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                  Applying the Extended Network Simplex Algorithm to Dynamic 
Automated Guided Vehicles Scheduling 

 
 

 
Abstract: Scheduling of vehicles in the container terminal is often studied as a static 
problem in the literature, where all information, including the number of jobs, their arrival time, 
etc., is known beforehand. The objective is generally minimizing the total travelling and/or 
waiting times of the vehicles. When the situation changes, for example new jobs arrive or a 
section of the terminal is blocked, new solutions are generated from scratch. In this paper, the 
problem of dynamically scheduling automated guided vehicles in the container terminals is 
formulated as a minimum cost flow problem. This problem is then solved by a novel algorithm, 
NSA+, which extended the standard Network Simplex Algorithm (NSA). Like NSA, NSA+ is 
a complete algorithm, which means it guarantees optimality of the solution if it finds one 
within the time available. Our software, DSAGV, employs NSA+ and can find the global 
optimal solutions for 3,000 jobs and 10 millions arcs in the graph model within 2 minutes on a 
2.4 GHz Pentium PC. To complement NSA+, an incomplete algorithm Greedy Heuristic 
Search (GHS) is designed and implemented. To evaluate the relative strength and weakness of 
NSA+ and GHS, the two algorithms are compared for the dynamic automated vehicle 
scheduling problem. Both NSA+ and GHS are practical algorithms for dynamic automatic 
vehicle scheduling.  
 
Keywords: Search Methods, Dynamic Scheduling, Network Simplex Algorithm, 
Optimization, Container Terminals.  

 
1. Introduction 
 
The Minimum Cost Flow (MCF) Problem is to flow resources from a set of supply nodes, 
through the arcs of a network, to a set of demand nodes at minimum total cost, without 
violating the lower and upper bounds on flows through the arcs (which represent the capacities 
of the arcs). The MCF problem has numerous applications in scheduling, transportation, 
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logistics, and telecommunication. This paper has been motivated by a need to schedule a 
number of Automated Guided Vehicles (AGVs) in the container terminals. The container 
terminals components that are relevant to our problem include Quay Cranes (QC), container 
storage areas, Rubber Tyred Gantry Crane (RTGC) or yard crane, and a road network [see e.g. 
1, 2, 4, 5, 7, 10]. A transportation requirement in a port is described by a set of jobs, where 
each job is characterized by the source location of a container, the target location and the time 
of its picking up or dropping-off on the quay side by the quay crane. Given a number of AGVs 
and their availability, the task is to schedule the AGVs to meet the transportation requirements. 
 
The Network Simplex Algorithm (NSA) is an adaptation of the bounded variable of traditional 
primal simplex algorithm in Linear Programming. Generally, NSA is employed to solve MCF 
problems. The basis of NSA is represented as a rooted spanning tree of the underlying network, 
in which variables are represented by arcs. The method iterates towards an optimal solution by 
exchanging basic and non-basic arcs. At each iteration, an entering arc is selected by some 
pricing strategy, and the arc to leave the basis is ascertained. The construction of a new basis 
tree is called pivoting. There are many strategies for selecting the entering arc. The 
performance of algorithm is depended on those strategies. This paper extends NSA with some 
modification to the NSA. The novel algorithm, NSA+, then is applied to dynamic automated 
guided vehicles scheduling. 

The structure of this paper is as follows. Section 2 is a description of MCF problem and a 
literature review over NSA. After that features of NSA+ are presented. In section 3, an 
application of NSA+ for dynamic scheduling of automated guided vehicles in the container 
terminal is presented. Then, the problem is formulated and solved by NSA+. Also some 
outputs of running NSA+ to solve static problems are given in this section. Section 4 presents a 
Greedy Heuristic Search (GHS) and compares results of NSA+ and GHS in dynamic aspect. 
Section 5 is considered to summary and conclusion.  

2. Minimum cost flow problem and algorithms (NSA, NSA+)  
 
In this section some preliminary definitions of graph and minimum cost flow problem are 
briefly explained. After that a literature review over NSA and main features of NSA+ are 
presented. 
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Definition 1:  A graph G = (N, A) consists of a set of nodes, N, together with a set of 
arcs, A.  
Definition 2:  In an undirected graph the arcs are unordered pairs of nodes {i, j} Є A, i, 
j Є N. In a directed graph or network the arcs are ordered pairs of nodes (i, j).  
Definition 3:  A walk is an ordered list of nodes i 111, i2, . . . , it such that, in the case of an 
undirected graph, {ik, ik+1} Є A, or, in the case of a directed graph, that either (ik, ik+1) 
ЄA or (ik+1, ik) Є A, for k = 1, . . . , t-1.  
Definition 4:  A walk is a path if i 111, i2, . . . , ik are distinct, and a cycle if i 111, i2, . . . , ik-1 
are distinct and i1 = ik. A graph is connected if there is a path connecting every pair of 
nodes.  
Definition 5:  A network is acyclic if it contains no cycles. A network is a tree if it is 
connected and acyclic. A network (N’, A’) is a sub-network of (N, A) if N’ ⊂  N and 
A’ ⊂  A. A sub-network (N’, A’) is a spanning tree if it is a tree and N’ = N (figure 1). 

 

 
Figure 1: A connected Graph (a) and a spanning Tree (b) as dotted 

 
2.1 Minimum cost flow problem  
 
Given a directed network graph, let f ij denote the amount of flow of some material on arc (i, j) 
Є A and bi, i Є N, denote the amount of flow that enters the network at node i. If bi > 0, the 
node is a source that supplies bi units of flow. If bi < 0, the node is a sink with a demand of |bi| 
units of flow. Let there be a cost of cij per unit flow on arc (i, j) ЄA. The minimum cost flow 
(MCF) problem is:  
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These constraints show that the flows must be feasible and conserve each node. For feasible 
flows to exist, the MCF problem must also have 0=∑

∈Ni
ib .  

Note that the MCF problem is a special form of Linear Program. The constraints of a Linear 
Program are of the form Ax = b, where 
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2.2 Spanning tree solutions and optimality conditions 
 
In the network simplex algorithm, it is assumed that the network is connected. Every connected 
network has a spanning tree. A spanning tree solution, T, is a tree that can be constructed as 
follows:  
• Given n as the number of nodes in the graph, pick a set T⊂  A of n-1 arcs forming a 

spanning tree. The remaining arcs can be divided into the two sets L and U.  
• Set fij = mij for each arc (i, j) Є L and fij = Mij for each arc (i, j) Є U.  
• Use the flow conservation constraints to determine the flows fij for arcs (i, j) Є T. The 

algorithm begins by determining the flows on arcs incident to leaves of the tree T. 
Subsequently it determines the flows on other arcs of T. A spanning tree solution with mij ≤ 
fij ≤ Mij  is a feasible spanning tree solution. 

 
Theorem 1 [13]: Every basic feasible solution corresponds to a feasible spanning tree. Flow on 
non-basic arcs must be either mij or Mij.. 

 
Theorem 2 [13]: A spanning tree structure (T, L, U) is optimal for the minimum cost flow 
problem if it is feasible and for some choice of node potential π the arc reduced costs satisfy 
the following conditions:  
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3 The Algorithm NSA 
 
In network simplex algorithm, the linear algebra of the original simplex algorithm is replaced 
by simple network operations. With simple network operations, the minimum cost flow 
problem can be solved more than 100 times faster than equivalently sized Linear Programs. 
Ahuja, Magnanti, and Orlin [13] described the network simplex algorithm and gave pseudo-
codes and hints. Helgason and Kennington [17] provided detailed information on an 
implementation. Here, a short description of the algorithm is presented.  
 
The network simplex algorithm maintains a feasible spanning tree structure at each iteration 
and successfully transforms it into an improved spanning tree structure until it becomes 
optimal. The algorithm in figure 2 specifies steps of the method [13,19] . 
 
To create the initial or Basic Feasible Solution 
(BFS), an artificial node 0 is appended to the 
graph. It provides one way of obtaining an initial 
spanning tree structure for a connected graph. It 
can be assumed that for every node j Є N-{0}, the 
network graph contains arc (0,j) and (j,0), with 
sufficiently large costs and capacities. The initial 
tree T is constructed as follows: each node j, other 
than node 0, is examined one at a time. If b(j) ≥ 0, 
the algorithm includes (0,j) in T with a flow value 
of b(j). If b(j) ≤ 0, it includes arc (j,0) in T with a 
flow value of –b(j). The set L consists of the remaining arcs, and the set U is empty [13].  
 
Appending the entering arc, (k, l), to the spanning tree forms a unique cycle, W, with the arcs 
of the basis. In order to eliminate this cycle, one of its arcs must leave the basis. The cycle is 
eliminated when we have augmented flow by a sufficient amount to force the flow in one or 
more arcs of the cycle to their upper or lower bounds. By augmenting flow in a negative cost 
augmenting cycle, the objective value of the solution is improved. The first task in determining 
the leaving arc is the identification of all arcs of the cycle. The flow change is determined by 
the following equation: 

Algorithm Network Simplex Method 
Begin 
Generate Initial BFS; (
(k, l)  ← Entering Arc Є {
While (k, l) ≠ NULL Do 
   Find Cycle Є (k, l) } 
   θ ← Flow Change 
  (p, q) ← Leaving Arc Є
  Update Flow in W by θ 
  Update BFS; Tree T 
  Update node potentials 
  (k, l) ← Entering Arc Є {
End while 
End Algorithm 
 

Figure 2: The Network Simplex algorithm (NSA) 
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                    θ = min { fij for all (i, j) Є W} .   
 
The leaving arc is selected based on cycle W. The substitution of entering for the leaving arc 
and the reconstruction of new tree is called a pivot. After pivoting to change the basis, the 

reduced costs 
−
ijc = cij - (πi - πj) for each arc (i, j) ∉  T is calculated. Note that −

ijc = 0 for all arcs 

(i, j) Є T  by construction. If 
−
ijc ≥ 0 for all (i, j) Є L and 

−
ijc ≤ 0 for all (i, j) Є U then the current 

basic feasible solution is optimal. Otherwise, an arc (i, j) where there is a violation should be 
chosen and operations of the algorithm should be repeated.  
 
Different strategies are available for finding an entering arc for the basic solution. These 
strategies are called pricing rules. The performance of the algorithm is affected by these 
strategies. A literature review over these strategies is given below:  
 
The standard textbook [13] provided a detailed account of the literature on those strategies. We 
now briefly review this literature. Goldfarb and Reid (1977) proposed a steepest edge pricing 
criterion. Instead of selecting an entering arc on the basis of the reduced cost, it is selected by 
taking into account the changes in all arcs. Another candidate list strategy has been described 
by Mulvey (1978). There is a major and minor loop to select the entering arc. A limited 
number of favourably priced entering arcs are collected by scanning the non-basic arcs in a 
major iteration. In the minor iteration, the most favourably priced arc in the list is chosen to 
enter the basis. Grigoriadis (1986) describes a very simple arc block pricing strategy based on 
dividing the arcs into a number of subsets of specified size. At each iteration, the entering arc is 
selected from a block with most negative price. Only the arcs of one block are re-priced at any 
iteration. Andrew [18] studied practical implementation of minimum cost flow algorithms and 
claimed that his/her implementations worked very well over a wide range of problems.  
 
In recent years, several researches have been devoted on network simplex algorithm. 
Muramatsu [15] used a primal-dual symmetric pivoting rule and proposed a new scheme in 
which the algorithm can start from an arbitrary pair of primal and dual feasible spanning tree. 
Eppstein [22] presented a clustering technique for partitioning trees and forests into smaller 
sub-trees or clusters.  This technique has been used to improve the time bounds for optimal 
pivot selection in the primal network simplex algorithm for minimum-cost flow problem. 
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Lobel [12] developed some pricing rules to select an entering arc, a mixture of arc block and 
hot-list. In that pricing rule, a basket of violated arcs are collected in each iteration. A general 
pricing scheme for the simplex method has been proposed by Istvan [14]. He/she claimed that 
it creates a large flexibility in pricing and applicable to general and network simplex 
algorithms. Ahuja et al [16] developed a network simplex algorithm with O(n) consecutive 
degenerate pivot. He presented an anti-stalling pivot rule, based on concept of strong feasible 
spanning tree. The basis structure (T, L, U) is strongly feasible if we can send a positive 
amount of flow from any node to root along arcs in the spanning tree without violating any of 
the flow bounds. An equivalent way of stating this property is that no upward pointing arc of 
the spanning tree can be at its upper bound and no downward pointing arc can be at its lower 
bound.  
 
2.4 The Algorithm NSA+ 

 
NSA+ is an extension of NSA. Compared with the standard version of NSA, it has two 
features. Firstly, it deals with the concept of strongly feasible solution. Secondly, a mixture of 
heuristic approach and memory technique are used in NSA+. The first one is not a new, but a 
combination of the two features provides a higher speed. These features are briefly explained 
below. 
 
The first feature is related to maintaining the strongly feasible basis at each iteration. At the 
beginning, NSA+ chooses a strongly feasible solution. In each pivot, the leaving arc is selected 
appropriately so that the next basis is also strongly feasible.  
 
The second feature is concerned with the entering arc. The arcs in graph are divided into 
several blocks with the same size. At each iteration, a packet of the violated arcs are collected. 
The capacity of the packet is more than the block’s size and the most violated arcs are kept at 
the top of the packet. The block’s size depends on how many arcs are in the graph, while the 
number of most violated arcs may be a percentage of block’s size. In our software, DSAGV, 
the blocks are identified by a block-number and the first one is chosen randomly or by a 
heuristic method (based on location of the biggest cost of arcs, for example). Scanning of the 
arcs for violation among different blocks is chosen circularly. At the beginning of the entering 
arc procedure, reduced costs of the most violated arcs in previous stage are recalculated. If they 
violate the optimality conditions again, they are kept in the packet. Otherwise they are replaced 
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by new violated arcs. Then, some new violated arcs, based on scanning of arcs from the blocks, 
are put into the packet as long as it has empty place. At the end of procedure, if the packet is 
empty, the current solution is optimal. Otherwise the packet will be sorted decreasingly, based 
on absolute value of the reduced costs, and the most violated arc will be chosen as the entering 
arc.  
 
3. Scheduling problem of Automated Guided Vehicles  
 
In this section, scheduling problem of Automated Guided Vehicles (AGVs) in the container 
terminals is introduced. The problem is to deploy several AGVs in a port to carry many 
containers from the quay-side to yard-side or vice versa. The main reason to choosing this 
problem is that the efficiency of a container terminal is directly related to use the AGVs with 
full efficiency [see e.g. 1, 2, 4, 8, 10]. This problem is formulated as a Minimum Cost Flow 
(MCF) model and then solved by primal version of NSA+.  

 
3.1  Assumptions. 
Following are the assumptions made in this paper. 
Assumption 1: The layout of a port container terminal is given [10]. According to a specific 
layout the travel time between every combination of Pickup (P) /Drop-off (D) points is 
provided.  
Assumption 2: It is assumed the vehicles move with an average speed so that there are no 
Collisions, Congestion, Live-locks, Deadlocks [8] and breakdown problem while they are 
carrying the containers. 
Assumption 3: Every AGV can transport only one container. Also it is assumed that the start 
location of each AGV at the beginning of process is given. 
Assumption 4: The yard is divided to several blocks and RTGCs or yard crane resources are 
always available [4], i.e., the AGVs will not suffer delays in the storage yard location or 
waiting for the yard cranes. 
Assumption 5: Appointment time of every job at its source (destination) on the quay side is 
given.  
Assumption 6: The quay side consists of several Quay Cranes (QCs). For each QC, there is a 
predetermined job sequence, consisting of loading or unloading jobs, or a combination of both. 
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For each loading (unloading) job, there is a predetermined pickup (drop-off) point in the yard, 
which is the origin (destination) of the job. 
Assumption 7: There are N containers jobs in the container terminal. The source and 
destination of them in the port are given. 
Assumption 8: For the dynamic aspect of the problem, it is assumed that the number of 
vehicles is fixed, but the number of jobs and the distance between every two points in the port 
may be changed.  
 
3.2 Minimum Cost Flow Model of the Problem 
 
To make a model for the problem, the following notations are used: 
• ti : Appointment time of job i at the quay side (to be unloaded or dropped-off). 
• RTAm: Ready time of AGV m at start location, where may be either the quay-side or yard. 
• Tij: Travelling time from location of job i (quay-side) to location of job j (quay-side). 
• P: Penalty of delay if an AGV can not reach on the quay side at the appointment time. 
• TTAmi: The travel time of the AGV m from the start location to the location of  job i on the 

quay side. 
 
The calculation of travel time between the jobs i and j, Tij , is illustrated by figure 3 in different 
cases [4]. The RTAm should be calculated in the similar manner. 

Figure 3: Travelling time computations between two jobs. 
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The optimal assignment of the AGVs to container jobs can be determined by solving a 
minimum-cost network flow problem. Cheng et al. (2003) minimized the impact of delays and 
waiting times of the AGVs at the quay side [4]. In this paper, our objectives are to minimize (a) 
the total AGV waiting time at the quay side (b) the total AGV travelling time in the route of 
port (c) the total lateness times to serve the jobs. 
  
A directed graph to represent the complete network flow is suggested. Given number of jobs, N, 
and number of vehicles, M, in the problem, there are N+M+1 node in the graph. Every 
container job (unloading/loading) is represented as a node in the graph. There is a node 
corresponding to each vehicle, capturing the state of the vehicle at the time of deployment. We 
also need to insert a sink node, corresponding to the end state of the vehicles, after all container 
jobs have been served.  
 
To define the arcs in the graph model, the following notations are introduced:  

• The job j is consistent with job i if a single vehicle can be used to serve job j after 
serving job i. Therefore, these jobs are consistent if: 

ti + Tij ≤ tj . 
• Similarly the vehicle m is consistent with  job i if: 

RTAm + TTAmi ≤ ti. 
 
The following three types of arcs connect the various nodes in the graph: 
1) There is a directed arc from a vehicle, node m, to a container job, node i. If the vehicle m is 
consistent with job i, cost of the arc (m, i) corresponds to the waiting and travelling time that 
the vehicle m incurs at the quay crane location of job i. However, in practical situation, it may 
not be possible for the vehicle to arrive at the quay side at the appointment time. A large 
penalty should be considered for this delay to avoid those inconsistent arcs.  
 
Hence, the Waiting and Travelling (Distance) times between vehicle m and job i as well as the 
Lateness times to serve job i are: 
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2)  There is a directed arc from container job i to container job j. If the job j is consistent with 
job i,  cost of the arc (i, j) is the waiting and travelling times that the vehicle incurs. However in 
the practical situation, it is impossible to serve the jobs within the specified time. Similar to the 
inconsistent arc between vehicle node and containers node, a large penalty should be 
considered to avoid serving these sequences. Thus, the Waiting and Travelling (Distance) 
times of vehicles and the Lateness times to serve job node j after serving job node i are:  
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3) There exists a directed arc from each of the vehicle nodes and the container nodes to the 
sink node, which denoted by s. These arcs show that a vehicle can remain idle after serving any 
number of jobs or without serving any job. Therefore, a cost of zero is assigned to these arcs:  
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3.3 The Mathematical Model 
 
The MCF model in the previous section can be written in mathematical form as follows:  
 
 
 
 
 
 
 
 
 
In the model fij, WTij , DTij and LTij are the flow traversing, waiting, travelling and lateness 
costs across arc aij, respectively. In the objective function, w1 and w2 are weights for the 
waiting and travelling times of the vehicles. A large value, P, is considered to avoid the 
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inconsistent arcs. The first three constraints show the flow balance for the network, and the 
fourth constraint decrees that all the container nodes are visited exactly once. Solving this 
network model generates M paths, each of which commences from a vehicle node and 
terminates at the sink node. Each path determines a job sequence of every vehicle. 
 
The MCF model of the problem can be illustrated by figure 4 for two AGVs and four container 
jobs. In order to prevent an AGV to go directly to the sink node, every container node should 
be replaced by a couple of nodes. The arc between this couple (nodes 3 and 4 for job1, for 
example) has unit lower and upper bound. Moreover, the transition cost between these couples 
is zero. These conditions guarantee that every container node should be visited once only.  
 
 

 
 
 
 
 

 
Figure 4: An example of network flow model for AGV scheduling. 

 
The problem has a huge search space and the solution should provide the optimal paths for 
each AGV from every vehicle node to the sink node. Given number of jobs and number of 
vehicles, N and M respectively, there are M+2*N+1 nodes and M+M*N + N*(N-1) + 2*N in 
the graph model. Suppose that for some values of arc costs, the paths given by NSA+ are 1-3-
4-9-10-11 and 2-5-6-7-8-11. This states that AGV 1 is assigned to serve jobs 1 and 4, and AGV 
2 is assigned to serve jobs 2 and 3, respectively. 
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3.4 Experimental results for Static Problems 
 
To test the model and NSA+, a hypothetical port was designed. In each run, random jobs were 
generated. In each generated job, the sources and destinations were chosen randomly by our 
software (DSAGV). The following parameters were used to define the port, the objective 
function, the number of vehicles and generate the jobs (table 1). 
 

Table 1: Value of Parameters for the simulation 
Description of the Parameters Values 

Number of Vehicles in the port 50 
Number of Quay Cranes 7 
Number of Blocks in the yard (Storage area inside the port) 32 
Time Window of the Cranes 120 second 
Weight of waiting Times for the Vehicles in the objective function  1 
Weight of travelling Times for the Vehicles in the Objective Function 5 
P as the penalty (See mathematical formulation)  10000 

 
 
We implemented DSAGV in Borland C++. Then, the software has been run to solve several 
random problems. The time to solve the problems has been drawn, by figure 5, according to 
both number of jobs and number of arcs in the graph model. Also the power estimation for 
those two curves has been shown on the figures. All experiments were run on a Pentium-4 2.4 
GHz PC with 1 GMB RAM. As it can be seen in the figures, NSA+ can find the global optimal 
solution for 3000 jobs and 10 millions arcs in the graph model within 2 minutes.  
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Figure 5:.Time to solve the graph model (a) based on number of Jobs, b) based on number of Arcs 
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4. Dynamic Scheduling of AGVs 
 
Traditionally, scheduling problem of vehicles in the container terminal is static nature where 
everything is known beforehand. In reality, the problem is dynamic. New jobs arrive from time 
to time. Delays or breakdown of vehicles change the travelling time and availability of vehicles.   
NSA+ is a complete algorithm. Although it is efficient, it can only work on problems with 
certain limits in size. To complement NSA+, a Greedy Heuristic Search (GHS) is designed and 
implemented. GHS will be useful for problems which sizes go beyond the limit of NSA+, or in 
dynamic scheduling where reactive responses are called for.  
 
4.1 The Greedy Heuristic Search Algorithm 
 
In this simple search method, every time a job needs to be served. This behaves as a Taxi 
Service System. For any unassigned job and the list of idles AGVs, a job is assigned to a 
vehicle with minimum costs, including waiting time and travelling time. A block diagram 
describing GHS is presented in figure 6. 
 

 
Figure 6: Block Diagram of Greedy Heuristic Search. 

 
Given the appointment time of container job j, ti, the ready time of AGV m to get the start 
location, RTAm, and the travel time of the AGV from its start location to the source/destination 
of job j on the quay side, TTAmj, the objective function is calculated as:  
 
 
Note that w1 and w2 are the weight of waiting time and travelling time of the vehicles, as 
section 3.  
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-2 Demand 

We can compare this method with the graph model in section 3. This is a special case of the 
minimum cost flow problem with M vehicle node, N container nodes and one sink node, but 
every time an idle vehicle is assigned to just one of the remaining jobs. The graph model of the 
problem can be illustrated by figure 7 for two AGVs and four container jobs.  
 
 
 
 
 

 
Figure 7: An example of network flow model for AGV scheduling. 

 
The constraints for this simple cost flow problem are as follows: 
 
 
 
 
 
 
 
 
The pseudo code for GHS is shown in figure 8. 
 
 
 
 
 
 

 
 
 

Figure 8: Pseudo code of Simple Heuristic Search 
 

If there is any remaining job and there is any idle vehicle 
       Calculate the objective function (v, j): the travelling times and waiting times. 
       For ν=1, 2, #Idle vehicles; for j=1, 2,.., #Remaining jobs 
Else 
   Stop 
End If 
Again: 
Select a vehicle m and a job j with the minimum cost. 
Assign the vehicle m to the job j. 
Remove the vehicle m from the list of idle vehicles and the job j from the remaining job. 
If there is any idle vehicle and any left jobs 
   Go to again 
End If 
Stop 
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4.2 Software Architecture for dynamic aspect 
 
The architecture of the main part of the software that implements GHS is shown in figure 9. In 
this section, this architecture and operation are explained briefly. A similar architecture and 
operation for NSA+ are considered in our software.  
 
At the start of process, the Job Generator generates a few jobs for the cranes. These jobs will 
be appended to the remaining jobs, which is empty at the beginning. The remaining jobs are 
used by the Greedy Heuristic Search and the output of this method is an individual job for 
every vehicle.  

Figure 9: Block Diagram of the Greedy Heuristic Search in dynamic aspect 
 
The software does two tasks in dynamic fashion. The first task is related to updating the 
vehicle’s status and assigning a job to any available vehicle whereas the second one takes 
influence from any idle crane. In real time processing, the travelled and waited times of every 
vehicle should be updated. At the same time, if the vehicle picks up the job from the quay side, 
the assigned job for the vehicle will be deleted and removed from the list of remaining jobs. If 
the job should be delivered to the crane on the quay side, it could not be removed until meeting 
time between the crane and the vehicle (the appointment place is on the quay side, not the yard 
side). The second task refers to any change in the crane’s status. The Job Generator has to 
generate a few new jobs, when it finds out any idle crane. 
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4.3 A comparison between GHS and NSA+  
 
To evaluate the relative strength and weakness of GHS and NSA+ in the dynamic scheduling 
problem, we used randomly generated problems. Distance between every two points in the port 
as well as the source and destination of jobs were chosen randomly. We did a simulation for 6 
hours subject to generating 5 jobs for any idle crane. Other parameters for this simulation were 
the same as table 1. Figures 10 to 12 demonstrate some outputs of the software during the six 
hours.   
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Figure 10: A comparison of Travelling and Waiting Times of the Vehicles 

 
As we can see from figure 10, waiting times of the vehicles for Greedy Heuristic Search is 
significantly greater than waiting times of the vehicle in NSA+, although travelling times of the 
vehicles for both algorithms are almost the same during the 6 hours. The main reason for this 
result is that NSA+ finds out a complete solution for the Minimum Cost Flow problem whereas 
GHS is incomplete search method.  
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Number of Carried Jobs
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Figure 11: The number of carried jobs by two algorithms during 6 hour simulation 

Average Deviations From Appointment Times 

0

10

20

30

40

0 5000 10000 15000 20000
Time (Second)

Av
er

ag
e D

ev
iat

io
ns

 in
 

Se
co

nd

GHS:Average deviations from the appointmnet times
NSA+:Average deviations from the appointmnet times  
Figure 12: Average deviations from the appointment time 

 
The number of jobs carried out by the end of six-hour (21,600 seconds) for both algorithms is 
approximately the same (figure 11). Generally, due to the tight schedules of the quay cranes, it 
is undesirable for containers to be served too early or too late for the appointment. Therefore, 
the average deviation from the appointment times is another indicator for evaluating the 
algorithms. Given the number of served jobs, N, the time at which the job i is served, ACTi , 
and the time of job i’s appointment, APTi , a schedule’s average deviations is calculated by the 
following equation: 
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Figure 12 presents the Average Deviation indicator for both NSA+ and GHS during the six-
hour simulation. The figure shows that both algorithms performed well, but GHS is superior to 
NSA+ in average deviation. This is hardly surprising as NSA+ was not designed to minimize 
the average deviation measure.  
 
4.4 Statistical test for the comparison 
The waiting and travelling times of the vehicles, produced by NSA+ and GHS, were analysed 
statistically. We tested the null hypothesis that the means produced by the two algorithms were 
statistically indifferent. Table 2 shows the test results along with the critical values of t-
distribution. The one-tail t-test suggests that NSA+ is significantly better than GHS in both 
travelling and waiting times of the vehicles with 95% level of confidence. On the other hand, 
GHS is statistically better than NSA+ in average deviation. 

Table 2: The result of T-Test for the difference between NSA+ and GHS 

Statistical Parameters 
Total Waiting 
Times of the 

Vehicles 

Total Travelling 
Times of the 

Vehicles 

Average deviation 
from the 

appointment 
times 

Observations 721 721 721 
t-test (Paired Two Sample For Means  ) -43.40547441 -43.5902651 73.68094065 
Degree of Freedom 720 720 720 
Critical t-value 1.646972 1.646972 1.646972 

 
 
5.  Concluding summary  
 
In this paper, the automated guided vehicles scheduling problem in the container terminals was 
formulated as a minimum cost flow and then solved by a new version of Network Simplex 
Algorithm (NSA+). Our software, implemented in Borland C++, running on a 2.4 GHz 
Pentium PC, could find the global optimal solution for 3000 jobs and 10 millions arcs in the 
graph model within 2 minutes. To complement NSA+, the Greedy Heuristic Search (GHS) was 
designed. The two algorithms were compared on both static and dynamic problems. Given the 
results so far, we claim that NSA+ is efficient and effective in both waiting and travelling times 
of the vehicles. GHS is useful when the problem is too big for NSA+ to solve. Being an 
incomplete algorithm, GHS sacrifices completeness. This establishes NSA+ plus GHS as 
complementary algorithms for practical dynamic automatic vehicle scheduling.  
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