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Abstract
This paper describes a computer-aided constraint programming system. Traditional Constraint

Programming Languages have been built on top of host languages such as Prolog, Lisp, C++. This means
that the user must have reasonable knowledge of the syntax and semantics of the host language before
being able to use the constraint technology effectively. On top of this, the user may also be required to

specify the heuristics and, or algorithm to solve the constraint problem. This leads to a bottleneck in the
amount of people who have the necessary expertise in both constraint programming and the host language
to implement practical systems, which use constraint satisfaction techniques. Our aim is to abstract out as
many of these details as possible, to produce a high level system, where the problem specification is the

focus. We have defined a simple, intuitive, high level, declarative (the order in which constraints are
specified has no significance) language called EaCL for specifying constraint satisfaction problems. We
propose an open architecture in which future constraint solvers can reside. The architecture also allows

multiple flexible interfaces. In this paper we present as an example, an exam time tabling system built on
top of our system, using Visual Basic and Automation.



1. INTRODUCTION
A constraint satisfaction problem is a problem where one is given a finite set of variables,

each of which is associated with a (normally finite) domain. Constraints restrict the values to be
taken by the variables simultaneously. The problem is to assign a value to each variable satisfying
all the constraints [14],[3],[5].

Constraint programming systems have had remarkable achievement in many applications.
Many more applications could have benefited from it had there been more experts in the field to
exploit the technology. Successful though they are, previous approaches to building constraint-
programming systems have been based on taking some host language, e.g. C++ (e.g. ILOG solver
[10]), Lisp (e.g. PECOS [11]) or Prolog (e.g. ECLiPSE [7], CHIP [12], the CHIC 2 project [2]),
augmented in some way with constraint technology. This means that the user of these constraint
programming systems needs to have two basic skills before they can make use of the traditional
constraint programming systems:· Be able to formulate the problem as a constraint satisfaction problem,· Be able to program in the host language.
Some recent global optimisation modelling languages, e.g. HELIOS, ILOG Numerica [8],[15]
allow users to define their problems, mathematically, almost as they would in technical papers.
Our aim is to minimise the amount of knowledge required by the end user to be able to start using
our system. Our approach is to use a high level language similar in some ways to HELIOS and
ILOG Numerica, but targeted at Constraint Satisfaction Problems, while still maintaining the
ability of our system to be used for practical applications.

2. ARCHITECTURE

Figure 1: The CACP Architecture
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At the top level our current implementation supports two user interfaces for entering
constraint satisfaction problems, ZDC (see Figure 2) and ZDCDirect (see Figure 3). ZDCDirect
allows direct entry of the problem, using the EaCL without any special graphical user interfaces.
ZDC contains a formulation wizard, domain, variable and constraint builders, problem browser
and online tutorials and examples, all aimed at easing the problem formulation process. In
addition to this, both of these can be used as Automation Servers (automation is a technique
which allows objects to make functions and data available to other objects or applications [13]),
allowing real applications to be built on top of ZDC or ZDCDirect. This could be done using
Visual Basic, Visual C++ or JAVA, or from another application such as ACCESS, EXCEL or
even WORD. See Section 4 for an example.

Figure 2: The ZDC interface and constraint builder

Both ZDC (Figure 2) and ZDCDirect (Figure 3) use EaCL, a high level declarative
language, as their core language for describing CSPs. Once a problem has been formulated in
EaCL using either interface, its syntax and semantics are checked to ensure they are correct and,
if not, the interface will return a error message indicating where the error occurred and what it
might be. Then the EaCL is translated into a solver-independent representation, which can then
be translated by a solver object generator (one for each solver in the system) into solver
dependent objects, and solved by that particular solver, with the solution returned by the interface



(the user may also find all solutions, or a maximum number of solutions etc.). This makes it very
easy to incorporate a new solver into our system, since all that is required is an object generator
to be built which translates the solver independent objects into the new solver’s representation.
Thus we have a very open architecture, because addition of a new solver requires no modification
of the top level parser or language, and only knowledge of the solver-independent objects and the
new solver.  This means that a well-written third party solver could be incorporated into our
architecture with minimum effort, as long as it supports the constraints in our language. So far,
we have implemented two solvers, one based on the Forward Checking algorithm [4] (a complete
algorithm) and another based on Guided Local Search [17] (an incomplete algorithm), both
generalized to handle EaCL.

Figure 3: The ZDCDirect Interface

3. THE EaCL LANGUAGE

Here we give a brief description of the EaCL language Version 1.0, which forms the core
of our system (for a full description see [9], available through
http://cswww.essex.ac.uk/CSP/cacp.html).

The problem file for EaCL 1.0 is split into four subsections (see Figure 4).



Problem:TheProblemName

{

Data

{

//Constant data relevant to a particular problem

}

Domains

{

//Domain declarations

}

Variables

{

//Variable declarations

}

Constraints

{

//Constraint declarations

}

}

Figure 4: The skeleton of an EaCL file

The data section can be used to store named constant data, which will typically define an
instance of a particular problem. For example, it may contain a named list of lists defining what
exam which student takes, etc. The domains section defines named sets of values which a
variable can take, and the variables section declares the variables present in the problem, together
with the name of their domain, with the constraints section defining the constraints on the
variables for the problem.

The EaCL language Version 1.0 allows for three types of variables: boolean variables,
integer variables and set variables. Integer and set variables must have their domains specified in
the domains section, whilst boolean variables obviously only have one possible domain (0,1).

Below is a list of constraints, functions and operators, which can be used to form
constraints in EaCL 1.0:

Logical: And, Or, Xor, Not, Iff, Implies

Integer: -, +, *, /, %, Abs, Power, Sum, ScalProd, Count, Minimum, 
Maximum,  =, <>, <, >, <=, >=

Set: Member, NotMember, Subset, StrictSubset, Union, Intersection,

AllDisjoint, #

Symbolic: AllDifferent, Circuit, Sequence, Element



These constraints are similar to the types of constraints found in large commercial
constraint programming libraries and CLPs such as ILOG solver [10] or CHIP [12], and therefore
are the kinds of constraints which are likely to be useful for building real applications. Since
these may not cater for every eventuality, user-defined constraints may be added which are only
expressed in terms of the constraints and functions above, and other user-defined constraints, for
example:

Constraint AtLeastButAtMost(NMin, NMax, Vars, Vals)

{

Count(Vars, Vals) >= NMin;

Count(Vars, Vals) <= NMax;

}

In other environments, e.g. in ILOG solver, user defined constraints are sometimes defined by
daemons (functions which when some event occurs, perform some action) which define how each
user defined constraint is propagated, when a variable’s domain is modified. Whilst this increases
the power of these kinds of user-defined constraints, it also requires the user to have a deep
understanding of constraint technology.

If the user requires some other function to be defined, this can also be done in a similar way. For
example:

Function Squared(X)

{

return X * X;

}

In addition to this, Forall constructs can be used to index arrays of variables, to generate groups
of similar constraints, e.g. constraints in the N- queens problem:

Forall (i in [0..n-1], j in [i+1..n-1])

{

Row[i] <> Row[j];

Row[i] – Row[j] <> i – j;

Row[i] – Row[j] <> j – i;

}

The language also supports intensional lists and sets. For example one can define a constraint that
sums the values of all elements of an array up to element j, and specify that it is less than a certain
Total:

Sum([ x[i] | i < j, i in [0..N]]) < Total;



In addition to these features, EaCL 1.0 also supports:

If-Else constructs on indexes for conditional definition of constraints,

Concatenation of lists and arrays, e.g. [1,2] ++ [3,4] etc.

3.1 Example EaCL file: The Puzzler problem

The puzzler problem (From Computer Weekly, 7th August 1997) is a simple example of how
elegantly a problem can be specified in EaCL 1.0. It consists of a 4´4 Magic Square, which is
made up using the consecutive series 5-to-20 and gives a Constant total of 50 in many different
ways. The 50 total is produced by the sum of:

· 4 horizontals: ABCD, EFGH, IJKL, MNOP· 4 verticals: AEIM, BFJN, CGKO, DHLP· 2 long diagonals: AFKP, MJGD· 4 three-one broken diagonals:DOJE, MBGL, ANKH, PIFC· 2 two-two broken diagonals: CHIN, EBLO· 9 segments: ABEF, BCFG, CDGH,
EFIJ, FGJK, GHKL,
IJMN, JKNO, KLOP· 6 opposites: ABMN, BCNO, CDOP,
AEDH, EIHL, IMLP· The puzzle also specifies that P should be set to 5 and F set to 20.

As one can see below, this problem is very simple to specify using EaCL 1.0, although it only
shows the basic features of EaCL 1.0. The formulation consists of 16 variables, name A to P,
which must take values from the Domain square, defined to be the range of integers from 5 to 20.
Then an AllDifferent constraint specifies that all the variables should take different values (i.e.
use the whole 5 to 20 range of values), and then various equality constraints define the
combinations which add up to 50. Two equality constraints, setting P = 5 and F = 20 are also
used.

Problem:Puzzler
{

Domains
{

IntDom square=[5,20];
}

Variables
{

IntVar A,B,C,D::square;
IntVar E,F,G,H::square;
IntVar I,J,K,L::square;
IntVar M,N,O,P::square;

}

Constraints
{

//Made up using consecutive series
AllDifferent([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]);

A B C D

E F G H

I J K L

M N O P



//4 horizontals
Sum([A,B,C,D]) = 50;
Sum([E,F,G,H]) = 50;
Sum([I,J,K,L]) = 50;
Sum([M,N,O,P]) = 50;

//4 verticals
Sum([A,E,I,M]) = 50;
Sum([B,F,J,N]) = 50;
Sum([C,G,K,O]) = 50;
Sum([D,H,L,P]) = 50;

//2 long diagonals
Sum([A,F,K,P]) = 50;
Sum([M,J,G,D]) = 50;

//4 3-1 diagonals
Sum([A,N,K,H]) = 50;
Sum([P,I,F,C]) = 50;
Sum([D,O,J,E]) = 50;
Sum([M,L,G,B]) = 50;

//2 2-2 diagonals
Sum([I,N,H,C]) = 50;
Sum([B,E,O,L]) = 50;

//9 Segments
Sum([A,B,E,F]) = 50;
Sum([B,C,F,G]) = 50;
Sum([C,D,G,H]) = 50;
Sum([E,F,I,J]) = 50;
Sum([F,G,J,K]) = 50;
Sum([G,H,K,L]) = 50;
Sum([I,J,M,N]) = 50;
Sum([J,K,N,O]) = 50;
Sum([K,L,O,P]) = 50;

//6 opposites
Sum([A,B,M,N]) = 50;
Sum([B,C,N,O]) = 50;
Sum([C,D,O,P]) = 50;
Sum([A,E,D,H]) = 50;
Sum([E,I,H,L]) = 50;
Sum([I,M,L,P]) = 50;

//Assignment constraints
P = 5;
F = 20;

}
}

4. EXAMPLE APPLICATION: EXAM TIMETABLING



As an example of the use of our system, we solve a real world problem of exam
timetabling [1]. Many Universities and schools face this type of problem, which is typically
solved by hand over a period of weeks. The problem is defined as follows:

Given:· a set of slot times when exams may take place· the default length of each exam· the minimum time period a student must have between each exam· a set of time slots, when specific exams must or must not take place· which exams each student must take.
Find:

an assignment of slots to exams, such that no student is required to take exams
less than the minimum time period apart, and no exam takes place in an illegal
slot.

Figure 5: The Exam time tabling application built on top of ZDC

This problem can be formulated as a CSP as follows:· Variables represent the slot number when each exam takes place:
IntVar ExamSlots[NumExams]::Slots;· The domain of all variables is the set of all the possible slot numbers:
IntDom Slots = [0,NumSlots];· Constraints:
1. Some exams must not take place in certain slots, and some must take place in certain

slots:
ExamSlot[ExamExcluded] <> ExcludedSlot;
ExamSlot[ExamMust]    =  MustSlot;

2. Exam containing common students, must be at least the minimum time period apart:
Abs(SlotTimes[ExamSlots[examIdxCommon]]–

SlotTimes[ExamSlots[examIdxCommon]])>MinInterval;
(SlotTimes is an array in the data section, specifying the time in minutes when
a slot for a possible exam starts each day)



Automation is used from Visual Basic to call our ZDC application, to assemble the data,
domains, variables and constraints necessary to solve a particular instance of an exam time
tabling problem. The details of each problem are stored in a Microsoft Access database (students
and exams they take, slot times and the time interval allowed between exams).

Once the problem has been solved, the solution can be visualised in lots of different ways
(these are implemented using standard Visual Basic components). For example:· Which slot each exam takes place in,· The exam timetable for each student (see Figure 7).· Bar chart of  the number of students per slot (see Figure 8),· Bar chart of  the number of exams per slot,· The exams in each slot.

We have found that our system solves the exam timetabling problem adequately using either
solver (although the aim of our system is not outright performance, but usuability). It required
only half a day to build the constraint programming part (the basic problem formulation was
developed in ZDC and then integrated with the rest of the timetabling system) of the system.
Together with a non-trivial set of statistics (to allow users to verify the results and to visualize the
timetable), it took less than a week to build a practical exam timetabling system which is capable
of using publicly available instances of the exam timetabling problem1.

This shows how effective and easy it is to use our system. It also shows how feasible it is to
represent and solve real-world problems using our system.

1 The exam timetabling data is available from http://www.dai.ed.ac.uk/staff/personal_pages/emmah/et.html
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Figure 6: Data flow in the exam timetabling application, built on top of ZDC



*

Figure 7: Visualising the Solution, using Visual Basic: the exam timetable for each
individual student

5. CONCLUSION

We have presented an open architecture and language for constraint programming, which greatly
reduces the amount of knowledge required by the user to use Constraint Satisfaction technology,
which is open and is thus easily extendible to use other constraint solvers. We have given an
example showing how a real application can be simply and easily built, in the chosen language of
the user, which uses our architecture for solving exam timetabling problems. This demonstrates
that our proposed architecture is easy to use, open and extensible and is capable of solving real
problems.
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Figure 8: Visualising the solution using Visual Basic: the number of students in an exam at
any time
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