is chosen (see lines 2–5). The function selects the first block randomly
or by a heuristic method (based on location of the biggest cost, for example). Note that at first iteration the lines 6–9 do not
perform anything because the packet is empty (these will be activated from the second iteration; when there is at least one
violated arc in the packet). Scanning of the arcs for violation among different blocks is chosen circularly. At each scan one
violating arc (at most) from each block is put into the packet as long as it has empty place and there is any violated arc (see
lines 10–14). The capacity of the packet is more than the block’s size and the most violating arcs are kept at the top of the
packet. At the end of the function, if the packet is empty, the current solution is optimal (see lines 15–17). Otherwise the
packet will be sorted in descending order, based on the absolute value of the reduced costs, and the most violated arc will
be chosen as the entering arc (see lines 18–19).

The memory technique will be activated from the second iteration. It uses a few elements at the top of the packet of the
previous iteration. The size of this memory may be a percentage of the block’s size. The reduced costs of the most violated
arcs of the previous iteration are recalculated (see line 6). If they violate the optimality conditions again, they are kept in the
packet. Otherwise they must be removed from the packet, which can be replaced by new violating arcs (see lines 7–9). The
remaining part of the function acts as before.

As wementioned, there are two options to choose the first block to be scanned; randomly and heuristically. Hence,NSA+

has two extensions: (a) NSA + R: The entering arc function chooses the first block by random selection; (b) NSA + H: The
entering arc function chooses the first block by a heuristic method (based on the location of the largest cost in the graph).

636 H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641

The main parameters involved in the function are as follows:

n: the number of arcs in the graph model.
B: the size of each block in the blocking scheme.
K : the size of packet, i.e. the number of violated arcs in the packet. (In NSA+, K > B.)
P: the size of the memory, i.e. the number of violated arcs at the top of the packet to be kept for the next iteration. (In
NSA+, P = K − B.)

At each iteration, the elements in the packet are either from the previous iteration or new violated arcs. Clearly, the
size of the memory must not be too big since it prevents the function from collecting new violated arcs. To get a better
performance in solving large scale problems, we set K = 225, B = 200 and P = 25 by trial and error. The computational
evidence shows [23] that both the extensions of NSA+ are significantly more efficient than NSA in CPU-time required to
tackle the problems. Moreover, NSA + H does better than NSA + R.

Without the heuristic approach and memory technique, described above, it is instructive to see how some known pricing
schemes can be obtained by appropriate setting of the parameters and variation of the scanning method for violation of the
optimality conditions. In these special cases the largest violated arc in the packet is selected as the entering arc, without any
effort to sort it.

1. The first improving candidate scheme [20] can be obtained if we set K = 1, P = 0 and the scanning method scans the
arcs sequentially without considering the blocks and their sizes (B = n).

2. The Dantzig pricing [24] or full pricing is achieved by the following setting of the parameters: B = K = n, P = 0. Clearly,
here we do not expect that the number of improving arcs will be equal to n, but by this setting we can force the algorithm
to scan all the non-basic arcs at each iteration.

3. The blocking scheme [12] is obtained by setting B > 1, K ≤ B, P = 0 and pricing one block fully per each iteration, taking
one block after the other. A block size between 1% and 8.5% of the size of the arcs in the graph has been recommended
by Grigoriadis, for large MCF models.

4. If we have B > 1, K ≤ B, P = 0, and the scanning method scans the blocks at constant intervals, called the skip factor,
throughout the entire arc set then we get the arc sample scheme [20].

5. If we have K > 1, P = 0 and the scanning method scans the arcs sequentially without considering the blocks (B = n),
then we get theMulvey strategy/scheme [11].

6. If we permit that the scanningmethod collectsmore than one violated arc from a specified number of blocks of the graph,
then we get the General Pricing scheme [16]. That pricing scheme is controlled by three parameters: (a) the number of
blocks in the graph; (b) the number of blocks to be scanned for violation of the optimality conditions; and (c) the number
of violated arcs to be collected from the blocks.

More details on comparison between these pricing schemes were performed by Kelly and Neill [20]. They implemented
several pricing schemes and ran their software for different classes of Minimum Cost Flow problems. In their results, the
block pricing scheme provided a better performance compared with others. Ahuja et al. [25] studied the minimum cost
simple equal flow problem and presented a parametric simplex method on the problem. Andrew [26] studied practical
implementation of minimum cost flow algorithms and presented an efficient implementation that worked very well over a
wide range of problems.

3.3. Greedy Vehicle Search method

NSA+ is a complete algorithm. Although it is efficient, it can only work on problems with certain limits in size. To
complement NSA+, a Greedy Vehicle Search (GVS) is designed and implemented. GVS will be useful for problems whose
sizes go beyond the limit of NSA+ or when the time available for computation is too short (as it would be in dynamic
scheduling). This simple search method behaves as a Taxi Service System. For any unassigned job and the list of idles AGVs, a
job is assigned to a vehicle with minimum cost, including waiting and travelling times of the vehicles as well as lateness of
the jobs. The pseudo-code of GVS is demonstrated in Fig. 5.

4. Experimental results

In this section, the experimental results from the implementation and running the algorithms to tackle the static and
dynamic problems are presented. In the literature, there are several algorithms to tackle theMCF model [9]. The reason for
choosing NSA is that it is the fastest algorithm. As we mentioned, the performance of the algorithm is affected by choosing
a proper pricing scheme. Among the schemes in the literature, the blocking scheme was the fastest [20]. We implemented
the blocking schemewith a block size of 5% of the size of the arcs of theMCF model. Then we compared the implementation
of the blocking scheme in NSA and the new scheme in NSA+ for the static automated vehicle scheduling problem [23]. The
results show that NSA+ is 25% faster and significantly more efficient than NSA.

H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641 637

Fig. 5. Pseudo-code of simple heuristic search.

Table 1
Value of parameters in the simulation.

Description of the parameters Values

Number of vehicles in the port 50
Number of quay cranes 7
Number of blocks in the yard (storage area inside the port) 32
Time window of the cranes 120 s
Travelling time between any two points in the port (see Assumption 1) Random between 1 and 100 s
Weight of waiting times for the AGVs in the cost of the objective function 1
Weight of travelling times for the AGVs in the cost of the objective function 5
P as the penalty in the costs of the objective function 10,000

4.1. Static problems

To test the model and make a comparison between NSA+ and GVS, a hypothetical port was designed. The parameters in
Table 1 were used to define the port, the objective function, the number of vehicles and generate the jobs. We implemented
our software (DSAGV) in Borland C++. Then, DSAGV has been run to solve several random problems. The sources and
destinations of jobs were chosen randomly.

The first aspect of the comparison is CPU-time to solve the problems by the two algorithms, which has been drawn in
Figs. 6 and 7, according to the number of jobs. Also the power estimation for those two curves has been shown in the figures.
All experiments were run on a Pentium-4 2.4 GHz PCwith 1 GMB RAM. As can be seen in the figure,NSA+ can find the global
optimal solution for 3000 jobs and 10 millions arcs in the MCF–AGV model within 2 min. GVS is fast and could find a local
optimum for 8000 jobs within 35 s. Another aspect of the comparison is the solution quality. We ran the software for the
same static problems. The value of the objective function by GVS and NSA is shown in Fig. 8. As is expected, the quality of
the solutions by NSA+ is substantially significant compared with GVS.

Given N jobs andMAGVs in the problem (N ≫ M), the complexities of the two algorithms are calculated as follows:

• NSA+: Assume themaximum flow,MF, in each of them arcs, atmaximum cost, C , for theMCF model. So there is an upper
bound on the value of the objective function. This upper bound is given by m × C × MF . There are two different types
of pivots in the algorithm, non-degenerate and degenerate pivots. The former is bounded bym × C because the number
of non-degenerate pivots in the algorithm is bounded by m × C × MF (MF = 1 in the MCF–AGV model). The number
of degenerate pivots is determined by the sum of nodes potential and maintaining the strongly feasible spanning tree.
Given n as the number of nodes in the graph model, the sum of nodes potential is bounded by n2

× C . It is decreased at
each iteration when the spanning tree is strongly feasible [27]. A series of degenerate pivots may occur between each
pair of non-degenerate pivots, and thus a bound on the total number of iterations is m × n2

×C2. Finding the entering
arc is the O(m) operation and sorting the packet is the O(K × LogK) operation (K is size of the packet, K = 225). Finding
the cycle, amount of flow change, leaving arc and updating the tree are O(n) operations. Hence the complexity of each
pivot is O((m + n)K × LogK). Based on the complexity of the number of iterations and the complexity of each pivot, the
total complexity of this algorithm is determined by the following equation:

O((m + n)mn2C2KLogK).

Sincem = O(N2); n = O(N), the total complexity of NSA+ to tackle theMCF–AGV model is O(N6).
• GVS: For static problems, we assume that every job has to be served by the vehicles. The algorithm operates as follows:

In the first run, it finds out one job with minimum cost (among N jobs) for a vehicle (amongM AGVs). In the second run,

638 H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641

Fig. 6. CPU-time to solve the static problem by NSA+, based on the number of jobs.

Fig. 7. CPU-time to solve the static problem by GVS, based on the number of jobs.

Fig. 8. The value of objective function in static problem by GVS and NSA+, based on the number of jobs.

another job among N − 1 jobs is assigned to a vehicle, which could be the selected vehicle in the first run or others. This
process is continued until there are no remaining jobs. Hence, the number of runs of GVS is calculated by the following
equation:

M × N + M × (N − 1) + M × (N − 2) + · · · + M × 1 =
M × N × (N + 1)

2
.

Therefore, the complexity of GVS is O(M × N2). It is significantly less than the complexity of NSA+.
For the dynamic problems, we assume that only one job has to be assigned to each vehicle. When a job arrives or an AGV
served the current job, the algorithm is then run and finds out one job (among the remaining jobs) for a vehicle (among
the idle AGVs) with minimum cost. The complexity of the algorithm for the dynamic problems is hence O(N × M).

H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641 639

Fig. 9. Block diagram Greedy Vehicle Search in dynamic aspect.

4.2. Dynamic problems

Amajor part of the literature treats the vehicle scheduling problems in the container terminal as static problems, where
all the jobs and travelling time are known beforehand. In reality, the problem is dynamic. New jobs arrive from time to time.
Delays or breakdown of vehicles change the travelling time and availability of vehicles.

The main architecture of GVS is shown in Fig. 9. A similar architecture and operations for NSA+ are considered in our
software. We shall use Fig. 9 to describe the architecture and operations briefly. At the start of process, the Job Generator
generates a few jobs for the cranes. These jobs will be appended to the remaining jobs, which is empty at the beginning. The
remaining jobs are used by the GVS and the output of this method is an individual job for every vehicle. When the time is
running, the travelled and waited times of every vehicle should be updated. At the same time, if the vehicle picks up the job
from the quay side, the assigned job for the vehicle will be deleted and removed from the list of remaining jobs. If the job
should be delivered to the crane on the quay side, it could not be removed until meeting time between the crane and the
vehicle (the appointment place is on the quay side, not the yard side). The Job Generator has to generate a few new jobs,
when it finds out any idle crane.

To evaluate the relative strength and weakness of GVS and NSA+ in the dynamic scheduling problem, we used randomly
generated problems. Distance between every two points in the port as well as the source and destination of jobs were
chosen randomly. We did a simulation for six hours subject to generating 5 jobs for any idle crane. Other parameters for
this simulation were the same as Table 1. Figs. 10–12 demonstrate some outputs of the software during the six hours. As
we can see from Fig. 10, waiting times of the vehicles in GVS is significantly greater than waiting times of the vehicle in
NSA+, although travelling times of the vehicles for both algorithms are almost the same during the six hours. The main
reason for this result is that, being a complete algorithm, NSA+ finds the optimal solution for the MCF model whereas
GVS is an incomplete search method. The number of jobs carried out by the end of six-hour (21,600 s) for both algorithms is
approximately the same (see Fig. 11). Generally, due to the tight schedules of the quay cranes, it is undesirable for containers
to be served early or too late for the appointment. Therefore, the average lateness from the appointment times is another
indicator for evaluating the algorithms. Given the number of served jobs, N , the time at which the job i is served, ACT i, and
the appointment time of job i, APT i, the schedule’s average lateness is calculated by the following equation:

Average Lateness =

N∑
i=1

(ACT i − APT i)
+

N
.

Fig. 12 presents the Average Lateness indicator for both NSA+ and GVS during the six-hour simulation. The figure shows
that both algorithms performed well, but GVS is superior to NSA+ in terms of the Average Lateness. As a greedy algorithm,
GVS achieved this by sacrificing the waiting and travelling times of the AGVs. Consequently, the objective value of NSA+ is
significantly better than that of GVS, as seen clearly in Fig. 8. This is due to the fact that GVS finds a local optimum for each
problem whereas NSA+ finds the global optimum solution.

4.3. A discussion over GVS and meta-heuristic

A discussion can arise in using GVS compared with some well-known meta-heuristics (stochastic search methods) such
as Genetic Algorithms, Tabu Search, Simulated Annealing method and others when the problem is too big or when the time
available to tackle the problem is too short. In the literature, we reviewed these solution methods [23], including general
considerations and major specific considerations in them. In this section, we have a short discussion on the matter.

According to the literature, GVS could be considered as a heuristic. Voß (2000) [28] defines heuristic as follows: ‘‘A
heuristic is a technique (consisting of a rule or a set of rules) which seeks (and hopefully finds) good solutions at a reasonable

640 H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641

Fig. 10. A comparison of travelling and waiting times in dynamic problems.

Fig. 11. The number of jobs carried by the algorithms.

Fig. 12. Average lateness from the appointment time.

computational cost. A heuristic is approximate in the sense that it provides (hopefully) a good solution for relatively little
effort, but it does not guarantee optimality’’. We based GVS on two simple rules, the idle vehicles and jobs remained.
Moreover, GVS does not get too much CPU-time to tackle the problem and for that reason it finds out a local optimum
solution.

Wehad the problemwithmemory to put theMCF–AGV model into. One of the reasons to useGVS is that it has nomemory
technique. In the literature, we studied that ‘‘the meta-heuristics manipulate a complete (or incomplete) single solution or
a collection of solutions at each iteration’’ [28]. In order to do that, they require memory, whereas the memory usage of GVS
is teeny, compared with the meta-heuristics.

Our work shows that GVS solves a huge problem in a short time [23]. The dynamic problem of 50 AGVs could be solved
in a second. Additionally, GVS is effective in the average lateness to serve the jobs. The weakness of the meta-heuristics is
that effectiveness could be sensitive to choice of parameter values and operators [29]. Basically, finding out a set of suitable
parameters for the meta-heuristics and their training to tackle the problem will be beyond of the scope of this paper.

H. Rashidi, E.P.K. Tsang / Computers and Mathematics with Applications 61 (2011) 630–641 641

5. Concluding summary

In this paper, the automated guided vehicle scheduling problem in container terminals was formulated as a special case
of the minimum cost flow problem. Then, two novel algorithms, namely NSA+ and GVS, for tackling the problem were
presented. NSA+ is a complete algorithm and the state-of-the-art algorithm to tackle the MCF model. Our experimental
results suggested that it could find the global optimal solution for 3000 jobs and 10 millions arcs in the graph model within
2min by running on a 2.4 GHz Pentium PC. GVS is an incomplete algorithm. It is useful when the problem is too big forNSA+

to solve, or when time available for computation is too short, as could be the case in dynamic scheduling. The two algorithms
were compared onboth static anddynamic problems. Our experimental results suggested thatNSA+ is efficient and effective
inminimizing both thewaiting and travelling times of the vehicles, whereasGVS ismore effective inminimizing the average
lateness. The two algorithms complement each other and can be used according to the situation and the user’s needs. Based
on our experiment, NSA+ and GVS together are practical algorithms for automatic vehicle scheduling.

References

[1] P. Baptiste, C. Le Pape,W. Nuijten, Constraint-Based Scheduling, Applying Constraint Programming to Scheduling Problems, in: Kluwer’s International
Series, 2001.

[2] P. Baptiste, C. Le Pape, W. Nuijten, Incorporating efficient operations research algorithms in constraint-based scheduling, in: First International
Workshop on Artificial Intelligence and Operations Research, Timberline Lodge, Oregon, 1995.

[3] J. Böse, T. Reiners, D. Steenken, S. Voß, Vehicle dispatching at seaport container terminals using evolutionary algorithms, in: Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, IEEE, 2000, pp. 1–10.

[4] Y. Cheng, H. Sen, K. Natarajan, C. Teo, K. Tan, Dispatching automated guided vehicles in a container terminal, Technical Report, National University of
Singapore, 2003.

[5] Y. Huang, W.J. Hsu, Two equivalent integer programming models for dispatching vehicles at a container terminal, CAIS, Technical Report, School of
Computer Engineering, Nanyang Technological University, Singapore 639798, 2002.

[6] J.M. Patrick, R. Dekker, Operations research supports container handling, Technical Report EI 2001-22, Erasmus University of Rotterdam, Econometric
Institute, 2003.

[7] H. Sen, Dynamic AGV-container job deployment, Technical Report, HPCES Programme, Singapore-MIT Alliance, 2001.
[8] K.G. Murty, L. Jiyin, W. Yat-Wah, C. Zhang, Maria C.L. Tsang, Richard J. Linn, DSS (decision support system) for operations in a container terminal,

Decision Support System 39 (2002) 309–332.
[9] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice Hall, 1993.

[10] A.V. Goldberg, R. Kennedy, An efficient cost scaling algorithm for the assignment problem, Technical Report, Stanford University, 1993.
[11] J.M. Mulvey, Pivot strategies for primal simplex network codes, Journal of the Association for Computing Machinery 25 (1978) 266–270.
[12] M.D. Grigoriadis, An efficient implementation of the network simplex method, Mathematical Programming Study 26 (1983) 83–111.
[13] G. Bradley, G. Brown, G. Graves, Design and implementation of large scale primal transhipment algorithms, Management Science 24 (1977) 1–38.
[14] D. Eppstein, Clustering for faster network simplex pivots, in: Proc. 5th ACM–SIAM Symposium, Discrete Algorithms, 1999, pp. 160–166.
[15] A. Löbel, A network simplex implementation, Technical Report, Konrad-Zuse-Zentrum für Informationstechnik Berlin, ZIB, 2000.
[16] I. Maros, A general pricing scheme for the simplex method, Technical Report, Department of Computing, Imperial College, London, 2003.
[17] M. Masakazu, On network simplex method using primal–dual symmetric pivoting rule, Journal of Operations Research of Japan 43 (1999) 149–161.
[18] J.W. Bae, K.H. Kim, A pooled dispatching strategy for automated guided vehicles in port container terminals, International Journal of Management

Science 6 (2) (2000) 47–60.
[19] L. Qiu, W.-J. Hsu, S.-Y. Huang, H. Wang, Scheduling and routing algorithms for AGVs: a survey, International Journal of Production Research 40 (3)

(2002) 745–760. Taylor & Francis Ltd.
[20] D.J. Kelly, G.M. ONeill, The minimum cost flow problem and the network simplex solution method, Master Degree Dissertation, University College,

Dublin, 1993.
[21] R. Helgason, J. Kennington, Primal simplex algorithms for minimum cost network flows, in: Handbook on Operations Research and Management

Science, vol. 7, North-Holland, Amsterdam, 1995, pp. 85–133.
[22] W.H. Cunningham, Theoretical properties of the network simplex method, Mathematics of Operations Research 4 (2) (1979) 196–208.
[23] H. Rashidi, Dynamic scheduling of automated guided vehicles in container terminals, Ph.D. Thesis, Department of Computer Science, University of

Essex, 2006.
[24] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey, 1963.
[25] R.K. Ahuja, J.B. Orlin, M.S. Giovanni, P. Zuddas, Algorithms for the simple equal flow problem, Management Science 45 (10) (1999) 1440–1455.
[26] V.G. Andrew, An efficient implementation of a scaling minimum-cost flow algorithm, Journal of Algorithms 22 (1997) 1–29.
[27] R.K. Ahuja, J.B. Orlin, P. Sharma, P.T. Sokkalingam, A network simplex algorithmwith O(N) consecutive degenerate pivots, Operations Research 30 (3)

(2002) 141–148.
[28] S. Voß, Meta-heuristic: the state of the art, in: Local Search for Planning and Scheduling: ECAI 2000 Workshop, Berlin, Germany, 2000.
[29] E.P.K. Tsang, Scheduling techniques—a comparative study, British Telecom Technology Journal 13 (1) (1995) 16–28. Martlesham Heath, Ipswich, UK.

	A complete and an incomplete algorithm for automated guided vehicle scheduling in container terminals
	Introduction
	Minimum Cost Flow (MCF) model
	The special case of the MCF model for automated guided vehicle scheduling
	Assumptions
	Formulation of the problem
	Nodes and their properties in the special graph
	Arcs and their properties in the special graph
	The MCF -- AGV model for automated guided vehicle scheduling

	The algorithms
	Network Simplex Algorithm (NSA)
	The Network Simplex plus Algorithm (NSA+)
	Greedy Vehicle Search method

	Experimental results
	Static problems
	Dynamic problems
	A discussion over GVS and meta-heuristic

	Concluding summary
	References

