
Journal of Industrial Engineering 2 (2009) 1-9 1

An Efficient Extension of Network Simplex Algorithm
Hassan Rashidia, Edward P. K. Tsangb

aSchool of Computer Science and Electronic Systems Engineering, University of Essex, Colchester CO4 3SQ, U.K., Email: hrashi@essex.ac.uk

bSchool of Computer Science and Electronic Systems Engineering University of Essex, Colchester CO4 3SQ, U.K.,
Email: edward@essex.ac.uk, Tel: +44 1206 872774

Abstract:
In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in
situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated
Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the standard NSA. The
algorithms are based on graph model and their performances are at least 100 times faster than traditional simplex algorithm for Linear
Programs. Many random data are generated and fed to the model for 50 vehicles. We compared results of NSA and NSA+ for the static
automated vehicle scheduling problem. The results show that NSA+ is significantly more efficient than NSA. It is found that, in practice,
NSA and NSA+ take polynomial time to solve problems in this application.

Keywords: Scheduling, Container Terminals, Minimum Cost Flow Problem, Network Simplex Algorithm, Optimization Methods.

1 Introduction

The Minimum Cost Flow (MCF) problem is the
problem of flowing resources from a set of supply nodes,
through the arcs of a network, to a set of demand nodes at
minimum total cost, without violating the lower and upper
bounds on flows through the arcs (which represent the
capacities of the arcs). This problem arises in a large
number of industries, including agriculture,
communications, defence, education, energy, health care,
manufacturing, medicine, retailing, and
transportation [16]. This paper has been motivated by a
need to schedule Automated Guided Vehicles (AGVs) in
container terminals. The container terminals components
that are relevant to our problem include quay cranes (QC),
container storage areas, rubber tyred gantry crane (RTGC)
or yard crane, and a road network [26] [24]. A
transportation requirement in a port is described by a set
of jobs, each of which being characterized by the source
location of a container, the destination location and its
pick up or drop-off times on the quay side by the quay
crane. Given a number of AGVs and their availability, the
task is to schedule the AGVs to meet the transportation
requirements.

Network Simplex Algorithm (NSA) is the fastest
algorithm to tackle the MCF model [16]. Pricing scheme is
certainly an important step in NSA since the total
computational effort to solve a problem heavily depends

on its choice. This step does two things. It checks whether
the optimality conditions for the non-basic arcs are
satisfied, and if not it selects a violated arc to enter the
spanning tree structure [16]. The selected arc has a
potential of improving the current solution. According to
the theory [16] the NSA terminates in a finite number of
iterations regardless of which profitable candidate is
chosen if degeneracy is treated properly. Some well-
known schemes in NSA are the steepest edge scheme (by
Goldfarb and Reid [39]), the Mulvey’s list (by
Mulvey [39]), the block pricing scheme (by
Grigoriadis [8]), the BBG Queue pricing scheme (by
Bradley, Brown and Graves [39]), the clustering
technique (by Eppstein [6]), the multiple pricing schemes
(by Lobel [23]), the general pricing scheme (by
Istvan [21]). In this paper we present a new pricing
scheme, which significantly reduces the CPU-time
required to tackle the MCF model. By using the new
pricing scheme, we obtain an efficient extension of NSA,
which called Network Simplex plus Algorithm (NSA+).

The structure of this paper is as follows. Section 2
reviews the scheduling problem of Automated Guided
Vehicles (AGV) in container terminals. Section 3 presents
two algorithms to tackle the MCF-AGV model, namely
Network Simplex Algorithm (NSA) and Network Simplex
plus Algorithm (NSA+). Experimental results from
applying the two algorithms to tackle the model are
compared in Section 4. Section 5 is considered to
summary and conclusion.

mailto:hrashi@essex.ac.uk
mailto:edward@essex.ac.uk

2 Hassan Rashidi et al./An efficient Extension of Network Simplex Algorithm

2 The scheduling problem of Automated Guided
Vehicles (AGV) in Container Terminals

In order to test that the new extension of Network
Simplex Algorithm is efficient, we choose the most
challenging problem in container port. The problem is the
AGV scheduling problem in the container terminals and it
is the same as the problem presented in [13]. Here, we
have an overview on the problem. For more detail, readers
can refer to [42]. The most important reason to choosing
this problem is that the efficiency of a container terminal
is directly related to use the AGVs with full efficiency.

3.1 The Assumptions
The following assumptions are considered to define the
AGV scheduling problem in the container terminals:
Assumption-1: It is assumed that the problem involves
only one ship. For the ship, n containers jobs must be
transported from the quay-side to the year-side or vice
versa. The source and destination of the containers jobs as
well as their appointment time on the quay-side are given.
To load/unload the containers from a vessel or in the yard,
a QC or RTGC is used.
Assumption-2: The RTGCs or yard crane resources are
always available, i.e., the AGVs will not suffer delays in
the storage yard location or waiting for the yard cranes.
Assumption-3: There is a predetermined crane job
sequence, consisting of loading jobs, or
unloading/discharging jobs, or a combination of both for
every QC. Given a specified job sequence, the
corresponding drop-off (for loading) or pickup (for
discharging) times of the jobs on the quayside depends on
the work rate of the quay cranes. After the ship docked at
the quay-side, the appointment time of the jth job is
calculated by the following expression :

ATj = Ship-docked-time + j × W.
The Ship-docked-time is the time at which the ship is
ready for discharge/loading on the quay-side. The time
window W is the duration of discharging/loading a
container.
Assumption-4: We are given a fleet of V={1,2,..,│V│}
vehicles. Each vehicle transports only one container. At
the start of the process, the vehicles are assumed to be
empty.
Assumption-5: It is assumed the vehicles move with an
average speed so that there are no Collisions, Congestion,
Live-locks, Deadlocks [36]] and breakdown problem.
Assumption-6: We assumed the container jobs are
distributed in the terminal so that each pickup/drop-ff)
point is visited once only by a vehicle. In other word, a
QC and RTGC are not busy in each node by different
container jobs at the same time.
Assumption-7: In this scheduling problem, our goal is to
deploy the AGVs such that all the imposed appointment
time constraints are met with minimum cost. Our
objectives are to minimize (1) the total AGV waiting time
on the quay side; (2) the total AGV traveling time in the
route of port; (3) the total lateness times to serve the jobs.

3.2 The formulation
Since the vehicles are Single-Load AGVs (see the
Assumption-4), the problem can be converted to a
Minimum Cost Flow (MCF) problem. For more details on
the MCF problem and the scheduling AGV problem,
readers can refer to [13], [42]. The MCF is a well-known
problem in the area of network optimisation, i.e. the
problem is to send flow from a set of supply nodes,
through the arcs of a network, to a set of demand nodes, at
minimum total cost, and without violating the lower and
upper bounds on flows through the arcs. The problem for
two vehicles and four jobs is demonstrated in the Figure-2.
In the figure the supply nodes are denoted by A1 and A2.
Each of these nodes has a one unit supply. There is only a
demand node in the MCF problem. This node has -2 units
demand. The directed arcs from A1 and A2 to the demand
node must be added to the network model. These arcs
show that an AGV can remain idle without serving any
job. Therefore, a cost of zero is assigned to these arcs. The
lower bound, upper bound and cost of each arc are noted
by the triplex [Lower Bound, Upper Bound, Cost].

Solving the MCF problem generates 2 paths (the number
of vehicles), each of which commences from a vehicle
node and terminates at the demand node. Each path
determines a job sequence of every vehicle. Suppose that
for some values of arc costs, the paths given by a solution
are A1→1→5→4→8→9 and A2→2→6→3→7→9. This
states that AGV 1 is assigned to serve jobs 1 and 4, and
AGV 2 is assigned to serve jobs 2 and 3, respectively.

3 The Algorithms

In this section, two algorithms to tackle the problem,
Network Simplex Algorithm (NSA) and Network Simplex
plus Algorithm (NSA+) are presented. NSA+ is an
extended NSA with three enhanced features.

3.1 Network Simplex Algorithm (NSA)

Every connected graph has a spanning tree [16]. The
network simplex algorithm maintains a feasible spanning
tree at each iteration and successfully goes toward the
optimality conditions until it becomes optimal. At each
iteration, the arcs in the graph are divided into three sets;
the arcs belong to the spanning tree (T); the arcs with flow
at their lower pound (L); the arcs with flow at their upper
bound (U). A spanning tree structure (T, L, U) is optimal
if the reduced cost for every arc (i,j)∈L is greater than
zero and at the same time the reduced cost for every arc
(i,j)∈U is less than zero [1]. With those conditions, the
current solution is optimal. Otherwise, there are arcs in the
graph that violate the optimal conditions. An arc is a
violated arc if it belongs to L (U) with negative (positive)
reduced cost. The algorithm in Figure-2 specifies steps of
the method [39].

Journal of Industrial Engineering 2 (2009) 1-9 3

Figure-1: The MCF model for 2 AGVs and four container jobs.

To create the initial or Basic Feasible Solution (BFS),
an artificial node 0 and artificial arcs are appended to the
graph. The node ‘0’ will be the root of spanning tree (T)
and the artificial arcs, with sufficiently large costs and
capacities, connect the nodes to the root. The set L
consists of the main arcs in the graph, and the set U is
empty [16]. Appending the entering arc (k, l), which is a
violated arc, to the spanning tree forms a unique cycle, W,
with the arcs of the basis. In order to eliminate this cycle,
one of its arcs must leave the basis. The cycle is
eliminated when we have augmented flow by a sufficient
amount to force the flow in one or more arcs of the cycle
to their upper or lower bounds. By augmenting flow in a
negative cost augmenting cycle, the objective value of the
solution is improved. The first task in determining the
leaving arc is the identification of all arcs of the cycle.
The flow change is determined by the equation θ = min
{ fij for all (i, j) ∈ W}. The leaving arc is selected based
on cycle W. The substitution of entering for the leaving
arc and the reconstruction of new tree is called a pivot.
After pivoting to change the basis, the reduced costs for
each arc (i, j) ∉ T is calculated. If the reduced costs for
all (i, j) ∈ {L + U} satisfy the optimality condition then
the current basic feasible solution is optimal. Otherwise,
an arc (i, j) where there is a violation should be chosen
and operations of the algorithm should be repeated.

Different strategies are available for finding an
entering arc for the basic solution. These strategies are
called pricing rules. The performance of the algorithm is
affected by these strategies. The standard textbook [16]
provided a detailed account of the literature on those
strategies. Bradley, Brown and Graves (1977), used a
dynamic queue, containing the indices of so-called
‘interesting’ nodes and admissible arcs. Their method is
called BBG Queue pricing scheme. An ‘interesting’ node
is a node whose incident arcs have not been re-priced in
recent iterations. At each iteration, the entering arc is
selected from the queue. Goldfarb and Reid (1977)
proposed a steepest edge pricing criterion. Mulvey (1978)

suggests a major and minor loop to select the entering arc.
A limited number of favourably priced entering arcs are
collected by scanning the non-basic arcs in a major
iteration. In the minor iteration, the most favourably
priced arc in the list is chosen to enter the basis.
Grigoriadis (1986) describes a very simple arc block
pricing strategy based on dividing the arcs into a number
of subsets of specified size. At each iteration, the entering
arc is selected from a block with most negative price.
Andrew (1997) studied practical implementation of
minimum cost flow algorithms and claimed that his/her
implementations worked very well over a wide range of
problems [3].

Masakazu (1999) used a primal-dual symmetric
pivoting rule and proposed a new scheme in which the
algorithm can start from an arbitrary pair of primal and
dual feasible spanning tree [11]. Eppstein (1999)
presented a clustering technique for partitioning trees and
forests into smaller sub-trees or clusters [6]. This
technique has been used to improve the time bounds for
optimal pivot selection in the primal network simplex
algorithm for minimum-cost flow problem. Lobel (2000)
developed and implemented the multiple pricing rules to
select an entering arc, a mixture of several sizes for the
arc block [23]. A general pricing scheme for the simplex
method has been proposed by Istvan [21]. His pricing
scheme is controlled by three parameters. With different
settings of the parameters, he claimed that it creates a
large flexibility in pricing and applicable to general and
network simplex algorithms. Ahuja et al. (2002)
developed a network simplex algorithm with O(n)
consecutive degenerate pivot [1]. He presented an anti-
stalling pivot rule, based on concept of strong feasible
spanning tree. The basis structure (T, L, U) is strongly
feasible if we can send a positive amount of flow from
any node to root along arcs in the spanning tree without
violating any of the flow bounds.

4 Hassan Rashidi et al./An efficient Extension of Network Simplex Algorithm

Figure-2: The Network Simplex Algorithm (NSA)

Istvan reviewed a collection of some known pricing
schemes in the original simplex algorithm [21]. They are
First improving candidate, Dantzig rule, Partial pricing,
Multiple pricing and Sectional pricing. These schemes can
be applied to NSA. First improving candidate chooses the
first violate arc as the entering arc. It is cheap but it
usually leads to a very large number of iterations. In
Dantzig rule all non-basic arcs are checked (full pricing)
and one which violates the optimality condition the most
is selected. This rule is quite expensive but overall is
considerably better than the previous method. The Partial
pricing scans only a part of the non-basic arcs and the best
candidate from this part is selected. In the next step, the
next part is scanned, and so on. In Multiple pricing, some
of the most profitable candidates (in terms of the
magnitude) are selected during one scanning pass. They
are updated and a sub-optimization is performed
involving the current basis and the selected candidates
using the criterion of greatest improvement. The Sectional
pricing behaves as a kind of partial pricing, but in each
iteration sections or clusters of arc are considered.

3.2 The Network Simplex plus Algorithm (NSA+)

NSA+ is an efficient extension of NSA. Compared
with the standard version of NSA by Grigoriadis’s
blocking scheme [8] and maintaining the strongly feasible
spanning tree [16], NSA+ has three new features. These
features are concerned with the starting point/block for
scanning violated arcs, the memory technique and the
scanning method. The pricing scheme of NSA+ is
designed based on these features.

There is a function for the pricing scheme to find out
an entering arc. The pseudo-code for this function is
illustrated in Figure-3. The arcs in the graph of MCF
model are divided into several blocks with the same size
and each block is identified by a specific number, known
as Block-Number. For each problem, the number of
blocks is calculated by dividing the number of arcs in the
graph into the block’s size.

At first iteration, when the initialization is needed and
the packet is empty, the number of blocks is calculated
and the first one to be scanned for the optimality condition
is chosen (see the lines 2-5). The function selects the first
block randomly or by a heuristic method (based on
location of the biggest cost, for example). Note that at first
iteration the lines 6-9 don’t perform anything because the
packet is empty (these will be activated from the second
iteration and when the packet is not empty). Scanning of
the arcs for violation among different blocks is chosen
circularly. At each scan one violating arc (at most) from
each block is put into the packet as long as it has empty
place and there is any violated arc (see the lines 10-14).
The capacity of the packet is more than the block’s size
and the most violating arcs are kept at the top of the
packet. At the end of function, if the packet is empty, the
current solution is optimal (see the lines 15-17).
Otherwise the packet will be sorted in descending order,
based on the absolute value of the reduced costs, and the
most violated arc will be chosen as the entering arc (see
the lines 18-19).

The memory technique will be activated from the
second iteration. It uses a few elements at the top of the
packet of the last iteration. The size of this memory may
be a percentage of the block’s size. The reduced costs of
the most violated arcs in the previous iteration are
recalculated (see the line 6). If they violate the optimality
conditions again, they are kept in the packet. Otherwise
they must be removed from the packet, which can be
replaced by new violating arcs (see the lines 7-9). The
reaming part of the function acts as before.

As we mentioned, there are two options to choose the
first block to be scanned; Randomly and Heuristically.
Hence, NSA+ has two extensions: (a) NSA+R: The
entering arc function chooses the first block by Random
selection; (b) NSA+H: The entering arc function chooses
the first block by a Heuristic method (based on location of
the largest cost in the graph).

1: Algorithm Network Simplex Method
2: Begin
3: Create Initial BFS; (T, L, U)
4: (k, l) entering arc ∈ {L + U }
5: While (k, l) <> NULL Do
6: Find Cycle W ∈ {T + (k, l) }
7: θ Flow Change
8: (p, q) Leaving Arc ∈ W
9: Update Flow in W by θ
10: Update BFS; Tree T
11: Update node potentials
12: (k, l) entering arc∈ {L+ U}
13: End while
14: End Algorithm

Step 2: Determine the leaving arc

Step 3: Exchange the entering and leaving arc

Step 1: Select an entering arc

Step 0: Create a Basic Feasible Solution

Journal of Industrial Engineering 2 (2009) 1-9 5

Figure-3: The Pseudo-code of selecting an entering arc in Network Simplex plus Algorithm

3.3 The differences between NSA and NSA+
The main difference between NSA and NSA+ are in

the pricing scheme and the entering arc procedure. As we
mentioned, the role of the pricing scheme is that how the
entering arc to be selected from the violated arcs in the
graph. The differences between NSA and NSA+ are as
flows:

• At each iteration, a packet of violated arcs from
different blocks is collected in NSA+ and the
most violated arc is selected as the entering arc,
whereas NSA selects the most violated arc from
one block.

• There is no memory technique in NSA while
NSA+ uses a few elements at the top of the packet
for the next iteration. It benefits from the current
violated arcs for the next iteration.

• The first block is selected Randomly or by a
Heuristic method in NSA+, whereas NSA always
chooses the first block for scanning the violated
arcs.

4 Experimental Results from the implementation and
running the algorithms

We implemented the standard version of Network
Simplex Algorithm (see Figure-2). As we mentioned, the
pricing rule or scheme to choose the entering arc in Step 1
determines the speed of algorithm. In the literature, we
reviewed the pricing rules. Actually, there is the trade-off
between time spent in pricing at each iteration and the
‘goodness’ of the selected arc in terms of reducing the
number of iterations required to reach the optimal solution.
The First improving candidate and Dantzig rule represent
two extreme choices for the entering arc. Other pricing
schemes strike an effective comprise between these two
extremes and have proven to be more efficient in
practice [16]. Kelly and Neill [39] implemented several

pricing schemes and ran their software for different
classes of minimum cost flow problems. In their results,
the block pricing scheme provided a better performance
compared with others. We therefore chose the block
pricing scheme. This scheme is based on dividing the arcs
of the graph into a number of subsets of specified size. A
block size of between 1% and 8.5% of the size of the arcs
in the graph has been recommended by Grigoriadis [39],
for large MCF problems. We set the number to 5% by the
try and error.

To test the model and make a comparison between
NSA and NSA+, a hypothetical port was designed. The
parameters in Table-1 were used to define the port.

Table-1: Value of Parameters for the simulation

Description of the
Parameters Values

Number of Vehicles in the
port 50

Number of Quay Cranes 7
Number of Blocks in the
yard (Storage area inside
the port)

32

Time Window of the Cranes 120 seconds
Travelling Time between
every two points in the port
(see Assumption 1)

Random between
1 and 100
seconds

We implemented our software in Borland C++. Then,

it has been run to solve several random problems. The
sources and destinations of jobs were chosen randomly.
The CPU-Time required to solve the problems by the two
algorithms has been drawn in Figure-4 and Figure-5,
according to the number of jobs and the number of arcs,
respectively. Also the power estimation for those two
curves has been shown on the figures.

1: arc Entering_Arc_Function
2: If Initialization is needed Then // the packet is empty
3: Calculate the number of blocks
4: Choose the Block-Number // Randomly or by a Heuristic method
5: End if
6: Recalculate the Reduced Costs of the most violated Arcs in the Packet
7: If the most violated elements satisfy the optimality conditions Then
8: Remove the elements from the packet
9: End if
10: While the Packet has empty place AND there is any violated arc in the graph Do
11: Calculate the reduced cost of an arc from the block associated with the Block-Number.
12: Put the arc into the Packet if it violates the optimality condition.
13: Increase the Block-Number circularly.
14: End While
15: If the Packet is Empty Then
16: Return Null // The Current Solution is Optimal
17: End If
18: Sort the Packet Descending // Based on the absolute value of the reduced costs by Quick Sort
19: Return the first element of the Packet
20: End Function

6 Hassan Rashidi et al./An efficient Extension of Network Simplex Algorithm

CPU-Time required to solve the MCF-AGV Model

0
10
20
30
40
50
60
70
80

0 500 1000 1500 2000 2500

Number of Jobs

Se
co

nd

NSA NSA+H NSA+R

Figure- 4: CPU-Time to solve the static problem by NSA and NSA+, based on the number of jobs

Figure-5: CPU-Time to solve the static problem by NSA and NSA+, based on the number of arcs

All experiments were run on a Pentium 2.2 GHz PC

with 1 GMB RAM. From the figures, we can observe that:
Observation 1: NSA and NSA+ are run in polynomial

time to solve the MCF-AGV model, in practice.
Observation 2: NSA+ is fast and more efficient than

NSA.
There are two different types of iteration in NSA,

degenerate and non-degenerate [16]. In every non-
degenerate iteration, the value of the objective function is
decreased whereas degenerate iterations do not change the
objective function’s value. In the degenerate iterations, a

flow change of zero causes cycling. In the literature,
Grigoriadis experienced that cycling is rare in practical
application [8]. Observation 1 confirms the experience.

In order to confirm that NSA is run in polynomial time
to solve the MCF-AGV model (Observations 2), we
estimated complexity of the algorithm. The result shows
that the CPU-Time required to tackle the problem, is a
function with degree 3 of the number of jobs in the
problem [42].

CPU-Time required to solve the MCF-AGV Model

0
10
20
30
40
50
60
70
80

0 1000 2000 3000 4000 5000 6000 7000
ThousandsNumber of Arcs in the MCF-AGV

Se
co

nd

NSA NSA+H NSA+R

Journal of Industrial Engineering 2 (2009) 1-9 7

4.1 The percentage of improvement in CPU-Time
required to tackle the problem

In order to calculate the average CPU-Time required
to solve the problems and to compare performance of the
algorithms in this experiment, we introduce the following
terms:
Ti

NSA: The CPU-Time used to solve the problem i by
NSA.
Ti

NSAH
 : The CPU-Time used to solve the problem i by

NSA+H.
Ti

NSAR: The CPU-Time used to solve the problem i by
NSA+R.
PIHi: The Percentage of Improvement in CPU-time used

to solve the problem i by NSA+H compared with
NSA.

PIRi: The Percentage of Improvement in CPU-time used
to solve the problem i by NSA+R compared with
NSA.

TPIH: The Total Percentage of Improvement in CPU-
Time used to solve the problems by NSA+H
compared with NSA.

TPIR: The Total Percentage of Improvement in CPU-
Time used to solve the problems by NSA+R
compared with NSA.

Wi: The Weight of improvement for the problem i. In this
experiment we consider the number of arcs in the
MCF-AGV model for the weight. Given N jobs
and M AGVs in the problem, the number of arcs
is M+M×N+N×(N-1)+2×N.

Now we calculate the percentage of improvements in
the CPU-Time used for problem i by the following terms:

)(*100 PIR

)(*100PIH

i

i

NSA
i

NSA
i

NSAR
i

NSA
i

NSA
i

NSAH
i

T
TT

T
TT

−
=

−
=

The total percentages of improvement in the CPU-
Time used to solve the problems by NSA+H and NSA+R,
compared with NSA, are calculated by the following
expressions:

%28.21

%16.35

32

1

32

1

32

1

32

1

−=
×

=

−=
×

=

∑

∑

∑

∑

=

=

=

=

i
i

i
ii

i
i

i
ii

W

PIRW
TPIR

W

PIHW
TPIH

4.2 Statistical test for the comparison

The CPU-time required to solve the problems by the
two algorithms, NSA and NSA+, were analysed

statistically. We tested the null hypothesis that the means
produced by the two algorithms were statistically
indifferent. Since we cared the change (the difference
between the two means) was positive or negative, ‘One-
tail’ test was chosen. The result of Paired T-test along
with the critical values of T-distribution for the particular
degree of freedom are shown in Table-2. The T-test
confirms that NSA+ is significantly better than NSA with
95% degree of confidence.

Table-2: The result of T-Test for the comparison between two

algorithms, NSA and NSA+

Statistical Parameters NSA+H
vs. NSA

NSA+R
vs. NSA

Number of
Samples/Observations 32 32

T-Test (Paired Two
Sample For Means) -4.1799 -3.3617

Degree of Freedom 31 31
Critical T-Value -1.6955 1.6955

4.3 Complexity of NSA+

Given N jobs and M AGVs in the problem (N>>M),
the complexity of the NSA+ is calculated as follows:
Assume that the maximum flow, MF, in each of the m
arcs, at maximum cost, C, for the minimum cost flow
model. So there is an upper bound on the value of the
objective function. This upper bound is given by m•C•MF.
There are two different types of pivots in the algorithm,
non-degenerate and degenerate pivots. The former is
bounded by m•C because the number of non-degenerate
pivots in the algorithm is bounded by m•C•MF (MF=1 in
the MCF-AGV model). The number of degenerate pivots
is determined by the sum of nodes potential and
maintaining the strongly feasible spanning tree. Given n
as the number of nodes in the graph model, the sum of
nodes potential is bounded by n2•C. It is decreased at each
iteration when the spanning tree is strongly feasible [2]. A
series of degenerate pivots may occur between each pair
of non-degenerate pivots, and thus a bound on the total
number of iterations is m•n2•C2. Find the entering arc is
O(m) and sorting the packet is O(K•LogK) operation (K is
size of the packet, K=225). Finding the cycle, amount of
flow change, leaving arc and updating the tree are O(n)
operations. Hence the complexity of each pivot is O((m +
n) K•LogK). Based on the complexity of the number of
iterations and the complexity of each pivot, the total
complexity of this algorithm is determined by the
following equation:

))((22 KLogKCmnnmO +
 Since m=O(N2) ; n=O(N), the total complexity of NSA+
to tackle the MCF-AGV model is O(N6).

8 Hassan Rashidi et al./An efficient Extension of Network Simplex Algorithm

5 Concluding Summary
In this paper, two algorithms, NSA and NSA+, were

applied to the automated guided vehicles scheduling
problem in container terminals. Our experimental results
suggested that NSA could find the global optimal solution
for 2,600 jobs and 7 millions arcs in the graph model
within 70 seconds by running on a 2.2 GHz Pentium PC.
NSA+ has enhanced features over NSA and it is faster.
The most effective feature of NSA+ is a memory
technique and scanning method, which can be applied to
Original Simplex Algorithm in Operation Research.

References
Journal Paper:
[1] Ahuja R.K., Orlin J. B., Sharma P., Sokkalingam P.T.,

“A network simplex algorithm with O(n) consecutive
degenerate pivots”. Operations Research, Vol 30(3),
pp 141-148, 2002.

[2] Ahuja R.K., Orlin J.B., Giovanni M.S., Zuddas P.,
“Algorithms for the simple equal flow problem”,
Management Science, Vol 45(10), pp 1440-1455,
1999.

[3] Andrew V.G., “An efficient implementation of a
scaling minimum-cost flow algorithm”. Journal of
Algorithms, Vol 22(1), pp 1-29, 1997.

[4] Chiang, Wen-Chyuan and Robert A. Russell.
“Simulated Annealing Metaheuristic for the Vehicle
Routing Problem with Time Windows,” Annals of
Operations Research, Vol. 63, pp 3-27, 1996.

[5] Cunningham W.H. "Theoretical properties of the
network simplex method". Mathematics of
Operations Research, 4(2):196–208, 1979.

[6] Eppstein D, “Clustering for faster network simplex
pivots”, In Proc. 5th ACM-SIAM Symposium.
Discrete Algorithms, pp 160–166, 1999.

[7] Goldberg A.V., Kennedy, R, “An Efficient Cost
Scaling Algorithm for the Assignment Problem”.
Technical Report, Stanford University, 1993.

[8] Grigoriadis, M.D. ‘An Efficient Implementation of
the Network Simplex Method’, Mathematical
Programming Study Vol. 26, pp 83-111, 1986.

[9] Grunow M, Günther H.O, Lehmann M.,
“Dispatching multi-load AGVs in highly automated
seaport container terminals”, OR Spectrum, Volume
26 (2), pp 211-235, 2004.

[10] Helgason R., Kennington J., "Primal Simplex
Algorithms for Minimum Cost Network Flows,"
Handbook on Operations Research and Management
Science Volume 7, North-Holland, Amsterdam, pp
85-133, 1995.

[11] Masakazu M., "On network simplex method using
primal-dual symmetric pivoting rule", Journal of
Operations Research of Japan, Vol 43, pp 149-161,
1999.

[12] Murty K.G., Jiyin L., Yat-Wah W, Zhang C, Maria
C.L. Tsang, Richard J. Linn., “DSS (Decision
Support System) for operations in a container

terminal”. Decision Support System, Vol 39, pp 309-
332, 2002.

[13] Rashidi H., "Scheduling in container terminals using
Network Simplex Algorithm", Journal of Industrial
Engineering, Volume 1, pp 9-16, Iran. 2008.

[14] Tsang E.P.K., “Scheduling techniques -- a
comparative study”, British Telecom Technology
Journal, Volume 13 (1), pp 16-28, Martlesham Heath,
Ipswich, UK. 1995

[15] Wook B.J., Hwan K.K.,”A pooled dispatching
strategy for automated guided vehicles in port
container terminals”, International Journal of
management science, Vol 6 (2), pp 47-60, 2000.

Books or Chapter based Booklets:
[16] Ahuja R.K., Magnanti T.L., Orlin J.B.,, “Network

Flows: Theory, Algorithms and Applications”.
Prentice Hall, 1993.

[17] Goldberg D.,”Genetic Algorithms in Search,
Optimization and Machine Learning”. Addison-
Wesley, Reading, 1989.

Technical Reports:
[18] Cheng Y., Sen H., Natarajan K., Teo C., Tan

K.,"Dispatching automated guided vehicles in a
container terminal", Technical Report, National
University of Singapore, 2003.

[19] Czech Z. and Czarnas P., “Parallel Simulated
Annealing for the Vehicle Routing Problem with
Time Windows. In Proceedings of 10th Euromicto
Workshop on Parallel Distributed and Network-
Based Processing, Canary Islands, Spain, pp 376-383,
2002.

[20] Huang Y., Hsu W.J., “Two Equivalent Integer
Programming Models for Dispatching Vehicles at a
Container Terminal”. CAIS, Technical Report
639798, School of Computer Engineering, Nan yang
Technological University, Singapore, 2002.

[21] Istvan M., “A General Pricing Scheme for the
Simplex Method “, Technical Report, Department of
Computing, Imperial College, London, 2003.

[22] Galati M., Geng H., and Wu T., “A Heuristic
Approach For The Vehicle Routing Problem Using
Simulated Annealing”, Lehigh University, Technical
Report IE316, 1998.

[23] Löbel A., “A Network Simplex Implementation”,
Technical Report, Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB), 2000.

[24] Sen H., “Dynamic AGV-Container Job Deployment”.
Technical Report, HPCES Programme, Singapore-
MIT Alliance, 2001.

[25] Zhang L.W, Ye R, Huang S.Y, Hsu W.J, “Two
Equivalent Integer Programming Models for
Dispatching Vehicles at a Container Terminal”.
School of Computer Engineering, Nan yang
Technological University, Technical Report,
Singapore, 2002.

Journal of Industrial Engineering 2 (2009) 1-9 9

Conferences:
[26] Böse J., Reiners T., Steenken D., Voß S.,, ”Vehicle

Dispatching at Seaport Container Terminals Using
Evolutionary Algorithms”. Proceedings of the 33rd
Annual Hawaii International Conference on System
Sciences, IEEE, pp 1-10, 2000.

[27] Chan S.H, “Dynamic AGV-Container Job
Deployment”, Master of Science, University of
Singapore, 2001.

[28] Rashidi H. & Tsang E.P.K, "Applying the Extended
Network Simplex Algorithm and a Greedy Search
Method to Automated Guided Vehicle Scheduling",
Proceedings, 2nd Multidisciplinary International
Conference on Scheduling: Theory & Applications
(MISTA), New York, Vol 2, pp 677-693, 2005.

[29] Hasama T, Kokubugata H, Kawashima H., “A
Heuristic Approach Based on the String Model to
Solve Vehicle Routing Problem with Backhauls”,
Proceeding of the 5th World Congress on Intelligent
Transport Systems (ITS), Seoul, 1998.

[30] Meersmans P.J.M, Dekker R, “Operations research
supports container handling”, Technical Report EI
2001-22, Erasmus University of Rotterdam,
Econometric Institute, 2003.

[31] Meersmans P.J.M, Wagelmans A.P.M., “Dynamic
scheduling of handling equipment at automated
container terminals”, Technical Report EI 2001-33,
Erasmus University of Rotterdam, Econometric
Institute, 2001.

[32] Meersmans P.J.M, Wagelmans A.P.M., “Effective
algorithms for integrated scheduling of handling
equipment at automated container terminals”.
Technical Report EI 2001-19, Erasmus University of
Rotterdam, Econometric Institute, 2001.

[33] Patrick J.M., Dekker R., “Operations research
supports container handling”, Technical Report EI
2001-22, Erasmus University of Rotterdam,
Econometric Institute, 2003.

[34] Patrick J.M., Wagelmans P.M., “Dynamic scheduling
of handling equipment at automated container
terminals” , Technical Report EI 2001-33, Erasmus
University of Rotterdam, Econometric Institute, 2001.

[35] Patrick J.M., Wagelmans P.M., “Effective algorithms
for integrated scheduling of handling equipment at
automated container terminals” , Technical Report EI
2001-19, Erasmus University of Rotterdam,
Econometric Institute, 2001.

[36] Qiu L., Hsu W.-J., Huang S.-Y and Wang H.,
“Scheduling and Routing Algorithms for AGVs: a
Survey”. International Journal of Production
Research, Taylor & Francis Ltd, Vol. 40 (3), pp 745-
760, 2002.

[37] Qiu L, Hsu W.J., “A bi-directional path layout for
conflict-free routing of AGVs”. International Journal
of Production Research, Volume 39 (10), pp 2177-
2195, 2001.

[38] Qiu L, Hsu W.J., “Scheduling of AGVs in a mesh-
like path topology”. Technical Report CAIS-TR-01-
34, Centre for Advanced Information Systems,
School of Computer Engineering, Nanyang
Technological University, Singapore, 2001.

Dissertations:
[39] Kelly D.J., ONeill G.M., "The Minimum Cost Flow

Problem and The Network Simplex Solution
Method", Master Degree Dissertation, University
College, Dublin, 1993.

[40] Larsen A., “The Dynamic Vehicle Routing Problem”,
PhD Thesis, Technical University of Denmark, 2000.

[41] Leong C. Y., "Simulation study of dynamic AGV-
container job deployment scheme", Master of science,
National University of Singapore, 2001.

[42] Rashidi H., “Dynamic Scheduling of Automated
Guided Vehicles in Container Terminals”, PhD
Thesis, Department of Computer Science, University
of Essex., 2006

