
The First International Conference on The Practical Application of Constraint Technologies
and Logic Programming, London, April 1999, 359-383

A Family of Stochastic Methods

For Constraint Satisfaction and Optimisation

Edward P K Tsang
Department of Computer

Science, University of Essex,
Colchester CO4 3SQ

United Kingdom
edward@essex.ac.uk

Chang J Wang
Lehman Brothers
101 Hudson Street

Jersey City, NJ 07302,
USA

chwang@lehman.com

Andrew Davenport
Department of Industrial

Engineering, University of
Toronto M5S 3G9

Canada
andrewdv@interlog.com

.

Christos Voudouris
Intelligent Systems Research
Group, Advanced Research &

Technology Dept, BT Laboratories,
British Telecommunications plc.,

United Kingdom
chrisv@info.bt.co.uk

Tung Leng Lau
Department of Computer

Science, University of Essex,
Colchester CO4 3SQ

United Kingdom
tllau@essex.ac.uk

Abstract

Constraint satisfaction and optimisation is NP-complete by nature. The combinatorial
explosion problem prevents complete constraint programming methods from solving many
real-life constraint problems. In many situations, stochastic search methods, many of which
sacrifice completeness for efficiency, are needed. This paper reports a family of stochastic
algorithms for constraint satisfaction and optimisation. Developed with hardware
implementation in mind, GENET is a class of computation models for constraint satisfaction.
Genet is a connectionist approach. A problem is represented by a network with inhibitory
connections. The network is designed to converge, in a fashion that resembles the min-conflict
repair method. Reinforcement learning is used to bring GENET out of local optima. Building
upon GENET as well as ideas from operations research, Guided Local Search (GLS) and Fast
Local Search are novel meta-heuristic search methods for constraint optimisation. GLS sits on
top of other local-search algorithms. The basic principle of GLS is to penalise features
exhibited by the candidate solution when a local search settles in a local optimum. FLS is a
way of reducing the size of the neighbourhood so as to improve the efficiency of local search.
As a meta-heuristic, GLS is embedded in genetic algorithms to form the Guided Genetic
Algorithm (GGA). GGA extends the domain of application by GLS and improves its reliability
(i.e. getting good results consistently). GENET, GLS, FLS and GGA have been applied to a
non-trivial number of satisfiability and optimisation problems and achieved world-class
results. GLS has also been incorporated in ILOG Dispatcher, a commercial package for
vehicle routing.

Keywords: constraint satisfaction, optimisation, connectionism, meta-heuristic search,
genetic algorithms

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

1

1. Introduction

Constraint satisfaction is a very general problem that is required in many real life problems

[Tsang 1993, Freuder & Mackworth 1994, Wallace 1996]. Due to its generality, much research

effort has been spent in this area in recent years. This has led to technological break-through as

well as commercial exploitation, e.g. ILOG Solver [Puget 1995], CHIP [Simonis 1995],

ECLiPSe [Lever el al 1995], Prolog IV [Colmerauer 1990] and IFProlog [IFProlog]. They have

been applied to scheduling, resource allocation, machine vision, logic programming, natural

language processing, and many other areas.

Completeness in algorithms is desirable when it can be achieved, but constraint satisfaction

problems (CSPs) are NP-complete in general. The practicality of complete search methods is

often limited by the combinatorial explosion problem. One often encounters CSPs that cannot

be solved using complete methods within the time available. Imagine the application in

emergency situations (e.g. in an earthquake) when one needs to schedule resources such as

rescue teams and equipment to tasks. The scheduling speed could determine the amount of loss

in life and property. Besides, the situation may change so rapidly that spending a lot of time to

ensure completeness may not be practical. It may be more appropriate to reacting quickly, even

with sub-optimal solutions. In some scheduling problems, one is faced with a large number of

possible options. In order to search in a large space of models, the problem solver may be

helped by an interactive system that could quickly evaluate the CSPs in the different models.

Whether a system responses in minutes or seconds could make all the difference to the user.

In recent years, stochastic methods have received great attention. Most stochastic methods

sacrifice completeness for efficiency. This paper describes a family of novel stochastic

constraint satisfaction and optimisation algorithms. They are motivated by the kind of

applications described above.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

2

2. Constraint satisfaction and optimisation

A constraint satisfaction problem (CSP) comprises three elements:

(Z, D, C)

where Z is a finite set of variables; D is a function that maps every variable x in Z to a set of

objects (of any type), which is called the domain of x. Most research in constraint satisfaction

deal with discrete and finite domains. C is a set of constraints, which may take any form, which

restricts the values that variables may take simultaneously. The task is to assign one value to

each variable satisfying all the constraints [Tsang 1993]. A k-ary constraint restricts the values

that k variables can take simultaneously. A CSP that contains unary and binary constraints only

is called a binary CSP.

In many constraint satisfaction problems, some solutions are “better” than others, where

“better” is defined by some domain-dependent objective functions. The task in such problems

is to find the optimal (minimum or maximum) solution. In other problems, constraints are

classified as hard and soft constraints. Hard constraints are not to be violated in any case. Soft

constraints can be violated at certain costs. In some problems, assigning different values to

different variables involve different utilities. The task is to minimise the cost or maximise the

utilities in the solution. A few definitions will help explaining the ideas later: we define a label

as an assignment of a value v to a variable x, denoted by <x, v>. A compound label is a set of

labels. A compound label that assigns a value to every variable is called a complete compound

label. A Partial Constraint Satisfaction problem can be defined as:

(Z, D, C, g)

where g is a function which maps every compound label L to a numerical value.1

1 If one is only interested in solutions to (Z, D, C), then one can define g in such a way that g(L) equals infinity (in
a minimization problem) when the compound label L is not a solution.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

3

3. GENET for constraint satisfaction

GENET is a connectionist approach to constraint satisfaction. The basic approach of GENET is

to represent a CSP by a neural network. The nodes in the network export values to one another

following connections defined by the constraints. Associated with the connections are weights,

which are subject to changes through reinforcement learning. The nodes switch on or off

depending on the network protocol. The connections and the protocol in GENET are carefully

designed to ensure convergence of the network. The aim is to encourage the network to

converge to states that represent solutions of the CSP. In this section, we shall describe a

network construction for binary CSPs. We refer to this as the GENET Binary Model. Later we

shall describe models for tackling non-binary CSPs.

3.1. GENET for binary CSPs

The structure of a network in the GENET Binary Model is as follows: each value for each

variable is represented by a node in the network; such nodes are called label nodes. A label

node is either in an on or off status. The label nodes for the same variable are grouped into a

cluster. A random label node in each cluster is switched on during initialization. A connection

is made between each pair of label nodes that represent two incompatible labels between two

different variables. Associated with each connection is a weight, which is a negative value

indicating the strength of an inhibitory relationship between the two connected nodes. All

weights are initialized to -1 at start. Figure1 shows a CSP and a network that represents it in

the GENET Binary Model.

The CSP in figure1 consists of five variables, A, B, C, D and E, the domains of which all being

{1, 2, 3}. The constraints of this CSP are specified on the edges. For example, the constraint

between A and B requires the sum of A and B to be even. Therefore, the labels <A,1> and

<B,2> are incompatible with each other, so a connection is created between the corresponding

label nodes in the network shown in figure2. Other connections are made under the same

principle.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

4

At least one
of A or E is 2

D + E is even

C + D is even

B + C is even

A + B is even

A

DC

EB

Figure 1. Example of a CSP (all domains
are {1, 2, 3})

Figure 2. A GENET representation of the
problem in Figure 1

A B C D E
Values

1

2

3

Each cluster has a modulator that ensures that exactly one label node in each cluster is switched

on at a time. The modulator in all the clusters work in parallel locally and asynchronously.

Each label node that is on outputs a unit value to all the nodes that are adjacent (i.e. joined by a

connection) to it. This value is multiplied by the weight associated with the connection. A label

node that is off gives no output. The input to a label node x, which we denote by Ix, is

computed as follows:

Ix = å ´
),(
,

yxadjacent
yyx sw (1)

where wx,y is the weight associated with the connection between nodes x and y, and sy is the

state of y, which is 1 if y is on and 0 if y is off. During initialization, a random label node is

switched on in each cluster. Each cluster would continuously examine its own state by

choosing the label node that has the highest input to switch on. Since all weights are negative,

this effectively means choosing the label that violates the least weighted number of constraints.

In this way, the GENET Binary Model resembles the min-conflict heuristic by Minton et al.

[1990]. Unlike the min-conflict heuristic repair method, which break ties randomly, the

GENET Binary Model allows the label node that is currently on to retain its status in tie

situations. The purpose of doing so is to ensure that the network converges. If no node in the tie

is currently on (which could only happen immediately after the initial state or after learning,

see below), then a random node in the tie will be switched on.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

5

In constraint satisfaction, a local minimum can be recognized when the network state does not

change but some on nodes receive negative inputs.2 To escape local minima, the GENET

Binary Model incorporates a reinforcement learning mechanism. When the network has

converged to a local minimum, the weights associated with the connections between on nodes

are reduced by 1. In other words, after converging in local minima, the following rule applies:

wxy = wxy + sx ´ sy (2)

As before, wxy represents the weight associated with the connection between label nodes x and

y; sx and sy represent the states of x and y.

We define the energy Eb of a particular state of the network (the subscript b indicates that it is

for the binary model) as the halved total input to all the nodes, i.e. the total number of weighted

constraint violations:

Eb = åå-
i j

jiji ssw ,2

1
= å-

k
kk Is

2

1
(3)

where i, j, k range over all variables.3 A solution to the given CSP, or a global optimal, is

therefore represented by a state whose energy equals 0. The higher the energy of a network, the

more weighted constraints are violated. It is provable that between learning, the energy in a

network under the GENET Binary Model will decrease monotonically, hence the network will

always converge. Detailed proofs will not be presented here. Whether the converged state

represents a solution to the given CSP is another matter.

GENET is designed for hardware implementation [Wang & Tsang 1994]. In simulation, we

assume that the network runs in convergence cycles. In each cycle, each cluster examines its

current state and switches on an alternative label node if necessary. We assume that each

cluster has the chance to examine its current state once before another convergence cycle starts.

2 It is worth pointing out that local search in general does not normally know when it has reached local optima.
The fact that local optima are recognizable in constraint satisfaction makes it a suitable domain for local search.
3 The energy is not equivalent to the number of constraints being violated since the weights need not be –1 after
learning has taken place.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

6

We also assume that one cluster examines its current state at a time. While these may not be the

case in a hardware implementation, the behaviour of the network should not be significantly

different. The number of convergence cycles is a useful measure for the efficiency of GENET

computation models. The GENET Binary Model has been applied to random binary CSPs and

graph colouring problem and demonstrated to be reliable and efficient in solving these

problems [Wang & Tsang 1991, Tsang & Wang 1992].

3.2. GENET for non-binary CSPs

The idea of GENET was extended to non-binary CSPs.4 The major computation model

developed for non-binary CSPs was called the GENET Stable Model. It was thus named

because, like the Binary Model, it was designed to guarantee convergence. The basic idea is to

introduce constraint nodes to GENET. Each constraint in the CSP is represented by one

constraint node. One type of constraint node is designed for each type of constraint, but the

following basic principles (from the GENET Binary Model) apply:

1. If a constraint node c represents a constraint that is violated, then c sends inhibitory signals

to all label nodes concerned to discourage them to remain on.

2. If a constraint node c represents a constraint that is not yet violated, but will be violated

should any label node l is switched from off to on, then c sends an inhibitory signal to l.

3. Otherwise, a constraint node sends no inhibitory signal out.

Constraint nodes for a number of non-binary constraints have been designed. We shall use the

atmost constraint to illustrate the principle here. The constraint

atmost(m, {x1, x2, …, xn}, {v1, v2, …, vk})

states that at most m of the n variables x1, x2, …, xn may take values from the set {v1, v2, …, vk}

simultaneously. For example, the compound label (<w, a><x, b><y, c><z, b>) violates the

4 It was unfair for Lee et al [1995] to claim that they were the first to extend GENET to non-binary CSPs. Wang
& Tsang [1991] first published an idea to apply GENET to non-binary CSPs. It introduced the terms constraint
node and label node which were adopted by Lee et al [1995]. Besides, three GENET models for non-binary CSPs
were described in Davenport et al [1994].

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

7

constraint atmost(2, {w, x, y, z}, {b, c}) because more than 2 variables (namely, x, y and z) are

taking values from the set {b, c}.

Given an atmost constraint, every label node that represents the assignment of the values v1, v2,

…, vk to the variables x1, x2, …, xn is connected to this constraint node, which we refer to as

atm. Each constraint node atm has a weight, denoted by Watm. The weight is initialized to -1,

which could be changed through learning. We shall use
ixT to denote a cluster which represents

the variable xi where xi is a member of the set of constrained variables {x1, x2, …, xn} in the

atmost constraint. We shall use
ixL to denote the set of label nodes in

ixT which is constrained

by atm. A relevant label node (RLN) is a label node in a
ixL of some cluster

ixT . From atm’s

point of view,
ixT is an active cluster if there exists a label node in

ixL which is on; otherwise

this cluster is called an inactive cluster. Below we shall describe the structure of the network

concerning atm.

Connections between RLNs and atm all have weights equal to 1, which will remain constant

throughout. Each RLN x outputs 1 to atm when x is on, 0 otherwise. Therefore, the input to atm

(denoted by Iatm) is simply the number of RLNs that are on:

input to the constraint node atm, Iatm = å
ÎRLNy

ys (4)

The atmost constraint node atm stores a value (we denote the value stored by vsc), which is the

input (Iatm) minus the threshold m:

value of the constraint node, vsc = Iatm - m (5)

In other words, the atmost constraint is violated when the value stored in the constraint node is

greater than 0. The constraint node atm individually outputs to every RLN. The output from

atm to every RLN is 0 when vsc is negative. When vsc is 0, atm outputs Watm to every
ixL in

every active cluster
ixT . These RLNs are therefore discouraged to become on. When vsc is

greater than 0, atm outputs vsc ´ Watm to every RLN in every active cluster, and (1+ vsc) ´ Watm

to every RLN in every inactive cluster. One can interpret this arrangement as: atm encourages

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

8

the active clusters to switch off RLNs, but gives inactive clusters even less incentive to switch

on any RLNs. The principle here is that whenever vsc ³ 0, the inactive clusters always receive

more inhibitory input than the active clusters.

A network under the Stable Model behaves in the following way: a random label node per

cluster is switched on initially. Then each constraint node and each cluster will update its state

asynchronously whenever necessary. Each cluster will switch on the label node that has the

highest input (i.e. the one that has the least weighted inhibitory input). In a tie situation, the

Stable Model will keep the label node that is currently on. If none of the label nodes in the tie

is on, then a random node is switched on. If the network converges to a local minimum, the

weights between label nodes will be updated in exactly the same way as in the Binary Model.

The weights associated with the violated constraint nodes are reduced by 1.

New Watm = Old Watm - Violatedatm (6)

where

Violatedatm = 0 if vsc £ 0; (7)

1 otherwise

It is provable that, like the Binary Model, the Stable Model with atmost constraint nodes as

described only will always converge. Limited by space, the proof will not be presented here.

The Stable-sideways (Stable-SW) Model is an important variation of the Stable Model. In tie

situations, the modulator of the Stable model keeps the current on label node to be on. The

Stable-SW Model breaks ties randomly. We call a move that switches on an alternative label

node without reducing the energy of the network a sideways move. By allowing sideways

moves, the Stable-SW model loses the nice property of guaranteed convergence. The Stable-

SW model may continuously change its state (by switching on alternative label nodes) without

settling in any state. So it needs a mechanism to escape plateaus and local minima. The Stable-

SW model invokes learning when the network stays in the same state for K consecutive cycles,

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

9

where K is a parameter.5 The Stable-SW Model with K = 2 was found to out-perform the Stable

Model in many domains tested.

The GENET Stable Model represents a class of computation models. It can be varied and

instantiated in different ways. Only a few variations have been explored. Davenport el al

[1994] reported the Stable1-SW Model, which was simply called “the GENET model” in that

paper. The basic difference between the Stable1 Model and the Stable Model is as follows. In

the Stable1 Model, the connections between constraint nodes and label nodes are directional

and asymmetric. Besides, the constraint nodes all have weights equal to 1, which is kept

constant. An individual weight is associated with each of the connections from constraint nodes

to label nodes. These weights are initialized to -1, and subject to changes through learning.

The connections from label nodes to constraint nodes all have weights equal to 1, which will

remain constant.

4. Guided Local Search for Optimisation

Guided Local Search (GLS) was a generalization of GENET. While GENET was designed for

satisfying constraints, GLS was designed for optimisation. GLS also borrows certain ideas

from Operations Research (OR): the use of penalties in OR [Luenberger 1984] resembles

weight learning in GENET. GLS is a meta-heuristic algorithm that sits on top of hill-climbing

algorithms. We shall summarize hill-climbing first so that we can refer to its components later.

4.1. Basic Principles of Hill-climbing

A basic form of local search is often referred to as hill-climbing. To perform hill-climbing, one

must define the following:

(a) representation: a representation for candidate solutions;

(b) an objective function: given any candidate solution, this function returns a numerical value.

The problem is seen as an optimisation problem according to this objective function (which

5 An alternative is to define convergence as remaining in the same energy level for K iterations.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

10

is to be minimized or maximized);

(c) a neighbourhood function that maps every candidate solution x (often called a state) to a set

of other candidate solutions (which are called the neighbours of x).

Hill-climbing works as follows: starting from a candidate solution, which may be randomly or

heuristically generated, the search moves to a neighbour which is better according to the

objective function (in a minimization problem, a better neighbour is one which is mapped to a

lower value by the objective function). The search terminates if no better neighbour can be

found, or resources run out. The whole process can be repeated from different starting points.

One of the main problems with hill-climbing is that it may settle in local optima – states that

are better than all their neighbours but not necessarily the best possible solution. To overcome

that, methods such as Simulated Annealing [Davis 1987] and Tabu Search [Glover et al 1993]

have been proposed.

4.2. Fast Local Search (FLS)

One factor that limits the efficiency of a hill-climbing algorithm is the size of the neighbour-

hood. If there are many neighbours to consider, then if the search takes many steps to reach a

local optimum, and/or each evaluation of the objective function requires a nontrivial amount of

computation, then the search could be very costly. Bentley [1992] presented the approximate 2-

Opt method to reduce the neighbourhood of 2-Opt in the TSP (see, e.g. [Aho et al 1983]). We

generalised this method to a method that we call Fast Local Search (FLS). The intention is to,

guided by heuristics, ignore neighbours that are unlikely to lead to fruitful hill-climbs in order

to improve the efficiency of a search.

Here we shall use the TSP to show how FLS can be applied to the 2-Opt neighbourhood

function. An activation bit is associated to each transition position in the tour (i.e. transition

between each k-th and (k+1)-th positions in the tour). All activation bits are switched on at

start. Only positions with an on activation bit will be examined to see if it can make an

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

11

improvement move. If no improvement is possible, then this bit is switched off. It will only be

switched on again under two conditions:

(1) if a 2-Opt step (initiated by another position) is made which inverts a subsequence which

ends in this position. For example, if the subsequence between the fourth and the sixth

cities were reversed, then the activation bit for both transitions third-to-fourth and sixth-to-

seventh will be switched on.

(2) if this transition is a feature that is penalised (to be explained when we introduce GLS

later).

To generalise this to neighbourhood functions other than the 2-Opt, one may define features for

candidate solutions. Selecting such features in an application is not difficult because the

objective function is often made up of a number of terms, which can be used as features in the

candidate solutions.

By reducing the size of the neighbourhood, one may reduce the amount of computation

involved in each hill-climbing step. The aim is to enable more hill-climbing steps in a fixed

amount of time. The danger of ignoring certain neighbours is that some improvements may be

missed. The hope is that the gain out-weighs the loss. We found that FLS combined extremely

well with GLS.

4.3. The Guided Local Search Algorithm

GLS is a general meta-heuristic algorithm for optimisation. Like simulated annealing and tabu

search, the aim of GLS is to help hill-climbing escape local optima. The basic idea is to

augment the objective function with penalties, which direct the search away from local

optimum. So one can say that GLS is an algorithm for modifying the behaviour of hill-

climbing. To apply GLS, one has to define features for the candidate solutions. For example, in

the travelling salesman problem, a feature could be “whether the candidate tour travels

immediately from city A to city B”.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

12

GLS associates a cost and a penalty to each feature. The costs should normally take their values

from the objective function. For example, in the travelling salesman problem, the cost of the

above feature is the distance between cities A and B. The penalties are initialized to 0 and will

only be increased when the local search reaches local optimum. This will be elaborated below.

Given an objective function g that maps every candidate solution s to a numerical value, we

define a function h which will be used by hill-climbing (replacing g).

h(s) = g(s) + l ´ S(pi ´ Ii(s)) (8)

where s is a candidate solution, l is a parameter to the GLS algorithm, i ranges over the

features, pi is the penalty for feature i (all pi 's are initialized to 0) and Ii is an indication of

whether s exhibits feature i:

Ii(s) = 1 if s exhibits feature i; 0 otherwise. (9)

When the local search settles on a local optimum, the penalties of some of the features associ-

ated to this local optimum are increased (to be explained below). This has the effect of

changing the objective function (which defines the “landscape” of the local search) and driving

the search towards other candidate solutions. The key to the effectiveness of GLS is in the way

that penalties are imposed. It is worth emphasising that a slight variation in the way that

penalties are managed could make all the difference to the effectiveness of a local search.

Our intention is to penalize “unfavourable features” or features that “matter most” when a local

search settles in a local optimum. The feature that has high cost affects the overall cost more.

Another factor that should be considered is the current penalty value of that feature. We define

the utility of penalizing feature i, utili, under a local optimum s*, as follows:

utili(s*) = Ii (s*) ´ ci / (1 + pi) (10)
where ci is the cost and pi is the current panelty value of feature i. In other words, if a feature is

not exhibited in the local optimum, then the utility of penalizing it is 0. The higher the cost of

this feature (ci), the greater the utility of penalizing it. Besides, the more times that it has been

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

13

penalized, the lower the utility of penalizing it again.

In a local optimum, the feature(s) with the greatest util value will be penalized. This is done by

increasing its penalty value by 1:

pi = pi + 1 (11)

By taking cost and the current penalty into consideration in selecting the feature to penalize, we

are distributing the search effort in the search space. Candidate solutions which exhibit “good

features”, i.e. features involving lower cost, will be given more effort in the search, but

penalties help to prevent all effort be directed to the best features. The idea of distributing

search effort, which plays an important role in the success of GLS, is borrowed from

Operations Research, e.g. see Koopman [1957] and Stone [1983]. Following we shall describe

the general GLS procedure:

Procedure GLS (input: an objective function g; a local search strategy LL; features
and their costs; parameter ll)

1. Generate a starting candidate solution randomly or heuristically;

2. Initialize all the penalty values (pi) to 0;

3. Repeat the following until a termination condition (e.g. a maximum number
of iterations or time limit) has been reached:

3.1. Perform local search (using LL) according to the function h (which is g
plus the penalty values, as defined in (8) above) until a local optimum M
has been reached;

3.2. For each feature i which is exhibited in M compute utili = ci / (1 + pi)

3.3. Penalize every feature i such that utili is maximum: pi = pi + 1;

4. Return the best candidate solution found so far according to the objective
function g.

4.4. GLS and FLS Applications

GLS and FLS have been applied to a non-trivial number of problems. They have been applied

to radio link frequency assignment problem (RLFAP) [Bouju et al 1995] and British Telecom's

work force scheduling problem (WFS) [Baker 1993, Azarmi & Abdul-Hameed 1995]. In the

RLFAP, the task is to assign available frequencies to communication channels satisfying

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

14

constraints that prevent interference. In some RLFAPs, the goal is to minimize the number of

frequencies used. GLS+FLS reported the best results when it was published [Voudouris &

Tsang 1996]. New and significantly improved results were reported in the NATO Symposium

on RLFAP in Denmark, 1998 [Voudouris & Tsang 1998].

In British Telecom's WFS, the task is to assign technicians from various bases to serve the jobs,

which may include customer requests and repairs, at various locations. Customer requirements

and working hours restrict the times that certain jobs can be served by certain technicians. The

objective is to minimize a function that takes into account the travelling cost, overtime cost and

unserved jobs. In the WFS, GLS+FLS holds the best-published results in the benchmark

problem available to the authors [Tsang & Voudouris 1997].

The most significant results of GLS and FLS are probably in their application to the travelling

salesman problem (TSP). The Lin-Kernighan algorithm (LK) is a specialised algorithm for

TSP that has long been perceived as the champion of this problem [Lin & Kernighan 1973,

Martin & Otto 1996]. We tested GLS+FLS+2Opt against LK in a set of benchmark problems

from the public TSP library [Reinelt 1991]. Given the same amount of time (we tested 5 cpu

minutes and 30 cpu minutes on a DEC Alpha 3000/600), GLS+FLS+2Opt found better results

than LK in average. GLS+FLS+2Opt also out-performed the best Simulated Annealing

[Johnson et al 1989], Tabu Search [Knox 1994] and Genetic Algorithm [Freisleben & Merz

1996] implementations reported on TSP so far. One must be cautious when interpreting such

empirical results as they could be affected by many factors, including implementation issues.

But given that the TSP is an extensively studied problem, it takes something special for an

algorithm to out-perform the champions under any reasonable measure (“find me the best

results within a given amount of time” must be a realistic requirement). It must be emphasized

that LK is specialized for TSP but GLS and FLS are much simpler general-purpose algorithms.

Details of GLS+FLS applied to the TSP can be found in [Voudouris & Tsang 1998].6

6 We have tried to implement the compared algorithms as efficiently as possible. Even if speed is not the best
measure for GLS’s success, credit should be given to GLS for its generality and simplicity. A demonstration
program for GLS on TSP is available from http://cswww.essex.ac.uk/CSP/gls.html

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

15

GLS has also been applied to general function optimisation problems to illustrate that artificial

features can be defined for problems in which the objective function suggests no obvious

features. Results show that, as expected, GLS spreads its search effort across solution

candidates depending on their quality (as measured by the objective function). Besides, GLS

consistently found solutions in a landscape with many local sub-optimals [Voudouris 1998].

Research in GLS and its predecessor GENET has been followed up by researchers outside our

group. GLS has been incorporated in Dispatcher; a commercial package for vehicle routing

problems developed by ILOG (http://www.ilog.fr/html/products/) [Backer et al 1997]. British

Telecom is looking into using GLS for scheduling. Bouju et al [1995] applied GENET to radio

length frequency assignment. Other applications of GENET include rail traffic control [Jose &

Boyce 1997] and logic programming [Lee & Tam 1995, Stuckey & Tam 1998]. Having

succeeded in so many applications, GLS and FLS are algorithms that anyone interested in

optimisation cannot afford to ignore.

5. Guided Genetic Algorithm, an Extension of GLS

5.1. Overview of Guided Genetic Algorithm (GGA)

GLS is a meta-heuristic algorithm. Not only can it sit on top of local search algorithms, it can

also be embedded in Genetic algorithms (GAs). GAs borrow their ideas from evolution

[Holland 1975, Davis 1987]. The idea is to maintain a population of candidate solutions. The

candidate solutions are given individual chances to produce offspring depending on their

“fitness”. Fitness is measured by the objective function in optimisation. GAs have been applied

to constraint satisfaction [Eiben et al 1994, Ruttkay et al 1995, Chu & Beasley 1997, Warwick

& Tsang 1994, 1995].

Guided Genetic Algorithm (GGA) is a hybrid of GA and GLS. It aims to widen the

applicability of GAs (which is limited by epistasis) and further improve the robustness of GLS.

It can be seen as a GA with GLS to bring it out of local optimum: if no progress has been made

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

16

after a number of iterations (this number is a parameter to GGA), GLS modifies the fitness

function (which is the objective function) by means of penalties. GA will then use the modified

fitness function in future generations. The penalties are also used to bias crossover and

mutation in GA – genes that are involved in more penalties are made more susceptive to

changes by these two GA operators. This allows GGA to be more focussed in its search.

On the other hand, GGA can roughly be seen as a number of GLSs from different starting

points running in parallel, exchanging partial solutions in a GA manner. The difference is that

only one set of penalties is used in GGA whereas parallel GLS would have used one

independent set of penalties per run. One can say that learning in GGA is more selective than

parallel GLS: the updating of penalties is only based on the best chromosome found at the

point of penalization.

5.2. Features and Penalties in GGA

Like GLS, GGA runs with the augmented objective function (though it records the best

solutions so far according to the original objective function). As in GLS, one needs to define

features in GGA. In GGA, a feature qi is defined by the assignment of a fixed set of (possibly

single) assignments, Cover(qi) = {xi1, xi2, ..., xin} to specific values. For example, a feature may

be exhibited if variable x takes values from {1, 2, 3}. To conform with GLS notations, we

define an indicator function ti for each feature qi:

ti(gp) = 1 if chromosome gp exhibits feature qi; 0 otherwise

Penalties are used to change the objective function used by GA in order to bring it out of local

optima. They are also used to bias crossover and mutation, as will be described later.

As in GLS, a user-defined cost ci is associated to each feature i. Internally, GGA associates one

penalty counter pi to each feature i. Costs will remain constant but penalties could be updated

during the run. Penalties are all initialized to 0. Penalties are global. In other words, one set of

penalty values is applied to all chromosomes in GGA.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

17

GGA invokes GLS whenever the best chromosome in the population remains unchanged for k

GA cycles, where k is a parameter to GGA. The penalty operator, a special operator in GGA,

selects features qi in the best chromosome gp in the current population in the same way as GLS,

i.e. the features qi which have the highest utili value (equation 10).

5.3. Fitness Templates, The Key to GGA's Performance

One novel element of GGA is the fitness template. It is the bridge between GLS and GA. It

enables the penalties to affect GA's crossover and mutation operators. Every chromosome gp is

associated with a fitness template, dp, which is made up of weights. One weight dp,q corresponds

to each gene gp,q. Each weight dp,q defines how susceptive to change the corresponding gene gp,q

is during crossover and mutation: the greater the value dp,q ("heavier") the more susceptive to

change gp,q is, as it will be elaborated later.

The fitness templates are computed from the penalties when a chromosome is created. They are

updated when the penalties are changed. The weights of a fitness template are computed in the

following way: all weights are initialized to zero. Then for each feature qi that is exhibited by

the chromosome, the weight dp,q is increased by the value in the penalty counter for qi if the

gene gp,q is in Cover(qi).

5.4. GGA Operators and Population Dynamics

In this section, we shall explain the operations of a generic GGA.7 First we shall explain the

special operators in GGA. Then we shall explain GGA's control flow.

5.4.1. GGA's Crossover Operator

Crossover produces new members of the population by combining genetic information from

two parents. GGA's crossover operator makes use of the fitness templates of the parents. Two

parents gp and gp’ are selected to produce one offspring gc. The probability of performing

crossover on a pair of parents is called the crossover rate. If crossover were to be performed,

7 The operators can be specialized to suit individual problems.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

18

then each gene gp,q in parent gp competes against the corresponding gene gp’,q in parent gp’ for a

place in the offspring. This competition is in reverse proportion to the corresponding weights,dp,q and dp’,q. The probability of genes gp,q and gp,q being selected are
qpqp

qp

',,

',dd d+ and
qpqp

qp

',,

,dd d+
respectively. In other words, the "lighter" gene (the one with the smaller weight in its fitness

template) has a better chance of being passed to the offspring. The selection of each gene is

independent of the others during crossover. Since the offspring may exhibit features different

from those exhibited by the parents, the fitness template are computed afresh for the offspring

rather than inherited.

5.4.2. GGA's Mutation Operator

Mutation produces variations in the population through altering the information that genes

carry. Whether mutation is performed or not is determined by the mutation rate, which is a

GGA parameter. In GGA, the mutation rate is defined as a fraction of the length of each

chromosome. The number of genes in a chromosome to mutate is the product of the mutation

rate and the length of that chromosome.

For every chromosome, GGA selects the required number of genes to mutate. The selection is

done using the roulette wheel method. In this selection method, the probability for each genegc,q to be picked is directly proportional to its weight dc,q. In other words, the "heavier" a gene gc,q

(i.e. the greater the value dc,q), the more chance it has of being selected for mutation.

Having picked a gene gc,q for mutation, the next step is to seek a value for it. This could have

been done randomly. In GGA, the value that yields the best fitness (i.e. the best local

improvement) will be selected. Ties are broken randomly.

After a gene gc,q has been mutated, its weight dc,q may optionally be reduced by one unit in

GGA. This will reduce the chance of gc,q being selected for mutation again. GGA allows the

same gene to mutate more than once because the next time it is picked for mutation, some other

genes may have been mutated. So the best value in the last mutation may no longer be the best

when the same gene is picked again.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

19

5.4.3. The Control Flow in GGA

Having described the components of GGA, we are now in a position to describe its control

flow. Like any standard GA, given a problem, one needs to define a representation for

candidate solutions. For GGA, one also needs to define features and their costs. To start, an

initial population is generated randomly. A fitness template is computed for each chromosome

in the population. Then GGA cycles ensue.

In each GGA cycle, the reproduction operator picks chromosomes from the population, using

the roulette wheel method, to form the mating pool. Pairs of chromosomes are picked from the

mating pool randomly to form parents. Whether crossover, as described above, is performed is

determined by the crossover rate, which is a GGA parameter. The offspring is potentially

mutated using the mutation operator described above, depending on the mutation-rate.

Potentially mutated offspring are then given a chance to join the population in the next

generation. The old population and the offspring are ranked by their fitness. The fittest n

chromosome in the ranking are used to form the population in the next generation, where n is

the population size which is a GGA parameter.

New elements of the GGA come into play at this point. The new population is surveyed for the

possibility of being trapped in local optima. If the best solution in the population remains

unchanged for k iterations, where k is a GGA parameter, then the search is concluded to be in

local optimum. This invokes the penalty operator, which modifies the objective function in

exactly the way that GLS does based on the fittest string in the population. To reflect the

change of the objective function, the fitness templates for individual chromosomes are updated.

This will affect the crossover and mutation operators in the next GGA cycle.

GGA cycles until it reaches the pre-defined termination conditions, which could be defined in

terms of a maximum number of cycles or computation time.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

20

5.5. GGA Applications

The Royal Road Function is a function with many large plateaus; hill climbing in general can

be very inefficient in it [Mitchell 1996]. GGA has been applied to this problem and

demonstrated to be more efficient than both GAs [Mitchell 1996] and GLS [Lau 1998].

GGA has been applied to the Processors Configuration Problem in which one is to find

configurations of processors minimizing the communication distance [Chalmers 1994]. GGA

found configurations with shorter average communication distance than those found by other

algorithms reported so far [Lau & Tsang 1997, 1998a]. In the General Assignment Problem,

GGA has been found to be as good as one of the best algorithm proposed for this problem so

far (which is a GA algorithm) [Chu & Beasley 1997], with even more remarkable robustness

[Lau & Tsang 1998b]. In the radio link frequency assignment problem (RLFAP, described

above), GGA found results as good as GLS, but solution costs fall into a narrower range [Lau

& Tsang 1998c].

To summarize, GGA has been found to be effective in a wide range of problems. It can

improve the robustness of GLS, which itself improves the robustness (as well as effectiveness)

of the hill-climbing algorithms that it sits on [Lau 1998]. As as general algorithm, GGA has

found results comparable to, if not better than, those obtained by other world class algorithms

in the tested problems.

Acknowledgements

The authors appear in chronological order in their joining the group. Jim Doran, Terry

Warwick, James Borrett, Kangmin Zhu, Alvin Kwan, John Ford, Patrick Mills, Paul Scott,

Richard Williams and Nathan Barnes have all made valuable contributions to this project. This

project was partially sponsored by EPSRC funded projects GR/H75275 and GR/L20122.

Andrew Davenport was sponsor by an EPSRC studentship for his PhD study. Chris Voudouris

is being supported by British Telecom in this research. Tung-Leng Lau was sponsored by the

University of Essex’s Scholarship. The anonymous reviewers gave useful comments.

Unfortunately, not all of them can be incorporated in this paper due to space limitation.

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

21

References

1. Aho, A.V., Hopcroft, J.E. & Ullman, J.D., Data structures and algorithms, Addison-
Wesley, 1983

2. Azarmi N. and Abdul-Hameed W., Workforce scheduling with constraint logic
programming, British Telecom Technology Journal, Vol.13, No.1, January, 1995, 81-94

3. Backer, B.D., Furnon, V., Kilby, P., Prosser, P. & Shaw, P., Solving vehicle routing
problems using constraint programming and metaheuristics, Technical Report, GreenTrip
Project, http://www.cs.strath.ac.uk/~ps/GreenTrip/, 1997

4. Baker S., Applying simulated annealing to the workforce management problem, ISR
Technical Report, British Telecom Laboratories, Martlesham Heath, Ipswich, 1993

5. Bentley J.J., Fast algorithms for geometric traveling salesman problems, ORSA Journal
on Computing, Vol.4, 1992, 387-411

6. Bouju, A., Boyce, J.F., Dimitropoulos, C.H.D., vom Scheidt, G. & Taylor, J.G., Intelligent
search for the radio link frequency assignment problem, Proceedings of the International
Conference on Digital Signal Processing, Cyprus 1995

7. Boyce, J.F., Dimitropoulos, C.H.D., vom Scheidt, G. & Taylor, J.G., GENET and tabu
search for combinatorial optimization problems, World Congress on Neural Networks,
Washighton D.C., 1995

8. Chalmers, A.G., A minimum path parallel processing environment, Research Monographs
in Computer Science, Alpha Books, 1994

9. Chu, P. & Beasley, J.E., Genetic algorithms for the generalized assignment problem,
Computers and Operations Research, Vol.24, 1997, 17-23

10. Colmerauer, A., An introduction to Prolog III, CACM Vol.33, No7, July 1990, 69-90

11. Davenport A., Tsang E.P.K., Wang C.J. and Zhu K., GENET: a connectionist architecture
for solving constraint satisfaction problems by iterative improvement, Proc., 12th National
Conference for Artificial Intelligence (AAAI), 1994, 325-330

12. Davenport, A., Extensions and evaluation of GENET in constraint satisfaction, PhD
Thesis, Department of Computer Science, University of Essex, Colchester, UK, July 1997

13. Davis L. (ed.), Genetic algorithms and simulated annealing, Research notes in AI,
Pitman/Morgan Kaufmann, 1987.

14. Davis L. (ed.), Handbook of genetic algorithms, Van Nostrand Reinhold, 1991

15. Eiben A.E., Raua P-E., and Ruttkay Zs., Solving constraint satisfaction problems using
genetic algorithms, Proc., 1st IEEE Conference on Evolutionary Computing, 1994, 543-
547

16. Mitchell, M., An introduction to genetic algorithms, MIT Press, Cambridge,
Massachusetts, 1996

17. Freisleben, B., and Merz, P., A Genetic Local Search Algorithm for Solving the Symmetric
and Asymmetric TSP, Proceedings of IEEE International Conference on Evolutionary

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

22

Computation, Nagoya, Japan, 1996, 616-621

18. Freuder, E.C. & Mackworth, A., (ed.), Constraint-based reasoning, MIT Press, 1994

19. Glover F., E. Taillard, and D. de Werra, A user’s guide to tabu search, Annals of
Operations Research, Vol.41, 1993, 3-28

20. Holland J.H., Adaptation in natural and artificial systems, University of Michigan press,
Ann Arbor, MI, 1975

21. IFProlog, http://www.biz.isar.de/ifcomputer/

22. Johnson, D., Local optimization and the traveling salesman problem, Proceedings of the
17th Colloquium on Automata Languages and Programming, Lecture Notes in Computer
Science, 443, 446-461, Springer-Verlag, 1990

23. Johnson, D., Aragon, C., McGeoch, L., and Schevon, C., Optimization by simulated
annealing: an experimental evaluation, part I, graph partitioning, Operations Research,
37, 865-892, 1989

24. Jose, R. & Boyce, J., Appication of connectionist local search to line management rail
traffic control, Proceedings, Practical Applicaiton of Constraint Technology (PACT'97),
London, April 1997

25. Kilby, P., Prosser, P. & Shaw, P., Guided local search for the vehicle routing problem,
Proc., 2nd International Conference on Metaheuristics (MIC97), Sophia-Antipolis, France,
July 1997, 21-24

26. Knox, J., Tabu search performance on the symmetric traveling salesman problem,
Computers Ops Res., Vol. 21, No. 8, pp. 867-876, 1994

27. Koopman B.O., The theory of search, part III, the optimum distribution of searching
effort, Operations Research, Vol.5, 1957, 613-626

28. Lau, T.L. & Tsang, E.P.K., Solving the processor configuration problem with a mutation-
based genetic algorithm, International Journal on Artificial Intelligence Tools (IJAIT),
http://www.wspc.com.sg/journals/journals.html, World Scientific, Vol.6, No.4, December
1997, 567-585

29. Lau, T.L. & Tsang, E.P.K., Solving large processor configuration problems with the
guided genetic algorithm, IEEE 10th International Conference on Tools with Artificial
Intelligence (ICTAI'98), Taiwan, November 1998

30. Lau, T.L. & Tsang, E.P.K., The guided genetic algorithm and its application to the
general assignment problem, IEEE 10th International Conference on Tools with Artificial
Intelligence (ICTAI'98), Taiwan, November 1998

31. Lau, T.L. & Tsang, E.P.K., Guided genetic algorithm and its application to the radio link
frequency allocation problem, Proceedings, NATO Symposium on Radio Length
Frequency Assignment, Sharing and Conservation Systems (Aerospace), Aalborg,
Denmark, October 1998

32. Lau, T.L., Guided Genetic Algorithm, PhD Thesis, Department of Computer Science,
University of Essex, Colchester, UK, submitted September 1998

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

23

33. Lee, J.H.M., Leung, H.F. & Won, H.W., Extending GENET for non-binary CSP's,
Proceedings, Seventh International Conference on Tools with Artificial Intelligence, 1995,
338-342

34. Lee, J.H.M. & Tam, V.W.L., A framework for integrating artificial neural networks and
logic programming, International Journal on Artificial Intelligence Tools, Vol.4, Nos.1&2,
June 1995, 3-32

35. Lever J., Wallace M., and Richards B., Constraint logic programming for scheduling and
planning, British Telecom Technology Journal, Vol.13, No.1., 1995, 73-80

36. Lin, S., and Kernighan, B.W., An effective heuristic algorithm for the traveling salesman
problem, Operations Research, 21, 498-516, 1973

37. Luenberger, D., Linear and nonlinear programming, Addison-Wesley Publishing Co.,
Inc., 1984

38. Martin, O., and Otto, S.W., Combining simulated annealing with local search heuristics,
in: G. Laporte and I. H. Osman (eds.), Metaheuristics in Combinatorial Optimization,
Annals of Operations Research, Vol. 63, 1996

39. Minton, S., Johnston, M., Philips, A.B. & Laird, P., Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling problems, Artificial Intelligence,
Vol.58, Nos.1-3 (Special Volume on Constraint Based Reasoning), 1992, 161-205

40. Puget, J-F., Applications of constraint programming, in Montanari, U. & Rossi, F. (ed.),
Proceedings, Principles and Practice of Constraint Programming (CP'95), Lecture Notes in
Computer Science, Springer Verlag, Berlin, Heidelberg & New York, 1995, 647-650

41. Reinelt, G., A Traveling Salesman Problem Library, ORSA Journal on Computing, 3,
1991, 376-384

42. Ruttkay, Zs., Eiben, A.E. & Raue, P.E., Improving the performances of GAs on a GA-hard
CSP, Proceedings, CP95 Workshop on Studying and Solving Really Hard Problems, 1995,
157-171

43. Simonis, H., The CHIP system and its applications, in Montanari, U. & Rossi, F. (ed.),
Proceedings, Principles and Practice of Constraint Programming (CP'95), Lecture Notes in
Computer Science, Springer Verlag, Berlin, Heidelberg & New York, 1995, 643-646

44. Stone L.D., The process of search planning: current approaches and continuing problems,
Operations Research, Vol.31, 1983, 207-233

45. Stuckey, P. & Tam, V., Semantics for using stochastic constraint solvers in constraint
logic programming, Journal of Functional and Logic Programming, January 1998

46. Tsang, E.P.K., Foundations of constraint satisfaction, Academic Press, 1993

47. Tsang E.P.K., Scheduling techniques — a comparative study, British Telecom Technology
Journal, Vol.13, No.1, 1995, 16-28

48. Tsang, E.P.K. & Voudouris, C., Fast local search and guided local search and their
application to British Telecom's workforce scheduling problem, Operations Research
Letters, Elsevier Science Publishers, Amsterdam, Vol.20, No.3, March 1997, 119-127

A Family of Stochastic Methods Page
For Constraint Satisfaction and Optimisation

24

49. Tsang, E.P.K. & Wang, C.J., A generic neural network approach for constraint
satisfaction problems, in Taylor, J.G. (ed.), Neural network applications, Springer-Verlag,
1992, 12-22

50. Voudouris, C. & Tsang, E.P.K., Partial constraint satisfaction problems and guided local
search, Proc., Practical Application of Constraint Technology (PACT'96), London, April,
1996, 337-356

51. Voudouris, C., Guided Local Search for Combinatorial Optimisation Problems, PhD
Thesis, Department of Computer Science, University of Essex, UK, July 1997

52. Voudouris, C., Guided Local Search -- An illustrative example in function optimisation,
BT Technology Journal, Vol.16, No.3, July 1998, 46-50

53. Voudouris C. & Tsang, E.P.K., Guided local search and its application to the traveling
salesman problem, European Journal of Operational Research, Vol.113, Issue 2,
November 1998, 80-110

54. Voudouris, C. & Tsang, E.P.K., Solving the radio link frequency assignment problem
using guided local search, Proceedings, NATO Symposium on Radio Length Frequency
Assignment, Sharing and Conservation Systems (Aerospace), Aalborg, Denmark, October
1998

55. Wallace, M., Practical applications of constraint programming, Journal of Constraints,
Kluwer Academic Publishers, Boston, Vol.1, Nos.1&2, 1996, 139-168

56. Wang, C.J. & Tsang, E.P.K., Solving constraint satisfaction problems using neural-
networks, Proceedings of IEE Second International Conference on Artificial Neural
Networks, 295-299, 1991

57. Wang, C.J. & Tsang, E.P.K., A cascadable VLSI design for GENET, in Delgado-Frias,
J.G. & Moore, W.R. (ed.), VLSI for Neural Networks and Artificial Intelligence, Plenum
Press, New York, 1994, 187-196

58. Warwick T., and Tsang, E.P.K., Using a genetic algorithm to tackle the processors
configuration problem, Proc., ACM Symposium on Applied Computing, 1994, 217-221

59. Warwick, T. & Tsang, E.P.K., Tackling car sequencing problems using a generic genetic
algorithm, Evolutionary Computation, Vol.3, No.3, 1995, 267-298

